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ABSTRACT 
 
 

Different approaches have been proposed to determine the possible outliers existing in a dataset.
The most widely used consists in the application of the data snooping test over the least squares
adjustment results. This strategy is very likely to succeed for the case of zero or one outliers but, 
contrary to what is often assumed, the same is not valid for the multiple outlier case, even in its
iterative application scheme. Robust estimation, computed by iteratively reweighted least squares
or a global optimization method, is other alternative approach which often produces good results 
in the presence of outliers, as is the case of exhaustive search methods that explore elimination of
every possible set of observations. General statements, having universal validity, about the best 
way to compute a geodetic network with multiple outliers are impossible to be given due to the
many different factors involved (type of network, number and size of possible errors, available
computational force, etc.). However, we see in this paper that some conclusions can be drawn for 
the case of a leveling network, which has a certain geometrical simplicity compared with
planimetric or three-dimensional networks though a usually high number of unknowns and 
relatively low redundancy. Among other results, we experience the occasional failure in the 
iterative application of the data snooping test, the relatively successful results obtained by both
methods computing the robust estimator, which perform equivalently in this case, and the
successful application of the exhaustive search method, for different cases that become
increasingly intractable as the number of outliers approaches half the number of degrees of
freedom of the network. 
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by different numbers and sizes of outliers – leading to
exactly the same least squares solution, the attempts to
build a general, always successful approach solely
based on the examination of the least squares solution
with no additional or alternative assumptions are
doomed to failure (Baselga, 2011b). 

Robust estimation is built on one of such
alternative assumptions: observations are no longer
assumed to follow Normal distributions but other, to
a certain extent similar, type of distribution so that the
corresponding adjustment of observations is obtained
by minimizing a particular function of residuals (e.g.
the sum of absolute values, also known as L1 norm)
other than the sum of their squared values (Huber,
1981). This results in a solution maximally resistant to
the occurrence of not only gross but also systematic
errors. The particular shape of the function that

1. INTRODUCTION 
The theory of statistical testing for outlier

detection in a set of measurements has received
considerable attention in the last half century (Rofatto
et al., 2020). After the pioneering works by Baarda
(1968) and Pope (1976), which established its
foundations for the case of a single outlier, the theory
of statistical testing after least squares adjustment has
tried to be extended to the case of multiple outliers by
many authors (e.g., Cross and Price, 1985; Ding and
Coleman, 1996; Knight et al., 2010). 

In the case of multiple outliers, sometimes called
multiple gross errors (though the term gross error refers
to an incorrect observation which may or not cause and
outlier, and outliers are not always caused by gross
errors), there is an inherent difficulty, however: since
there are different sets of observations – contaminated

Cite this article as: Baselga S, Klein I, Suraci SS, de Oliveira LC, Matsuoka MT, Rofatto VF: Performance comparison of least squares, 
iterative and global L1 norm minimization and exhaustive search methods for outlier detection in leveling networks. Acta 
Geodyn. Geomater., 17, No. 4 (200), 425–438, 2020. DOI: 10.13168/AGG.2020.0031 
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 yields the global optimum (in fact this is only 
guaranteed in probabilistic terms, as explained later 
on) as it would be equally reached by the simplex 
method, genetic algorithms or other optimization 
methods. Comparisons among different optimization 
methods in terms of computational time are beyond 
the scope of the current paper, since they deviate from 
our current topic of research and can be found in other 
publications (see for instance Ingrassia et al., 2013). 

Other robust estimators, such as Huber’s
estimator, may be more appropriate than the minimum 
L1 norm as it has been shown in the extensive testing 
of robust methods based on M-estimates by Trasak 
and Stroner (2014); however, this idea will not be 
pursued in this paper as it is only concerned with the 
comparison of the minimum L1 norm in two different 
computational approaches (iteratively reweighted 
least squares and global optimization methods), with 
the minimum L2 norm (least squares) and the 
exhaustive search procedure. 

Other strategies may also be followed for outlier 
detection. One very simple is the elimination of one 
(or several) observation(s) followed by the 
computation of the corresponding least squares 
adjustment and comparison with the least squares 
adjustment of the entire set of observations. This 
strategy has several drawbacks being one of them the 
need for a rigorous theoretical statistical foundation 
that permits to compare both solutions and decide 
when one solution is significantly better than the other 
(from a statistically rigorous point of view). Another 
inconvenience is the computational burden to exhaust 
all possibilities up to a reasonable number of 
observations to be eliminated, so that the analysis can 
be done in a thorough manner, independently of the 
user’s intuition on where an outlier can be located. 
This strategy was named exhaustive search procedure 
in Baselga (2011a). 

General rules or advice on which of these 
approaches should be followed in presence of 
a geodetic network contaminated by outliers cannot be 
made by and large. Factors as the type of geodetic 
network, number and size of possible errors, and 
available computational force prevent one to give any 
possible universal recipe. We would like to explore, 
however, if some conclusions could be drawn for the 
case of a leveling network. 

Leveling networks have a particularly simple 
geometry compared with planimetric or three-
dimensional networks, which makes it easier to 
discover the occurrence of possible outliers. Some 
cases may still be challenging, though, especially 
those where the number of outliers approaches half of 
the degrees of freedom number. 

In the present work we compare the 
performances for the case of a leveling network of 
the least squares adjustment approach with possible 
application of Baarda’s data snooping test (for one 
outlier or several of them after iterative elimination of 
the worst outlier indicated and subsequent 

Fig. 1 Double exponential function. 

observations are assumed to follow – more due to its 
practical performance in ruling out undesired errors 
than to fundamental reasons – is, however, one of the 
things that cannot be established with universal 
validity in view of the results obtained for different 
scenarios, although the double exponential function, 
Figure 1, leading to the minimization of the L1 norm 
of residuals is one of the most commonly used 
functions in robust estimation (Fuchs, 1982; Harvey, 
1993; and Yetkin, 2011, to name a few). 

To achieve the minimum of the L1 norm of 
residuals, a process based on iteratively reweighted 
least squares adjustments (with weights computed 
from the residuals in the previous iteration) is 
normally followed (Koch, 1996). This easy procedure 
may result, however, in a local rather than the global 
minimum of the function or, in other words, in 
a suboptimal solution due to the unsatisfactory 
computation process. In Baselga (2007b) it was 
proposed to abandon altogether the least squares 
adjustment, not only as the estimator entailed by the 
assumption that observations are normally distributed, 
but also as the working tool for achieving 
minimization of L1 norm, in favor of the use of a global 
optimization method instead. This has the advantage 
of guaranteeing the solution to be not only a local but 
the global minimum. 

