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An attempt to analyse Iterative Data Snooping and L1-norm based on 

Monte Carlo simulation in the context of leveling networks 

The goal of this paper is to evaluate the outlier identification performance of 

iterative Data Snooping (IDS) and L1-norm in leveling networks by considering 

the redundancy of the network, number and size of the outliers. For this purpose, 

several Monte-Carlo experiments were conducted into three different leveling 

networks configurations. In addition, a new way to compare the results of IDS 

based on Least Squares (LS) residuals and robust estimators such as the L1-norm 

has also been developed and presented. Two different scenarios were considered 

in that comparison: (i) both IDS and L1-norm evaluated with the same threshold 

values; (ii) both IDS and L1-norm compared with the same false positive rates.  In 

latter case, a Monte-Carlo approach was applied to control the false positive 

rates. The question of which of them performs better depends on the viewpoint. 

From the perspective of analysis only according to the success rate, it is shown 

that L1-norm performs better than IDS for the case of networks with low 

redundancy (𝑟̅ < 0.5), especially for cases where more than one outlier is present 

in the dataset. In the relationship between false positive rate and outlier 

identification success rate, however, IDS performs better than L1-norm. In that 

case, IDS with a critical value of 3.29 has the best cost-benefit ratio, 

independently of the levelling network configuration, number and size of outliers. 

Keywords: Data Snooping; L1-norm; Outliers; Leveling networks; Success rate; 

False positive rate 

Subject classification codes: include these here if the journal requires them 

Introduction 

Quality control for outlier identification purposes is a routinely task in geodetic data 

analysis. Data Snooping (DS), initially proposed by Baarda (1968), still remains the 

most applied strategy (Rofatto et al., 2020a). The DS is a statistical testing procedure 

based on the residuals of a least-squares (LS) estimation process. Since DS identifies 

one outlier at time,  its application is often performed iteratively (Iterative Data 

Snooping –  IDS) until there is no outlier identified in the LS-residuals (Teunissen, 



 

 

2006; Klein et al., 2019).  However, since LS is sensitive to outliers, there are 

alternative strategies, such as the use of robust estimators like the L1-norm. Here, the 

term “robust” means that these estimators are “insensitive” to (a certain amount of) 

outliers (Hekimoglu, 2005). Other alternative procedures have also been proposed, such 

as for outliers in two directions (Hekimoglu and Erenoglu, 2013). 

Although major advances have occurred recently, there are still a number of 

gaps which paves way for further investigations. For example, Hekimoglu (2005), 

Eshagh et al. (2007), Baselga (2007), Knight and Wang (2009) and Sisman (2010) have 

not covered experiments with leveling networks. Hekimoglu and Erenoglu (2007) and 

Erenoglu and Hekimoglu (2010) have not addressed cases with multiple outliers, 

whereas Baselga et al. (2020) have analyzed only one single leveling network 

configuration. There are also researches where only the residuals between LS and L1-

norm have been confronted (Marshall and Bethel, 1996; Yetkin and Inal, 2011; 

Gašincová and Gašinec, 2013; Inal et al., 2018).  

These studies show that there is still no consensus about which one has a better 

performance. Here, on the other hand, we try to compare L1-norm and IDS by 

considering the redundancy of the geodetic network, number and size of the outliers. 

These factors play an essential role for the comparison between IDS and L1-norm. 

(Hekimoglu, 2005; Erenoglu and Hekimoglu, 2010). We focus on the L1-norm and IDS 

for the case where leveling networks is in play. For this purpose, several Monte-Carlo 

(MC) experiments were conducted into three different leveling networks configuration. 

In addition, a new way to compare the results of IDS and robust estimators was 

developed and will also be presented. 

.  

 



 

 

 

Theoretical background 

In this section, we present the theoretical foundation involved with IDS and L1-norm in 

order to support the comparison between them. Further details can be found in the 

related references. 

