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Abstract: Numerous studies have revealed the remarkable health-promoting activities of citrus
fruits, all of them related to the accumulation of bioactive compounds, including vitamins and
phytonutrients. Anthocyanins are characteristic flavonoids present in blood orange, which require
low-temperature for their production. Storage at low-temperature of blood oranges has been proven
to be a feasible postharvest strategy to increase anthocyanins in those countries with warm climates.
To our knowledge, no studies comparing the effect of postharvest storage effect on phenylpropanoid
accumulation in cultivars with and without anthocyanins production have been published. We have
investigated the effect of postharvest cold storage in flavonoid accumulation in juice from Citrus
sinensis L. Osbeck in two different oranges: Pera, a blond cultivar, and Moro, a blood one. Our
findings indicate a different response to low-temperature of fruit from both cultivars at biochemical
and molecular levels. Little changes were observed in Pera before and after storage, while a higher
production of phenylpropanoids (3.3-fold higher) and flavonoids (1.4-fold higher), including a rise in
anthocyanins from 1.3 ± 0.7 mg/L to 60.0 ± 9.4 mg/L was observed in Moro concurrent with an
upregulation of the biosynthetic genes across the biosynthetic pathway. We show that postharvest
storage enhances not only anthocyanins but also other flavonoids accumulation in blood oranges (but
not in blond ones), further stimulating the interest in blood orange types in antioxidant-rich diets.

Keywords: antioxidants; blood oranges; flavonoids; anthocyanins

1. Introduction

Nutraceuticals are phytochemical compounds found in vegetables and fruits, which
are getting high consideration for their health-promoting effects when consumed with a
certain frequency. Both fruits and vegetables are rich sources of polyphenols, including
flavonoids, involved in reducing inflammation and oxidative stress related with chronic
diseases, such as those derived from cardiovascular risks, and different types of cancer or
diabetes [1–3]. Flavonoids, biosynthesised from the phenylpropanoid pathway (Figure 1),
constitute the largest class of nutraceuticals in our diet [4]. Depending on their structure,
flavonoids can be grouped into six main categories: flavones, flavonols, isoflavones, fla-
vanones, flavanols, and anthocyanins. Among them, flavanones and anthocyanins present
a higher antioxidant activity [5].
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Citrus fruits are excellent sources of nutrients due to their abundance in vitamin C, 
sugars, dietary fibre, minerals and phytochemicals, including flavonoids [6–12]. The vital 
bioactivities of these secondary metabolites have made blood oranges (BO) to be used as 
traditional medicine in different Asian countries [13,14]. Flavones are found mainly in 
their peels, while flavanones are present in both peel and juice of oranges, mandarins, 
lemons and grapefruits [15]. Regarding anthocyanins, they are only accumulated in peel 
and juice of the BO, providing not only vivid colours but also a higher antioxidant activity 
to their pulp and juices [16–18]. In fact, it has been proposed that dietary anthocyanins are 
more effective antioxidants than vitamins E and C [19]. Other beneficial effects of antho-
cyanins include their anticancer activities, antiviral properties and protective effects 
against various metabolic, degenerative and cardiovascular diseases as well as eyesight 
or inhibiting viral replication [20–22]. 

 
Figure 1. A schematic representation of the phenylpropanoid pathway. Red-bold labelled genes are 
those studied in this work. Gene names are abbreviated as follows: PAL, phenylalanine ammonia-lyase; 
C3H, p-coumarate 3-hydroxylase, C4H, cinnamate 4-hydroxylase; 4CL, 4-hydroxy-cynnamoyl CoA ligase; 
CHS, chalcone synthase; CHI, chalcone isomerase; COMT, caffeic acid 3-O-methyltransferase; FNS, flavone 
synthase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, flavonoid 3′5′-hydrox-
ylase; GST, glutathione-S- transferase; OMTs, O-methyltransferases; FLS, flavonol synthase; DFR, dihydro-
flavonol 4- reductase; ANS, anthocyanidin synthase; UFGT, uridine diphosphate-glucose:flavonoid 3-O-glu-
cosyltransferase and UGTs, O-methyltransferase. 

Anthocyanin production in BO is very dependent on cold-temperature, making their 
quality at harvest to fluctuate between geographical locations and seasons. In specific cold 
regions of China, Spain and Italy, BO develop optimal colour, while countries with tropi-

Figure 1. A schematic representation of the phenylpropanoid pathway. Red-bold labelled genes
are those studied in this work. Gene names are abbreviated as follows: PAL, phenylalanine ammonia-
lyase; C3H, p-coumarate 3-hydroxylase, C4H, cinnamate 4-hydroxylase; 4CL, 4-hydroxy-cynnamoyl CoA
ligase; CHS, chalcone synthase; CHI, chalcone isomerase; COMT, caffeic acid 3-O-methyltransferase; FNS,
flavone synthase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, flavonoid 3′5′-
hydroxylase; GST, glutathione-S- transferase; OMTs, O-methyltransferases; FLS, flavonol synthase; DFR,
dihydroflavonol 4- reductase; ANS, anthocyanidin synthase; UFGT, uridine diphosphate-glucose:flavonoid
3-O-glucosyltransferase and UGTs, O-methyltransferase.

Citrus fruits are excellent sources of nutrients due to their abundance in vitamin C,
sugars, dietary fibre, minerals and phytochemicals, including flavonoids [6–12]. The vital
bioactivities of these secondary metabolites have made blood oranges (BO) to be used as
traditional medicine in different Asian countries [13,14]. Flavones are found mainly in their
peels, while flavanones are present in both peel and juice of oranges, mandarins, lemons
and grapefruits [15]. Regarding anthocyanins, they are only accumulated in peel and juice
of the BO, providing not only vivid colours but also a higher antioxidant activity to their
pulp and juices [16–18]. In fact, it has been proposed that dietary anthocyanins are more
effective antioxidants than vitamins E and C [19]. Other beneficial effects of anthocyanins
include their anticancer activities, antiviral properties and protective effects against various
metabolic, degenerative and cardiovascular diseases as well as eyesight or inhibiting viral
replication [20–22].