In this paper we want to study the differences in 
the adjustment results obtained after the computation 
of the minimum L1 norm by iteratively reweighted 
least squares and the computation of the minimum L1
norm by global optimization methods. It is common 
practice to use the approach of iteratively reweighted 
least squares, basically due to its ease of 
implementation for those accustomed to using least 
squares theory, rather than approaches based on 
optimization methods, such as genetic algorithms, 
simulated annealing, the simplex method, etc., that 
should give the optimal solution. This solution will 
sometimes coincide with the one obtained by 
iteratively reweighted least squares and sometimes 
not, being the latter a suboptimal solution. Among all 
the existing optimization methods we have selected 
the simulated annealing method, understanding that it 
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 readjustment), robust estimation by minimization of 
L1 norm (be it by iteratively reweighted least squares 
as well as by using a global optimization method) and 
the exhaustive search procedure after exploration of 
all possible sets of observations containing outliers.  
 
2. METHODS 

The above-mentioned approaches are now 
reviewed before analyzing their application to 
a leveling network. 
 
2.1. LEAST SQUARES WITH APPLICATION OF 

DATA SNOOPING TEST  
The standard procedure to adjust an over-

determined system of observation equations is the 
well-known least squares adjustment (e.g. Kaczmarek 
and Kontny, 2018; Li et al., 2019), which can be 
supplemented with the application of Baarda’s data 
snooping test for outlier detection (one can resort to 
many general references here for obtaining the 
complete formulation, e.g. Leick et al., 2015). In short, 
for the system of m observation equations and n
unknowns (m > n) 

 𝐴𝑥 − 𝑘 = 𝑟              (1)
 

with vector of unknowns x, matrix of coefficients A, 
vector of independent terms k and vector of residuals 
r, the least squares solution satisfying 

 𝑚𝑖𝑛∑ 𝑟               (2)
 

in the case of observations of unit weight, or 
 𝑚𝑖𝑛∑ 𝑟 𝑝                            (3)
 

if every observation has a weight 𝑝 , is 
 𝑥 = (𝐴 𝑃𝐴) 𝐴 𝑃𝑘             (4)

 

where P is the weight matrix for the system of 
equations (1) or the identity matrix if the observations 
are all of unit weight. 

The variance of the unit weight observation is 
computed as 

 𝜎 =               (5)
 

Introducing the x vector obtained in (4) into (1) 
permits to obtain the least squares observation 
residuals, whose covariance matrix can be computed 
by 

 𝑄 = 𝑃 − 𝐴(𝐴 𝑃𝐴) 𝐴             (6)
 

Every observation i can be checked for the 
occurrence of a possible error by means of the data 
snooping test, which evaluates the variable 

 𝜔 =                (7)
 

comparing the residual of the observation, 𝑟 , with its 
standard deviation computed from the cofactor matrix 
(the square root of its element i,i) 

𝜎 = 𝑄               (8)
 

If the absolute value of the data snooping 
variable 𝜔  exceeds a prefixed cutoff value (usually 
3.29, for a level of significance of 0.001) then the 
observation is flagged as containing an outlier. 

It is known that the data snooping test assumes 
the existence of only one outlier (or none) in the 
dataset (e.g. Caspary and Rüeger, 2000), although 
false negatives can also occur even with only one 
outlier (Rofatto et al., 2020) especially if observations 
are correlated (Baselga, 2007a). Therefore the 
application of the data snooping test to the case 
of multiple outliers — routinely done in the fashion of 
sequential data snooping eliminating the worst 
observation and readjusting — may result in incorrect 
identification, so that false positives (i.e. correct 
observations rejected by the test) and false negatives 
(i.e. wrong observations that go unnoticed by the test) 
may occur (Baselga, 2011b). Surprising as it may be, 
this fact is often overlooked in many works and 
computing software. As we will see in the application 
section this may lead to clearly wrong conclusions. 

 
2.2. LEAST L1 NORM  

For using the formulation in this subsection, we 
assume that all observations have been previously 
reduced to unit weight so that their corresponding 
standard deviations are all unity. This prior unit-
weight reduction is done by multiplying each equation 
of the system of equations (1) by the square root of its 
corresponding weight, so that every value of the 
coefficient matrix A and vector k are multiplied by 𝑝 , being 𝑝  the weight of the corresponding row, so 
that an equivalent system of equations of unit weight 
is obtained (see e.g. Ingram (2010), p. 278). ¨ 

Now, for the resulting system of equations, 
finding the minimum of the function 

 𝑚𝑖𝑛∑ |𝑟 |              (9)
 

produces a more robust result than least-squares, that 
is, the result obtained is much more resistant to the 
appearance of outliers in the observations. 

This robust estimator is often computed in the 
fashion of iteratively reweighted least-squares
adjustments using an equivalent weight function. 
Hence, by weighing each observation as 

 𝑝 = | |             (10)
 

using the residual 𝑟  of the previous iteration, one 
obtains a least-squares function ∑ 𝑟 𝑝  that tends to ∑ |𝑟 |. 

However, as shown in Baselga (2007b), this 
approach may yield suboptimal results if the solution 
of the initial iteration (i.e. the least-squares solution) is 
far away from the correct solution, possibly resulting 
in a local optimum only. 

This is the reason why a global optimization 
method may be preferred instead. In this case an x
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 vector is found so that the resulting residuals in (1) 
entail a global minimum of the desired function (9). 
Among the different successful global optimization 
methods, we can choose, for example, the Simulated 
Annealing method. This method uses the Monte Carlo 
sampling, which is widely used in computing and 
engineering (e.g. Gruszczyński et al., 2019a, 2019b; 
Xiang et al., 2019; Rofatto et al., 2020), for attaining 
the global minimum of a function of many variables 
by following a scheme that emulates the way 
crystalline networks are self-constructed in nature (see 
e.g. Berné and Baselga, 2004). 

