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Abstract: The resistances of HVH sections (H—horizontal upper flange, V—vertical web, H—horizontal
bottom flange) were investigated by the authors in the frame of the large parametrical studies
focused on the complete HVH-section categories: channels, Z-sections, I-sections, and H-sections.
The three different variants of the approximate formulae for the calculation of the elastic and plastic
resistances of I-shaped sections loaded by several internal forces were previously published by the
authors. In this paper, the improved approximate formulae are presented for the plastic resistance
of I- and H-sections loaded by bending moments My,Ed, Mz,Ed, and bimoment BEd. It is shown in
the graphical form that the proposed approximate formulae give almost identical values of relative
plastic resistances of I-shaped sections to the exact solution, in which Pattern Search Algorithm,
offered by MATLAB, is used. It is proven that the proposed approximate formulae are better then
previous authors’ formulae, which are themselves better than the older Greek proposal and the newer
German proposals. The approximate formulae may be used in the CEN Technical Specification (TS)
or in Non Contradictory Complementary Information (NCCI) for supporting safe and economical
design according to metal (steel and aluminum) Eurocodes.

Keywords: I-shaped sections; plastic section resistance; bending moments; bimoment; interaction formula

1. Introduction

The current metal Eurocodes [1,2] do not contain rules for the calculation of the plastic
resistance of members loaded by a combination of bending moment(s) and bimoment.
Eurocode [1] contains only a conservative linear-interaction formula (Equation (6.2) in [1]).
Equation (6.2) is valid for class 1, class 2, or class 3 cross sections subjected to the combi-
nation of NEd, My,Ed, and Mz,Ed. According to the Eurocode [1]: “The plastic resistance of
cross sections should be verified by finding a stress distribution which is in equilibrium
with the internal forces and moments without exceeding the yield strength. This stress
distribution should be compatible with the associated plastic deformations” (cl. 6.2.1(6)
in [1]). Similar clauses are missing in [2].

Both drafts of the new generation of Eurocodes [3,4] contain the equations for the
calculation of the design bending moment reduced by the bimoment. In cl. 8.2.7(7) [3],
the authors state: “For Class 1 or Class 2 symmetric I-cross-sections in bending about the
major axis, the design plastic bending moment resistance Mc,B,Rd reduced by the bimoment
BEd may be calculated from Formula (8.29)”. Formula (8.29) is the second Formula (3)
in this paper, and the history of its development is described below. The draft of the
Eurocode [4] applies a similar formula (see formula (8.38) in cl. 8.2.7(6) [4]). Both drafts
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of the Eurocodes [3,4] contain the following the sentence: “For determining the plastic
moment resistance of a cross-section due to bending and torsion, only torsion effects BEd
should be derived from elastic analysis” (see 8.2.7(6) in [3] or 8.2.7(5) in [4]).

The need for an interaction formula for the calculation of the plastic resistance of the
I-shaped section was solved by the authors in [5], in which three variants of the formula
were presented, taking into account the influence of three internal forces: two bending
moments, My,Ed and Mz,Ed, and a bimoment, BEd. In this paper, variant No.4 is developed,
which is more exact than the previous variants, No.1, No.2, and No.3 published in [5].

In Table 1 in [5], the authors present three approximate formulae variants. Table 1
in [5] shows that variant No. 3 is the best. The purpose of this paper is to present variant
No. 4, which is better than variant No. 3. Variant No. 4 is defined by the formulae in
Table 1, below, and by the equations in (37). The approximate results agree well with the
exact results obtained by linear programming (Figures 1 and 2). Figures 1 and 2 show also
comparisons with the older results obtained by Vayas (Equations (9) and (21c) in [6]), and to
the brand new results obtained by Ludwig (Equation (29) in [7]). We can see that the results
of the proposed variant No. 4 fit the exact curves well (Figures 1 and 2). The proposals of
Vayas and Ludwig substantially differ within some intervals of the exact results.
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It is worth mentioning that Ludwig informed us that he used paper [8]. He forgot
to include [8] in the list of references in [7]. Moreover, Ludwig mistakenly referred to the
formula in Table 6 [7] as Mirambell’s formula and referred to [26] ([9] here). The formula in
this form is not found in [26]. In fact, it is Baláž’s formula, taken by Ludwig from [8], and
not from [26]. Baláž’s formula was accepted for the last draft of prEN 1993-1-1 [2], where it
replaced Mirambell’s original, incorrect formula (see Figure 3b in [8]). The exact solution of
the plastic resistance of the section under a combination of several internal forces can be
obtained by (a) dividing a section into three elements (upper flange, bottom flange, and
web) and (b) using linear programming (Osterrieder [10]). Method (a) was applied by Yang,
Chern, and Fan [11], Kindmann and Frickel [12], and Rubin [13] by taking into account up
to eight internal forces [14]. The programs developed by DLUBAL [15] and Aguero [16] are
based on the simplex method.