Anthocyanin production in BO is very dependent on cold-temperature, making their
quality at harvest to fluctuate between geographical locations and seasons. In specific
cold regions of China, Spain and Italy, BO develop optimal colour, while countries with
tropical climates such as Sao Paulo (Brazil) or Florida (USA) yield BO with a very low
pigmentation [23]. The number of hours of exposition to low-temperature has been pro-
posed as a crucial factor to get a strong purple/red coloration in the fruit [24]. Storage at
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either 4 or 8 ◦C has been reported to promote BO characteristic coloration because of the
activation of anthocyanin biosynthetic genes [25–29], and by the increase in proteins related
to anthocyanin biosynthesis, energy input, and other metabolic pathways associated with
defence, oxidative and stress responses [30]. Storage at 9 ◦C in comparison to 4 ◦C has been
demonstrated to be more effective for enrichment of anthocyanin production in BO [31]
and an additional stress treatment (curing) further promotes anthocyanin production, in-
creasing additionally flavonoids accumulation [32]. Low temperature conservation offers
also the advantage of being the most frequently used technique to extend the postharvest
life and preserve the quality of citrus fruits [33]. Additionally, in order to control pests,
several countries require storage at low temperature for citrus fruits exportation to other
markets [34].

The consumption of BO may be an important contribution to healthy diets [18,22].
Thus, juices and beverages flaunting red/purple orange in their composition increase
their market value, owing to the established health-promoting potential of purple/red
orange bioactive components [35]. Besides, increasing flavonoids accumulation in blond
oranges by postharvest treatment can also improve the health-promoting properties of
derived products or even of fruit consumption. To our knowledge, there is little information
comparing the postharvest storage effect on phenylpropanoids accumulation in blond and
BO. In this work, we investigated low-temperature storage effect on flavonoids and other
phenylpropanoids in two selected cultivars of Citrus sinensis (L.) Osbeck, Pera (blond) and
Moro (blood). Pera blond sweet orange is the most important citrus cultivar in Brazil (2nd
worldwide citrus producer), constituting more than a third of the commercial acreage in São
Paulo State [36]. Regarding BOs, Moro, characterised by yielding deeply purple-coloured
fruits [17], is the most widely grown cultivar in Europe for food processing and other
industrial applications, and the most common BO cultivar grown in the United States [36].

2. Materials and Methods
2.1. Plant Materials and Storage Conditions

The effect of postharvest storage on fruit colour was determined in two different
cultivars of Citrus sinensis L. Osbeck, Moro (blood type) and Pera (blond type) mature fruits
(8 months after the bloom). Fruits were harvested from adult trees grown (13 years old)
and grafted on citrumelo Swingle under standard cultivation in a commercial orchard in
Maringá (21◦45′53” S; 48◦28′21.15” O, 540 m), Gavião Peixoto-Sao Paulo State (Brazil). The
local climate is Cwa type (mountain subtropical), characterised by dry winter (<1230 mm
total rainfall of the year) and a normal average air temperature of ≥17 ◦C and ≥28 ◦C in
the coldest and in the warmest month, respectively [37]. Maringá soil type is classified
as latossolo vermelho (Red-oxisol), dystrophic A moderate type, and soft-moderately wavy
relief [38]. A total of 80 fruits were harvest from 15 trees planted at 7.0 m × 3.0 m spacing.
Fruits were uniform in size and colour, as well as free of damage or external defects.
Harvested fruits were stored for 45 days at 9 ◦C, and 90–95% relative humidity in constant
darkness. At the time of harvest (zero) and after 15, 30 and 45 days of storage, pulp and
juice samples were taken and stored at −80 ◦C until analysis. Three replicate samples
of 5 fruits each per storage time were used. Pulp was separated with a scalpel, and
immediately frozen in liquid nitrogen and ground into a fine powder. Juice was extracted
with a domestic squeezer (Braun GmbH, Germany), filtered through a metal sieve with a
pore size of 0.8 mm and frozen in liquid nitrogen.

2.2. Determination of Internal Maturity Index, pH and Total Anthocyanin Quantification

Titration with phenolphthalein was used to determine the juice acidity, and data were
expressed as mg citric acid per 100 mL [31]. Briefly, 5 mL of centrifuged juice were diluted
to 45 mL with water (Sigma) and supplemented with 5 drops of phenolphthalein. Acidity
was evaluated by titration with NaOH (0.1 N) and expressed as mg of citric acid per 100 mL.
The determination of soluble solids content (◦Brix) was estimated by refractometer, using
an Atago® refractometer (Tokyo, Japan) as described by Carmona et al. [31]. Maturity index
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was calculated and expressed as the ratio of ◦Brix/acidity. The pH value was measured
with a pH-meter Gehaka® (Sao Paulo, Brasil) [31].