Put in short, an initial configuration (starting 
vector x) is modified at random to obtain a new
x vector and the resulting value for the objective 
function – that is (9) after having plugged the residuals 
obtained in (1) – is computed and compared with the 
previous value. If the new value for the objective 
function is smaller than the previous one then the new 
solution is accepted as base for the next iteration, 
otherwise the new solution is discarded (except in very 
few cases, for a prescribed low probability, e.g. 0.01, 
so that the occasional, rare adoption of worse solutions 
is permitted as observed in nature, which enables the 
algorithm not to remain trapped in a local optimum). 
The first modifications of the initial x vector (which 
need not be the least squares solution but can be taken 
as any vector at random inside the search domain) 
need to be considerably large in size, say one fifth of 
the search domain width, so that the algorithm can 
comfortably explore the entire domain. This search 
domain can be any arbitrarily large region (the larger 
the domain the more time consuming will result to be 
the algorithm) but it is customarily constructed for 
each unknown using its least squares solution xLS and 
corresponding standard deviation σLS as xLS ± kσLS
with the conservative assumption of a relatively large 
k value (say 10). The subsequent modifications of the 
solution vector, Δxi for iteration i, are increasingly 
smaller in size (for each coordinate random 
displacements taken from a normal distribution N(0,σ) 
with  σ evolving in accordance with a simple rule as 
σi = σ0βi, β taken e.g. as 0.99999, can be used), as 
emulating the increasingly smaller movements 
observed in nature as the solid reduces its temperature. 
The algorithm is finished where the current typical 
displacement size σi is negligible in size (say below 
0.1 mm). For a sufficiently slow cooling scheme the 
desired solution can be eventually found since the 
convergence to the global optimum in a finite number 
of iterations is always guaranteed (van Laarhoven and 
Aarts, 1987; Granville et al., 1994). Subsequent 
executions of the algorithm (with different initial x
vectors) should yield the same solution, which 
reinforces the security that the global optimum has 
indeed been reached, something than in practice can 
only be guaranteed in probabilistic terms. This is why, 
in what follows, we should understand that by global 
optimum we are only referring to our numerical 
determination of the global optimum. More details in 

the practical implementation of the Simulated 
Annealing method for solving the minimum L1 norm 
problem can be found in Baselga (2007b). 

In the present work, we will compute the 
minimum L1 norm by both methods – iteratively 
reweighted least-squares and global optimization –
and compare their performances for outlier detection 
in the case of leveling networks. As it will turn out, 
contrary to what is expected in general for more 
complex geodetic problems, where the global 
optimization method produces better results in the 
minimization of the L1 norm, both methods produce 
here very similar results, which is due to the relatively 
geometrical simplicity of leveling networks. 

 
2.3. EXHAUSTIVE SEARCH PROCEDURE  

As demonstrated in Baselga (2011b), there are 
many initial observation sets, with different outlier 
number and sizes, leading to the same least squares 
solution, so that detection within the least squares 
framework is impossible without resort to additional 
or alternative hypotheses (such as, for example, 
minimization of L1 norm). We can, however, use 
a strategy based not only on one least squares 
adjustment but on the comparison of multiple least 
squares adjustments (each of them with a number of 
observations eliminated) with respect to the least 
squares adjustment of the complete set of 
observations. This strategy, computed for all possible 
combinations of observations after having eliminated 
1, 2… up to s observations is what was named 
exhaustive search in Baselga (2011a), where 
a programming code was also provided for the reader. 
We use an adaptation of that code for the present 
study. 

To briefly summarize the procedure let us say 
that the variance of the unit weight observation, 
equation (5), is computed both for the complete 
adjustment affected by several outliers (𝜎 ) 
and for a partial adjustment where several 
observations have been removed (𝜎 ). The 
statistic  

 𝑟 =             (11)
 

does not follow an F distribution (neither singly nor 
doubly noncentral) since numerator and denominator 
should be independent variables and they are clearly 
not. The characterization of this statistic in Baselga 
(2011b) permits to decide on the ascription of 
a particular result to any of the two existing 
possibilities with controlled statistical significance: 
• The error-error case: when there are one or more 

outliers in both the numerator and the 
denominator 

• The error-free case: when one of the variances is 
affected by outliers (the one in the denominator) 
and the other (the one for the partial adjustment) 
is free of them  
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observation  a random  error extracted from the 
Normal distribution with zero mean and standard 
deviation 𝜎 , where 𝜎 = 1.0(𝑚𝑚) 𝐾 , with 𝐾  the 
length of the leveling section in km. 

The least squares adjustment produces 
satisfactory results. The chi-square test with a level of 
significance of α = 0.001 is passed for a posteriori unit 
weight variance of 0.880. Point heights for the 
unknown points (all points except Point 1 whose 
height is held fixed) are obtained with standard 
deviations in the range 3 to 5 mm (Table 1). 

The residuals and reliability measures are 
displayed in Table 2. As expected being no outliers, 
none of the Baarda’s data snooping test variables 
exceeds  the  critical  value  of ±3.29  which  represents 
the  minimum  detectable  values  also displayed (for 
α = 0.001 significance level and β = 0.80 power of 
test). The redundancy numbers range from 0.2930 for 
the less controlled observation (L6) to 0.7294 for the 
most controlled observation (L2). 

There are minimum discrepancies, from -1.6 to 
+1.3 mm in residuals and from -2.0 to +2.0 mm in 
heights, from these values with respect to the ones 
obtained by minimizing L1 norm (either by the 
iterative or the global method, since their results 
coincided completely). 

The application of the exhaustive search
procedure also concluded that there are no outliers, as 
it was expected.  

 
3.2. ONE OUTLIER 

One outlier is added over the previous example. 
The worst observation in terms of redundancy, 
observation L6, is selected, and a outlier of +35 mm, 
which is higher than the minimum detectable error for 
the observation, 27.5 mm, is added over the simulated 
measurement in the previous example, which already 
had been added a random error. 

After the least squares adjustment, the chi-
square test is still passed for an a posteriori unit weight 
variance of 2.957 but some observations are flagged 
by the data snooping test as potentially containing 
outliers (those indicated with an asterisk in Table 3). 

Fig. 2 Leveling network plot. 

Also the approximate sizes of the corresponding 
outliers can be estimated in the process (as they are 
also given in standard deviation units by the working 
code accompanying Baselga, 2011b). 

One should look for the minimum number of 
observations permitting to obtain an error-free 
solution; especially since, as said, one might not 
expect a unique multiple outlier vector, but, in general, 
a set of several feasible multiple outlier vectors. 

 
3. EXAMPLES 

In the present work we will work with the 
leveling network presented in Suraci et al. (2019), 
Figure 2, and personal programming code developed 
under Matlab R2019b (Matlab, 2019) to examine the 
performance of the different approaches outlined 
above for outlier detection. As we can see the situation 
will become increasingly intractable as the number of 
outliers approaches half the number of degrees 
of freedom of the network. 

According to our preferences, we can imagine 
these measurements to be level differences 
appropriately corrected by means of the corresponding 
orthometric corrections, hence orthometric height 
differences using the geoid as reference; or imagine 
the measurements as normal height differences 
referred to the quasigeoid (Trojanowicz et al., 2020). 

