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Abstract: Chirality plays an important role in the development of many pharmaceuticals, being a
general property of ‘handedness’; nevertheless, a large number of pharmaceuticals are still marketed
and administered as racemates. Chirality is all around and even within us; indeed, receptors and
enzymes are chiral entities and interact in a specific manner with chiral drugs. Consequently,
controlling enantiomeric purity and isolating the enantiomers from chiral drugs remains a crucial
subject for analytical, clinical, and regulatory purposes, thus, improving the drug safety profile.
The classical examples of spontaneous enantiomerization and severe toxicity related to chirality
are represented by ibuprofen and thalidomide, respectively, but numerous other cases have been
reported in the literature. This review intends to offer a brief overview on the most common chiral
drugs used in therapy for the treatment of various diseases.

Keywords: chirality; asymmetry; enantioseparation; eutomer; distomer; chiral drugs

1. Introduction

The ability of chiral molecules to interact differently with left versus right circularly
polarized light is known as optical activity and is one of the most extensively studied
activities since its discovery at the beginning of the 19th century [1]. An optical active entity
(for example, an enzyme or a receptor) recognizes between two enantiomers, selecting the
one that fits better, i.e., the one that gives a three-point interaction with the ligands [2]. The
enantiomer responsible of the biological activity is called “eutomer”, while the other one,
inactive or less active, is referred to as the “distomer” [3]. In 1992, the Food & Drug Admin-
istration (FDA) outlined a series of guidelines for the pharmaceutical development of single
enantiomers and racemates [4,5]. Nearly 56% of the pharmaceuticals marketed and used in
therapy are chiral compounds and, amongst them, 88% are administered as racemates [6].
Interestingly, 20 out of 35 pharmaceuticals approved by the Food and Drug Administration
(FDA) in 2020 are chiral [7], and a growing tendency to authorization requests for chiral
drugs has been ascertained. In recent years, an increasing trend in enantiomerically pure
substances has been observed in medicinal chemistry in order to reduce the toxicity or
side effects associated with the inactive enantiomer [8,9]. In any case, the decision to
use a single enantiomer versus a mixture of enantiomers of a particular drug should be
made on the basis of the data from clinical trials and clinical expertise. The use of the
single enantiomer drugs may lead to simpler and more selective pharmacological profiles,
improved therapeutic indices, simpler pharmacokinetics and decreased drug interactions,
and also requests to determine and control the enantiomeric purity of the enantiomers from
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a racemic mixture (Figure 1). In this context, chirality has become a significant challenge in
the synthesis and development of drugs [10]. Different methods have been used to obtain
the single enantiomers, which make use of resolution procedures, enantioselective synthe-
ses, and enantioselective analytical approaches [11–16]. Specifically, enantioselective gas
chromatography [17,18], supercritical fluid chromatography [19], high performance liquid
chromatography [20,21], ligand-exchange chromatography [22], and chiral electrochro-
matography [23] are used. Recently, molecularly imprinted technique (MIT) has received
wide consideration for the separation of racemates due to its simple operations [24]. More-
over, chiral metal–organic frameworks (CMOF) materials are commonly used for chiral
recognition, separation, and catalysis [25]. More new methods for isolation of enantiomers
and control of their enantiomeric purity have been proposed [26,27]; however, given the
high cost of enantioselective syntheses [28,29] or the separation of enantiomers [30,31], the
racemic mixtures of chiral drugs are still often used in therapy. It has also to be consid-
ered that the determination of the exact 3D structure of drug candidates is of foremost
importance for the pharmaceutical industry in different stages of the discovery [32]. A
growing interest of chirality in the exploration of 3D chemical space and modern drug
discovery approaches have been recently reported for the high throughput hit identification
(hit-ID) [33]. In 1999, Agranat and Caner introduced the term “chiral switch”, which was
then modified and refers to the development of a single enantiomer from a chiral drug, pre-
viously approved and marketed as a racemate or as a mixture of diastereoisomers [34,35].
Chirality may also influence metabolism of drugs; indeed, it may happen that the metabo-
lite of one enantiomer can be more active than the other isomer [36,37]. Thalidomide is
often used as the classical example of a drug that cannot be used as a racemic mixture,
given the toxicity of the distomer [38], even though this assumption has been challenged
by some authors [39].

