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Abstract: Modelling fire behaviour in forest fires is based on meteorological, topographical, and
vegetation data, including species’ type. To accurately parameterise these models, an inventory
of the area of analysis with the maximum spatial and temporal resolution is required. This study
investigated the use of UAV-based digital aerial photogrammetry (UAV-DAP) point clouds to classify
tree and shrub species in Mediterranean forests, and this information is key for the correct generation
of wildfire models. In July 2020, two test sites located in the Natural Park of Sierra Calderona (eastern
Spain) were analysed, registering 1036 vegetation individuals as reference data, corresponding to 11
shrub and one tree species. Meanwhile, photogrammetric flights were carried out over the test sites,
using a UAV DJI Inspire 2 equipped with a Micasense RedEdge multispectral camera. Geometrical,
spectral, and neighbour-based features were obtained from the resulting point cloud generated.
Using these features, points belonging to tree and shrub species were classified using several machine
learning methods, i.e., Decision Trees, Extra Trees, Gradient Boosting, Random Forest, and MultiLayer
Perceptron. The best results were obtained using Gradient Boosting, with a mean cross-validation
accuracy of 81.7% and 91.5% for test sites 1 and 2, respectively. Once the best classifier was selected,
classified points were clustered based on their geometry and tested with evaluation data, and overall
accuracies of 81.9% and 96.4% were obtained for test sites 1 and 2, respectively. Results showed that
the use of UAV-DAP allows the classification of Mediterranean tree and shrub species. This technique
opens a wide range of possibilities, including the identification of species as a first step for further
extraction of structure and fuel variables as input for wildfire behaviour models.

Keywords: Unmanned Aerial Vehicles (UAV); Digital Aerial Photogrammetry (DAP); machine
learning; deep learning; point cloud labelling; Mediterranean forest

1. Introduction

Wildfires are the main cause of forest ecosystem disturbance in the Mediterranean
basin, modifying the vegetation, fauna, soil, and affecting hydrological and geomorpholog-
ical processes [1,2]. Although wildfires can have a natural origin, playing an important role
in ecological cycles [3], their behaviour is being affected in the Mediterranean basin by an-
thropogenic activity [4–7]. Humans are modifying land use and climate causing an increase
in wildfires and burned area, modifying their natural frequency and reducing their period
of recurrence [8,9]. Since the mid-20th century, socioeconomic development has promoted
rural–urban migration, causing the abandonment of the traditional land exploitation and
increasing fuel loads, which imply a greater risk of igniting a forest fire [10]. Climate change
models indicate that the Mediterranean basin will be one of the most affected globally by
the rising of temperatures and reduction of precipitation, considering it as a climate change
“hot spot” [4,11]. These factors together with the increasing of soil aridity will affect directly
the fire regime [5], expecting the increase of wildfire frequency and burned areas [6].
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The advancements in technology have enabled the improvement of wildfires knowl-
edge through computational fire modelling [12–14]. Wildfire models simulate the behaviour
of the fire, being a key approach to understanding the complex relationships between fire
occurrence, fire drivers, and potential impacts. These models provide relevant information
in the different phases of wildfires: prevention, suppression, and recovery [12]. New
physics-based fire behaviour models use physical and empirical fire models coupled to
computational fluid dynamic models to parametrise the interaction between the chemical
combustion processes and the surrounding atmosphere, terrain, and vegetation [14–16]. In
order to simulate these interactions, fire models such as FIRETEC [17] or the Wildfire Dy-
namics Simulator (WFDS) [15] work with millimetre spatial scales [13]. These models need
a very fine resolution of terrestrial inputs to correctly perform the physical parameterisation
of local-scale forest characteristics [14,16]. In this regard, the most important terrestrial
variable when studying wildland fuels is the bulk density (BD) because it affects the fire
spread and intensity [18,19]. BD is defined as the mass of the fuel component material
by volume unit (kg·m−3) and represents the degree of fuel packing [18]. BD estimation is
particularly complex as it is normally obtained from species-specific allometric equations,
relating the dimensions of the plant and its dry weight [20,21]. These equations can be
calculated at different levels of vegetation detail, from species groupings to individual
divisions [21]. In this sense, the level of detail of the new generation of wildfire models
makes it necessary to classify the area studied by species and individuals. This information
allows for obtaining features such as BD with high accuracy and resolution.

The level of detail required to run the new wildfire models has highlighted the need to
study not only the tree layer but also the shrub layer. In Mediterranean forest ecosystems,
shrubs are an important component of surface fuels [21]. Shrubs have a high rate of energy
exchange, being particularly relevant as an igniter and spreader of fires [22]. One of the
greatest dangers when analysing a potential forest fire is the existence of ladder fuels, such
as shrubs, that provide continuity between the different vertical strata [23]. In areas prone
to wildfire, creating a separation in vegetation by removing ladder fuels is an important
task to avoid crown fires. This type of fire spreads rapidly through the upper layer, where
the wind usually blows stronger than in the lower layer [23].

Over the last decades, advances in remote sensing have allowed the classification
of plant species using different types of platforms and sensors [24]. Remote sensors
have traditionally been carried on satellites, aircrafts, or balloons, but in recent years
the use of unmanned aerial vehicles (UAVs) has changed this paradigm [25]. Compared
to traditional platforms, UAVs have many advantages, such as the cost of acquisition,
maintenance, and operation, which is significantly lower compared to other platforms [26].
UAVs allow easy modification of the flight plan, adapting to the spatial and temporal
resolution required for each project. In this sense, the possibility of modifying the flight
altitude allows adapting to different weather conditions, being able to fly below cloud
cover [27]. The low flight altitude, compared to other platforms, allows UAVs to obtain
finer spatial resolution [27]. One of the major advantages of UAVs is that they only need
to be equipped with a consumer camera to obtain products such as point clouds, 3D
objects, or orthophotos, applying structure from motion (SfM) algorithms [26,28,29]. Point
clouds derived from UAV-based digital aerial photogrammetry (UAV-DAP) provide 3D
information, useful for the detection of differences in vertical structure (i.e., plant height,
plant patterns, and leaf distribution) [30–32]. UAV-DAP point clouds can contain, in
addition to geometric information, spectral information extracted from the original pixel
value [29]. The instrumentation cost of this technique is determined by the optical sensor
used, starting from the simplest consumer cameras to the most advanced hyperspectral
sensors. On the other hand, some disadvantages of UAVs are their reduced payload and
their instability under windy conditions. However, their main disadvantage compared
to other platforms is the limited flight range; therefore, their use is reduced to small-scale
projects [33]. In this respect, the main disadvantage of the UAV-DAP technique is its lack
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of penetration into the tree canopy, reducing the information obtained from the forest
structure [32].