 
3.1. ONLY ACCIDENTAL ERRORS  

The example network presented in Suraci et al. 
(2019) was simulated with zero error in its 
measurements; therefore, the least squares adjustment 
yields only null residual for all its observations. To 
resemble  more  a  real  network  we  must consider 
the accidental errors which are inherent to any 
measuring  process,  so  that we add to each 

Table 1 Example 1 (no outliers). Results of the least 
squares adjustment (values in mm). 

Unknown 
 

Adjusted  
height 

Standard deviation 

Z2 163856.5 4.5
Z3 216740.2 5.4
Z4 279641.0 5.5
Z5 283528.3 5.4
Z6 326232.7 5.3
Z7 227343.5 4.7
Z8 101128.7 3.3
Z9 398010.4 3.3

Z10 337572.6 4.6
Z11 170306.2 4.8
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Table 2 Example 1 (no outliers). Residuals and reliability measures: Baarda’s data snooping test variable, 
redundancy numbers and minimum detectable errors (values in mm for residuals and minimum detectable 
errors and unitless for Baarda’s test variables and redundancy numbers).  

Line From To Residual wBaarda Redund.No. Min. Detectable Error 
L1 1 2 1.4376 0.2820 0.5305 39.6930 
L2 2 11 -0.0376 -0.0069 0.7294 30.9652 
L3 11 7 -6.5034 -1.3287 0.6304 32.0649 
L4 8 7 -3.7366 -1.0215 0.3936 38.3866 
L5 1 8 -0.2668 -0.0847 0.4510 28.8456 
L6 8 9 1.2710 0.6512 0.2930 27.5087 
L7 1 9 -0.3958 -0.1208 0.4665 28.9990 
L8 10 9 -3.8669 -0.7531 0.5493 38.6080 
L9 2 10 -3.4664 -1.5003 0.3559 26.8126 
L10 11 10 5.1711 1.4535 0.5273 27.8616 
L11 7 10 -4.0255 -0.5999 0.7262 38.1620 
L12 11 6 -0.3095 -0.0524 0.6974 34.9689 
L13 2 3 3.4022 0.7571 0.5769 32.1681 
L14 3 4 1.5994 0.3232 0.5696 35.8849 
L15 4 5 4.0268 1.6345 0.3035 33.5269 
L16 5 6 6.2245 1.8083 0.4232 33.5945 
L17 7 6 -4.1061 -1.6999 0.3071 32.4852 
L18 2 4 6.4016 1.3696 0.5602 34.4600 
L19 11 5 0.566 0.1525 0.5103 30.0399 
L20 11 3 -1.2602 -0.4355 0.3988 29.9707 

Table 3 Example 2 (1 outlier simulated in L6 of +35 mm). Residuals and reliability measures: Baarda’s data 
snooping test variable, redundancy numbers and minimum detectable errors (values in mm for residuals 
and minimum detectable errors and unitless for Baarda’s test variables and redundancy numbers).  

Line From         To Residual wBaarda Redund.No. Min. Detectable Error
L1 1  2 1.5095 0.29610 0.5305 39.6930 
L2 2  11 -1.0739 -0.19640 0.7294 30.9652 
L3 11  7 -9.5509 -1.95140 0.6304 32.0649 
L4 8  7 4.3652 1.19330 0.3936 38.3866 
L5 1 8 -12.3805 -3.9305* 0.4510 28.8456 
L6 8  9 -8.9848 -4.6035* 0.2930 27.5087 
L7 1  9 12.2347 3.7351* 0.4665 28.9990 
L8 10  9 7.6414 1.48820 0.5493 38.6080 
L9 2  10 -2.4163 -1.04580 0.3559 26.8126 
L10 11  10 7.2576 2.04000 0.5273 27.8616 
L11 7  10 1.1086 0.16520 0.7262 38.1620 
L12 11  6 -1.9267 -0.32630 0.6974 34.9689 
L13 2  3 2.6955 0.59990 0.5769 32.1681 
L14 3  4 1.4062 0.28410 0.5696 35.8849 
L15 4  5 3.4754 1.41070 0.3035 33.5269 
L16 5 6 5.0222 1.45900 0.4232 33.5945 
L17 7  6 -2.6758 -1.10770 0.3071 32.4852 
L18 2  4 5.5017 1.17710 0.5602 34.4600 
L19 11  5 0.1510 0.04070 0.5103 30.0399 
L20 11  3 -0.9306 -0.32160 0.3988 29.9707 

It is worth recalling here that the data snooping 
test is based on the assumption of a possible single 
outlier only, although it is frequently used with the 
unjustified hope of a high efficiency for the multiple 
outlier case. As said before, its use is only rigorously 
justified for the case of a single outlier, however, and 
even then, false negatives can also occur. 

Therefore, in this case we should eliminate only 
one observation, the one with the highest absolute 
value in the data snooping variable, that is L6, which 
was the one containing the outlier. After elimination 
of this observation, the least squares adjustment 

produces satisfactory results with no observations now 
flagged by the data snooping test. We see that, as 
expected, the data snooping test has succeeded in 
finding one outlier, even given the fact that the 
corresponding observation was the one with the lowest 
redundancy number. 

Regarding the adjustments minimizing the L1
norm, by the iteratively reweighted least squares as 
well as the global optimization method (Simulated 
Annealing), we obtained the residuals displayed in 
Table 4 in comparison with those of the initial least 
squares adjustment. The comparison between both 
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Table 4 Example 2 (1 outlier simulated in L6 of +35 mm). Residuals after the initial least squares adjustment 
(νLS), minimum L1 norm by the iterative procedure (νL1i) minimum L1 norm by the global optimization 
method (νL1g) and corresponding differences with respect the least squares values (values in mm). The 
sum of absolute values of the residuals Σ|ν| is given in the last row for each of the three different 
adjustments. 