2.3. Flavonoids, Anthocyanins and Phenylpropanoid Extraction and Identification

All compounds were extracted using 2 mg of Moro (blood type) or Pera (blond
type) mature freeze-dried fruits pulp re-suspended in 20 mL of water (LC-MS Grade,
LiChrosolv®, Merck, Darmstadt, Germany). Flavonoids and other phenylpropanoids were
extracted as previously described by Carmona et al. [32], with the following modifications:
0.5 mL of each re-suspended pulp solution was shaken for 1 h at 20 Hz using a Mixer
Mill 300 (Qiagen, Hilden, Germany) with 1.5 mL of methanol containing 0.3% formic acid,
plus 2 µg/L of formononetin as the internal standard, and centrifuged at 15,000× g for
20 min (15 ◦C). The supernatants (0.4 mL) were filtered into vials for LC/MS analysis
(Mini-UniPrep® syringeless filters with 0.2 µm pore size PTFE membrane, Whatman®,
Maidstone, UK). LC/MS analysis was performed using an HPLC system equipped with a
photodiode array detector (Dionex, ThermoFisher Scientific, Sunnyvale, CA, USA) coupled
to a quadrupole-Orbitrap Q-exactive system (ThermoFisher Scientific, Sunnyvale, CA,
USA). HPLC analysis was performed using a C18 Luna Column (Phenomenex, Aschaf-
fenburg, Germany) (150 × 2.0 mm; 3 µm). Total of 5 µL of each extract were injected at
a flow of 0.25 mL/min. Total run time was 32 min using an elution system running at
0.250 mL/min and consisting of (A) water (0.1% formic acid) and (B) acetonitrile: H2O
90:10 (0.1% formic acid). Gradient was 0 to 0.5 min 95/5%-A/B, 24 min 25/75%-A/B, and
26 min 5/95%-A/B. MS analysis of flavonoids and other phenylpropanoids was carried
out with a heated electrospray ionization (HESI) source operating in positive and negative
ion mode. Mass spectrometer parameters were as follows: sheath and aux gas flow rate
set at 40 and 10 units, respectively; capillary temperature was at 250 ◦C, discharge current
was set at 3.5 µA and S-lens RF level at 50. The acquisition was carried out with m/z
110–1600 Full MS scan range, and the following parameters: resolution 70,000, microscan 1,
AGC target 1e6, and maximum injection time 50. Data were analysed using the Xcalibur
4.4 software (ThermoFisher Scientific, Sunnyvale, CA, USA). Metabolites were identified
as M+H and M-H adducts, based on their accurate masses (m/z) and MS fragmentation,
using both in house database and public sources (e.g., KEGG, ChemSpider, PubChem,
MetaCyc, Metlin, Phenol-Explorer). Relative abundances of the investigated flavonoids
and other phenylpropanoids were calculated as fold average and the standard deviation
of integrated areas under the m/z peak of the adduct of each compound and the internal
standard peak area (Fold/ISTD), calculated with the Xcalibur 4.4 software (ThermoFisher
Scientific, Sunnyvale, CA, USA).

Anthocyanins were analysed in samples obtained by mixing 500 µL of each re-
suspended pulp solution with 500 µL 85:15 methanol:HCl (1 N) containing 0.3% formic acid
and 2 µg/L of formononetin (Sigma-Aldrich, San Luis, MO, USA) as internal standard [39].
Samples were shaken for 12 h and subsequently centrifuged for 10 min at 15,300× g at 25 ◦C.
Supernatants (0.25 mL) were transferred to new Eppendorf vials, dried by Speedvac concen-
trator, resuspended in 0.1 mL 75% methanol (plus 0.1% formic acid) and centrifuged (10 min
at 15,300× g at 25 ◦C). Total of 70 µL of supernatant was transferred to HPLC vials for
LC/MS analysis, and 10 µL of extract was injected to the HPLC-PDA/MS. The method used
for separation performed with a C18 Luna column (Phenomenex, Aschaffenburg, Germany)
(150 × 2.0 mm; 3 µm) was as previously described [39] and PDA detection was performed
by an online Accela Surveyor photodiode array detector (PDA; ThermoFisher Scientific,
Sunnyvale, CA, USA), acquiring continuously from 200 to 600 nm. Mass spectrometry
analysis was performed using a quadrupole-Orbitrap Q-exactive system (ThermoFisher
scientific, Sunnyvale, CA, USA) and ionization was carried out with a heated electrospray
ionization (HESI) source operating in positive ion mode. The MS parameters used are as
follows: nitrogen was used as sheath and auxiliary gas (45 and 15 units, respectively), cap-
illary and vaporizer temperatures 30 ◦C and 270 ◦C, respectively, discharge current 4.0 KV,
probe heater temperature at 370 ◦C, S-lens RF level at 50 V. The acquisition was carried
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out in the 110–1600 m/z scan range, resolution 70,000, microscan 1, AGC target 1e6, and
maximum injection time 50 [39]. In detail, MS analysis was performed using a first full scan
with data-dependent MS/MS fragmentation in order to identify the anthocyanins in pulp
extracts. Subsequently, a single ion monitoring (SIM) with targeted MS/MS fragmentation
was applied to identify anthocyanins for which dd-MS/MS fragmentation was not suc-
cessful, and to further validate the tentative identifications. Anthocyanins were analysed
using Xcalibur 3.1 software (ThermoFisher Scientific, Sunnyvale, CA, USA) and identified
as M+ adducts, based on their accurate masses (m/z) and MS fragmentation, compared
with in house database and public sources (e.g., KEGG, MetaCyc, ChemSpider, PubChem,
Metlin, Phenol-Explorer), as well as with comigration with available authentic standards
(cyanidin 3-glucoside, peonidin 3-glucoside and dephinidin 3-glucoside) (Extrasynthese,
Genay, France). Absolute amounts were measured as previously described [39] using
the two most abundant fragments per compound, and data were normalised based on
integrated peak areas of external calibration curves of previously described standards [39].
LOD (limit of detection) was estimated from signal-to-noise ratio (S/N) as described [40]
and defined as signal intensity corresponding to three times of that noise, while LOQ
(limit of quantification) was nine times of that noise. All data are presented as means and
standard deviation of at least three independent biological replicates. All the chemicals and
solvents used during both the procedures were of LC/MS grade.