Iterative Data snooping (IDS) 

DS is a statistical testing procedure based on LS-residuals. Although it can also be 

applied based on the L1-residuals instead of the LS-residuals (Gao et al., 1992; Schwars 

and Kok, 1993; Junhuan, 2005; Amiri-Simkooei; 2018). The LS estimation process (or 

L2-norm) seeks to minimize the (weighted) sum of the squared residuals: 

 

𝑣𝑇𝑊𝑣 = 𝑚𝑖𝑛                                                    (1) 

  

 where “𝑣” is the  𝑛 × 1 residuals vector and “𝑊” is the 𝑛 × 𝑛 weight matrix of the 

observations. In the linearized Gauss-Markov model, the vector of 𝑛 × 1 LS-residuals is 

given by: 

 

𝑣 = 𝐴𝛿𝑥̂ − 𝑙                                                      (2) 

 

where “𝐴” is the 𝑛 × 𝑢 design (or Jacobian) matrix, “𝛿𝑥̂” is the 𝑢 × 1 vector of 

corrections for the initial parameters or unknowns and “𝑙” is the 𝑛 × 1 vector of reduced 

observations (Klein et al., 2019). 



 

 

LS is not a robust estimator, i.e., the LS solution is sensitive to outliers in the 

observations. Therefore, the key of the DS is that each observation is individually tested 

against a possible outlier by means of the following test statistic: 

 

𝑤𝑖 =
𝑐𝑖

𝑇𝑊𝑣̂

√𝑐𝑖
𝑇𝑊Σ𝑣𝑊𝑐𝑖

                                                                     

(3) 

 

where “Σ𝑣” is the 𝑛 × 𝑛 covariance matrix of the residuals and “𝑐𝑖” is the 𝑛 × 1 unit 

vector relating to the ith observation being tested (Baarda, 1968; Teunissen, 2006). 

Since the test statistics “𝑤𝑖” follow the normal distribution and observational 

errors spread among all residuals, the observation flagged as being the outlying one is 

that whose test statistic satisfies the following inequalities: 

 

|𝑤𝑖| >  |𝑍(𝛼0 2⁄ )|; |𝑤𝑖| >  |𝑤𝑗| ∀ 𝑖 ≠ 𝑗                                 (4) 

 

where “𝑍(𝛼0 2⁄ )” is the threshold value in the normal distribution for a two-tailed test and 

the stipulated significance level “𝛼0” (Amiri-Simkooei, 2018). The choice of the 

significance level and consequently the threshold value plays a key role in the testing 

procedure performance (Nowel, 2016; Rofatto et al., 2020a). For the quality control of 

geodetic networks, the significance level is usually set at 𝛼0 = 0.001 (0.1%), which 

corresponds to a threshold of |𝑍(𝛼0 2⁄ )| = 3.29. The test statics in Eq. (3) can be 

replaced by “τ statistics” of the “Tau test” (Pope, 1976) in cases where the variance 

factor of observations is unknown. This procedure is outside the scope of this paper. 



 

 

In general, the identified observation is excluded from the model and the LS 

estimation is performed again with the (𝑛 − 1) remaining observations. In some specific 

cases, the observation can be retained after a corrective action, for example, changing it 

sign. Since DS identifies only one outlier at a time, the LS estimation and DS testing 

procedure must be applied iteratively until there is no outlier identified in the 

observations. This procedure is often called “iterative data snooping” (IDS) (Teunissen, 

2006; Rofatto et al., 2020a). 

L1-norm 

The L1-norm, unlike LS, seeks to minimize the (weighted) sum of the absolute residuals 

(Amiri-Simkooei, 2003): 

 

𝑝𝑇|𝑣| = ∑ 𝑝𝑖 ∙ |𝑣𝑖| = 𝑚𝑖𝑛𝑛
𝑖=1                                           (5) 

 

where “𝑝” is the 𝑛 × 1 vector of observations weights, “𝑝𝑖” and “𝑣𝑖” are the weight and 

residual of the ith observation, respectively. The objective function in Eq. (5) is valid for 

uncorrelated observations such as in leveling networks. The case of correlated 

observations such as GNSS (Global Navigation Satellite Systems) networks is 

described, for example, in Yetkin and Inal (2011). 