Line νLS  νL1i  νL1g    νL1i-νLS νL1g-νLS  
L1 1.5 0.0 0.0 -1.5 -1.5
L2 -1.1 0.0 0.0 1.1 1.1
L3 -9.6 -10.2 -10.0 -0.6 -0.5
L4 4.4 0.0 0.0 -4.4 -4.4
L5 -12.4 -9.1 -8.9 3.3 3.5
L6 -9.0 -20.7 -22.0 -11.8 -13.0
L7 12.2 3.8 2.7 -8.5 -9.6
L8 7.6 0.0 0.0 -7.6 -7.6
L9 -2.4 -1.7 -2.9 0.7 -0.4
L10 7.3 6.9 5.7 -0.4 -1.5
L11 1.1 1.4 0.1 0.2 -1.0
L12 -1.9 0.0 0.0 1.9 1.9
L13 2.7 4.7 4.7 2.0 2.0
L14 1.4 0.0 0.0 -1.4 -1.4
L15 3.5 3.8 3.8 0.3 0.3
L16 5.0 7.1 7.1 2.1 2.1
L17 -2.7 -0.1 -0.3 2.6 2.4
L18 5.5 6.1 6.1 0.6 0.6
L19 0.2 0.0 0.0 -0.2 -0.1
L20 -0.9 0.0 0.0 0.9 0.9
Σ|ν| 92.4 75.6 74.3 - -

approaches minimizing the L1 norm is very slightly in 
favor of the global optimization method, since the 
value for the function to minimize, 74.3, is a bit 
smaller than for the other approach, 75.6, as it is 
expected for a method that must yield the global 
optimum, and the residual of the contaminated 
observation tends a little bit more towards the added 
error. These very slight discrepancies between both 
methods for computing the minimum L1 norm may be 
considered perfectly negligible, however. 

Since the values of the residuals should correct 
not only the outlier in observation L6 (-35 mm should 
be expected for this purpose) but also the inevitable 
accidental errors, one should expect values relatively 
close to zero for all observations except L6, that is 
values corresponding to their accidental errors, as well 
as a value relatively close to -35 for observation L6 (to 
account for the combination of the gross and the 
accidental error). In consequence, one can be 
moderately satisfied with the solution achieved here 
by both L1 norm minimization methods since they 
improve the least squares solution (residual -9.0) but 
are still a bit far from the expected value, i.e. -35 plus 
or minus a small variation due to a reasonable 
accidental error, say an expected value from -25 to 
- 45, for example.  

The exhaustive search method, by contrast, 
correctly identifies the outlier, indicating that there is 
only one possible error (one ratio value, in this case 
0.31477, below the threshold) for observation L6 with 
approximate error size of 8.5042 times its initial 
standard deviation, i.e. some 30.6 mm. 

3.3. TWO OUTLIERS 
One additional outlier is added over the previous 

example, now to the second-worst observation in 
terms of redundancy, observation L15: an outlier of 
- 40 mm, which is higher than the minimum detectable 
error for the observation, 33.5 mm. 

After the least squares adjustment, the chi-square 
test is rejected for an a posteriori unit weight variance 
of 6.775 and some observations are flagged by the data 
snooping test as potentially containing outliers 
(Table 5). 

Again we should only eliminate one observation, 
the one with higher absolute value for the data 
snooping variable, in this case L15. Readjusting the 
remaining set of observations, we observe that there 
are still flagged observations, eliminating again the 
worst, L6, and readjusting we find that there are no 
more flagged observations. In this case, the iterative 
application of the data snooping test has succeeded in 
eliminating the two observations containing outliers 
(and only these two!) but, as said before, this success 
is not guaranteed and, as we will experience with more 
complicate examples, it will not always work. 

Minimization of the L1 norm by the iteratively 
reweighted least squares as well as the global 
optimization method (Simulated Annealing) produces 
the results displayed in Table 6, again being extremely 
similar between them.  

In the results minimizing the L1 norm we still see 
the moderate success in correcting the +35 mm (plus 
the accidental error) in observation L6, along with 
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Table 6 Example 3 (2 outliers in L6 of +35 mm and in L15 of –40 mm). Residuals after the initial least squares 
adjustment (νLS), minimum L1 norm by the iterative procedure (νL1i) minimum L1 norm by the global 
optimization method (νL1g) and corresponding differences with respect the least squares values (values 
in mm). The sum of absolute values of the residuals Σ|ν| is given in the last row for each of the three 
different adjustments. 

Line νLS  νL1i  νL1g  νL1i-νLS νL1g-νLS  
L1 4.2 0.0 0.0 -4.2 -4.2 
L2 -6.0 0.0 0.0 6.0 6.0 
L3 -10.6 -10.2 -10.2 0.3 0.4 
L4 2.0 0.0 0.0 -2.0 -2.0 
L5 -13.2 -9.1 -9.1 4.1 4.1 
L6 -8.6 -20.4 -21.8 -11.8 -13.2 
L7 11.8 4.1 2.7 -7.8 -9.1 
L8 7.0 0.0 0.0 -7.0 -7.0 
L9 -4.9 -1.4 -2.8 3.5 2.2 

L10 9.7 7.2 5.8 -2.5 -3.8 
L11 4.5 1.7 0.3 -2.8 -4.2 
L12 -5.8 0.0 0.0 5.8 5.8 
L13 3.3 4.7 4.7 1.4 1.4 
L14 13.5 0.0 0.0 -13.5 -13.5 
L15 15.6 43.8 43.8 28.2 28.2 
L16 11.4 7.1 7.1 -4.3 -4.3 
L17 -5.5 -0.1 -0.1 5.5 5.4 
L18 18.2 6.1 6.1 -12.1 -12.1 
L19 -10.1 0.0 0.0 10.1 10.1 
L20 4.6 0.0 0.0 -4.6 -4.6 
Σ|ν| 170.5 115.9 114.5 - - 

Line From To Residual wBaarda Redund.No. Min. Detectable Error
L1 1 2 4.2471 0.83300 0.5305 39.6930 
L2 2 11 -5.9861 -1.09470 0.7294 30.9652 
L3 11 7 -10.5560 -2.15680 0.6304 32.0649 
L4 8 7 2.0137 0.55050 0.3936 38.3866 
L5 1 8 -13.2090 -4.1935* 0.4510 28.8456 
L6 8 9 -8.5752 -4.3936* 0.2930 27.5087 
L7 1 9 11.8158 3.6072* 0.4665 28.9990 
L8 10 9 7.0032 1.36390 0.5493 38.6080 
L9 2 10 -4.9344 -2.13570 0.3559 26.8126 
L10 11 10 9.6517 2.71300 0.5273 27.8616 
L11 7 10 4.5079 0.67180 0.7262 38.1620 
L12 11 6 -5.7905 -0.98060 0.6974 34.9689 
L13 2 3 3.3152 0.73780 0.5769 32.1681 
L14 3 4 13.4947 2.72680 0.5696 35.8849 
L15 4 5 15.6150 6.3380* 0.3035 33.5269 
L16 5 6 11.3984 3.3114* 0.4232 33.5945 
L17 7 6 -5.5343 -2.29110 0.3071 32.4852 
L18 2 4 18.2099 3.8959* 0.5602 34.4600 
L19 11 5 -10.0890 -2.71790 0.5103 30.0399 
L20 11 3 4.6013 1.59000 0.3988 29.9707 

Table 5 Example 3 (2 outliers in L6 of +35 mm and in L15 of -40 mm). Residuals and reliability measures: 
Baarda’s data snooping test variable, redundancy numbers and minimum detectable errors (values in mm 
for residuals and minimum detectable errors and unitless for Baarda’s test variables and redundancy 
numbers).  

a highly satisfactory success in correcting the -40 mm 
(plus accidental error) in observation L15. 