1.1. Linear-Interaction Formula

The conservative approach for all cross-section classes is represented by formula
(6.2) in EN 1993-1-1:2005 [1]. It is the linear summation of the utilization ratios of all the
components. For Classes 1 and 2, Formula (6.2) [1] takes, without the influence of the
normal force NEd, the following form, if the bimoment BEd is added:

My,Ed

Mpl,y,Rd
+

Mz,Ed

Mpl,z,Rd
+

BEd
Bpl,Rd

≤ 1 (1)
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1.2. Proposals for Interaction Formula Containing My,Ed and BEd

Strel’bickaja derived such a formula for channel and I-shaped sections. The formula
for I-shaped sections is as follows:(

My,Ed − Mw,pl,y,Rd

Mpl,y,Rd − Mw,pl,y,Rd

)2

+
BEd

Bpl,Rd
≤ 1 (2)

Formula (2) was simplified by Baláž in the form (3) and was applied in [17–21].( My,Ed
Mpl,y,Rd

)2
+ BEd

Bpl,Rd
≤ 1;

Mc,B,Rd =
√

1 − BEd
Bpl,Rd

Mpl,Rd

(3)

The first proposal (4) for the previous prEN 1993-1-1 draft was made by Mirambell,
Bordallo, and Real [9], where relevant hypotheses are described in detail. In the derivation
of Formula (4), the analogy was utilized between the stress distribution in a rectangle
section due to normal force combined with bending moment and the stress distribution in
the flange of an I-section due to the bending moment and bimoment in the plastic state.
Formula (4) was the first approach to solve the bending–warping torsion interaction within
the framework of prEN1993-1-1 [2]. This approach was proposed because it was simple
and easy to use and because it also employed a formulation already implemented into EN
1993-1-1 [1] to consider the shear–torsion interaction.

Mc,B,Rd =

√
1 −

σw,Ed,max
1.25 fy
γM0

Mpl,y,Rd (4)

Working group EN 1993-1-1 finally accepted Formula (3), proposed by Baláž in the
Formula (3).

In this paper, a generalization of Equation (3) also considers Mz,Ed, which needs to be
taken into account when analyzing the behavior of unrestrained beams sensitive to lateral
torsional buckling (Agüero et al. [22]).

1.3. Calculation of Factor ξ

In the ξ factor by which internal forces must be multiplied to reach the plastic resis-
tance, the lower-bound theorem can be used.

This lower-bound procedure was applied in two methods: (i) Method A divides the
section into elements whose stresses are unknown; (ii) Method B divides the section into
three parts (flanges and web). In each part, the unknowns are the axial force and the
bending moment.

1.3.1. Method A (According to Osterrieder et al.)

Step 1. Dividing section into elements.
Step 2. Considering linear constraints by Equations (5)–(9):
Limitation of normal stresses:

− fy ≤ σi ≤ fy (5)

Equilibrium equations:
n

∑
i=1

σi Ai = ξNEd (6)

n

∑
i=1

−σi Aiyi = ξMz,Ed (7)
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n

∑
i=1

σi Aiωi =
n

∑
i=1

σi Aiyizi = ξBEd (8)

n

∑
i=1

σi Aizi = ξMy,Ed (9)

Step 3. Calculation of maximum ξ:

max(ξ) (10)

The problem can be solved by linear programming.

1.3.2. Method B (According to Rubin and Kindmann et al.)

Method B is according to Rubin [13] and Kindmann et al. [23–25]), the computer
programs in [15,16,25] give similar results.

The I-section consists of three parts: top flange–index Tfl, bottom flange–index Bfl and
web–index w. In Method B, the following are calculated: factor ξ to accomplish plastic
resistance, axial forces N {NT f l,Ed; NB f l,Ed; Nw,Ed}, and bending moments M in each part
{MT f l,z,Ed; MB f l,z,Ed; Mw,y,Ed}.