Figure 1. Advantages in the use of single enantiomer drugs.

Thalidomide was a drug first used for relief of morning sickness in pregnant women,
but then it was withdrawn from the market for its dramatic effects on normal fetal devel-
opment. Toxicity of thalidomide was demonstrated to be related to the distomer and the
(S)-isomer, while the (R)-enantiomer represented the eutomer [40]. Schoetz et al. reported
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a capillary electrokinetic chromatography study for the enantiomerization of thalido-
mide [41]. For this purpose, the drug repositioning, which consists of identifying and
studying new uses for existing or abandoned pharmacotherapies, is a very useful approach
for developing drugs for the treatment of several diseases with lower overall costs and
shorter development timelines, is of help [42,43]. Indeed, with this approach, several years
later, thalidomide was accidentally discovered to be uniquely effective in treating severe
complications of leprosy. Recently, this drug has been proposed as a repositioned drug for
the treatment of several diseases, including cancer, specifically the multiple myeloma [44].
Finally, the left–right asymmetry in body structures is often studied in animal models,
such as Drosophila melanogaster, in which many organs show stereotypic left–right asym-
metry [45,46]. A recent study on the withdrawal rate, due to safety-related issues of pure
enantiomers, compared to that of chiral mixtures and achiral drugs, showed lower like-
lihood of the withdrawal rate of pure enantiomers than the others. The longest mean
survival time was found for pure enantiomers (62.4 ± 0.8 years), followed by achiral drugs
(55.4 ± 0.9 years, p < 0.01) and chiral mixtures (52.4 ± 1.4 years, p < 0.01). The difference
was more remarkable for drugs launched in certain time periods. Pure enantiomers had
higher survival rates than chiral mixtures if launched before 1941 (p = 0.02), between
1961–1980 (p < 0.001), or between 1981–2000 (p < 0.001) [47]. This review aims to highlight
the importance of chirality in drug activity, reporting some significative examples of chiral
drugs used in therapy. We believe that this topic is important to deepen the molecular
mechanisms behind widespread diseases [48], overcome antimicrobial resistance [49], and
reduce the toxicity of drugs [8].

2. Drugs Acting on the Cardiovascular System
2.1. Antiarrhythmics

Antiarrhythmic drugs have been differently classified [50]. According to the Vaughan
Williams classification, class I, including drugs acting on sodium channels, is subdivided
into three subclasses: class IA (quinidine, procainamide, and disopyramide), class IB (lido-
caine, tocainide, mexiletine, and diphenylhydantoin), and class IC (flecainide, propafenone,
and moricizine). Class II are the β-adrenergic blocking agents; class III (amiodarone,
bretylium, dofetilide, azimilide, and ibutilide) includes drugs that block the potassium
channels. Finally, drugs that block calcium influx, during the various phases of the action
potential prolong repolarization, are grouped as class IV agents (diltiazem, verapamil).
Most of these drugs are chiral, including quinidine (1, Table 1) and disopyramide (2),
mexiletine (3) and tocainide (4), flecainide (5), propafenone (6), and sotalol and ibutilide (7).
Class IB antiarrhythmics mexiletine and tocainide have been widely studied for their chiral-
ity. (R)-mexiletine has shown higher activity than the racemate [51,52]. In particular, some
metabolites of mexiletine were described and sometimes they showed a higher activity than
the parent compound, as was the case for meta-hydroxymexiletine [53]. The same stereose-
lectivity pattern observed for mexiletine was found for this metabolite: the (R)-enantiomer
was the eutomer on arrhythmia, showing a negative inotropism higher than the one dis-
played by mexiletine [54,55]. Class IB antiarrhythmics have been demonstrated to act on
the Nav1.4 voltage-gated sodium channel that is present in skeletal muscle; thus, these
compounds also exert antimyotonic activity, i.e., activity towards myotonias, diseases of
the skeletal muscle characterized by skeletal muscle stiffness. Some analogues of these
drugs are more active than the parent compounds and have been studied both in their
racemic and enantiomeric forms [56,57]. Ivabradine (8) is a contemporary antiarrhythmic
compound that promotes only HCN4 channel inhibition [58] and was first authorized by
the European Medicines Agency (EMA) in 2005 for stable angina treatment, then, in 2015,
it was approved by the FDA. It is extensively used in heart failure in patients for whom the
β-blockers are contraindicated, or in combination with a β-blocker, as well as a calcium
channel blocker, in the cases in which the β-blockers or calcium channel blockers alone are
not able to control the disease. It is commercialized as a pure soluble (S)-enantiomer under
different brand names, with no in vivo racemization [59,60]. However, the higher toxicity
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of (S)-ivabradine than its enantiomer towards the marine bacterium Vibrio fischeri has been
recently demonstrated [61].