Some studies have used UAV-DAP data for classification of vegetation with accurate
results [27,28,33,34]. Nevalainen et al. [27] detected and classified four tree species in boreal
forests using UAV-DAP point clouds and hyperspectral image mosaics and compared differ-
ent techniques of machine learning (k-nearest neighbours, Random Forest, and MultiLayer
Perceptron). Tuominen et al. [33] also used UAV-DAP point clouds and hyperspectral image
mosaics together with k-nearest neighbours and Random Forest classifiers with a more
ambitious goal: to classify 26 different tree species. In the same line, Camile Sothe et al. [28]
similarly used UAV-DAP and hyperspectral data to classify 12 species in a subtropical forest
in Brazil. What all these studies have in common is that they provide a map of the classified
species as a result. In contrast, Mesas-Carrascosa et al. [34] proposed the classification of
UAV-DAP point clouds obtained from RGB imagery to determine the points belonging
to vineyards. These points were used to determine vine height. Once the classification of
the point cloud is done, three-dimensional information can be derived (e.g., tree heights),
enabling a further application of this 3D information (e.g., as fire models’ input). In this
sense, the classification of the point cloud of a forest area would imply the possibility of
extracting information of the vegetation structure. In addition, Mesas-Carrascosa et al. [34]
performed a classification using only consumer cameras, far from the capabilities and costs
of hyperspectral sensors. There are currently few articles describing the classification of
vegetation types using UAV-DAP point clouds. In this regard, to our knowledge there is no
study that attempted to classify shrub species in addition to tree species using UAV-DAP
point clouds, which is particularly interesting due to their importance in wildfire modelling.

In this paper, we propose a methodology for the classification of UAV-DAP derived
point clouds in tree and shrub species’ types, using multispectral data with low spectral
resolution cameras. We evaluated the methods in two Mediterranean shrub-dominated
forest areas and compared the performance of different classifiers.

2. Materials and Methods
2.1. Study Sites

The study area is divided into two zones located in the Natural Park of Sierra
Calderona, between the eastern Spain provinces of Valencia and Castellon (Figure 1).
This Park is one of the most emblematic protected natural areas in the province of Valencia.
The Sierra Calderona forms part of the last foothills of the Iberian System, being constituted
by a NW-SE mountain range. Most of the area is below 1000 m above sea level and it is a
typical example of a pre-coastal Valencian Mediterranean mountain range [29]. The climate
is coastal Mediterranean with mild changes in temperature and a mean temperature of
16 ◦C. Rainfall in summer is low, contrasting with autumn and spring, where most of the
annual rainfall is accumulated (450 mm) usually with torrential rains. The main species of
the study areas and their description are listed in Table 1.

The study site referred to as Area 1 encompasses 2889 m2, where the existence of the
current taxa derives from a forest fire that devastated 70 hectares of the Natural Park of
Sierra Calderona in 2014. The ecological succession caused by the fire is defined by the
presence of shrub species adapted to intense solar radiation, with an indifferent substrate
and adapted to soils with a high degree of stoniness and poor in nutrients. The density of
shrubs is very high and forms an almost continuous horizontal layer of vegetation, where
the different species are mixed without exceeding 150 cm in height. There is no tree cover in
the area. The study site referred to as Area 2 encompasses 11,455 m2, where the vegetation is
subject to preventive silvicultural treatments that have modified the fuel pattern. This area
corresponds to a strip with a width between 20 and 30 m. It is characterised by scattered
Pinus halepensis trees that are pruned to 2/3 of the tree height. The shrubs in this area are
well formed and isolated.
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Chamaerops humilis L. 
(European fan palm) 
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Figure 1. Study area location in the central Mediterranean area of Spain (A). Digital elevation model
of the Natural Park of Sierra Calderona with the two study areas (B); details of the study Area 1 (C),
and 2 (D). The green dots represent vegetation points measured in the field. The reference system
is EPSG:25830. Digital elevation model was obtained from ALS data, which, together with the
orthoimages, were provided by the Spanish National Aerial Orthophotography Program (PNOA
2015 CC BY 4.0 www.scne.es (accessed on 11 December 2020).

2.2. Overview of the Method

A general overview of the methodology is shown in Figure 2. Firstly, data collection
was carried out from three different sources. Several multispectral flights were performed
over the study areas and the positions of the Ground Control Points (GCPs) were collected
by Global Navigation Satellite System (GNSS) and applying Real-Time Kinematic (RTK).
This same technique was used to geolocate the position of the individuals studied; at
the same time, the species of each individual were identified. ALS point clouds of the
study area were obtained from the Spanish National Aerial Orthophotography Program
(PNOA). In the second step we carried out the photogrammetric process to obtain the
point clouds, where we performed a radiometric calibration of the multispectral images,
aligned the images to reconstruct the flight scene, and densified the point cloud obtained
during the alignment. In the next step we started the processing of the point clouds with the
normalisation of the heights, where the bare ground points from the UAV-DAP and airborne
laser scanning (ALS) point clouds were merged. Next, an extraction of spectral, geometric,
and neighbourhood features from the point cloud was performed. Using the extracted
features and training samples obtained from field data, a comparison of the following

www.scne.es
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classifiers was performed: Decision Tree, Extra Trees, Gradient Boosting, Random Forest,
and MultiLayer Perceptron. The method with the highest mean cross-validation scores
was selected. Subsequently, a feature selection based on permutation feature importance
and Pearson correlation was performed. Once the features were selected, the point cloud
was classified using the selected classifier. In the last step of point cloud processing, we
performed a segmentation of the point cloud based on its geometry, reclassifying it to
regularise the classification. Finally, we validated the results obtained.