Step 1. Dividing section into three parts.
Calculation of axial and bending resistances of all the parts:

N f l,pl,Rd = NT f l,pl,Rd = NB f l,pl,Rd = b · t f · fy; Nwpl,Rd = hw · tw · fy

M f l,pl,z,Rd = MT f l,pl,z,Rd = MB f l,pl,z,Rd =
b2·t f · fy

4 ; Mw,pl,y,Rd =
h2

w ·tw · fy
4

(11)

Step 2. Considering constraints:
Plastic resistances of the top flange in the nonlinear-interaction formula:(

NT f l,Ed

NT f l,pl,Rd

)2

+

∣∣∣∣∣ MT f l,z,Ed

MT f l,pl,z,Rd

∣∣∣∣∣ ≤ 1 (12)

Plastic resistances of the bottom flange in the nonlinear-interaction formula:(
NB f l,Ed

NB f l,pl,Rd

)2

+

∣∣∣∣∣ MB f l,z,Ed

MB f l,pl,z,Rd

∣∣∣∣∣ ≤ 1 (13)

Plastic resistances of the web in the nonlinear-interaction formula:(
Nw,Ed

Nw,pl,Rd

)2

+

∣∣∣∣∣ Mw,y,Ed

Mw,pl,y,Rd

∣∣∣∣∣ ≤ 1 (14)

Equilibrium equations:

NT f l,Ed + NB f l,Ed + Nw,Ed = ξNEd
MT f l,z,Ed + MB f l,z,Ed = ξMzEd

h−t f
2

(
MT f l,z,Ed − MB f l,z,Ed

)
= ξBEd

Mw,y,Ed +
h−t f

2

(
NB f l,Ed − NT f l,Ed

)
= ξMyEd

(15)

Step 3. Calculation of maximum ξ:

max(ξ) (16)
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1.4. Research Significance

The steps of Method A and Method B are described in detail. They make it possible to
obtain the exact interaction formulae.

Three interaction formulae for the calculation of the plastic resistance of cross sections
under the bending moment about the strong axis, My,Ed, the bending moment about the
weak axis, Mz,Ed, and the bimoment, BEd, are compared for the beams with the I- and
H-sections. The proposal is presented in Section 3.

2. Calculation of Exact Interaction Curves

Method A is applied to obtain the interaction curves with parameter Mz,Ed
Step 1. Calculation of Mpl,z,Rd for the given NEd = 0.0, My,Ed = 0.0 and BEd = 0.0.
Considering constraints by Equations (17)–(20):

− fy ≤ σi ≤ fy (17)

n

∑
i=1

σi Ai = NEd = 0.0 (18)

n

∑
i=1

σi Aizi = My,Ed = 0.0 (19)

n

∑
i=1

σi Aiyizi = BEd = 0.0 (20)

Calculation of maximum Mz,Ed:

Mpl,z,Rd = max(Mz,Ed) = max

(
n

∑
i=1

σi Aiyi

)
(21)

Step 2. Calculation of BEd,γ to achieve plastic resistance for the given NEd = 0.0,
My,Ed = 0.0, Mz,Ed = γ·Mpl,z,Rd; γ [0,1]

Constraints Equations (22)–(25):

− fy ≤ σi ≤ fy (22)

n

∑
i=1

σi Ai = NEd = 0.0 (23)

n

∑
i=1

σi Aizi = My,Ed = 0.0 (24)

n

∑
i=1

σi Aiyi = Mz,Ed = γ·Mpl,z,Rd (25)

Calculation of maximum Bpl,Rd,γ:

Bpl,Rd,γ(Mz,Ed) = max

(
n

∑
i=1

σi Aiyizi

)
(26)

Step 3. Calculation of My,Ed,γ,η to achieve the plastic resistance for the given
NEd = 0.0, BEd = ηBpl,Rd,γ, Mz,Ed = γ·Mpl,z,Rd; γ [0,1] and η [0,1].

Considering constraints by Equations (27)–(30):

− fy ≤ σi ≤ fy (27)
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n

∑
i=1

σi Ai = NEd = 0.0 (28)

n

∑
i=1

σi Aiyi = Mz,Ed = γMpl,z,Rd (29)

n

∑
i=1

σi Aiyizi = BEd = ηBpl,Rd,γ (30)

Calculation of maximum MyEdγ,η:

My,Ed,γ,η(BEd; Mz,Ed) = max

(
n

∑
i=1

σi Aizi

)
(31)

Application of Method B:
Dividing the section into three parts (top flange, bottom flange, and web):
The axial force that leads to the plastic behavior of the top flange:

NT f l,Ed = N f l,pl,Rd

√√√√√1 −

∣∣∣∣∣∣ Mz,Ed

2M f l,pl,z,Rd
+

BEd(
h − t f

)
M f l,pl,z,Rd

∣∣∣∣∣∣ (32)

The axial force that leads to the plastic behavior of the bottom flange:

NB f l,Ed = N f l,pl,Rd

√√√√√1 −

∣∣∣∣∣∣ Mz,Ed

2M f l,pl,z,Rd
− BEd(

h − t f

)
M f l,pl,z,Rd

∣∣∣∣∣∣ (33)

If the axial force equals zero (NEd = 0), the axial force at the web will be as follows:

Nw,Ed = NT f l,Ed − NB f l,Ed (34)

The bending moment that leads to the plastic behavior at the web:

Mw,y,Ed = Mw,pl,y,Rd

1 −
(

Nw,Ed

Nw,pl,Rd

)2
 (35)

The resultant bending moment My,Ed is then:

My,Ed = Mw,y,Ed +
(

NT f l,Ed + NB f l,Ed

)(h − t f

)
2

(36)

3. Proposal for Improved Interaction Formulae (Variant No. 4)

The original formulae of variants Nos. 1, 2, and 3, presented in Table 1 [1], are
improved by variant No. 4. In variant No. 4, the definitions of the parameters α, β, and
δ are different. The improved formulae of variant No. 4 with the changed parameters
(Equations in (37)) provide results that agree well with the exact results obtained by linear
programming (Figures 1 and 2).
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Table 1. Improved interaction formulae with changed parameters α, β, and δ (variant No. 4).

0 ≤ My,Ed
Mpl,y,Rd

< δ δ ≤ My,Ed
Mpl,y,Rd

≤ 1.0

BEd
Bpl,Rd

1− Mz,Ed
Mpl,z,Rd

≤ 1.0

 My,Ed
Mpl,y,Rd

−δ(√
1− Mz,Ed

Mpl,z,Rd

(
1−

Mw,pl,y,Rd
Mpl,y,Rd

)
+

Mw,pl,y,Rd
Mpl,y,Rd

)
−δ

α

+

( BEd
Bpl,Rd

1− Mz,Ed
Mpl,z,Rd

)β

≤ 1

where
α
β
δ

 =


2
1
Mw,pl,y,Rd
Mpl,y,Rd

+


α ∗ −2
β ∗ −1

δ ∗ −Mw,pl,y,Rd
Mpl,y,Rd

 cos


∣∣∣∣∣∣

Mz,Ed
Mpl,z,Rd

−0.5

0.5

∣∣∣∣∣∣
1.5

π
2


{

α∗
β∗

}
=

{
1.1
2

}
+

{
1
1

}
4
(Mw,pl,y,Rd

Mpl,y,Rd
− 0.1

)cos

∣∣∣∣∣∣
Mz,Ed

Mpl,z,Rd
−0.5

0.5

∣∣∣∣∣∣π
2

4

δ∗ = 0.2 +
Mw,pl,y,Rd
Mpl,y,Rd

(37)

4. Conclusions

The plastic resistance of the I- and H-sections under a combination of bending mo-
ments, My,Ed, Mz,Ed, and bimoment BEd, was investigated. The paper suggested an im-
provement to a previous proposal, published by the authors in [5], in which the three
variants, No.1, No.2, and No.3, of approximate-interaction formulae were investigated. The
proposed formulae may be called variant No.4. It was shown in graphical form that the
proposed variant No.4 of the approximate Formula (37) gives almost identical values of
the relative plastic resistances of I-shaped sections to the exact results obtained by linear
programming (Figures 1 and 2).

The comparisons of the results of the new approximate formulae with the results
obtained by Vayas [6] and Ludwig [7] show that they agree better with the exact theoretical
results, which were presented in the form of diagrams (Figures 1 and 2).

The proposed Formulae (37) are rather complex and long. Therefore, they can hardly
be accepted directly for the new generation of the metal Eurocode prEN 1993-1-1 design of
steel structures [2] or the prEN 1999-1-1 design of aluminum structures [4]. However, they
may be given in the CEN Technical Specification, and they may be part of the national Non
Contradictory Complementary Information. The reason for this is that the approximate
formulae and exact results of the submitted theory have useful practical applications. They
enable the safe and economical design of steel and aluminum thin-walled structures. The
exploitation of the plastic-section resistance reserves helps to save the structural material.
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Nomenclature

The nomenclature is according to Eurocode EN 1993-1-1.
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