The LS is the best linear unbiased estimator (BLUE) when the weight matrix is 

taken as the inverse of the covariance matrix of the observations (𝑊 = Σ𝑙
−1) and the 

observational errors follow the (multivariate) normal distribution (Teunissen, 2003). On 

the other hand, the L1-norm is less sensitive to outliers than LS and is also an unbiased 

estimator (Amiri-Simkooei, 2018). 



 

 

The absolute value function prevents a generalized solution by differentiating 

the objective function of L1-norm in Eq. (5), unlike the LS and its differentiable 

objective function in Eq. (1) (Marshall and Bethel, 1996). Thus, in general, the L1-norm 

solution is obtained by means of linear programming. Here, we use the approach of the 

simplex method, presented in detail in Marshall and Bethel (1996) and Amiri-Simkooei 

(2003). Other approaches for L1-norm solution can be found,e.g., Baselga (2007) and 

Baselga et al. (2020). 

L1-norm is currently underdeveloped due to the relative complexity of its 

implementation compared to the LS (Amiri-Simkooei, 2018). However, computational 

advanced techniques can be used efficiently at present (Lehmann, 2015; Rofatto et al., 

2020a). In this context, L1-norm has recently been applied, for example, to the 

deformation analysis of geodetic networks (Nowel, 2016; Amiri-Simkooei et al. 2017). 

It is important to note that IDS and robust estimators (e.g., L1-norm) deal with 

outliers differently: IDS excludes the outlying observation and updates the LS 

estimation; whereas the L1-norm minimizes the objective function in Eq. (5) without 

any adaptation of excluding observations. Therefore, a fair comparison of the results of 

both methods should be applied in order to evaluate their performance in the presence 

of outliers. In the next section, we provide a new approach to compare IDS and L1-

norm.   

An approach to compare IDS and L1-norm 

The IDS performance against outliers can be evaluated, for example, by means of MC 

experiments with outliers intentionally inserted into the dataset. Thus, the success rate 

of the IDS is the ratio between the number of MC experiments which only the outlying 

observations were correctly identified and the total number of MC experiments (Rofatto 



 

 

et al., 2020a). However, since robust estimators (e.g., L1-norm) do not exclude 

observations, a success rate for the L1-norm cannot be obtained so directly. 

On the other hand, the performance of robust estimators against outliers can be 

evaluated by the concept of the “breakdown point”. The breakdown point indicates the 

maximum proportion of outliers which the estimator is able to tolerate (Hekimoglu, 

2005). However, since the breakdown point of LS is zero (Hekimoglu and Erenoglu, 

2007), it cannot be used to compare the IDS based on LS-residuals with robust 

estimators such as the L1-norm. 

In case of uncorrelated observations where the weight matrix 𝑊 is diagonal,, the 

statistical test 𝑤𝑖 in Eq. (3) becomes the “standardized residual” (SR) of each 

observation (Teunissen, 2006), that is, the ratio between the residual (𝑣𝑖) and its 

correspondent standard deviation (𝜎𝑣̂𝑖
), as follows: 

 

𝑤𝑖 =
𝑣̂𝑖

𝜎𝑣̂𝑖

                                                                               

(6) 

 

In this case, the ith observation is excluded if |𝑤𝑖| =
|𝑣̂𝑖|

𝜎𝑣̂𝑖

> |𝑍(𝛼0 2⁄ )| and |𝑤𝑖| >

 |𝑤𝑗| ∀ 𝑖 ≠ 𝑗. Thus,  L1-norm can be considered successful when the absolute SR of all 

contaminated observations (and only these) exceed |𝑍(𝛼0 2⁄ )|. However, the standard 

deviation of L1-residuals and LS-residuals are different (Junhuan, 2005). Therefore, the 

same value for the SR does not guarantee a completely fair comparison. 