Table 1. Summary of the species studied with their scientific and common names, description of their
morphology, number of individuals analysed, number of training points selected in the point cloud
to train the classifier, and study area where the species is located (value 1: study Area 1; value 2:
study Area 2).

Scientific Name
(Common Name) Description of Shape and Colour N. of Plants

Measured
Number of

Training Points
Study
Area

Anthyllis cytisoides L.
(Albaida)

Shrub with erect branches from the base. Greyish-whitish
appearance, hairy in the younger parts. 18 1910 1

Chamaerops humilis L.
(European fan palm)

Shrubby plant with a central stem, palmate fan, and very large green
leaves. 73 5528 1

Cistus monspeliensis L.
(Montpelier cistus)

Shrub with erect branches from the base. Linear-lanceolate dark
green leaves. 90 5651 1

Genista scorpius (L.) DC.
(Aulaga)

Greyish-green genistoid shrub, with a central stem and highly
branched. Almost leafless (only in spring). 44 2627 1

Quercus coccifera L.
(Kermes oak)

Dense shrub, very branched, covered with coriaceous and glabrous
leaves, with shiny surface and intense green colour. 44 4187 1

Cistus albidus L. (Grey-leaf
cistus)

Branched shrub with grey bark and glaucous-green ovate-lanceolate
leaves. Whitish appearance. 66 1499 2

Juniperus oxycedrus L.
(Cade juniper)

Shrub with a central trunk that branches a few centimetres above the
ground. Needle-shaped leaves, very dense, and intense green

colour.
81 7653 2

Pinus halepensis Mill.
(Aleppo pine)

Tree with a rounded or flat-topped crown of slender, irregular
horizontal, upturned branches. Intense green needles in fascicles. 33 3308 2

Rhamnus lycioides L. (Black
hawthorn)

Shrub of medium or short stature, thorny, and highly branched from
the base creating a thicket. The leaves are green grouped in fascicles. 83 3804 2

Salvia rosmarinus Schleid.
(Rosemary)

Very branched shrub from the base. Branches densely covered with
glossy green leaves on the upper surface and whitish on the lower. 245 32,596 2

Pistacia lentiscus L.
(Mastic)

Branchy shrub that reaches the size of a small tree. Mature bark is
greyish, but in the branches and young specimens it is reddish. Dark
shiny leaves on the upper surface, somewhat lighter on the lower.

27; 102 2536; 4569 1; 2

2.3. GNSS and UAV Data Collection

Fieldwork was carried out on 23–24 July 2020, performing an aerial multispectral
data collection and a GNSS data collection campaign. UAV field work consisted of two
flights (one per study area). Both flights were conducted close to solar noon to minimize
shadowing, under sunny conditions, quite windless for the first flight and a light wind
for the second flight. The campaign flights were conducted with a DJI Inspire 2 UAV,
a quadcopter drone weighting 3.44 kg, with a maximum payload of 0.81 kg. Its four
brushless motors are powered by two LiPo batteries of 4280 mAh, allowing for flights of up
to 27 min, depending on the payload and meteorological conditions. The DJI Inspire 2 was
equipped with a Micasense RedEdge multispectral camera (Micasense Inc., Seattle, WA,
USA), with five spectral bands: blue (475-nm centre, 20-nm bandwidth), green (560 nm,
20-nm bandwidth), red (668 nm, 10-nm bandwidth), red edge (717 nm, 10-nm bandwidth),
and near-infrared (840 nm, 40-nm bandwidth). The camera is composed of five sensors
(4.8 × 3.6 mm) of 1.2 MP of resolution with focal length fixed at 5.5 mm, giving a sensor
pixel size of 3.75 µm. The image format of this camera is 16-bit TIFF.
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The flight of study Area 1 lasted 6 min, taking 1150 images (one per band) and
covering an extension of 2.12 ha with a mean flying altitude of 49.2 m and a longitudinal
and transverse overlap of 80%, whereas the flight over study Area 2 lasted 7 min, acquiring
1295 images over an extension of 2.79 ha with a mean flying altitude of 59.6 m and an
overlap equal to the previous flight, 80%. In addition, several images of a calibration panel
of known reflectance were taken before and after the flights for the radiometric calibration
of the images.

During this campaign, the position and species of a total of 1036 individuals were col-
lected, corresponding to the most representative shrub and tree species in both study areas
(Table 1). In this work, the projection on the floor of the barycentre of each individual was
taken by GNSS positioning. In addition, to increase the accuracy of georeferencing taken
by UAV, during these works the centres of 12 GCPs were georeferenced (6 GCPs per study
area). The GNSS survey equipment used during the field campaign was a Leica GPS1200
using a RTK technique with an accuracy of ±(10 mm + 1 ppm) and ±(20 mm + 1 ppm) in
horizontal and vertical, respectively.

2.4. Photogrammetric Processing

All processes were carried out on a Windows 64-bit system, with the following specifi-
cations: RAM 32 GB, CPU IntelI CITM) i7-8700 CPU @ 3.20 GHz, and GPU GeForce RTX
1060. The images were processed using Metashape version 1.5.3 (Agisoft, St. Petersburg,
Russia). The workflow for generating geometric and radiometric consistent data from
multispectral images is presented in [30]. The workflow in Metashape starts with the
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radiometric calibration and continues with identifying, matching, and monitoring the
movement of common features between images. Radiometric calibration compensates for
sensor black level, sensor gain and exposure settings, sensitivity of the sensor, and lens
vignette effects [31]; this calibration was favoured by the optimal weather conditions. The
process continues with the feature extraction, where Agisoft uses algorithms similar to
the well-known Scale Invariant Feature Transform (SIFT) object recognition algorithm [32].
The next step was to determine the interior orientation parameters of the camera (main
point, focal length, and lens distortion) and the exterior orientation parameters (projection
centre coordinates and rotation angles around the three axes), improving subsequently
their positions with a bundle-adjustment algorithm [32,35]. The GCPs collected in the field
were used in this phase to improve the orientation of the images, as well as to scale the
photogrammetric block and provide it with absolute coordinates. During this process, the
3D coordinates of the features extracted in the first processing step were obtained, creating
a point cloud commonly referred as tie point cloud. In this step, an additional gradual
filtering process was carried out to reduce the overall pixel error and to optimize image
alignment. Finally, once we obtained the final position and orientation of the images, a
pair-wise depth map computation was performed [32] using the tie point cloud to generate
an approximate digital terrain model from which new points were obtained, creating a
dense point cloud. After the densification process, the resulting point clouds were clipped
within the study areas.

