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Abstract: Local activation waves (LAWs) detection in complex fractionated atrial electrograms
(CFAEs) during catheter ablation (CA) of atrial fibrillation (AF), the commonest cardiac arrhythmia, is
a complicated task due to their extreme variability and heterogeneity in amplitude and morphology.
There are few published works on reliable LAWs detectors, which are efficient for regular or low
fractionated bipolar electrograms (EGMs) but lack satisfactory results when CFAEs are analyzed.
The aim of the present work is the development of a novel optimized method for LAWs detection in
CFAEs in order to assist cardiac mapping and catheter ablation (CA) guidance. The database consists
of 119 bipolar EGMs classified by AF types according to Wells’ classification. The proposed method
introduces an alternative Botteron’s preprocessing technique targeting the slow and small-ampitude
activations. The lower band-pass filter cut-off frequency is modified to 20 Hz, and a hyperbolic
tangent function is applied over CFAEs. Detection is firstly performed through an amplitude-based
threshold and an escalating cycle-length (CL) analysis. Activation time is calculated at each LAW’s
barycenter. Analysis is applied in five-second overlapping segments. LAWs were manually annotated
by two experts and compared with algorithm-annotated LAWs. AF types I and II showed 100%
accuracy and sensitivity. AF type III showed 92.77% accuracy and 95.30% sensitivity. The results of
this study highlight the efficiency of the developed method in precisely detecting LAWs in CFAEs.
Hence, it could be implemented on real-time mapping devices and used during CA, providing robust
detection results regardless of the fractionation degree of the analyzed recordings.

Keywords: atrial fibrillation; electrogram; complex fractionated atrial electrograms; local activation
waves; detection; invasive recordings

1. Introduction

Atrial fibrillation (AF) is currently the most common cardiac arrhythmia in the Western
world, showing a significant impact in the quality of life of the patients [1]. Compared to
25 years ago, AF incidence has increased by 31%, while prognostics about AF evolution
are dispiriting [2]. Apart from being a life-threatening disease, AF can provoke significant
healthcare costs [1]. Taking all the aforementioned into account, it is clear that an efficient
AF treatment is imperative. Catheter ablation (CA) of pulmonary veins (PVs) is nowadays
the first-line AF therapy, being especially beneficial for paroxysmal AF patients, since they
show a high rate of PVs-only foci [3,4].
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Longer time in AF, often accompanying persistent AF cases, has been associated
with more severe health complications and higher AF recurrence rates [1,5,6]. The CA
of areas that tend to initiate or sustain the AF activity is considered an additional step
following the CA of PVs in order to increase the CA success probabilities, although showing
controversial results [1,7]. Coronary sinus, superior vena cava, left atrial posterior wall
and interatrial septum are some of the most frequent sites where arrhythmogenic activity
has been reported [8–10]. The main concept of the additional CA approach is the electrical
isolation of the areas that provoke or perpetuate the AF dynamics. The first step of the
out-of-PVs ablation of persistent AF, consequently, consists of the detection of these areas,
which form the AF substrate [11].

Two main theories exist regarding the behavior of the AF dynamics, which are each
connected with a different approach to confront AF. The first theory supports the existence
of meandering rotors, the ablation of which, assisted by phase mapping, is believed to
terminate AF [12,13]. Nevertheless, this is considered an ambiguous method due to the
possibility of passive rotors’ activity [14–16]. The second theory attributes AF to single and
random potentials, colliding with existent anatomical conduction blocks [17]. Studies based
on this theory suggest the ablation of complex fractionated atrial electrograms (CFAEs),
which are thought to represent areas of anatomical irregularities. CFAEs are defined as
electrograms (EGMs) with activations of ≥2 deflections and/or perturbed baseline or as
EGMs with a cycle length (CL) ≤ 120 ms [18]. While CFAEs’ detection can be performed
without CL estimation, many techniques suggest the CL-based CFAEs definition in order to
locate candidate CA targets [19–21]. As CL is defined by the distance in samples between
two consecutive local activation waves (LAWs) [22], this requires the prior detection
of LAWs.