Regarding the exhaustive search procedure, 
again it correctly indicates that the possible set of 
outliers is precisely the one where outliers have been 
simulated, also giving reasonable estimates for their 
sizes (Table 7). 

3.4. THREE OUTLIERS 
One additional outlier is added over the previous 

example, now in the best observation in terms of 
redundancy, observation L2: an outlier of +35 mm, 
which is higher than the minimum detectable error for 
the observation, 31.0 mm. 
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Table 7 Example 3 (2 outliers in L6 of +35 mm and in L15 of –40 mm). Exhaustive search method: set of 
observations deduced to be affected by outliers and corresponding approximate error sizes. 

Line error size (times σ) error size (mm)
L6 8.1165 29.26 
L15 -11.5049 -51.45 

Table 8 Example 4 (3 outliers in L2 +35 mm, L6 +35 mm, and L15 -40 mm). Residuals and reliability measures: 
Baarda’s data snooping test variable, redundancy numbers and minimum detectable errors (values in mm 
for residuals and minimum detectable errors and unitless for Baarda’s test variables and redundancy 
numbers). 

Line From To Residual wBaarda Redund.No. Min. Detectable Error
L1 1 2 0.8812 0.17280 0.5305 39.6930
L2 2 11 -31.5134 -5.7628* 0.7294 30.9652
L3 11 7 -13.4287 -2.74370 0.6304 32.0649
L4 8 7 4.3150 1.1796.. 0.3936 38.3866
L5 1 8 -12.2759 -3.8973* 0.4510 28.8456
L6 8 9 -8.9038 -4.5620* 0.2930 27.5087
L7 1 9 12.4203 3.7917* 0.4665 28.9990
L8 10 9 6.9550 1.35450 0.5493 38.6080
L9 2 10 -0.9160 -0.39640 0.3559 26.8126

L10 11 10 4.1974 1.1799.. 0.5273 27.8616
L11 7 10 1.9261 0.2871.. 0.7262 38.1620
L12 11 6 -8.0220 -1.3584.. 0.6974 34.9689
L13 2 3 8.9829 1.9990.. 0.5769 32.1681
L14 3 4 12.6666 2.5595.. 0.5696 35.8849
L15 4 5 17.7117 7.1891* 0.3035 33.5269
L16 5 6 11.7034 3.4000* 0.4232 33.5945
L17 7 6 -4.8933 -2.0257.. 0.3071 32.4852
L18 2 4 23.0495 4.9313* 0.5602 34.4600
L19 11 5 -12.6254 -3.4012* 0.5103 30.0399
L20 11 3 0.7963 0.2752.. 0.3988 29.9707

After the least squares adjustment, the chi-
square test is rejected for an a posteriori unit weight 
variance of 9.976 and some observations are flagged 
by the data snooping test as potentially containing 
outliers (Table 8). 

There are many flagged observations but, again 
we try eliminating one and readjusting at a time. With 
this strategy we subsequently eliminate L15, L6 and 
L2 until the remaining set has no flagged observations 
after the adjustment. In this case, again, the iterative 
application of the data snooping test has succeeded in 
eliminating the three observations containing outliers 
(and only them), although as we know this success was 
not guaranteed. 

Minimization of the L1 norm by the iteratively 
reweighted least squares as well as the global 
optimization method (Simulated Annealing) produces 
the results displayed in Table 9. We can see that both 
solutions are exactly the same. 

Again we see a moderate success in correcting 
the +35 mm (plus the accidental error) in observation 
L6, along with a great success in correcting the 
+35 mm (plus accidental error) in observation L2 and 
the -40 mm (plus accidental error) in observation L15. 
In the case of the observation with a high redundancy 
number, observation L2, we also see that the least 
squares residual already accounted satisfactorily for 
the simulated outlier. 

The exhaustive search procedure, again, 
correctly indicates that there is only one possible set of 
outliers, which is precisely the one where outliers have 
been simulated (Table 10). 

 
3.5. FOUR OUTLIERS 

One additional outlier of -35 mm is added over 
the previous example, now in observation L3, which 
has the endpoint 11 in common with the observation 
L2, also affected by an outlier of +35 mm. 

After the least squares adjustment, the 
chi- square test is rejected for an a posteriori unit 
weight variance of 9.535 and some observations are 
flagged by the data snooping test as potentially 
containing outliers (Table 11). 

With the strategy of eliminating the worse and 
readjusting we subsequently eliminate L2, L15 and L5 
until the remaining set has no flagged observations 
after the adjustment. Note that in this case the iterative 
application of the data snooping test fails since it 
eliminates one correct observation (L5) while 
retaining two incorrect observations (L3 and L6) in the 
final set.  

Minimization of the L1 norm by the two methods 
produces the results displayed in Table 12.  

Minimization of L1 norm by both methods 
produces better results than least squares, that is, 
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Line νLS  νL1i  νL1g  νL1i-νLS νL1g-νLS  
L1 0.9 0.0 0.0 -0.9 -0.9 
L2 -31.5 -31.8 -31.8 -0.3 -0.3 
L3 -13.4 -10.3 -10.3 3.1 3.1 
L4 4.3 0.0 0.0 -4.3 -4.3 
L5 -12.3 -6.0 -6.0 6.3 6.3 
L6 -8.9 -22.1 -22.1 -13.2 -13.2 
L7 12.4 5.5 5.5 -6.9 -6.9 
L8 7.0 0.0 0.0 -7.0 -7.0 
L9 -0.9 0.0 0.0 0.9 0.9 

L10 4.2 5.4 5.4 1.2 1.2 
L11 1.9 0.0 0.0 -1.9 -1.9 
L12 -8.0 0.0 0.0 8.0 8.0 
L13 9.0 7.9 7.9 -1.1 -1.1 
L14 12.7 0.0 0.0 -12.7 -12.7 
L15 17.7 43.8 43.8 26.1 26.1 
L16 11.7 7.1 7.1 -4.6 -4.6 
L17 -4.9 0.0 0.0 4.9 4.9 
L18 23.0 9.3 9.3 -13.7 -13.7 
L19 -12.6 0.0 0.0 12.6 12.6 
L20 0.8 0.0 0.0 -0.8 -0.8 
Σ|ν| 198.1 149.2 149.2 - - 

Table 9 Example 4 (3 outliers in L2 +35 mm, L6 +35 mm, and L15 -40 mm). Residuals after the initial least 
squares adjustment (νLS), minimum L1 norm by the iterative procedure (νL1i) minimum L1 norm by the 
global optimization method (νL1g) and corresponding differences with respect the least squares values 
(values in mm). The sum of absolute values of the residuals Σ|ν| is given in the last row for each of the 
three different adjustments. 