2.5. Height Normalisation

To introduce the height as a feature in the point classification it was necessary to
perform a height normalisation. This process was divided into three steps: detection of
ground points, creating an interpolation surface representing the ground or digital terrain
model (DTM), and reduction of heights to zero-level. In the first step, bare ground points
were detected carrying out a supervised classification. In Area 1, 5417 bare ground points
and 8826 vegetation points were taken as training samples. Regarding Area 2, 17,923 bare
ground points and 19,540 vegetation points were collected. Point clouds were classified
using Random Forest, applying 10-fold cross-validation over the training samples, where
only spectral features were used in the model fit. Figure 3 shows an example of the results
of the ground point classification.
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Figure 3. (A) Zenithal view of a section of the Area 1 point cloud in false-colour infrared. (B) Point
cloud classified in vegetation (green) and ground (brown) classes.

Due to the lack of penetration of UAV-DAP point clouds in the vegetation, areas
covered by vegetation led to a discontinuity of bare ground points. To obtain points from
the ground in these areas, we used freely available ALS data provided by the Spanish
PNOA to complement the ground points, identifying bare ground points based on adaptive
TIN models [36]. To avoid geolocation errors, a registration of the points detected as
ground of both clouds was performed using the Iterative Closest Point (ICP) algorithm.
The minimum point density of the ALS data is 0.5 points·m−2, with the elevation accuracy
being 15 cm and the horizontal accuracy 30 cm. The ALS data used in this study were
collected between October and November 2015.
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Secondly, a ground Triangulated Irregular Network (TIN) was constructed using the
points classified as bare ground (UAV-DAP and ALS data). In a next step, the height for the
remaining points above this TIN were calculated, obtaining the normalised point cloud.
After height normalisation, the points of the UAV-DAP cloud classified as bare ground
were removed. Points under 20-cm height were removed, with the aim of studying only
the bushes of a certain entity, eliminating grass and very small shrubs of the study area.

2.6. Feature Extraction

Once the photogrammetric process of obtaining the point cloud and its subsequent
normalisation was done, the coordinates (X, Y, Z coordinates) and the reflectance values
(blue, green, red, red edge, and near-infrared bands) for each point were stored and
22 spectral features for these points were calculated (Table 2).

Finally, we conducted a neighbourhood analysis of each point, determining the neigh-
bourhood of a point as p ∈ R3, with R3 being the set of points inside a sphere s, of centre p,
and radius 10 cm. From this neighbourhood analysis 10 features were obtained (Table 3).

2.7. Machine and Deep Learning Models

To carry out the point cloud classification by species, we performed a supervised
classification of the point cloud, also known as point cloud semantic segmentation [57].
The training samples used to fit the models were extracted from field work data, where
different geolocated individuals of each species were identified. A planimetric buffer of
15 cm was applied to these geolocated points, with this value being the minimum radius
of the smallest individuals identified. The resulting polygon was used to clip the point
cloud. After obtaining the samples for each class (Table 1), a process of manual filtering
was conducted to avoid the introduction of outliers in the training samples. Figure 4 shows
a representation of the training samples of each species based on some features extracted
from the point cloud. This figure is a pairwise relationship plot of the dataset created
from 100 random points of each of the species studied with their raw spectral bands and
normalised height. It can be seen from the Kernel Density Estimator (KDE) located on
the diagonals how in area 1 the species Anthyllis cytisoides differs from the others in the
blue and red bands or how the species Pistacia lentiscus can be differentiated using only
the normalised height information. This figure also shows the difficulty in distinguishing
some species studied on the basis of these features. For example, in area 2 we found
that the species Cistus albidus and Salvia rosmarinus have a similar spectral response and
normalised height, making them difficult to differentiate. The relationships established
in the upper and lower corners help to visualise the similarity or the difference between
species. On the basis of its spectral features, the best distinguished species in area 1 was
Anthyllis cytisoides, while the rest of the species were difficult to differentiate. In area 2,
the normalised height was the feature that best distinguishes the Pinus halepensis species,
while the spectral response of the different species was similar. In summary, Figure 4 shows
that all studied species cannot be distinguished from each other on the basis of their raw
spectral features and their height, making an in-depth analysis necessary.

Different machine learning and deep learning methods were evaluated for this classifi-
cation, using the Python library Scikit-learn [58]. The machine learning methods evaluated
were DT [59], Extra Trees [60], Gradient Boosting [61], and Random Forest [62], as well as
the deep learning method MultiLayer Perceptron [63]. For the evaluation of these methods,
a fine-tuning of the hyperparameters (Table 4) was done with the aim of optimizing the
models. This fine-tuning was carried out by setting up a grid of hyperparameters. The
accuracy of each combination of hyperparameters was assessed by cross-validation with
10-fold to ensure the independence between training and test data. The chosen hyperpa-
rameters for each method were those with the highest mean cross-validated score (mCVs).
For the selection of the point cloud classification method, the mCVs of each method were
also considered.
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Table 2. Summary of vegetation indices with their respective equations and references; ρ is defined
as the digital number of the point for a given band.