2.4. Quantitative RT-PCR Analysis

Plant material used for flavonoids and anthocyanins analysis was the same as used
for total RNA isolation. Total RNA extraction, DNase treatment, cDNA synthesis and
quantitative real-time PCR (qPCR) and relative gene expression were performed as de-
scribed previously by Carmona et al. [27]. Briefly, qPCR was achieved with a StepOne
Plus Real Time PCR System (Applied Biosystem, Waltham, MA, USA) and analysed using
StepOne Software version 2.3 (Thermo Fisher, Valence, Spain). RT-PCR was carried out
with 50 ng of total cDNA adding 6 µL of SYBR Green PCR Master Mix (Applied Biosystems,
Waltham, MA, USA) and 0.3 µM of gene specific primers in a total volume of 12 µL. The
RT-PCR procedure consisted of 95 ◦C 10 min followed by 40 cycles at 95 ◦C 15 s and
60 ◦C 40 s. Primers sequences for analysing phenylalanine ammonia-lyase (PAL), cinnamate
4-hydroxylase (C4H), 4-hydroxy-cynnamoyl CoA ligase (4CL), chalcone synthases 1 and 2 (CHSs),
chalcone isomerase (CHI), flavonoid 3-hydroxylase (F3H), flavonoid 3′5′-hydroxylase (F3′5′H),
flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), uri-
dine diphos-phate-glucose:flavonoid 3-O-glucosyltransferase (UFGT) and glutathione-S-transferase
(GST) genes are described in Table S1. The relative expression between cold-treated and
control samples (zero time of orange fruits) was determined by the method described by
Livak et al. [41]. Values are presented as the mean of at least three independent analyses.
Statistical analyses were performed using ANOVA.

3. Results
3.1. Pulp and Juice Appearance and Quality Parameters in Moro and Pera Oranges after Storage

The effect of postharvest storage on visual aspect, maturity index (MI), total flavonoid
and anthocyanin contents were assessed in pulp and juice from Moro (blood type) and
Pera (blond type) mature oranges subjected to postharvest storage at 9 ◦C (Figure 2 and
Table 1). The visual aspect of pulp and juice was evaluated at the onset, at 30 and 45 days.
No changes in colour were detected in pulp and juice from Pera during all the storage
period, while a notable enhancement in the red/purple coloration was observed in those
from Moro (Figure 2).
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Figure 2. Internal oranges appearance and colour of pulp (up) and juices (down) of Pera (left) and
Moro (right) oranges from Sao Paulo (Brazil), during storage at 9 ◦C for 0, 30 and 45 days.

Table 1. Maturity index, pH, flavonoids and anthocyanin content of Pera and Moro pulp during
storage for 0, 30 and 45 days. Statistical analyses were performed using ANOVA and different letters
indicate statistically significant different values (p ≤ 0.01) for a given time.

Pera Moro

0 Days 30 Days 45 Days 0 Days 30 Days 45 Days

Maturity index (MI) 7.9 ± 0.7 a 7.9 ± 0.4 a 7.9 ± 0.6 a 9.5 ± 0.7 a 9.2 ± 0.2 a 9.4 ± 0.1 a

pH 3.8 ± 0.1 a 3.8 ± 0.1 a 3.9 ± 0.0 a 3.6 ± 0.2 a 3.8 ± 0.1 a 3.7 ± 0.0 a

Total flavonoids 22.4 ± 1.5 a 22.1 ± 1.5 a 22.4 ± 1.4 a 31.6 ± 3.3 b 28.2 ± 2.8 b 45.4 ± 2.8 c

Total anthocyanin content
(mg/L) - - - 1.3 ± 0.1 a 43.4 ± 4.2 b 60.0 ± 3.5 c

No differences were found in MI and pH along the storage period in any of the
two fruit types investigated (Table 1). Total flavonoids content was different between
both types, being 1.4-fold higher in Moro than in Pera at the onset of the experiment
(Table 1). Moreover, no enhanced accumulation was detected in the blond cultivar during
the storage period, while an increment of 1.4-fold was observed in Moro at the end of the
storage. No anthocyanin presence was detected in Pera orange, while Moro fruit displayed
a noticeable presence and considerable enhancement of anthocyanins from 1.3 ± 0.7 mg/L
to 60.0 ± 9.4 mg/L under storage conditions.

3.2. Accumulation of Hydroxycinnamates and Flavonoids (Non-Anthocyanins) in Moro and Pera
Oranges during Postharvest Storage

Contents of hydroxycinammic acids (HA) and main flavonoids were assessed in the
pulp of Pera and Moro fruit during 9 ◦C post-harvest storage (Figure 3 and Table S2). The
profile of the eleven HA identified showed significant differences between both cultivars
(Table S2). In general, the BO presented a higher HA content at the onset of the experiment,
and a much higher accumulation along all the postharvest experimental period. For
instance, the content of coumaric acid, precursor of both HA and flavonoids, was 4.9- and
13.6-fold higher in Moro than in Pera at the onset of the experiment and after 45 days,
respectively (Figure 3 and Table S2).
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A total of 76 flavonoids, including flavanones, flavonols and flavones were identi-
fied and measured during the storage period in juice from both fruit types (Figure 4 and
Table S2). Among them, the flavonol class was the main group constituting 38.2% of the
total, followed by flavones (35.5%) and flavanones (26.3%). Additionally, polymethoxy-
lated derivatives of each class were identified, with polimethoxyflavones (PMFs) being the
most represented. The initial flavonoids profile, their content and the accumulation pat-
terns along storage displayed drastic differences between Moro and Pera. Eight flavonoid
compounds present in Moro were not detected in Pera fruit either at the onset or after
postharvest storage, such as isosakuranetin or the flavonols kaemferol and myricetin, while
only two flavonoids (poncirin and natsudaidain) were not present at the beginning in
Moro, but were found later and progressively increased with the storage (0.19 and 122.2-
fold, respectively) (Table S2). Regarding the initial content of the individual flavonoids,
25 flavonoids showed low (<0.6-fold) accumulation in Moro than in Pera, as the flavanones
naringenin or eriocitrin (0.60 an 0.12-fold, respectively). Conversely, 24 flavonoid com-
pounds exhibited a higher content in Moro than in Pera at the onset, which varied between
the 2.21-fold increase of the chrysoriol-8-C-glucoside (scoparin) and 202.4-fold enrichment
of dihydrokaempherol (Table S2). Considering the content after the storage period, most
of the identified flavonoids (54%) were more than two-fold enhanced in Moro compared
to Pera, being among them the main precursors naringenin chalcone (206.4-fold) and
the dihydroflavonoids dihydrokaemferol and dihydroquercetin (1602.8 and 239.8-fold,
respectively). However, 19.7% of the identified flavonoids displayed less than 0.70-fold
accumulation in Moro along storage, such as eriocitrin (0.43-fold) or methoxykaempferol-
3-O-neohesperidoside (0.07-fold) (Figure 4 and Table S2). Individual flavonoids followed
also a different accumulation profile during the storage at 9 ◦C depending on the cultivar.
Whereas in Pera most of the identified flavonoids barely changed with the storage, the
individual profile varied in Moro depending on each metabolite (Figure 5 and Table S2). In
general, main citrus flavanones (isosakuranetin derivatives), flavones (apigenin, luteolin
and their derivatives), and flavonols (quercetin, kampferol and their derivatives) increased
along storage (1.2 up to 361.6-fold) in Moro fruit (Figure 5). Although other compounds
such as 3,3′,4′,5,6,7,8-heptamethoxyflavone, nobiletin or sinensetin showed a decreasing
profile (1.4, 2.2 and 2.9-fold, respectively), their content was still higher in Moro than in
Pera fruit along the storage period (Figure 5 and Table S2).