In unipolar EGMs, LAWs annotation, known as local activation timing annotation, is
relatively simple, and many algorithms have been developed around the steepest deflec-
tion technique in order to optimize the annotation performance [23–26]. However, bipolar
EGMs, which are vastly used in AF mapping, are especially sensitive to various param-
eters such as the wavefront direction, the electrode specifications and filtering that may
affect the amplitude and morphology of the signals [27–30]. Despite the development of
methods aiming to facilitate the automatic annotation of bipolar EGMs, the aforementioned
parameters significantly complicate the LAWs detection in CFAEs and EGMs with a high
fractionation degree [31]. Taking all the afore into account, the development of algorithms
able to reliably detect LAWs from CFAEs has been a rather complicated issue.

The adaptive amplitude threshold-based method, the CL-based method and the dom-
inant frequency method are previous techniques developed for this purpose, showing
competitive results [32–34]. Notwithstanding, the complex nature of EGM dynamics in
CFAEs leads to insufficient performance in cases of high complexity. Therefore, the elabo-
ration of an efficient and robust algorithm that will be able to detect with high accuracy
the activation waves which are propagating the AF activity is still pending. The aim of
the present study is to develop a high-performance LAW detector, which is able to operate
reliably even in the cases of high EGM fractionation, in order to assist the CA procedure
for out-of-PVs ablations. The method developed is a combination of two already existent
methods: the adaptive amplitude-based and CL-based LAWs detection [32,33]. The key
factor of this method, however, is the amplification of low-amplitude components in CFAEs,
by applying a hyperbolic tangent (HT) function, allowing the respective activations that in
other cases would be ignored to be detected and annotated.

The remainder of the document is structured as follows. Section 2 presents the EGMs
dataset used in this study, as well as the data preprocessing and classification, further
including an explanation of the main algorithm and the evaluation methods used for the
validation of the results, which are presented in Section 3. Section 4 analyzes the main
improvements and outcomes. Finally, Section 5 highlights the most relevant aspects of the
present study.
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2. Methods

The dataset employed in this study was composed of 119 10-s EGMs obtained using
a CardioLab system (General Electric, Wauwatosa, WI, USA) after written consent of
22 persistent AF patients (17 male, 49.55 ± 11.54 years old) undergoing first-time CA
procedures. Two expert physicians blinded to the algorithm manually annotated the
dataset and classified the EGMs by AF types according to Wells’ classification [35], among
which the AF type I and III are the least and most complex EGM cases, respectively. The
final database consisted of 16 AF type I, 19 AF type II and 84 AF type III EGMs. The decision
of selecting a considerably higher amount of type III EGMs was motivated by the fact that
type III EGMs’ and CFAEs’ automatic annotation is by far more challenging and therefore
a better testing environment for the algorithm’s reliability.

2.1. Preprocessing

The block diagram of the preprocessing steps can be found in Figure 1. An adaptive
notch filter to remove powerline interference, as well as a band-pass filter between 0.5
and 500 Hz to reduce the noise of low and high frequencies, were applied to the original
data, which were then resampled at a rate of 1 kHz. EGMs underwent stationary wavelet
transform (SWT) denoising to reduce high-frequency noise. Given the high performance
of the SWT reducing noise and, at the same time preserving the waveforms’ integrity,
this filtering technique is considered highly powerful [30]. Figure 2 presents an example
demonstrating the performance of SWT denoising when applied over a noisy EGM.

PLI removal Wavelet-denoisingBP, 0.5~500 Hz Resample, 1 kHz

Rectification LP, 20 Hz 0-1 normalizationBP, 20~250 Hz
Botteron & Smith

Figure 1. Block diagram of the preprocessing steps performed by the proposed algorithm. Botteron’s
lowest cut-off frequency has been reduced to 20 Hz (red). PLI: powerline interference; BP: band-pass
filter; LP: low-pass filter.
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Figure 2. Example of noise filtering performance applied to a noisy EGM. (a) Normalized raw
electrogram, (b) electrogram denoised by the stationary wavelet transform.

The proposed method implements a filtering stage inspired by the preprocessing of
EGMs introduced by Botteron and Smith [22], the application of which creates proportional
waveforms to the amplitude of the signal’s components with frequencies between the
cut-offs of the initial band-pass filter. The output signal was then rectified and low-pass
filtered (see Figure 1). These two last stages have been implemented as they were originally
designed, establishing the low-pass filter cut-off frequency at 20 Hz, as it has been proved
to achieve an optimal performance.
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Nevertheless, deep analyses of the stage associated to band-pass filtering employed by
Botteron and Smith, which originally had cut-offs of 40–250 Hz, showed a good response
for high-frequency components, which are typically present in the activations of type I
and II AF EGMs. However, activations in CFAEs have often slow components, the wave-
forms of which are not proportional to the traditional Botteron’s preprocessing technique.
Consequently, the detection of these components becomes significantly complex, and slow
activations are in danger of being lost.