Index (Description) Equation Reference

ARVI (Atmospherically Resistant Vegetation Index) (ρnir − ρrb)/(ρnir + ρrb), ρrb =
ρred − [ρblue − ρred/2] [37]

BI (Brightness) ρgreen + ρred + ρblue [38]

DVI (Differential Vegetation Index) ρnir − ρred [39]

EVI (Enhanced Vegetation Index) [2.5·(ρblue − ρred)]/[(ρnir + 6·ρred − 7.5·ρblue +
1)] [40]

GNDVI (Green Normalised Difference Vegetation Index) (ρnir − ρgreen)/(ρnir + ρgreen) [41]

GR (Green divided by red) ρgreen/ρred [38]

IPVI (Infrared Percentage Vegetation Index) ρnir/(ρnir + ρgreen) [42]

MSAVI (Modified Soil-Adjusted Vegetation Index)
(

2·ρnir + 1− [(2·ρnir + 1)2 − 8·(ρnir − ρred)]
0.5)

/2 [43]

MSR (Modified Simple Ratio Index) ρred/(ρnir/ρred)
0.5 [44]

NDVI (Normalised Difference Vegetation Index) (ρnir − ρred)/(ρnir + ρred) [45]

NBRDI (Normalised Blue-Red Difference Index) (ρred − ρblue)/(ρred + ρblue) [46]

NGBDI (Normalised Green-Blue Difference Index) (ρgreen − ρblue)/(ρgreen + ρblue) [47]

NGRDI (Normalised Green-Red Difference Index) (ρgreen − ρred)/(ρgreen + ρred) [48]

NormG (Normalised Greenness) ρgreen/
(
ρgreen + ρred + ρblue

)
[49]

OSAVI (Optimised Soil Adjusted Vegetation Index) (ρnir − ρred)/(ρnir + ρred + 0.16) [50]

RDVI (Renormalised Difference Vegetation Index) (ρnir − ρred)/(ρnir + ρred)
0.5 [51]

RGRI (Red Green Ratio Index) ρred/ρgreen [52]

RVI (Ratio Vegetation Index) ρred/ρnir [53]

SARVI (Soil and Atmospherically Resistant Vegetation Index) [1.5·(ρnir − ρrb)]/(ρnir + ρred + 0.5), ρrb =
ρred − [ρblue − ρred/2] [54]

SAVI (Soil Adjusted Vegetation Index) 1.5·(ρnir − ρrb)/(ρnir + ρred + 0.5) [54]

SR (Simple Ration Vegetation Index) ρnir/ρred [55]

SRxNDVI (Simple Ratio × Normalised Difference Vegetation Index)
(
ρnir

2 − ρred
)
/
(
ρnir + ρred

2) [56]

Table 3. Summary of neighbourhood features and equations. Sp is defined as the set of points that
form a neighbourhood.

Name (Description) Equation

Dist_mean (Mean distance of the point with its neighbouring points) d
(
Sp, p

)
= 1

n

(
n
∑

i=1
d
(
Sp,i , p

))
Dist_std (Standard deviation of the point with its neighbouring

points)

√
[(∑n

i=1 (d(Sp,i ,p)−d(Sp ,p))
2
)]/(n−1)

n−1

NDVI_mean (Mean NDVI of the point and its neighbouring points) NDVI
(
Sp
)
= 1

n

(
n
∑

i=1
NDVI(Sp,i )

)
NDVI_std (Standard deviation NDVI of the point and its

neighbouring points)

√
(∑n

i=1 (NDVI(Sp,i )−NDVI(Sp))
2
)

n−1

Numbers (Number of neighbours) n

Z_mean (Mean height of the point and its neighbours) z
(
Sp
)
= 1

n

(
n
∑

i=1
(z(Sp,i )

)
Z_std (Standard deviation height of the point and its neighbours)

√
(∑n

i=1 (z(Sp,i )−z(Sp))
2
)

n−1

Dif_Z (Maximum height of the neighbourhood minus minimum
height of the neighbourhood) max

(
z(Sp)

)
−min

(
z
(
Sp
))

Z_Zmin (Height of the point minus neighbourhood minimum height) z(p)−min
(
z
(
Sp
))

Zmax-Z (Maximum height of the neighbourhood minus height of the
point) max

(
z(Sp)

)
− z(p)
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Table 4. Hyperparameters used in the models’ fine-tuning.

Model Hyperparameter #1
(Values)

Hyperparameter #2
(Values)

Hyperparameter #3
(Values)

Hyperparameter #4
(Values)

Decision Tree
Extra Trees

Gradient Boosting

Maximum depth of
the tree (5, 10, None)

Minimum number of
samples required to split an

internal node (2, 3, 5)

Minimum number of
samples required to be
at a leaf node (1, 2, 5)

-

Random Forest Number of trees in
the forest (200, 500)

Number of features to
consider (‘auto’, ‘sqrt’, ‘log2’)

Maximum depth of the
tree (4, 5, 6, 7, 8)

Function to measure
the quality of a split

(‘gini’, ‘entropy’)

MultiLayer
Perceptron

Number of neurons
in the ith hidden

layer (50, 50, 50), (50,
100, 50), (100)

Activation (‘tanh’, ‘relu’) Solver (‘sgd’, ‘adam’) Alpha (0.0001, 0.05)

After selecting the model, feature selection was applied with the aim of reducing the
number of features in the final model to avoid overfitting. This feature selection was based
on the permutation feature importance of the fitted model as well as the Pearson correlation
between features. The permutation feature importance is based on the decrease in the score
of a model when a single feature value is randomly shuffled [62]. Using this technique, the
features in each area were ordered based on their permutation feature importance value.
The Pearson correlation of the features was then calculated, and the features were split into
clusters. Each feature, ordered according to its feature importance, was assigned a weight
that decreased according to the repeatability of the cluster to which it belonged. Therefore,
even if a feature had a high feature importance, if features from the same cluster with higher
importance had been selected, the latter might not be selected. After the feature extraction,
a classification was done again with the chosen features, using the same classification
method used previously.

2.8. Point Cloud Segmentation and Reclassification

After finding the model that best fit the training samples and predicting the class
of each point, the high spatial heterogeneity of the classified point cloud was reduced
by performing a geometric segmentation of the point cloud, with the aim of obtaining
point clusters representing different individuals. We applied the algorithm li2012 [64] from
the lastrees function of lidR package [65]. This algorithm is based on region growing to
determine whether a point is near or far from existing vegetation, taking advantage of
the relative separation between objects to discern between individuals. To achieve the
objective of containing only one individual per segment, the algorithm was parameterised
to perform an over-segmentation, favouring that there were no segments containing two or
more individuals of different species. The selected parameters for segmenting the point
clouds were: threshold 1 = 0.1 m, threshold 2 = 0.2 m, limit of threshold number 1 = 1.5 m,
minimum height of a detected tree = 0.01 m, maximum radius of a crown is 1 m, and search
radii = 0.1 m and 0.5 m, respectively, for areas 1 and 2. After segmenting the point cloud,
each segment was assigned the most repeated class to increase the spatial homogeneity of
the point classification.