Table 1. Structures of chiral drugs in therapy.

Structure Name Number of Compounds

Antiarrhythmic drugs

Quinidine (Class IA) 1
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Table 1. Cont.

Structure Name Number of Compounds

Ivabradine 8

Antihypertensive drugs
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Table 1. Cont.

Structure Name Number of Compounds

Bisoprolol
(β1-blocker) 15

Carvedilol
(non-selective

α- and β-blocker)
16

Metoprolol
(β1-blocker) 17

Labetalol
(non-selective

α- and β-blocker)
18

Sotalol (non-selective
β-blocker) 19

Nebivolol
(β1-blocker) 20

β2-Agonists (bronchodilators)

Salbutamol
or albuterol 21

Formoterol 22

Abediterol 23
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Table 1. Cont.

Structure Name Number of Compounds

Drugs acting on CNS

Esketamine
[(S)-isomer of

ketamine]
24

Duloxetine 25

Atomoxetine 26

Valnoctamide 27

Local anesthetics

Bupivacaine 28

Ropivacaine 29

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

Ibuprofen 30

Ketoprofen 31



Appl. Sci. 2022, 12, 10909 8 of 22

Table 1. Cont.

Structure Name Number of Compounds

Etodolac 32

Antibacterials

Linezolid 33

Tedizolid 34

Ofloxacin 35

Gatifloxacin 36

Antimalarial and antivirals

Chloroquine 37

Hydroxychloroquine 38
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Table 1. Cont.

Structure Name Number of Compounds

Cabotegravir 39

Proton Pump Inhibitors

Omeprazole 40

Lansoprazole 41

Anticancer drugs

Camptothecin 42

Epipodophyllotoxin 43

Naringenin 44

Hesperetin 45
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Table 1. Cont.

Structure Name Number of Compounds

Epigallocatechin-3-
gallate 46

Larotrectinib
(Tropomyosin receptor

kinase inhibitor)
47

Niraparib (PARP
inhibitor) 48

Anti-Histamine drugs

Cetirizine 49

Terfenadine 50

Fexofenadine 51

Dimetindene 52
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Table 1. Cont.

Structure Name Number of Compounds

Selective Serotonin Reuptake Inhibitors

Paroxetine 53

Femoxetine 54

Serine Protease Factor B Inhibitors

LNP023 55

Repositioned drugs

Thalidomide 56

Cidofovir 57

Ribavirin 58
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Table 1. Cont.