Due to that fact, multiple testing on the filtering process parameters was performed
over the dataset, leading to an alternative 20–250 Hz band-pass filtering before the recti-
fication and the low-pass filtering (see block diagram in Figure 1). The results provided
a more reliable transformation, equalizing the waveform response of slow and fast acti-
vations, significantly facilitating and enhancing the detection process, and the band-pass
filter was therefore implemented with this configuration. A comparative example between
the outcome of the proposed signal preprocessing and the original Botteron’s filtering
is shown in Figure 3. As can be observed, the new proposed wider bandwidth allows
lower-frequency components to appear more fairly represented with respect to their orig-
inal amplitude. Finally, signals were normalized at a 0–1 scale in order to facilitate the
forthcoming analysis steps.

200 400 600 800 1000 1200 1400 1600 1800 2000

200 400 600 800 1000 1200 1400 1600 1800 2000

200 400 600 800 1000 1200 1400 1600 1800 2000
Time (ms)

A
m

pl
itu

de
N

or
m

al
iz

ed
A

m
pl

itu
de

N
or

m
al

iz
ed

A
m

pl
itu

de
N

or
m

al
iz

ed

0.0

0.0

0.0

0.2
0.4
0.6
0.8
1.0

1.0

1.0

0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

1

1

1
2

2

2(a)

(b)

(c)
3

3

3

Figure 3. Alternative Botteron’s filtering. (a) Denoised EGM and resulting signals from (b) original
Botteron’s filtering (40–250 Hz band-pass filter) and (c) the band-pass filter’s cut-offs modification to
20–250 Hz implemented by the proposed method. Numbers 1–3 (red) indicate three clear examples
of improved responses to LAWs.

2.2. EGM Classification

The first step of the analysis consisted of the classification of EGM fractionation using
the kurtosis value in one-second windows. This classification would later be necessary for
the selection of CFAEs, which correspond to EGMs with very low kurtosis value, so that
they can be further processed for the slow components enhancement that was described
in Section 2.1. The application of the kurtosis as a fractionation index was chosen due
to its simplicity and high performace in distinguishing between organized and highly
fractionated EGMs, as can be seen from Figure 4.
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Figure 4. Kurtosis results to different fractionation degrees. (a) Type I AF EGMs normally present
values of kurtosis higher than 20. (b) CFAEs are characterized by a low value of kurtosis. Type II AF
EGMs show a wide range of intermediate values depending on each particular morphology.

2.3. Processing of CFAEs

The main issue of any amplitude-based LAWs detector is to set a reliable amplitude
threshold so that a high detection performance can be achieved. Adaptive thresholds
are a candidate choice in order to account for amplitude variability, which can cause
significant performance issues due to abrupt changes in amplitude, which are typically
present in highly fractionated EGMs. When AF types I and II are analyzed, this variability
is not intense, and LAWs detection according to amplitude can lead to high precision.
However, when facing the high heterogeneity of amplitudes in CFAEs, in addition to
an adaptive threshold, a suitable enhancement of low-amplitude activations would be
necessary. For this purpose, the HT function was applied.

Analyses carried out showed a high response for small amplitude values and a progres-
sive decreasing response as the amplitude values were higher. This behavior, characterized
in Figure 5, provoked almost a 100% of magnification for the lowest values but, at the same
time, minimum increase for the highest ones.
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Figure 5. Hyperbolic tangent response to normalized input values. Diamonds correspond to the
normalized output values after the application of the hyperbolic tangent to the input values (crosses).
Squares refer to the response employed by the algorithm, ranging the value of the hyperbolic tangent’s
argument from 1 to 2 by adding 1 to the input value. The corresponding result, once normalized, is a
greater increase of the input values.