Regarding these issues, Knight and Wang (2009), for example, applied the 

“three-sigma rule” for observational residuals to compare the success rates of IDS, L1-

norm and others robust estimators. Other studies based on MC experiments, such as 



 

 

Hekimoglu (2005), it is not clear whether the “three-sigma rule” for observational 

residuals was applied for both robust estimators and IDS or the threshold value of IDS 

was set as |𝑍(𝛼0 2⁄ )| = 3.29 for the SR.  

This approach is not completely fair, because the threshold value 𝑍(𝛼0 2⁄ ) is related to 

the significance level, that is, the “false positive rate” of the IDS (Klein et al., 2019). 

The “false positive rate” of L1-norm may be different, since LS-residuals and L1-

residuals are different. Here, the “false positive rate” is the rate of experiments in which 

at least one observation is flagged as outlier, when in fact there is none. 

Therefore,  MC experiments can be performed by considering a scenario in the 

absence of outliers. In other words, only random errors are taken into account and the 

false positive rates of L1-norm can be obtained for a given  threshold value (i.e., number 

of times that L1-norm detects outliers, when in fact there is none).. For comparison 

purposes, the extreme (i.e. maximum absolute) 𝑤𝑖 test statistic |𝑍(𝛼0 2⁄ )| could be 

stipulated as the threshold value. For example, if the threshold value of IDS is set as 

|𝑍(𝛼0 2⁄ )| = 3.29; then the false positive rate of L1-norm is the ratio between the number 

of MC experiments in which at least one observation residual exceeds 3.29 × 𝜎 (being 

𝜎 the standard-deviation of each observation) and the total number of MC experiments. 

Note that this false positive rate (𝛼′0) may be different from that pre-stipulated for IDS 

(𝛼0). 

Once the false positive rate of L1-norm is derived, the corresponding critical value for 

the IDS can be obtained by MC experiments (𝑍(𝛼′0 2⁄ )), similarly to Lehmann (2012) 

and Rofatto et al. (2020a). Therefore, the IDS and L1-norm are compared in two ways: 

• by the same threshold for the residuals (but different false positive rates: 𝛼0 and 

𝛼′0); and  



 

 

• by the same false positive rate: 𝛼′0 (but different thresholds for residuals). 

In the first case, the threshold values are the same for both IDS and L1-norm. In that 

case, false positive rates are expected to be different between them. This is due to the 

nature of their objective function (LS w.r.t. sum of squared residuals and L1-norm w.r.t. 

sum of absolute residuals). In the second case, the false positive rate is user-controlled 

in both methods. In that case, the false positive rate of the L1-norm (𝛼′0) is obtained for 

a given threshold. Then, the threshold of the IDS is computed based on that false 

positive rate (𝛼′0) from L1-norm (denoted by |𝑍(𝛼′0 2⁄ )|). Therefore, both L1-norm and 

IDS have the same false positive rate at level 𝛼′0. Here, we denoted IDS for the case 

where the threshold values are taken the same as L1-norm, whereas IDS’ for the case 

where the false positive rates are equal to those of the L1-norm. This strategy provides a 

fair comparison between both methods and can be applied to other robust estimators.. 

Figure 1 presents a flowchart for the proposed approach. 

 



 

 

 

Figure 1. Flowchart of the proposed approach for comparison of IDS and L1-norm. 

Experiments and results 

To evaluate the performance of IDS and L1-norm against outliers, three configurations 

of leveling networks are taken into account as follows: one of lower redundancy 

(Network A), one of intermediate redundancy (Network B) and one of higher 

redundancy (Network C). The networks are presented in Figure 2. Network A consists 



 

 

in one control station, 𝑛 = 16 observations (height differences) and 𝑢 = 10 unknowns 

(station heights), thus, 𝑛 − 𝑢 = 6 degrees of freedom. Network B consists in one 

control station, 𝑛 = 20 observations (height differences) and 𝑢 = 10 unknowns (station 

heights), thus, 𝑛 − 𝑢 = 10 degrees of freedom. Network C consists in one control 

station, 𝑛 = 14 observations (height differences) and 𝑢 = 6 unknowns (station heights), 

thus, 𝑛 − 𝑢 = 8 degrees of freedom.  