Structure Name Number of Compounds

Ruxolitinib 59

2.2. Antihyperthensive Drugs
2.2.1. Angiotensin-Converting Enzyme Inhibitors

The angiotensin-converting enzyme (ACE) inhibitors, including captopril (9), be-
nazepril (10), enalapril (11), moexipril, and imidapril, are chiral compounds. They present
two stereogenic centers, thus, they may exist as two enantiomeric pairs of two diastereoiso-
mers. (S)-Captopril was the first ACE inhibitor drug to be synthesized for hypertension
therapy in the 1970s [62]. Benazepril is used for the treatment of congestive heart failure,
hypertension, and chronic renal failure and it has also demonstrated a protective action
that protects against doxorubicin cardiotoxicity [63]. Benazepril contains two stereogenic
centers but is currently available as the single enantiomer (S,S) for the treatment of hyper-
tension [64]. Enalapril is a well-tolerated, affordable, and widely used drug that has been
suggested as a preventive therapy for arrhythmogenic right ventricular cardiomyopathy
type 5 (ARVC5), the most aggressive form of arrhythmogenic cardiomyopathy in humans
for which there is no therapy [65]. The (S)-enantiomer possesses the ACE inhibiting activity,
while the (R)-enantiomer was less active [66].

2.2.2. Sartans

Sartans are chemical compounds with antagonistic action against the AT1 receptors of
angiotensin II [67]. Losartan, an achiral compound, is the progenitor of the group, followed
by valsartan (12), irbesartan, candesartan, eprosartan, telmisartan, and a few other com-
pounds. Among the latter, valsartan is chiral and is used as a single (S)-enantiomer, since
the activity of the (R)-enantiomer is clearly lower than the (S) one [68]. The (R)-enantiomer
of valsartan fails to affect plasminogen activator I activity induced by angiotensin II, and
its activity is lower than the (S)-enantiomer. Consequently, (R)-valsartan is an impurity and
is needed to control the levels in commercial preparations of (S)-valsartan [69].

2.2.3. Neprilysin Inhibitors

Ecadotril (13) is a chiral potent and selective inhibitor of neprilysin (or neutral en-
dopeptidase, NEP), which is a membrane-bound zinc metallopeptidase responsible for
the inactivation of numerous vasoactive peptides, such as natriuretic peptide, vasoactive
intestinal peptide and bradykinin. Ecadotril acts as a prodrug of the thiorphan enan-
tiomers. The enantiomers exhibit different pharmaceutical profiles: dexecadotril, the
(R)-enantiomer of ecatodril, has an intestinal antisecretory action, whereas (S)-ecadotril
shows cardiovascular activity [70,71].

3. Beta-Adrenergic Drugs

It is commonly known that enantiomers of the beta-adrenoreceptor antagonists
(beta-blockers) in humans differ both for their pharmacokinetic and pharmacodynamic
behaviours [72]. The β-adrenergic blockers are an important class of cardiovascular med-
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ications, used for decades for the treatment of arterial hypertension, chronic heart fail-
ure, and coronary artery disease. They belong to the class of aryloxypropanolamines
(propranolol (14), bisoprolol (15), carvedilol (16), metoprolol (17)) or arylethanolamines
(labetalol (18), sotalol (19), nebivolol (20)) and are chiral drugs [73]. On the other hand,
the β2-adrenergic agonists are bronchodilators that had been well-established in the man-
agement of asthma and chronic obstructive pulmonary disease (COPD) [74]. Short-acting
β2-agonists (salbutamol (21), terbutaline) and long-acting β2-agonists (formoterol (22),
salmeterol, indacaterol, olodaterol, and vilanterol) are powerful bronchodilators used to
treat respiratory disorders and present an almost chiral centre, being the (R)-enantiomer the
eutomer [75]. In the case of formoterol, in which there are two stereogenic centers, the active
enantiomer is the (R,R)-formoterol [76]. The recently inhaled β2-agonists abediterol (23),
with longer half-life than the previous one, offers potent bronchodilation and a sustained
duration of action suited to a once-a-day dosing, plus a reduced potential for class-related
cardiac side effects [77,78].