2.9. Evaluation

For evaluation purposes, we manually segmented and classified different individuals
of each species to create the testing set. These point clouds were taken as a reference for
an accuracy assessment of the point classification performed. The evaluation was done
by comparing the class obtained from each point with the reference class. The confusion
matrix of the reference samples was obtained, as well as the precision (Pr), recall (Re), and
F-measure (Fm) values from the following equations.
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Pr =
TP

TP + FP
(5)

Re =
TP

TP + FN
(6)

Fm = 2· Pr·Re
Pr + Re

(7)

where A represents the confusion matrix, TP is True Positives, FP is False Positives, FN is
False Negatives, Pr is the precision, Re is the recall, and Fm is the F-measure.

3. Results and Discussion

Figure 5 shows a summary of the intermediate results to obtain the classified point
cloud. Firstly, the point cloud was obtained, normalised, and the bare ground points were
removed. The normalised point cloud was classified using six species’ classes. Subsequently,
the point cloud was segmented according to its geometry to perform a reclassification that
homogenised the previously performed classification.

3.1. Generation and Processing of the Point Clouds

The point cloud obtained for Area 1 was composed of 4,107,175 points with an aver-
age density of 1421.5 points·m−2, whereas the point cloud for Area 2 was composed of
11,514,975 points with an average density of 1005.3 points·m−2. Their positional error was
estimated through the Root Mean Square Error (RMSE) between the GCPs and the position
of the computed 3D point, being 3.45 cm for Area 1 and 3.79 cm for Area 2.

Regarding the Random Forest classification of the UAV-DAP point cloud to separate
bare ground and vegetation points, with respect to the results obtained in each of the
iterations carried out using cross-validation, a mCVs of 0.998 and a standard deviation of
cross-validated score (stdCVs) of 0.004 were obtained for Area 1. For Area 2, a mCVs of
0.999 and a stdCVs of 0.003 were obtained.

Prior to the merging of the UAV-DAP and ALS bare ground points, we performed
a statistical analysis of the point clouds. In order to compare the correct alignment of
the UAV-DAP and ALS bare ground points, the nearest neighbour distance of each point
between both clouds was calculated. Analysing the distances in the Z-component, a mean
distance of −3.4 cm and a standard deviation of 10.6 cm were obtained for Area 1; for
Area 2, these values were 1.8 cm and 21.2 cm, respectively. The high standard deviation
was due to two reasons: The main one was the discontinuity of the ground in the UAV-DAP
point cloud due to gaps caused by vegetation; the second one was the accuracy in the Z
component of the methods, 3.2 cm for the UAV-DAP (measured in the GCPs) and 15 cm
for the ALS point cloud. The use of the ALS reduced the gaps in the points classified
as ground, adding information where photogrammetric clouds were limited due to the
reduced penetration of UAV-DAP data through vegetation.
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Figure 5. Detail of Area 1 workflow results. The results are ordered as follows: RGB point cloud
obtained from the photogrammetric process (A); normalised point cloud showing the points classified
as vegetation (B); classified point cloud of Genista scorpius, Cistus monspeliensis, Quercus coccifera,
Anthyllis cytisoides, Chamaerops humilis, and Pistacia lentiscus species (C); segmented vegetation point
cloud, representing each segment with random colours (D); reclassification of the point cloud based
on the majority class of each segment (E).

3.2. Assessment of Classification Methods

The selection of the classifier among the different methods analysed (Decision Tree, Ex-
tra Trees, MLP, Gradient Boosting, and Random Forest) was based on their cross-validation
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results applying the hyperparameters that best adapted to the training samples of veg-
etation species. The model that achieved the highest reliability and lowest dispersion
was Gradient Boosting (Figure 6), both for Area 1 and Area 2. In both areas, the model
with the highest reliability for a unique k-fold was also Gradient Boosting with 0.89 and
0.95, for the study areas 1 and 2, respectively. Analysing the set of repetitions, Gradient
Boosting obtained higher average accuracy values with lower dispersion (0.82 ± 0.05 and
0.91 ± 0.02 mean and standard deviation of cross-validation score for study Area 1 and 2,
respectively). In this respect, there were slight differences between Gradient Boosting and
Extra trees (0.81 ± 0.06 and 0.90 ± 0.02 mean and standard deviation of cross-validation
score for study Area 1 and 2, respectively). Using Decision Trees, MultiLayer Perceptron,
and Random Forest, less accurate results were obtained. Regardless of the classifier used,
more accurate results were obtained for Area 2, since the species analysed in Area 1 had
a greater geometric and spectral similarity compared to the species analysed in Area 2
(Figure 4). In this sense, other studies obtained similar results when classifying UAV-DAP
point clouds using geometric and spectral features [66]. In this study, Random Forest and
Gradient boosting classifiers were compared, finding that the classifier with the lowest
error was also Gradient Boosting. The results are also comparable to those obtained classi-
fying satellite images, where the Gradient Boosting classifier outperformed different deep
neural networks and other machine learning classifiers using spectral, spatial, textural, and
vegetation index features [67]. Similar results were obtained in [68], where the methods
Regression Trees, Random Forest, and Gradient Boosting were compared to classify for-
est fuel types from ALS data and satellite imagery, concluding that the best results were
obtained using Gradient Boosting.
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Figure 6. Box and Whiskers plots of cross-validation scores for the five classifiers analysed. Outliers
are plotted with diamond symbol.