The application of the HT over an example signal is shown in Figure 6, where the
amplitude increment can be clearly observed to be different depending on the amplitude of
each activation. The result of this processing is an output signal, the activations of which are
much easier to be detected using an amplitude threshold with respect to the input signal.
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Figure 6. Hyperbolic tangent application over an example type III AF EGM. (a) Raw electrogram,
(b) corresponding response before (blue dashed line) and after (continuous red line) the use of the
hyperbolic tangent. Notice the different responses depending on the wave’s height, generating a
higher increment for smaller than for higher peaks.

2.4. Detection Algorithm

The proposed technique is a combination of the CL-based method and the adaptive
amplitude threshold-based method. The former is used as the main condition in order
to keep or stop searching for new activations as well as to define the search intervals.
The latter allows the progressive search of LAWs, starting with the easy cases of the most
prominent activations and moving to more complicated cases, including the low-amplitude
components that are present in AF type III EGMs. HT application significantly facilitates the
amplitude-based detection of these low-amplitude components. Analysis was performed
over five-second segments with 25% overlapping between adjacent segments, where the
final LAWs detection preferentially corresponded to the segments with the lowest kurtosis
value. An explanatory block diagram of the main analysis steps is illustrated in Figure 7.

Afterwards, HT was applied in low-kurtosis segments, corresponding to highly frac-
tionated EGMs. The detection stage started using a fixed amplitude threshold heuristically
established for the detection of the majority of the activations, using a 50 ms minimum
refractory period (see Figure 7). Once all LAWs above the set threshold are annotated,
the median CL is calculated, and the amplitude-based search is applied in intervals longer
than the median CL, using an adaptive threshold that decreases according to the interval
length. This process is repeated until no segments longer than 1.5× the median CL remain.
Finally, for detecting activation timing (AT) of LAWs, the barycenter of each LAW is calcu-
lated as the mean value of the area of each rectified LAW. Apart from the precise localization
of the AF activations, this stage allows the control of adjacently detected activations that
tend to converge without respecting the minimum refractory period set. Hence, the lower
amplitude activation is discarded, and the higher amplitude activation is preserved.

2.5. Statistical Analysis

Performance detection was evaluated by comparison with manually annotated LAWs
from the physicians. Each detected activation closer than 40 ms to a manual annotation was
considered as correct. Then, sensitivity, accuracy and positive predictive were calculated
to provide detailed results of the method’s application on both the entire dataset and
exclusively on type III AF EGMs. Specifically, with the aim to demonstrate the effectiveness
of each one of the pivotal steps applied, the aforementioned evaluation was carried out
after each one of them. This way, the efficacy of the induced preprocessing modification,
the HT application and the barycenters calculation can be assessed.
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CFAEs? ampl.(LAWs)>
  thresh₁?

     segments >
1.5 x median CL?

HT

analysis on 5-s epochs,
      25% overlapping
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LAW₁−LAW₂  < 50 ms,
delete min(LAW₁, LAW₂)

decrease threshold₁,
search interval > 
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LAW detection, highest to 
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threshold₁: fixed amplitude,
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       1-s segmentation:
kurtosis-based classification,

kurtosis    fractionation

NO

NO

NO
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YES

Figure 7. Blocks of the analysis performed by the proposed algorithm. CFAEs: complex fractionated
atrial electrograms; HT hyperbolic tangent; LAWs: local activation waves; CL: cycle length.

Furthermore, accuracy was evaluated for the three different types of AF with respect
to the chosen validation distance, while kurtosis’ efficacy as the CFAEs classifier was also
assessed by the degree of discrepancy with the manual annotations, using a classification
tree analysis with a maximum split of 2 in Matlab software (MathWorks, MA, USA).

3. Results

For each type of AF EGM, the evolution of the accuracy achieved by the method
according to the validation distance is shown in Figure 8. As expected, type I AF EGMs
reached their maximum accuracy results very soon, in a distance slightly longer than
10 ms. Type II AF EGMs showed a similar evolution, demanding a greater distance of
approximately 25 ms to obtain optimal results. Lastly, a remarkable difference existed
in the evolution of type III results, beginning with very poor accuracy results for short
validation distances and showing a slower increase of accuracy, achieving the maximum
value around 40 ms. From this point on, a progressive decrease can be observed as the
distance increases, which is an exclusive behavior of CFAEs for these values due to the
high degree of fractionated activity and proximity between activations.