4. Drugs Acting on Central Nervous System (CNS)

Chiral drugs acting on the central nervous system (CNS) have been recently
reviewed [79]. Ketamine, and particularly (S)-ketamine, is used in clinics for premedication,
sedation, induction, and maintenance of general anesthesia, which is then termed “dis-
sociative anesthesia” [80]. The anesthetic potency of the (S)-enantiomer is approximately
three to four-fold higher than that of the (R)-enantiomer. In 2019, the (S)-isomer of ketamine
(esketamine (24)) was approved for use in treatment-resistant depression in the United States
(Spravato) and in Europe [81]. However, new preclinical findings suggest that (R)-ketamine
might produce better efficacy and tolerability relative to (S)-ketamine [82]. Duloxetine (25) is
a potent reuptake inhibitor of serotonin and nor-epinephrine and is used for the treatment
of a major depressive disorder, diabetic neuropathic pain, stress urinary incontinence,
generalized anxiety disorder, and fibromyalgia [83]. A rapid and low-cost liquid chro-
matography (LC) method for control of the enantiomeric purity of duloxetine has been
recently reported [84]. Atomoxetine (26) is an inhibitor of the presynaptic norepinephrine
transporter. It is a chiral drug used for the management of attention-deficit hyperactivity
disorder (ADHD) in children and adolescents [85]. Recently, the combination of atom-
oxetine and fesoterodine (Ato-Feso), a chiral anti-muscarinic drug, is under study as a
possibility for the treatment of obstructive sleep apnea [86]. Finally, chirality has been
recently considered an important factor for the development of new antiepileptic drugs [87].
Valnoctamide (27) is an anticonvulsant also bearing anxiolytic and antibipolar properties.
It is an amide derivative of valproic acid that possesses stereo-selective pharmacokinetics
both in animals and human [88–90].

5. Local Anesthetics

The main local anesthetics in use are bupivacaine (28), lidocaine, benzocaine,
ropivacaine (29), and chloroprocaine and are used primarily as injectable anesthetics. Dif-
ferences in (R)- and (S)-enantiomers of local anesthetics were found in terms of pharma-
codynamic and pharmacokinetic activity, as well as toxicity [91]. For the local anesthetic
bupivacaine, the (S)-enantiomer is significantly less cardiotoxic than the (R)-enantiomer
and the racemate. Thus, the chiral switching to the levorotatory enantiomer resulted in the
development of a local anesthetic drug with a clinical profile similar to that of the previously
marketed racemate, but with a decrease in cardiovascular toxicity: levobupivacaine was
approved in the United States in 2000 [92]. Ropivacaine was the first local anesthetic to be
used in clinical practice as a pure (S)-enantiomer [93]. Moreover, some clinical data suggest
that ropivacaine is clinically safer than bupivacaine [94].

6. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

Ibuprofen (30) is a chiral NSAID, often taken as an example of chiral inversion:
(S)-ibuprofen is far more active than (R)-ibuprofen in inhibiting cyclooxygenase 1 (COX-1)



Appl. Sci. 2022, 12, 10909 14 of 22

enzyme. When administered as the racemate, the ibuprofen has proven to undergo
unidirectional enantiomerization being converted in vivo into the (S)-ibuprofen, thus,
the (R)-ibuprofen behaves as a pro-drug for the (S)-enantiomer [95]. Ibuprofen was the
first chiral drug of the NSAIDs class to be switched to the single-enantiomer version in
1994, then the ketoprofen (31) was submitted to chiral switching and marketed as the
(S)-(+)-enantiomer in 1998. In this case, the metabolic enantiomerization from (R) to (S)
in vivo, and vice versa, was shown to be negligible in humans [26]. Other chiral NSAIDs
are naproxene, carprofen, fenoprofen, flurbiprofen, and indoprofen, and for all of them, the
(S)-enantiomer is the eutomer. Finally, the chiral NSAIDs pyranoindoles etodolac (32) and
pemedolac exhibit anti-inflammatory and analgesic activities [96]. Etodolac has also shown
anticancer activity, with the (R)-etodolac being a more potent inhibitor of the Wnt signaling
than its enantiomer [97].