Antioxidants 2022, 11, 547 8 of 16

Antioxidants 2022, 11, x FOR PEER REVIEW 8 of 17 
 

was still higher in Moro than in Pera fruit along the storage period (Figure 5 and Table 
S2). 

 
Figure 4. Fold change of naringenin chalcone (flavonoids precursor, in red colour) and the dihydro-
flavonoids (anthocyanins precursors, in orange colour) dihydrokampherol, dihydroquecetin and 
dihydromyricetin in the pulp of Moro (●) and Pera (○) oranges during storage for 0, 15, 30 and 45 
days. Data are expressed as the mean fold change ± SD of each sample compared to the control Pera 
fruits sample (at harvest time). Asterisk indicates statistically significant different values (p ≤ 0.01) 
for each given time. 

 
Figure 5. Fold change of representative flavonoids identified in the pulp of Moro (●) and Pera (○) 
oranges during storage for 0, 15, 30 and 45 days. Compounds belonging to flavanones class are 
represented in red colour, flavonols class in orange and the flavones in purple and light green 
(polymethoxyflavones subgroup). a. Sum of eriocitrin and neoeriocitrin. b. Sum of diosmin and ne-
odiosmin. c. Including the naringenin chalcone. Data are expressed as the mean fold change ± SD of 
each sample compared to the control Pera fruits sample (at harvest time). Asterisk indicates statis-
tically significant different values (p ≤ 0.01) for each given time. 

Figure 4. Fold change of naringenin chalcone (flavonoids precursor, in red colour) and the dihy-
droflavonoids (anthocyanins precursors, in orange colour) dihydrokampherol, dihydroquecetin and
dihydromyricetin in the pulp of Moro (•) and Pera (#) oranges during storage for 0, 15, 30 and 45 days.
Data are expressed as the mean fold change ± SD of each sample compared to the control Pera fruits
sample (at harvest time). Asterisk indicates statistically significant different values (p ≤ 0.01) for each
given time.

Antioxidants 2022, 11, x FOR PEER REVIEW 8 of 17 
 

was still higher in Moro than in Pera fruit along the storage period (Figure 5 and Table 
S2). 

 
Figure 4. Fold change of naringenin chalcone (flavonoids precursor, in red colour) and the dihydro-
flavonoids (anthocyanins precursors, in orange colour) dihydrokampherol, dihydroquecetin and 
dihydromyricetin in the pulp of Moro (●) and Pera (○) oranges during storage for 0, 15, 30 and 45 
days. Data are expressed as the mean fold change ± SD of each sample compared to the control Pera 
fruits sample (at harvest time). Asterisk indicates statistically significant different values (p ≤ 0.01) 
for each given time. 

 
Figure 5. Fold change of representative flavonoids identified in the pulp of Moro (●) and Pera (○) 
oranges during storage for 0, 15, 30 and 45 days. Compounds belonging to flavanones class are 
represented in red colour, flavonols class in orange and the flavones in purple and light green 
(polymethoxyflavones subgroup). a. Sum of eriocitrin and neoeriocitrin. b. Sum of diosmin and ne-
odiosmin. c. Including the naringenin chalcone. Data are expressed as the mean fold change ± SD of 
each sample compared to the control Pera fruits sample (at harvest time). Asterisk indicates statis-
tically significant different values (p ≤ 0.01) for each given time. 

Figure 5. Fold change of representative flavonoids identified in the pulp of Moro (•) and Pera
(#) oranges during storage for 0, 15, 30 and 45 days. Compounds belonging to flavanones class
are represented in red colour, flavonols class in orange and the flavones in purple and light green
(polymethoxyflavones subgroup). a. Sum of eriocitrin and neoeriocitrin. b. Sum of diosmin and
neodiosmin. c. Including the naringenin chalcone. Data are expressed as the mean fold change ± SD
of each sample compared to the control Pera fruits sample (at harvest time). Asterisk indicates
statistically significant different values (p ≤ 0.01) for each given time.