Table 5 shows the results of the different combinations of hyperparameters applied to
the Gradient Boosting method. The combination of parameters that obtained the highest
mCVs for Area 1 was the one formed by the minimum number of samples required to split
an internal node of 3, minimum number of samples required to be at a leaf node of 2, and a
maximum depth of the tree of 5, with a mean fit time of 255 s for each of the 10 iterations.
On the other hand, the highest mCVs for the second area was obtained by the combination
of a minimum number of samples required to split an internal node of 2, minimum number
of samples required to be at a leaf node of 5, and a maximum depth of the tree of 10, with
a mean fit time of 1317 s. Table 5 also shows how the hyperparameter with the greatest
influence on the processing time was the maximum depth of the tree, multiplying up to
8 times the time by setting the value to “none”, compared to value “5”, without affecting
the improvement of the model. If value is set to “none”, the nodes are expanded until all
leaves are pure or until all leaves contain less than the minimum number of samples to
split an internal node, which explains the increase in processing time. In contrast, if we
analyse the minimum number of samples at a leaf node, the best results were obtained
mostly by setting this hyperparameter to “5”.
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Table 5. Heatmap of the hyperparameters (minimum number of samples at a leaf node, minimum
number of samples to split an internal node, and maximum depth of the tree) applied to the Gradient
Boosting method. The table shows the mean cross-validated scores obtained over 10 iterations and
the mean fit time used in their calculation. The red gradient is associated with Area 1 values, while
the blue gradient represents values from Area 2.

Area 1 Area 2
Mean Cross-

Validated Score Mean Fit Time (s) Mean Cross-
Validated Score Mean Fit Time (s)

1 0.745 0.757 0.781 1347 1473 1814 0.891 0.894 0.901 5985 5859 6516
2 0.793 0.792 0.797 1698 1684 1568 0.908 0.908 0.909 5968 5966 5820
5 0.809 0.810 0.809 1109 1110 1033 0.914 0.915 0.914 4967 4969 4601

None

1 0.819 0.818 0.818 258 256 256 0.910 0.911 0.912 695 702 703
2 0.818 0.821 0.819 256 255 255 0.911 0.911 0.910 707 703 697
5 0.820 0.819 0.819 255 254 258 0.912 0.912 0.911 705 726 743

5

1 0.812 0.812 0.810 487 483 469 0.913 0.913 0.914 1395 1344 1291
2 0.811 0.812 0.812 467 464 462 0.913 0.914 0.914 1294 1298 1298
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3.3. Feature Selection and Final Classification Model

Once the classifier that best suited our study, gradient boosting, was selected, we
applied the feature selection process. To reduce the number of features, we obtained
Pearson’s correlation for both areas 1 and 2. Figure 7 shows the existing correlation
between features for Area 1, showing the high correlation between spectral features. These
features were not directly removed since our first objective was to discern which spectral
indices were most important in the classification. Subsequently, the most correlated and
least informative features were removed to obtain the final model. Thus, we evaluated the
features based on their ability to differentiate between tree and shrub species. From the
hierarchical clustering tree, which groups the features based on their Pearson’s correlation,
it can be observed that there were five clusters of features. The first was formed by the
geometric feature Z and a geometric feature extracted from the neighbourhood analysis,
the feature Z_mean. The second cluster was formed by 17 features, all of them spectral
features except the NDVI_mean, with this being a spectral feature extracted from the
neighbourhood analysis; in this cluster are also SRxNDVI, blue, EVI, RDVI, ARVI, SARVI,
SAVI, OSAVI, IPVI, NDVI, GNDVI, MSAVI, SR, RedEdge, NIR, and DVI. The third cluster
consisted entirely of the spectral features NGBDI, BI, red, MSR, green, RVI, and NBRDI.
The fourth cluster was mainly composed of spectral features. These features had maximum
correlation in absolute value with the spectral features NormG, GR, NGRDI, and RGRI.
The last cluster consisted entirely of features extracted from the neighbourhood analysis:
Dist_std, Zmax_Z, Z_Zmin, Z_std, Dif_Z, Dist_mean, and Numbers.

Analysing the permutation importance of the features when applying the model
(Figure 8A,C), among the top 10 features with the highest permutation importance for the
model, three were repeated in the two study areas. These features were one of spectral
type, BI, and two extracted from the neighbourhood analysis, Z_Zmin and Zmax_Z. In
this sense, we can also observe how, depending on the area, the features with greater
importance diverged. In Area 1 the most important feature was the NBRDI index, but
in Area 2 this feature was the second to last in order of importance. Since each area has
different tree and shrub species, with only one species in common, the common features
with high importance values in both areas could be considered as adequate descriptors to
differentiate the Mediterranean flora.
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Figure 7. Pearson’s correlation cluster map of the Area 1 features derived from UAV-DAP data. The
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(geometric, spectral, or obtained by neighbourhood analysis). The trees show how the features are
clustered according to their correlation.

Depending on the cluster they belonged to, a weight was applied to the features,
modifying their order of importance. The learning curves in Figure 8 show the final order
applied to the model. Visualising the learning curve, it stabilised from 10 features onwards
for Area 1 (NBRDI, GR, BI, Z_Zmin, NDVI_mean, MSAVI, NDVI_std, SR, MSR, and Z) and
Area 2 (SR, RDVI, NGRDI, Z_stf, Z_mean, BI, NUMBERS, NDVI_std, MSAVI, and IPVI),
obtaining a slight increase in the mCV statistic by using 38 features instead of 10.

Analysing the decreasing trend in the importance of the features and the stabilisation
of the learning curve in both areas, only 10 predictor features were used to obtain the model.
In particular, the first 10 features, as shown in Figure 8B,D, were used to create the final
classification. Some of these features, such as SR or BI, were also reported as relevant in
other models applied for tree species’ classification using UAV-DAP data [69].
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3.4. Vegetation Classification Accuracy

Once the points were reclassified, the point cloud was compared with the testing data
set, obtaining the confusion matrix shown in Table 6. The classification results had an overall
accuracy of 81.9% in Area 1 and 96.4% in Area 2. These results were highly dependent
on the number of samples taken from each class (Table 1). It was, therefore, necessary to
carry out an individual study of each species. Analysing the results in depth, the highest
values for user’s accuracy (precision) and F-measure for Area 1 were obtained for the class
Anthyllis cytisoides (0.97 and 0.89, respectively). Figure 4 shows how the Anthyllis cytisoides
had a differentiated spectral response in the blue and red bands, compared to the rest of
the species analysed in Area 1. In relation to Area 2, the highest values for precision, recall,
and F-measure were obtained for class Pinus halepensis, achieving values of 0.99, 1.00, and
1.00, respectively. These results are attributed to the fact that it was the only tree species in
the area, with the height of all individuals of this species being much greater than that of
other species.