7. Antimicrobials
7.1. Antibacterials

Linezolid (33) is a chiral antibacterial with remarkable properties [98]: it is the only
chiral antibacterial drug active against the multi-resistant Gram-positive bacteria, also
clinically important, with an excellent oral bioavailability and effective penetration at
therapeutic concentrations into almost every organ in the body. It is also even able to act
against Enterococcus faecalis, a commensal and nosocomial pathogen responsible for serious
infections in humans [99]. Linezolid is the first antibiotic belonging to the class of oxazolidi-
nones to be approved by the FDA in 1999 and the (S)-enantiomer is the eutomer [100,101].
Tedizolid (34) is a parenteral antibacterial agent belonging to oxazolidinones, approved by
the FDA in June 2014 and positively endorsed by the Committee for Medicinal Products for
Human Use (CHMP) in January 2015. Tedizolid phosphate has a favorable safety profile
and has been approved to treat acute bacterial skin and skin structure infections, and the
antibacterial activity is due to the (R)-enantiomer, while the (S)-enantiomer is devoid of this
activity [102]. The fluoroquinolone class of antibiotics comprehends chiral drugs, including
ofloxacin (35), gemifloxacin, lomefloxacin, and gatifloxacin. The eutomer of the ofloxacin is
the (S)-ofloxacin, which is named and commercialized as levofloxacin, and acts as DNA
topoisomerase IV inhibitor [103]. Gatifloxacin (36) belongs to the fourth generation of
quinolones and shows a stereogenic center on the piperazine ring at C-7, thus, it exists
as two enantiomers, (S)- and (R)-gatifloxacin, with the (S)-enantiomer being the eutomer.
Recently, complexes of the Schiff base of gemifloxacin have demonstrated high antifungal
and antibacterial activity [104,105].

7.2. Antimalarial and Antivirals

Most commonly used antiviral and antimalarial agents possess a stereogenic carbon
atom. The chiral antimalarial drugs chloroquine (37) and its hydroxyl analog hydroxy-
chloroquine (38) are also known for their antiviral activities against human immunodefi-
ciency virus type 1 (HIV-1) and acquired immunodeficiency syndrome (AIDS) virus [106].
These drugs have shown preliminary inhibitory effects against the new pandemic Coron-
avirus 19 (COVID-19) [107] and apparent efficacy in clinical studies [108]. Cabotegravir (39)
is an HIV integrase strand transfer inhibitor with potent antiviral activity and very useful
in HIV prevention in uninfected women [109]. The antiviral remdesivir was the first FDA-
approved treatment for COVID-19 and is a chiral aryloxy-phosphoramidate prodrug, as
it is metabolized into nucleoside triphosphate (active drug form) inside the cell through
sequential reactions by ester-mediated-hydrolysis [110]. In a recent study on Opuntia
ficus-indica, a plant with interesting biological activities widespread worldwide in tropical
and subtropical regions, including the Mediterranean Sea [111], chiral phytochemicals
extracted from this plant were suggested as interesting protease inhibitor candidates for
anti-COVID-19 disease acting as inhibitors of the main protease (Mpro), which is essential
for viral replication [112].
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8. Proton Pump Inhibitors (PPIs)

Nowadays, proton pump inhibitors (PPIs) are among the most prescribed classes of
drugs used to treat several gastrointestinal conditions, such as gastroesophageal reflux
or Barrett’s esophagus, as well as laryngopharyngeal reflux [113]. Omeprazole (40), the
first PPI studied, contains a stereogenic sulfur atom. It represents a pro-drug, which is
rendered achiral via reduction or oxidation of the sulfoxide. Omeprazole, represents a case
in which the single-enantiomer offered little clinical advantage over the racemate; however,
it was introduced into the market as a single enantiomer as a patent protection strategy
of the pharmaceutical companies against the generic competitors [114]. Esomeprazole is
the S-isomer of omeprazole with favorable pharmacokinetic profile relative to omepra-
zole [115]. After some years, another PPI, namely lansoprazole (41), underwent the “chiral
switch” as well; in 2009, Takeda launched the single dextrorotatory enantiomer, namely the
(R)-lansoprazole, or dexlansoprazole, on the USA market. Additionally, in this case, this
enantiomer has not been proved to be superior to the racemate in terms of efficacy in the
pre-approval studies [116].