The minimum refractory period, established in 50 ms between activations, implies
that validation distances higher than this value would lead to a double correspondence
between detected activations and manual annotations, provoking an accuracy reduction
for AF type III EGMs, as can be observed in Figure 8. Therefore, the validation distance has
to be shorter than the minimum refractory period.

type I AF 
type II AF
type III AF

102 20 30 40 50 60 70
Validation distance (ms)

10
20
30
40
50
60
70
80
90

100

A
cc

ur
ac

y 
(%

)

Figure 8. Study of the validation distance influence over annotation accuracy results for the three
types of AF EGMs analyzed. Due to their complex nature, involving components of variable ampli-
tude and frequency, type III EGMs are the most difficult to annotate automatically.
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Furthermore, 0.45% of the activations of type III AF EGMs were closer than 50 ms to
adjacent activations, which explains the decrease in accuracy of validation distance values
higher than 40 ms. This analysis would suggest the use of a shorter refractory period of
40 ms approximately, which would coincide with the same value as the validation distance.
Nevertheless, results obtained with this configuration were significantly poorer due to
over-detections, and this option was discarded.

The overall detection performance of the method is presented in Figure 9, analyzing
the application of the algorithm stage by stage. It can be observed from this figure that
for both the application over the entire dataset (Figure 9a) and just over type III AF EGMs
(Figure 9b), the evolution was similar. The implementation of the HT function entailed the
major increment both for accuracy and sensitivity, whereas the modification of the band-
pass filter cut-offs also introduced an increase but to a lesser extent. Lastly, although the
estimation of the barycenter of each LAW was mainly performed for a more precise location
of each activation, it added as well a slight improvement after the deletion of closely spaced
barycenters, justifying its recruitment. The positive predictive value (PPV) remained almost
constant in all stages, since errors made by over-detection are minimum.

Finally, Figure 9c shows the classification accuracy that kurtosis achieved for every AF
type. Kurtosis has been demonstrated as a powerful estimator of fractionation, correctly
classifying 100% of the AF type III EGMs. However, approximately 40% of the type II AF
EGMs of the dataset, corresponding to those presenting a higher degree of fractionation or
amplitude variability, were classified as CFAEs. The direct impact of this wrong AF type II
classification on the results was minimal, since the application of the HT over type II AF
EGMs did not introduce errors, whereas it facilitated the detection of the activations.

This evidence suggests that the HT may be applied directly over the entire dataset.
However, as kurtosis is employed to monitor the evolution of the fractionation degree,
its recruitment was limited to highly fractionated EGMs so that the computational cost is
minimized and algorithm is optimized.
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Figure 9. Progressive results of the method application by stages. (a) Over the entire dataset and
(b) over the type III AF EGMs exclusively. Four cases are analyzed: the application of the algorithm
only with the Botteron preprocessing (After Botteron), after the band-pass modification to 20–250 Hz
(After Band-pass filter), adding the HT use (After Hyperbolic tangent), and, finally, with the estimation
of barycenters and the deletion of close activations (After Barycenters). (c) Confusion matrix for the
classification of the recordings according to their fractionation. True class: experts’ classification;
Predicted class: kurtosis classification; PPV: positive predictive value; FDR: false discovery rate.
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4. Discussion

CFAEs analysis seems to be the vulnerable spot of the already published LAWs detec-
tion methods analyzing clinical recordings [32–34], as performance drops significantly in
this critical subgroup of AF EGMs. For this reason, various factors should be taken into
account for the analysis of highly fractionated EGMs by introducing the corresponding
steps. Low-amplitude and low-frequency components coexist with typical high-amplitude
and high-frequency activations in CFAEs. This should be taken into consideration when
CFAEs are analyzed by taking specific care of preserving and amplifying these character-
istics. The present work was based on this hypothesis, applying the respective steps that
have been presented in detail in Section 2.4.