Therefore, the “mean redundancy number” (Teunissen, 2006) of Network A is: 

𝑟̅ =
16−10

16
= 0.375; while the mean redundancy number of Network B is:  𝑟̅ =

20−10

20
=

0.5 and the mean redundancy number of Network C is: 𝑟̅ =
14−6

14
= 0.571. More details 

of Networks A, B and C are provided in Gemael et al. (2015), Suraci et al. (2019) and 

Ghilani (2010), respectively. 

 

 

Figure 2. Configuration of Networks A, B and C (Source: adapted from Gemael et al. (2015), 

Suraci et al. (2019) and Ghilani (2010), respectively) 

 

In MC experiments, initially, random errors of a multivariate normal distribution 

were generated considering the covariance matrix of observations for each network (the 

𝑛 × 1 random vector “𝑒”), then, the respective L1-norm residuals was achieved. False 

positives occur if (at least) one observational residual exceeds 3.29 × 𝜎, being “𝜎” the 



 

 

standard deviation of each observation. For each network, this procedure (MC 

experiment) was run 200,000 times (Rofatto et al., 2020b). 

 For comparison purposes, the threshold value for IDS was taken as  |𝑍(𝛼0 2⁄ )| =

3.29 (with 𝛼0 = 0.001). For this threshold (|𝑍(𝛼0 2⁄ )| = 3.29), we obtain the follow 

false positive rates for L1-norm:𝛼′0 = 0.01 (10%), 𝛼′0 = 0.1066 (10.66%) and 𝛼′0 =

0.0578 (5.78%) for networks A, B and C, respectively. Based on these values for 𝛼′0, a 

new threshold value was obtained for IDS by MC experiments, following the approach 

of Lehmann (2012) and Rofatto et al. (2020a), which was denoted by IDS’  The step-

by-step of the applied procedure can be obtained in section 3 of Rofatto et al. (2020a). 

The  threshold values of IDS’ were |𝑍(𝛼′0 2⁄ )| = 2.5224, |𝑍(𝛼′0 2⁄ )| = 2.7147 and 

|𝑍(𝛼′0 2⁄ )| = 2.8326 for networks A, B and C, respectively. 

Once that values of 𝛼′0 and |𝑍(𝛼′0 2⁄ )| were derived, MC experiments with 

inserted outliers in the simulated random vector “𝑒” were performed in order to evaluate 

the success rate of IDS, IDS’ and L1-norm against outliers. For both networks, the 

number of inserted outliers ranges from 1 up to 4 and the size of the outliers ranges 

from 3𝜎 up to 6𝜎 and from 6𝜎 up to 9𝜎, where “𝜎” is the standard deviation of each 

observation. These outlier sizes are the same as those of Knight and Wang (2009). The 

outliers were generated according to a uniform distribution and the MC experiments 

were conduct following the approach of Rofatto et al. (2020b). Figures 3 and 4 present 

the success rates for Network A;  Figures 5 and 6 present the success rates for Network 

B; and Figures 7 and 8 present the success rates for Network C. 

 



 

 

 

Figure 3. Success rates for Network A (outlier sizes: 3σ – 6σ) 

 

 

Figure 4. Success rates for Network A (outlier sizes: 6σ – 9σ) 
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Figure 5. Success rates for Network B (outlier sizes: 3σ – 6σ) 

 

 

Figure 6. Success rates for Network B (outlier sizes: 6σ – 9σ) 
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Figure 7. Success rates for Network C (outlier sizes: 3σ – 6σ) 

 

 

Figure 8. Success rates for Network C (outlier sizes: 6σ – 9σ) 

Discussion 

The first issue to be addressed is the false positive rate of L1-norm (10% for Network 

A,  10.66% for Network B and 5.78% for Network C). To compare with IDS results, 

MC experiments are needed, since IDS is performed in a multiple alternative 

hypotheses context (Förstner, 1983; Lehmann, 2012; Yang et al., 2013; Rofatto et al., 

2020a). It should be pointed out that the stipulated value of 𝛼0 = 0.001 (0.1%) is the 
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false positive rate for a single alternative hypothesis test, i.e., for the case where only 

one observation is checked. 