9. Anticancer Drugs

Anticancer drugs often derive from nature and typically have more rings and more
stereogenic centers in their structures, with respect to the synthetic ones. The antibiotics pro-
duced from microbes, such as doxorubicin, bleomycin, actinomycin, and mitomycin C, have
been demonstrated to possess good anticancer properties [117]. Moreover, plant-derived
compounds are used widely as antitumor agents, namely, the Vinca alkaloids, the camp-
tothecins (42), the epipodophyllotoxins (43), and the taxanes [118]. Moreover, flavanoles
and flavanones are natural compounds that present a stereogenic center and, specifically,
naringenin (44), hesperetin (45) and hesperidin, the main bioactive polyphenols in vegeta-
bles and citrus fruits, have demonstrated antitumor activity [119,120]. They may exist as
both enantiomers, even though in nature they are mainly present as (S)-enantiomers [121].
The major catechin found in green tea, (−)-epigallocatechin-3-gallate (46), showed a potent
antioxidant activity through its ability to scavenge free radicals and chelate metal ions,
and also showing antitumor effects [122,123]. Other anticancer drugs with different mech-
anisms of action are chiral. In November 2018, (S,R)-enantiomer of larotrectinib (47), a
chiral small molecule acting as inhibitor of tropomyosin receptor kinase (TRK), received
its first global approval in the USA: (i) for the treatment of adult and pediatric patients
with solid tumors that have a neurotrophic receptor tyrosine kinase (NTRK) gene fusion
without a known acquired resistance mutation; (ii) for metastatic solid cancers or where
surgical resection is likely to result in severe morbidity, and (iii) for those patients that have
no satisfactory alternative treatments or that have progressed following treatment [124,125].
The chiral drug (S)-niraparib (48) (Zejula®) is a poly (ADP-ribose) polymerase (PARP)
inhibitor, which is approved for the maintenance treatment of adults with advanced ovar-
ian, fallopian tube, or primary peritoneal cancer with complete or partial response to
platinum-based chemotherapy [125,126].

10. Anti-Histamine Drugs (H1 Receptor Antagonists)

Cetirizine (49) and terfenadine (50) are chiral second-generation H1 histamine
antagonists [127]. Levocetirizine, the (R)-enantiomer, is often recommended for breast-
feeding women due to the fewer sedative effects than the first-generation antihistamines [128].
Terfenadine is a second-generation antihistamine that induces the QT interval prolongation,
contributing to cardiac arrhythmias [129]. Fexofenadine (51) is a highly selective third-
generation antihistamine widely used in allergic diseases, for which studies are almost
contradictory: it has been proved to have cardiotoxic effects [130], while for other authors it
had a favorable safety profile compared with other second-generation antihistamines even
in children [131]. Racemic dimetindene (52) maleate is a widely used H1 antihistamine
drug in medication against allergic reactions in humans, although this action mostly arises
from the (R)-enantiomer [132]. Recently, this compound has been suggested to induce
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resistance to blast fungus Magnaporthe oryzae, responsible for the rice blast disease, the most
destructive rice disease all over the world, through activating the salicylic acid signaling
pathway in rice plants [133].

11. Selective Serotonin Reuptake Inhibitors (SSRIs)

The 4-arylpiperidines, such as paroxetine (53) and femoxetine (54), are chiral selective
5-HT reuptake inhibitors used for the treatment of depression, anxiety, and panic disor-
ders [134]. Paroxetine contains two stereogenic centers and, hence, forms erythro and
threo (or cis and trans) diastereoisomers, occurring as pair of enantiomers. The cis isomers
of paroxetine are significantly less potent than trans ones and, among them, the trans-
(–)-paroxetine ((3S,4R)-3-(1,3-benzodioxol-5-yloxymethyl)-4-(4-fluorophenyl)piperidine)
displays the highest 5-HT uptake [135]. Lately, studies on this compound have been neces-
sarily increased because of the COVID-19 pandemic and now post-COVID syndrome in
which the treatment of depression has become essential for numerous patients, regardless
of gender [136,137]. Femoxetine is a closely related compound and, as for paroxetine, the
(3S,4R)-femoxetine is the one responsible with an antidepressant activity [138].