Signal segmentation in five-second intervals allows the adaptability of the presented
method to recordings of any length and permits the classification of EGMs by AF types at
each segment individually. This way, any interval, of higher or lower fractionation than the
overall fractionation level of the recording it belongs to, can be analyzed accordingly and
without the bias that would exist in case of treating each recording as an entity. The choice
of kurtosis as a fractionation estimator yielding fast and accurate results for the crucial AF
type III EGM classification is performed so that highly fractionated EGMs, including CFAEs,
can be further preprocessed with the HT function in order to enhance the low-amplitude
activations that these types of EGMs often contain and increase the method accuracy, as it
has been shown from Figure 9. Its application over the entire dataset, though, does not
alter the obtained performance results, as it was shown in Figure 5. The reason why its
application was limited to highly fractionated EGMs is the minimization of computational
cost and hence, the optimization of the algorithm. Consequently, although a significant
part of AF type II EGMs was classified by kurtosis as AF type III, the method’s accuracy
was preserved.

The preservation of slow components is enhanced through the modification inserted in
the lower cut-off frequency of the Botteron’s preprocessing band-pass filtering, being set at
20 instead of 40 Hz. This step yielded an improvement of about +2.5% in the entire dataset
and about +3% in the type III EGMs, specifically. Finally, a double shield of protection
against over-detections is achieved by the use of the 50 ms refractory period in the first
place and the barycenter calculation, which allowed the control of converging activations
into a distance less than 50 ms. Apart from providing a more detailed and precise picture of
the AF substrate by optimizing the LAW timing calculation, this final step also contributed
to the accuracy of the developed algorithm.

The analysis of the validation distance clearly shows the increasing discrepancy be-
tween detected activations and clinicians annotations as the AF EGM type becomes higher.
Focusing on CFAEs, the optimal distance is in the range of 30–50 ms. Nevertheless, since
CLs as short as 42 ms exist, a further reduction to 30–40 ms would be suggested. The setting
of a validation distance as long as 30 ms, however, would lead to double detections. In or-
der to avoid this possibility, the validation distance has finally been set at 40 ms. On one
hand, Ng et al. [33] set a validation distance of 75 ms, which has been demonstrated to be
excessive and would provoke double correspondences between annotations and detections
in CFAEs. Furthermore, two manual annotations made by operators closer than 50 ms were
not accepted in that study, which helps to avoid possible errors of under-sensing. On the
other hand, Lee et al. [36] employed a maximum distance for the validation of detected
activations of just 20 ms, the results of which cannot be completely validated, since the
complexity of the six EGMs employed was not described.

Three of the most distinguished and established methods for LAWs detection in
bipolar EGMs are the dominant frequency-based (DF) method, the CL-based method
and the adaptive amplitude-based method [32–34]. The DF-based method detects LAWs
according to the EGM’s DF, which is a method that would be unsuitable for LAW detection
in CFAEs, due to the high heterogeneity of CLs, the pattern of which fails to follow loyally
the DF [34]. LAW detection in the CL-based method is performed amplitude-wise until a
limit CL condition is fulfilled and then seeking activations in longer segments by adapting
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the amplitude-threshold [33]. The main limitation of this technique is found in EGMs
with highly irregular CLs or periods of sudden changes in CL. Despite the fact that high
performance is achieved for normal EGMs, there exists a significant gap in CFAEs, which
is the most critical scenario. Finally, the adaptive amplitude-based method adopted a
threshold strategy according to the last 10 detected peaks with decreasing weights [32].
This method also failed to provide satisfactory results for highly fractionated EGMs.

The proposed method is a combination of the last two methods, the CL-based method
and the adaptive amplitude-based method. By applying pivotal modifications to Botteron’s
preprocessing technique as well as the HT function, this hybrid method appears to be
significantly optimized even for the most critical kind of EGMs, the CFAEs. Each step has
been carefully designed in order to provide higher efficiency and at the same time minimize
the computational costs and simplify the procedure. Considering the high demand on
detailed and precise personalized mapping on the confrontation of persistent AF and the
multi-aspect high performance of the suggested algorithm, this method could be recruited
for real-time AF mapping, improving CA results for out-of-PVs ablation on persistent
AF patients.

5. Conclusions

Precise AF mapping is of paramount importance for the CA of persistent AF. The de-
velopment of a robust and accurate LAWs detector regardless of the complexity of AF
dynamics remains a challenge and, at the same time, an essential task for the deep knowl-
edge about the AF substrate. The proposed method showed outstanding results even in
high EGM fractionation cases, while preserving simplicity and requiring low computational
resources. Analysis steps are efficient and can be reproduced easily, while signal segmen-
tation achieves robustness and adaptability. The aforementioned advantages suggest the
implementation of this technique in CA devices.
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