Regarding this issue, random errors were generated and the LS-residuals were 

computed, similar to the L1-norm case. False positives occur in the case of having at 

least one SR >|𝑍(𝛼0 2⁄ )| = 3.29. For each network, this procedure (MC experiment) was 

run 200,000 times. The false positive rates of IDS in this multiple alternative hypothesis 

context were 0.0098 (0.98%), 0.018 (1.8%) and 0.0132 (1.32%) for the networks A, 

B and C, respectively. These values were significantly lower than those obtained by the 

L1-norm for both networks. The L1-norm also presented a higher false positive rate than 

IDS for the experiments with GNSS data provided in Knight and Wang (2009). This can 

be due to the residual’s distribution of LS and L1-norm. 

Regarding the experiments with inserted outliers, the lower the number of 

outliers and/or the higher the outlier sizes, the higher the success rate for both methods 

in all networks, as expected. In addition, the higher the mean redundancy number of the 

network, the higher the success rate, since the correlations for the estimated residuals 

are lower (Lehmann, 2012; Rofatto et al., 2020a). 

For the case of network A (lower redundancy), the success rate of L1-norm was 

better than the success rate of IDS and IDS’ in all cases. For example, for two outliers 

with sizes 6σ – 9σ, the success rate of L1-norm is higher than 20%, whereas both IDS 

and IDS’ are about 5%. In addition, IDS and IDS’ were inefficient for three or four 

outliers despite their sizes (success rates ≈ 0%). It is important to observe that although 

L1-norm has performed better than the both IDS and IDS’, its success rates were not 

significant (< 50%). 

In the case of network B (intermediate redundancy), the pattern of the results 

seems more complex. The IDS performs better for one outlier of sizes 6σ–9σ. The IDS’ 



 

 

performs better for one or two outliers of sizes 3σ–6σ and for two or three outliers of 

sizes 6σ–9σ. The L1-norm performs better for three or four outliers of sizes 3σ–6σ and 

for four outliers of sizes 6σ–9σ. The IDS presents the worst performances for outliers of 

sizes 3σ–6σ, whereas the L1-norm presents the worst performances for outliers of sizes 

6σ–9σ (with the exception of the case with four outliers). 

For network C (higher redundancy), the IDS again performs better for one 

outlier of sizes 6σ–9σ. The IDS’ performs better for one or two outliers of sizes 3σ–6σ 

and for two outliers of sizes 6σ–9σ. The L1-norm performs better for three or four 

outliers despite their sizes. This better performance of L1-norm against several outliers 

has already been noticed, for example, in the 3D geodetic network described in Eshagh 

et al. (2007). Once again, the IDS presents the worst performances for outliers of sizes 

3σ–6σ. 

In general, IDS’ and L1-norm provided the best results. The overall mean success rates 

were ≈ 26%, ≈ 29% and ≈ 30% for IDS, IDS’ and L1-norm, respectively. Although 

IDS’ performs better than L1-norm in some specific cases, IDS’ is unlikely to be applied 

with such a high false positive rate. In addition, the number and size of outliers is 

unknown in real applications, which makes difficult to define a strategy on which 

procedure to apply for each case. 

Thus, if we look at the success rate, the general recommendation is to apply the 

L1-norm, especially for networks with low redundancy (say  𝑟̅ < 0.5) or networks that 

have many identified outliers. However, even if L1-norm was applied for outlier 

identification, the final solution must be achieved by the LS estimation considering its 

BLUE properties, as has already been recommended, for example, by Marshall and 

Bethel (1996). 



 

 

On the other hand, this conclusion may not be fair, since it does not consider the 

false positive rate. Thus, considering that the L1-norm and consequently IDS’ had a 

higher false positive rate than IDS, Tables 1, 2 and 3 present the ratio between the 

success rate and the false positive rate of both methods for Networks A, B and C, 

respectively. 