12. Serine Protease Factor B Inhibitors

The complement system is an essential part of the innate immune system due to
its ability to detect extraneous cell and induce their death. Despite this, its overregula-
tion produces different diseases, including macular degeneration, paroxysmal nocturnal
hemoglobinuria, and nephropathy. Thus, the identification of new molecules able to block
the alternative pathway of the complement system and, in particular, the activation of the
factor B by inhibiting the serine protease, could be essential for the treatment of numerous
complement-mediated diseases. LNP023 (55) is a chiral reversible binding inhibitor with
high affinity and selectivity for complement factor B and is currently adopted in clinical
trials for the treatment of various renal diseases with an abnormal complement system
involvement, including paroxysmal nocturnal hemoglobinuria, IgA nephropathy, and
membranous nephropathy [139]. It has also been recently suggested for the treatment of
Lupus nephritis, one of the most common complications of systemic lupus erythematosus
in MRL/lpr mice [140].

13. Repositioned Chiral Drugs

Drug repositioning or drug repurposing represents an effective strategy to find new
indications for existing drugs and is highly efficient, low-cost, and quite riskless. It shortens
the traditional drug development strategies that generally include five long and intricate
steps: discovery and preclinical, safety review, clinical research, FDA review, and FDA
post-market safety monitoring [141]. As an example, thalidomide (56) is a chiral drug,
once used to relieve morning sickness, and then unfortunately renowned as teratogen
and neurotoxic. It is now a repositioned drug that received the approval by FDA for the
treatment of erythema nodosum leprosum and multiple myeloma under strict control.
It has also been found to be effective in the treatment of advanced renal, esophageal,
chemotherapy refractory endometrial and pancreatic cancer and is used in the treatment
of inflammatory skin, autoimmune disorders and inflammatory bowel disease [38,142].
Many repositioning drugs have been used for the treatment of COVID-19 as well and
many others are undergoing extensive clinical research. Among them, several heterocyclic-
based approved chiral drugs have been recently reported for the treatment of COVID-19,
such as cidofovir (57), ribavirin (58), and ruxolitinib (59) [143]. Cidofovir is a broad-
spectrum antiviral agent, which acts as a nucleoside phosphonate analogue in vitro against
multiple viruses, including all serotypes of human adenovirus [144]. Ribavirin is a common
antiviral drug that inhibits the replication and spread of multiple viruses, including severe
acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Lassa
fever [145]. Ruxolitinib is a potent and selective oral inhibitor of Janus kinases JAK1 and
JAK2. It has been approved for the treatment of myelofibrosis by the US FDA in 2011 and



Appl. Sci. 2022, 12, 10909 17 of 22

by the European Medicines Agency (EMA) in 2012. In 2014, it received the approval for the
treatment of hydroxyurea-resistant or -intolerant polycythemia vera [146].

14. Conclusions

Chirality represents a burning concept in chemistry and is a very diffused feature of
many natural or synthetic drugs, which possess a wide application range. A chiral molecule
containing a single stereogenic center may exist as a mixture of enantiomers in different
ratios or as an enantiopure form. It is well known that enantiomers only show the same
physical and chemical properties in an achiral environment but behave very differently
in a chiral one. Moreover, the isomers may present different or even completely opposite
metabolic, toxicological, and pharmacological profiles. Hence, the individual components
of an enantiomeric pair typically have significant differences in their pharmacokinetic and
pharmacodynamic activities. The continued awareness of pharmacologists on the important
role of chirality in numerous applications and the proper unambiguous identification of
stereoisomers are of fundamental importance. In particular, for the medicinal and industrial
relevant targets, further studies addressing the issue of racemization during synthesis and
the preparation of stereochemically defined peptide products are required. This review
intends to further focus the attention of researchers on an interesting area of chemistry.
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