3.3. Accumulation of Anthocyanins in Moro Orange during Postharvest Storage

Variations in anthocyanins composition and contents in Moro orange during post-
harvest storage were evaluated for 45 days (Figure 6). No anthocyanins were detected
in Pera, while a total of 11 anthocyanins were identified in Moro pulp. At the onset of
the study, cyanidin 3-O-glucoside (C3-glu) and cyanidin 3-(6”-malonyl)-glucoside (C3-
(6M)-glu) were the most abundant anthocyanins in Moro, representing 61.1% and 24.9%
of total anthocyanins, respectively. Storage at 9 ◦C promoted a progressive increase in
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anthocyanins accumulation, with C3-glu and C3-(6M)-glu remaining as the most abundant
ones, representing 27.7% and 49.4% of total anthocyanins at day 45, respectively (Figure 6).
Altogether, cyanidin 3-rhamnoside (C3-rha), delphinidin 3-(6” malonyl)-glucoside (D3-
(6M)-glu) and delphinidin 3-glucoside (D3-glu) accounted for 20.8% of total anthocyanins
by day 45, in comparison with 9.4% at the onset (Figure 6). At 45 days of storage, the main
anthocyanins experimented showed an increase of 5.2-, 4.5-, 3.6- and 3.5-fold for C3-(6M)-
glu, C3-rha, Peo3-(6M)-glu and D3-(6M)-glu, respectively. Other minor compounds also
increased at the end of the storage period as it was observed for pelargonidin 3-glucoside
and cyanidin 3-(ferulyl)glucoside (C3-Fe-glu) (5.3-fold) and cyanidin 3-O-sophoride (C3-
sph) (2.3-fold). Other anthocyanin pigments that were not found initially, such as petunidin
3,5-glucoside (Pe3,5-glu) and petunidin 3-(6”-malonyl)-glucoside (Pet3-(6M)-glu), were
detected at the end of storage (0.14 ± 0.00 and 0.12 ± 0.00 mg/mL, respectively).
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3.4. Gene Expression Ratio of Phenylpropanoid Biosynthetic Genes between Pera and Moro Orange
Pulp during Postharvest Storage

Transcript accumulation levels between Moro and Pera during postharvest storage
were determined and compared as the ratio between relative quantification of Moro vs.
Pera at the onset and each postharvest time (Figure 7). A total of 13 genes were evaluated:
PAL, C4H and 4CL involved in the initial steps of the general phenylpropanoid pathway,
seven genes involved in the initial steps of flavonoids biosynthesis (CHSs, CHI, F3H, F3′H,
F3′5′H), three structural anthocyanin biosynthesis genes (DFR, ANS and UFGT) and one
gene involved in the transport of the purple/red pigments to vacuoles (GST). In general,
expression profile revealed that all genes presented a higher ratio at the onset and during
the storage period in Moro vs. Pera, with the only exception of FLS. At the onset, F3′5′H
showed up to 168-fold higher expression in Moro than in Pera, and upstream genes CHS1
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and CHS2 were 20 and 28-fold higher, respectively. Anthocyanin structural gene expression
presented also a positive ratio in Moro vs. Pera at the onset of storage, between 20 and
122-fold. During the storage period, the highest induction was shown for CHS2 and F3′5′H
with a final ratio of 1915-fold and 1330-fold increase, respectively (Figure 7).
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Figure 7. Ratio of the relative expression of phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase
(C4H), 4-hydroxy-cynnamoyl CoA ligase (4CL), chalcone synthases 1 and 2 (CHSs), chalcone isomerase
(CHI), flavonoid 3-hydroxylase (F3H), flavonoid 3’5’-hydroxylase (F3’5’H), flavonol synthase (FLS), di-
hydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), uridine diphos-phate-glucose:flavonoid
3-O-glucosyltransferase (UFGT) and glutathione-S-transferase (GST) in the pulp of Moro vs. Pera oranges
during storage for 0, 15, 30 and 45 days. Blue, and orange bars indicate genes involved in the general
phenypropanoids and flavonoids, respectively. Yellow and purple bars indicate genes involved in the
flavonols and anthocyanins biosynthesis, respectively. Red bars belong to those genes involved in the
anthocyanin transport.
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4. Discussion

Among fruits, citrus pulp, juice and by-products constitute one of the most impor-
tant sources of phytonutrients, especially in countries where these fruits are extensively
produced. In the last years, the beneficial health-promoting effects claimed for flavonoids
has stimulated the interest for investigating these phytochemical compounds in citrus
fruits [6,42–46]. Postharvest storage of the fruit at low temperature, combined or not with a
stress (i.e., curing) treatment, has been proven to induce anthocyanins and other flavonoids
accumulation in BO via stimulation of their biosynthesis [26,28,31]. However, to our knowl-
edge, information regarding changes in the accumulation of specific flavonoid contents
in blond and BO under postharvest storage conditions is limited. In this work, the effect
of storage on flavonoids and other phenylpropanoids accumulation was investigated and
compared in fruits from two important orange cultivars for juice production, Pera (blond)
and Moro (blood).