Table 10 Example 4 (3 outliers in L2 +35 mm, L6 +35 mm, and L15 -40 mm). Exhaustive search method: set of 
observations deduced to be affected by outliers and corresponding approximate error sizes. 

Line error size (times σ) error size (mm)
L2 6.7479 43.21 
L6 8.4276 30.39 
L15 -13.0497 -58.36 

Line From To Residual wBaarda Redund.No. Min. Detectable Error
L1 1 2 4.5502 0.8925 0.5305 39.6930 
L2 2 11 -28.4142 -5.1961* 0.7294 30.9652 
L3 11 7 8.6357 1.7644 0.6304 32.0649 
L4 8 7 -0.5007 -0.1369 0.3936 38.3866 
L5 1 8 -13.6276 -4.3264* 0.4510 28.8456 
L6 8 9 -7.8612 -4.0278* 0.2930 27.5087 
L7 1 9 12.1112 3.6974* 0.4665 28.9990 
L8 10 9 3.7505 0.7304 0.5493 38.6080 
L9 2 10 -1.6895 -0.7312 0.3559 26.8126 
L10 11 10 0.3247 0.0913 0.5273 27.8616 
L11 7 10 10.9889 1.6377 0.7262 38.1620 
L12 11 6 -15.3937 -2.6068 0.6974 34.9689 
L13 2 3 10.5281 2.3429 0.5769 32.1681 
L14 3 4 11.3829 2.3001 0.5696 35.8849 
L15 4 5 17.2488 7.0012* 0.3035 33.5269 
L16 5 6 7.6323 2.2173 0.4232 33.5945 
L17 7 6 0.6705 0.2776 0.3071 32.4852 
L18 2 4 23.3110 4.9873* 0.5602 34.4600 
L19 11 5 -15.9261 -4.2903* 0.5103 30.0399 
L20 11 3 -0.7578 -0.2619 0.3988 29.9707 

Table 11 Example 5 (4 outliers: L2 +35 mm, L3 -35 mm, L6 +35 mm, and L15 -40 mm). Residuals and reliability 
measures: Baarda’s data snooping test variable, redundancy numbers and minimum detectable errors 
(values in mm for residuals and minimum detectable errors and unitless for Baarda’s test variables and 
redundancy numbers). 
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Table 12 Example 5 (4 outliers: L2 +35 mm, L3 -35 mm, L6 +35 mm, and L15 -40 mm). Residuals after the initial 
least squares adjustment (νLS), minimum L1 norm by the iterative procedure (νL1i) minimum L1 norm by 
the global optimization method (νL1g) and corresponding differences with respect the least squares values 
(values in mm). The sum of absolute values of the residuals Σ|ν| is given in the last row for each of the 
three different adjustments. 

Line νLS  νL1i  νL1g  νL1i-νLS νL1g-νLS  
L1 4.6 0.0 0.0 -4.6 -4.6
L2 -28.4 -26.4 -26.4 2.0 2.0 
L3 8.6 14.9 17.5 6.3 8.9
L4 -0.5 0.0 0.0 0.5 0.5
L5 -13.6 -10.4 -7.8 3.2 5.8
L6 -7.9 -17.7 -20.3 -9.8 -12.4 
L7 12.1 5.5 5.5 -6.6 -6.6
L8 3.8 0.0 0.0 -3.8 -3.7
L9 -1.7 0.0 0.0 1.7 1.7

L10 0.3 0.0 0.0 -0.3 -0.3
L11 11.0 4.4 1.8 -6.6 -9.2
L12 -15.4 -9.8 -7.2 5.6 8.2
L13 10.5 13.3 13.3 2.8 2.8
L14 11.4 0.0 0.0 -11.4 -11.4
L15 17.2 41.1 43.7 23.9 26.4
L16 7.6 0.0 0.0 -7.6 -7.6
L17 0.7 0.0 0.0 -0.7 -0.7
L18 23.3 14.7 14.7 -8.6 -8.6
L19 -15.9 -2.7 -0.1 13.2 15.8
L20 -0.8 0.0 0.0 0.8 0.8
Σ|ν| 195.3 160.9 158.3 - -

Table 13 Example 5 (4 outliers: L2 +35 mm, L3 -35 mm, L6 +35 mm, and L15 -40 mm). Exhaustive search 
method: set of observations deduced to be affected by outliers and corresponding approximate error sizes.

Line error size (times σ)                                        error size (mm)    
L2 6.0842 38.96
L3 -2.2222 -13.70
L6 7.4407 26.83

L15 -12.7086 -56.83

smaller values for the residuals of the observations 
free from outliers whereas larger residuals for those 
where outliers have been simulated, although these 
results seem to be insufficient to account for some of 
the outliers simulated (especially those in L3 and L6).

The exhaustive search procedure still works 
properly in this fairly complicated case: again, it 
correctly indicates that there is only one possible set of 
outliers, the correct one, and yields approximately 
correct estimates for most of their error sizes 
(Table 13). 

One additional outlier of +35 mm is added over 
the previous example, now in observation L10, in 
order to make it a fairly intractable problem, now that 
the number of outliers equals half the number of 
degrees of freedom of the network. 

After the least squares adjustment, the chi-
square test is clearly rejected for an a posteriori unit 
weight variance of 12.132. Many observations are 
flagged by the data snooping test as potentially 
containing outliers (Table 14). 

As with the previous example, the strategy of 
eliminating the worse and readjusting does not work 
either. In this way, we subsequently eliminate L2, L15, 
L5 and L10 until the remaining set has no flagged 
observations after the adjustment. Therefore, one 
correct observation, L5, has been eliminated, whereas 
two incorrect observations, L3 and L6, have been 
retained in the final set.  

Minimization of the L1 norm by the two methods 
produces the results displayed in Table 15.  