 

Table 1. Ratio values between the success rate and the false positive rate for Network A 

Number of outliers IDS IDS’ L1 

1 21.4 2.4 4.0 

2 3.3 0.5 1.5 

3 0.3 0.1 0.5 

4 0.0 0.0 0.1 

 

Table 2. Ratio values between the success rate and the false positive rate for Network B 

Number of outliers IDS IDS’ L1 

1 36.8 6.6 5.4 

2 22.2 4.3 3.3 

3 10.6 2.2 1.9 

4 3.5 0.8 1.0 

 

Table 3. Ratio values between the success rate and the false positive rate for Network C 

Number of outliers IDS IDS’ L1 

1 55.9 13.5 12.4 

2 37.2 9.6 9.0 

3 19.0 5.0 6.0 

4 5.1 1.4 3.4 

 

The higher the mean redundancy number of the network, the higher the ratio 

values (Table 1, 2 and 3). It can be noted that in some cases, the false positive rate is 

higher than the success rate, that is, the ratio value is lower than 1.  In general, IDS 

presents better ratio values between the success rate and the false positive rate, the 

exception for three and four outliers in Network A. However, in these cases the ratio 

values are significantly lower for both methods. Thus, if we consider both success rates 

and false positive rates, then IDS should be applied despite the configuration of the 

leveling network or the size and number of outliers. 



 

 

Note that “false positive” not necessarily means “false outlier”. For example, the 

outlier may not be a blunder or fault (being a “false positive”), but it also may be the 

result of a random error, being a random (“true”) outlier (Hekimoglu, 2005). The 

exclusion of false positives is especially critical in leveling networks, which  in general 

the redundancy is lower than in horizontal or GNSS networks. 

It should be pointed out that both methods have limitations, which makes it 

difficult to conclude which is the most efficient. It paves the way for further studies on 

this topic, considering, for example, an IDS approach based on L1-residuals such as in 

Amiri-Simkooei (2018). 

Conclusions and recommendations 

In this paper, we evaluate the performance of IDS and L1-norm against outliers in three 

different leveling networks, by means of several MC experiments. For this purpose, a 

new way of comparison between the results of IDS and L1-norm was proposed, 

considering both the same threshold for the residuals and the same rates of   false 

positives.. 

If we look only at the success rate, the results suggest that the L1-norm should be 

applied for outlier identification instead of the IDS based on LS-residuals, especially for 

networks with low redundancy (say  𝑟̅ < 0.5) or networks that have many identified 

outliers. In the relationship between false positive rate and outlier identification success 

rate, however, IDS performs better than L1-norm. In the latter case, IDS with critical 

value of 3.29 has the best cost-benefit ratio, independently of the levelling network 

configuration, number and size of outliers. 

Therefore, the main contribution of this research was the comparison by MC 

experiments considering both the threshold for the residuals and the false positive rate 



 

 

of both methods. IDS and L1-norm showed different limitations according to the key 

factors analyzed. 

For future works, one can investigate the effect of “leverage points” in leveling 

networks, such as Junhuan (2005) provided for triangulation networks.  The classes of 

“controlled and non-controlled observations against outliers” (Hekimoglu et al., 2011) 

for IDS and L1-norm can also be addressed. In addition, other observational errors 

model rather than the normal distribution can be investigated in leveling networks by 

MC experiments, following the approach described by Lehmann (2015) for linear 

regressions. 

Furthermore, if a robust estimator like L1-norm is applied for outlier 

identification, then reliability measures should be derived as pointed out, for example, 

in Guo et al. (2011). These reliability measures can be obtained by MC experiments 

following the approach of Rofatto et al. (2020a) for IDS. This is particularly a very 

interesting issue, inasmuch as L1-norm tends to project the outliers onto the 

corresponding residuals more than the LS solution (Junhuan, 2005). 

Finally, considering the new way of comparison described here, the L1-norm and 

IDS performance against outliers should by fully addressed in other types of geodetic 

networks, such as horizontal and GNSS networks. The effect of the stochastic model in 

the performance against outliers can also be investigated. 
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