The statistics obtained for the Pistacia lentiscus class were remarkable, as it was the
only class present in both study areas. In the two areas, we found similar values of recall
(0.99 and 0.98, respectively, for areas 1 and 2), precision (0.72 and 0.77), and F-measure
(0.83 and 0.86). These lower values were due to confusion with other species, such as
Quercus coccifera or Chamaerops humilis in the Area 1 or the Juniperus oxycedrus in Area 2. The
Pistacia lentiscus has a high intraspecies’ variability depending on the age (Table 1), causing
confusion between the different classes in both study areas. This also explains the relative
low recall value for the species Chamaerops humilis (0.69) in Area 1 or Juniperus oxycedrus
(0.67) in Area 2. Due to the low number of Pistacia lentiscus individuals, it was not possible
to create two classes; but it would be recommended to split this class according to their age
(young and mature) in further studies.
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Table 6. Species’ classification confusion matrix with precision (Pr), recall (Re), and F-measure (Fm)
for the different classes. Values indicate the number of points collected involved in the evaluation.
Column headers are class labels, rows refer to class indices. The red gradient is associated with Area
1 values, while the blue gradient represents values from Area 2.
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1 4816 137 0 0 42 0 4516 239 315 317 229 1215
2 773 15,198 1579 184 850 303 0 16,077 469 185 1095 808
3 4 476 41,342 0 482 12,567 0 4994 54,185 5085 13,381 3014
4 98 979 25 6660 213 44 21 566 1431 1,110,973 2012 316
5 1016 1128 3714 53 24,663 5327 4 124 136 961 59,607 37
6 0 0 613 0 0 45,833 598 4250 4364 46 1537 46,186
Pr 0.72 0.85 0.87 0.97 0.94 0.72 0.88 0.61 0.89 0.99 0.77 0.90
Re 0.96 0.80 0.75 0.83 0.69 0.99 0.66 0.86 0.67 1.00 0.98 0.81
Fm 0.82 0.83 0.81 0.89 0.79 0.83 0.75 0.72 0.77 1.00 0.86 0.85

The low recall (0.66) of Cistus albidus in Area 2 was due to its misclassification with
Salvia rosmarinus. Both species showed spectral and shape similarity, as described in Table 1.
Rhamnus lycioides was also confused with Salvia rosmarinus and Juniperus oxycedrus.

The results obtained are comparable with other studies where species’ classification
was carried out based on UAV-DAP data. The study performed by Nevalainen et al. [27]
allowed for the classification of four boreal forest tree species. They applied k-nearest
neighbours, Random Forest, and MultiLayer Perceptron using hyperspectral imagery and
UAV-DAP point cloud features. The last two classifiers obtained 95% of overall accuracy.
These accurate results can be explained considering the low number of species analysed
compared to our study. Tuominen et al. [33] performed a more challenging study using a
similar methodology. Their methodology was based on the analysis of k-nearest neighbours
and Random Forest classifiers, using also UAV-DAP point clouds and hyperspectral image
mosaics for classifying 26 different tree species in southeastern Finland. The highest global
accuracy was obtained for the classifier k-nearest neighbours, with a global accuracy of
82%. Depending on the species analysed, producer and user accuracies ranged from 0%
to 100%. Sothe et al. [28] obtained a classification of 12 major tree species in a subtropical
forest integrating UAV-DAP point cloud and hyperspectral data and applying a support
vector machine classifier. The overall accuracy obtained in this study was 72%. All these
studies have in common that the final product is a classification map, being able to extract
from it only two-dimensional information (e.g., the location of the trees or the perimeter
of their crown). This short literature review highlights the results obtained in this work,
where 11 different tree and shrub species were classified using multispectral information.
The analysis of the point cloud and the extraction of geometric and neighbourhood features
allowed us to differentiate species with a similar spectral response. In addition, the classified
point cloud allowed the derivation of information on the forest structure that can be used
as input for wildfire models.

3.5. Improving Wildfire Behaviour Modelling

The present study achieved a new methodology to classify Mediterranean forest
species from UAV point clouds with the aim of improving wildfire behaviour modelling.
Current wildfire models need to be fed with 3D fuel data for their correct running. These
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computational models need information about the geometry of the individuals (adapting
it to a geometric body) and their properties (e.g., fuel density, surface–volume ratio, or
fuel moisture) [70]. These properties are inherent to the species analysed, making a prior
classification of the study area necessary. Individual point clouds can be adjusted to a
geometric body, as well as obtaining individual properties using allometric equations.
These equations describe the relationship between variables extracted directly from the
point cloud (e.g., tree height, area, volume, or crown width) with the properties required
as input by the wildfire models (e.g., bulk density) [14]. Therefore, the use of UAVs for
the characterisation of forest structure allows for a breakthrough in the improvement of
wildfire models; being able to identify tree and shrub individuals by semi-automatic species
identification is one of the key parameters to be used in fire models.

4. Conclusions

This investigation developed and proposed a UAV-DAP method for the classification
of forest species. Results were very promising, showing that UAV-DAP points clouds have
the potential to provide accurate results in species’ classification. The spectral, geometrical,
and neighbourhood features derived from multispectral images produced good results
classifying shrub and tree species.

To the best of the authors’ knowledge, this is one of the first investigations studying
the classification of shrub and tree species in Mediterranean forests using multispectral
imagery obtained from UAVs. Previous studies have not proposed similar objectives using
only a multispectral camera and a consumer drone, which highlights the methodology
proposed in this article, which can be exported to other fields. The proposed methodology
allows for scalability of the area and number of species to be studied. In this sense, if the
number of species increases, there may be some geometric or spectral similarities among
those species, making it necessary to increase the spectral resolution of the input data to
improve the results. Due to the results obtained, and to previous articles using similar
features for the classification of species, some of the features proposed in this article are
relevant in the classification of Mediterranean shrub and tree species.

The classified point cloud provides valuable input to the wildfire models. Obtaining a
classified point cloud can lead to the automatic extraction of different features by species
(height, area, volume, crown width, etc.), allowing the estimation of variables such as
bulk density using allometric equations, which are key for the correct parameterisation of
wildfire models.
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