Different responses to the storage at low-temperature were noticed in Pera and Moro
fruits. While no visual changes were observed in the blond fruit pulp and juice, Moro fruit
displayed a conspicuous enhancement of its purple/red coloration in the pulp and juice,
as expected (Figure 2) [31,32]. Juice pH, which can influence anthocyanin by changing
their coloration [47], did not vary along the storage period in our study (Table 1). Instead,
the progressive darkening of BO pulp and juice could be associated with the increase
of anthocyanins content along storage (Figure 2 and Table 1) [31]: from a low content
(1.3 ± 0.7 mg/L) at harvest time, it increased 46-fold along storage period due to the cold
induction effect (Table 1) [25,26,31,32]. Red/purple colour enhancement in BO during
cold storage is related to the greater increase of all individual anthocyanins (Figure 6
and Table 1) [26,28,31,32]. C3-glu and C3-(6M)-glu have been described as the main
anthocyanins in BO juice, together with D3-glu, Peo3-(6M)-glu and cyanidin 3-(6” dioxalyl)-
glucoside (C6D-glu) [48]. Accordingly, the two main anthocyanins found in Moro orange
were also C3-glu and C3-(6M)-glu, followed by D3-glu and D3-(6M)-glu (Figure 6). In
contrast, although no C6D-glu was detected, other anthocyanins such as C3-rha, C3-Fe-
glu and C3-sph were accumulated in response to storage at low-temperature in Moro
orange (Figure 6) [32]. Due to their electron-donating properties, anthocyanins are potent
antioxidants [49]. In the case of BO, the antioxidant activity of anthocyanins was favourable
for human health, with impact on some diseases, derived from their anti-inflammatory,
anticancer, and antidiabetic properties, due to the prevention of oxidation and free-radical
chain reactions [50]. The absence of anthocyanins accumulation in blond orange fruit
has been widely documented [23], and is mainly due to the lack of expression in key
positive transcriptional factors required for the production of these compounds. Similarly,
anthocyanins were not detected in Pera fruit (Table 1).

The beneficial effect of low temperature storage on anthocyanin enhancement has
been shown in fruits from other BO cultivars, and was related to a strong boost in the
induction and expression of the initial genes of the phenylpropanoids biosynthetic pathway
concomitant with the induction of anthocyanin structural genes, leading also to the higher
accumulation of other flavonoids [31,32]. Regarding flavonoids, their content and composi-
tion in citrus fruits vary among species, cultivars and fruit organs [13,17,51–53]. Moreover,
stressful temperatures alter the general phenylpropanoid metabolism in citrus fruits [54,55].
In agreement with that, very different accumulation patterns of the individual flavonoid
and HA metabolites were observed in fruit from the blood and blond cultivars, the BO pulp
being richer at the onset and during postharvest storage (Figures 2 and 3 and Table S2). A
higher abundance of HA has been reported in BO fruit compared to that of blond cultivars,
being Moro one of the BO types accumulating higher amounts of total HA [17,25]. Addition-
ally, the evaluation of flavonoid profiles revealed a higher initial content and a progressive
increment along the storage of the main flavonoids (non-anthocyanins) and anthocyanins
only in BO fruit (Figures 4–6 and Table S2). Interestingly, storage promoted the enhanced
accumulation of precursor substrates in BO, as an effect of a major request of precursor for
flavonols and anthocyanins to respond to temperature stress [25,26,31,32]. Concordantly,
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storage at low temperature induced an increased accumulation of the flavonoid (narin-
genin chalcone) and anthocyanin (dihydroflavonols) main precursor substrates in Moro in
comparison with Pera fruit, concurrent with a higher induction of early phenylpropanoid
genes expression (Figure 7) [28,31,32]. Taken together, these results support the higher sub-
strate availability for downstream production of phenylpropanoids in Moro and a different
regulation from the initial steps in Moro vs. Pera oranges (Figures 2–4 and Table S2) [32].

Flavonoids are potent inducers of antioxidant defence mechanisms in animal cells,
by stimulation of different enzymes activity such as glutathione peroxidase, catalase, and
superoxide dismutases, or by inhibition of the accumulation of other enzymes such as
xanthine oxidase and also the lipid peroxidation as well as protecting other biomolecules,
such as DNA from oxidation [43]. In citrus fruits, flavanones have been described as the
predominant class of flavonoids, being flavonols the less representative group [51,56]. In
our study, flavonoid profiles revealed that the flavonols and flavones classes were the
main ones, being flavanones the third (Table S2). These differences might be determined
by the different cultivars used [17,52,53], as is supported by the less flavanones accumu-
lation in fruit from blond cultivars stored at low temperature when compared with that
of BO cultivars (Table 1 and Table S2) [25]. In our study, although flavanones class was
not so representative in the edible portion of the fruit at the onset, storage promoted the
increase in the accumulation of hesperidin, hesperitin, naringenin, narirutin or isosaku-
ranetin (and derivatives) (Figure 5 and Table S2). Flavanones from citrus fruits have been
awarded important biological activities, as helping in cardiovascular and cancer risk pre-
vention and avoiding the onset of oxidative stress involved in inflammatory damage due
to their antioxidant potential [57,58]. The main studies of citrus flavanones antioxidant and
anti-inflammatory properties focused on hesperidin and its aglycones (hesperitin), and
narirutin [59–63]. In the case of isosakuranetin anti-oxidative activities, they have been
related with potential free radical scavenging mechanisms [64]. Numerous studies describ-
ing the effects of naringenin on human health reported increasing antioxidant defences,
scavenging reactive oxygen species, antiviral responses or exerting anti-atherogenic and
anti-inflammatory effects [65]. Naringenin is predominantly found in the edible citrus part
and, although is poorly absorbed by oral ingestion, a positive orange juice prebiotic effect
due to its bioavailability has been shown [66]. In relation to flavones, compounds grouped
into this class also showed a better enrichment in Moro than in Pera fruit under postharvest
storage. Among them, luteolin, apigenin and nobiletin (including some glycosylated forms)
were the most enhanced by 9 ◦C storage (Table S2). Citrus flavones have been proposed as
the most suitable and capable compounds in terms of antioxidant and anti-inflammatory
activities due to their substitutions groups [67]. In the case of nobiletin, it has been indicated
to prevent obesity, hepatic steatosis, dyslipidemia, and insulin resistance [42]. Luteolin
effects on activation of antioxidant enzymes involved in cancer prevention as well as
cardio-protective effects have been reported, as well as properties in inhibiting the onset
and development of inflammatory diseases as asthma [68–71]. Multiple other beneficial
bioactivities of apigenin have been proposed on different types of cancer or interactions
on gut microbiota [72]. Finally, compounds belonging to the flavonols class were the main
groups of flavonoids identified and accumulated in Moro fruit stored at low temperature,
mainly limocitrol and quercetin (and their derivatives) (Table S2). Recently, the high intake
of flavonol in the diet has been associated to a reduction in the risk of developing Alzheimer
dementia [73]. Among the flavonols, limocitrol presented the highest increment observed
in our study (Table S2). This compound has been reported as one of the main flavonoids in
finger citron (Citrus medica cv. sarcodactylis) and their strong antioxidation and antiaging
activities have been indicated in both in vitro and in vivo studies [74]. Regarding quercetin
and its derivatives, the second most induced flavonol by storage at 9 ◦C, it is considered as
one of the most relevant antioxidant metabolites due to its chemical structure. Its involve-
ment in lipid peroxidation prevention and tocopherol regeneration has been described, as
well as in ischemia injury reduction by the induction of nitric oxide synthase [43]. Quercetin
has anticarcinogenic and anti-inflammatory properties with antioxidant and free radical
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scavenging effects. Moreover, other antimicrobial, antiviral, and biological effects, which
include anti-inflammatory activity has been attributed to it [75,76].