The two methods for L1 norm minimization still 
behave very similarly, but in this difficult case they are 
not always successful at correctly determining the 
affected observations: for in0stance, they find high 
residuals for the correct observation L5 while finding 
small residuals for the contaminated observation L6. 

In this case the exhaustive search procedure also 
fails. It indicates that there is only one possible set of 
outliers formed with L6, L10 and L15, which are 
correctly identified, along with L17 and L20, which 
are indeed free from outliers. It is worth noting, 
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Line From To Residual wBaarda Redund.No. Min. Detectable Error
L1 1 2 3.8075 0.74680 0.5305 39.6930 
L2 2 11 -37.7318 -6.9000* 0.7294 30.9652 
L3 11 7 14.7677 3.01720 0.6304 32.0649 
L4 8 7 -4.0471 -1.10630 0.3936 38.3866 
L5 1 8 -14.0097 -4.4477* 0.4510 28.8456 
L6 8 9 -6.7310 -3.4487* 0.2930 27.5087 
L7 1 9 12.8593 3.9258* 0.4665 28.9990 
L8 10 9 -1.9837 -0.38630 0.5493 38.6080 
L9 2 10 5.5356 2.39590 0.3559 26.8126 
L10 11 10 -18.1326 -5.0969* 0.5273 27.8616 
L11 7 10 21.3998 3.18930 0.7262 38.1620 
L12 11 6 -11.3681 -1.92510 0.6974 34.9689 
L13 2 3 5.0384 1.12120 0.5769 32.1681 
L14 3 4 12.4766 2.52110 0.5696 35.8849 
L15 4 5 15.5031 6.2926* 0.3035 33.5269 
L16 5 6 8.4820 2.46410 0.4232 33.5945 
L17 7 6 -1.4358 -0.59440 0.3071 32.4852 
L18 2 4 18.9150 4.0468* 0.5602 34.4600 
L19 11 5 -12.7501 -3.4348* 0.5103 30.0399 
L20 11 3 3.0702 1.06100 0.3988 29.9707 

Table 14 Example 6 (5 outliers: L2 +35 mm, L3 -35 mm, L6 +35 mm, L10 +35 mm and L15 -40 mm). Residuals 
and reliability measures: Baarda’s data snooping test variable, redundancy numbers and minimum 
detectable errors (values in mm for residuals and minimum detectable errors and unitless for Baarda’s 
test variables and redundancy numbers).  

Table 15  Example 6 (5 outliers: L2 +35 mm, L3 -35 mm, L6 +35 mm, L10 +35 mm and L15 -40 mm). Residuals 
after the initial least squares adjustment (νLS), minimum L1 norm by the iterative procedure (νL1i) 
minimum L1 norm by the global optimization method (νL1g) and corresponding differences with respect 
the least squares values (values in mm). The sum of absolute values of the residuals Σ|ν| is given in the 
last row for each of the three different adjustments. 

Line νLS                      νL1i                     νL1g       νL1i-νLS         νL1g-νLS 
L1 3.8 0.0 0.0 -3.8 -3.8 
L2 -37.7 -39.8 -39.7 -2.1 -2.0 
L3 14.8 17.4 17.5 2.6 2.7 
L4 -4.0 0.0 0.0 4.0 4.0 
L5 -14.0 -21.3 -21.2 -7.3 -7.2 
L6 -6.7 -6.8 -6.9 -0.1 -0.2 
L7 12.9 5.5 5.5 -7.4 -7.3 
L8 -2.0 0.0 0.0 2.0 2.0 
L9 5.5 0.0 0.0 -5.5 -5.5 
L10 -18.1 -21.6 -21.7 -3.5 -3.5 
L11 21.4 15.3 15.2 -6.1 -6.2 
L12 -11.4 -7.3 -7.2 4.1 4.1 
L13 5.0 0.0 0.0 -5.0 -5.1 
L14 12.5 0.0 0.0 -12.5 -12.5 
L15 15.5 43.5 43.6 28.0 28.1 
L16 8.5 0.0 0.0 -8.5 -8.5 
L17 -1.4 0.0 0.0 1.4 1.4 
L18 18.9 1.4 1.4 -17.5 -17.5 
L19 -12.8 -0.2 -0.1 12.6 12.6 
L20 3.1 0.1 0.0 -3.0 -3.1 
Σ|ν| 230.0 180.2 180.1 - - 

Table 16 Example 6 (5 outliers: L2 +35 mm, L3 -35 mm, L6 +35 mm, L10 +35 mm and L15 -40 mm). Exhaustive 
search method: set of observations deduced to be affected by outliers and corresponding approximate 
error sizes. 

Line error size (times σ) error size (mm) 
L6 6.3710 22.97 

L10 7.0187 34.38 
L15 -11.4224 -51.08 
L17 1.0726 4.68 
L20 -1.6801 -7.70 
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however, that it gives really small error sizes for these 
two observations, L17 and L20, incorrectly identified 
as affected by outliers (Table 16). This suggests the 
idea that the exhaustive procedure performance could 
be improved in the future by making use of 
information about error sizes. 

All in all, in a case where such a high number of 
outliers is suspected the results are so highly unreliable 
that no other recommendation than repeating the 
measurements altogether could be given. 

 
4. CONCLUSIONS 

Least squares adjustment and the iterative 
application of the data snooping test correctly 
identifies the appearance of one outlier higher than the 
minimum detectable error but does not always succeed 
in the case of multiple outliers, occasionally 
committing false positives and false negatives. In 
consequence, one should prefer the least squares 
solution, after the possible elimination of up to one 
outlier by the data snooping test, when there can be 
reasonable evidence that no more than one outlier has 
been committed, and use other strategies otherwise, at 
least as a complement that might reinforce the results 
given by the least squares solution. 

Among the alternative adjustment procedures, it 
has been shown that the adjustments by minimum 
L1- norm computed by iteratively reweighted least 
squares and by means of global optimization produce 
similar results in the case of leveling networks, where 
the number of unknowns is high and the geometrical 
consistency relatively low. This is a somehow 
unexpected conclusion inasmuch as global 
optimization normally improves the results from 
iteratively reweighted least squares. Overall, both 
approaches correctly identify the observations and 
sizes of the corresponding outliers here, improving the 
results given by the least squares estimator, except 
where the number of affected observations is very 
high. The linearity of the current model seems to be 
the reason for this equivalence, which could also 
be investigated in other linear models such as those for 
3D adjustment of GNSS baselines. 

The exhaustive search procedure produces the 
correct solution in all cases except for the one with the 
largest number of outliers, namely when they are half 
the number of the degrees of freedom of the network, 
a case that seems intractable for any procedure. 
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