5. Conclusions

BO is an excellent source of natural antioxidant and bioactive compounds, promoting
the interest of consumers and researchers in the recent years [6,7]. Many in vivo studies
associate the beneficial health-effects of BO juice consumption in reduction of inflammatory
processes related to its remarkable antioxidant power [18]. Protection against oxidative
stress of flavonoids by induction of reactive oxygen and nitrogen species have been de-
scribed to play a role as markers of different degenerative diseases [14,18,22]. All these
protective bioactivities are likely due to the marked presence of phenolic acids, flavonoids
and other phytochemicals in BO [35], although the contribution of each phytochemical in
such antioxidant properties requires further research. In this study, storage at low tempera-
ture induced a great enrichment on anthocyanins and flavonoids accumulation levels in
Moro orange, suggesting that all these compounds could be contributing to their higher
antioxidant capacity. However, we did not observe a similar effect of cold storage in Pera
fruit. Taken together, we show here that through a regular postharvest practise the content
of not only anthocyanins, but also specific health-related flavonoids is enhanced in Moro
blood orange pulp and juice (but not in the Pera blond orange counterpart), reinforcing the
interest of blood orange to improve natural antioxidant diets. This work should further
analyse flavonoids composition and content in other blood and blond orange cultivars to as-
sess whether the drastic increases observed in flavonoids accumulation in Moro fruit during
cold storage may be extended to blood-orange types or it is independent of anthocyanins
production.
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64. Erdoğan, Ş.; Özbakır Işın, D. A DFT study on OH radical scavenging activities of eriodictyol, Isosakuranetin and pinocembrin. J.
Biomol. Struct. Dyn. 2021, 1–10. [CrossRef]

65. Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin:
A review of clinical trials. Pharmaceuticals 2019, 12, 11. [CrossRef]

66. Duque, A.L.R.F.; Monteiro, M.; Adorno, M.A.T.; Sakamoto, I.K.; Sivieri, K. An exploratory study on the influence of orange juice
on gut microbiota using a dynamic colonic model. Food Res. Int. 2016, 84, 160–169. [CrossRef]

67. Barreca, D.; Mandalari, G.; Calderaro, A.; Smeriglio, A.; Trombetta, D.; Felice, M.R.; Gattuso, G. Citrus flavones: An update on
sources, biological functions, and health promoting properties. Plants 2020, 9, 23. [CrossRef]

68. Gentile, D.; Fornai, M.; Pellegrini, C.; Colucci, R.; Benvenuti, L.; Duranti, E.; Masi, S.; Carpi, S.; Nieri, P.; Nericcio, A.; et al.
Luteolin prevents cardiometabolic alterations and vascular dysfunction in mice with HFD-induced obesity. Front. Pharmacol.
2018, 9, 13. [CrossRef]

69. Luo, Y.; Shang, P.; Li, D. Luteolin: A Flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front.
Pharmacol. 2017, 8, 692. [CrossRef] [PubMed]

70. Kang, K.A.; Piao, M.J.; Ryu, Y.S.; Hyun, Y.J.; Park, J.E.; Shilnikova, K.; Zhen, A.X.; Kang, H.K.; Koh, Y.S.; Jeong, Y.J.; et al. Luteolin
induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int. J. Oncol. 2017, 51, 1169–1178. [CrossRef]
[PubMed]

71. Johann, S.; de Oliveira, V.L.; Pizzolatti, M.G.; Schripsema, J.; Braz-Filho, R.; Branco, A.; Smânia, A., Jr. Antimicrobial activity of
wax and hexane extracts from Citrus spp. peels. Mem. Inst. Oswaldo Cruz 2007, 102, 681–685. [CrossRef] [PubMed]

72. Wang, M.; Firrman, J.; Liu, L.S.; Yam, K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and
interactions with human gut microbiota. BioMed Res. Int. 2019, 2019, 7010467. [CrossRef] [PubMed]

73. Holland, T.M.; Agarwal, P.; Wang, Y.; Leurgans, S.E.; Bennett, D.A.; Booth, S.L.; Morris, M.C. Dietary flavonols and risk of
Alzheimer dementia. Neurology 2020, 94, E1749–E1756. [CrossRef] [PubMed]

74. Luo, X.; Wang, J.; Chen, H.; Zhou, A.; Song, M.; Zhong, Q.; Chen, H.; Cao, Y. Identification of flavoanoids from finger citron and
evaluation on their antioxidative and antiaging activities. Front. Nutr. 2020, 7, 207–219. [CrossRef]

75. Zhang, M.; Swarts, S.G.; Yin, L.; Liu, C.; Tian, Y.; Cao, Y.; Swarts, M.; Yang, S.; Zhang, S.B.; Zhang, K.; et al. Antioxidant Properties
of Quercetin. In Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2011; Volume 701, pp. 283–289.
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