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Abstract: In the context of logistics and transportation, this paper discusses how simheuristics can be
extended by adding a fuzzy layer that allows us to deal with complex optimization problems with
both stochastic and fuzzy uncertainty. This hybrid approach combines simulation, metaheuristics,
and fuzzy logic to generate near-optimal solutions to large scale NP-hard problems that typically arise
in many transportation activities, including the vehicle routing problem, the arc routing problem,
or the team orienteering problem. The methodology allows us to model different components–
such as travel times, service times, or customers’ demands–as deterministic, stochastic, or fuzzy. A
series of computational experiments contribute to validate our hybrid approach, which can also be
extended to other optimization problems in areas such as manufacturing and production, smart
cities, telecommunication networks, etc.

Keywords: transportation; vehicle routing problems; metaheuristics; simulation-optimization;
fuzzy techniques

1. Introduction

Managers tend to rely on analytical methods that allow them to make informed de-
cisions. This explains why optimization models play a key role in many industries and
business, including the logistics and transportation sector. Whenever accurate informa-
tion on the inputs and constraints of the optimization problem is available, the resulting
deterministic models can be solved by using well-known methods, either of exact or
approximate nature.

Many optimization problems in real-life transportation involve taking into account a
large number of variables and rich constraints, which often makes them to be NP-hard [1].
When this is the case, the computational complexity makes it difficult to obtain optimal
solutions in a short computational time. At this point, heuristic approaches can provide
near-optimal solutions that, in turn, cover all the requirements of the problem [2]. When
dealing with challenging optimization problems, there is a tendency to divide them into sub-
problems, which simplifies the difficulty but might also lead to sub-optimal solutions [3,4].
Given the increase in computational power experienced during the last decade, and also
the development of advanced metaheuristic algorithms, it is possible nowadays to solve
rich and large-scale problems that were intractable in the past [5].

In the scientific literature on combinatorial optimization problems, it is often assumed
that the input values are constant and known. However, in a real-world scenario this is
rarely the case, since uncertainty is often present and affects these inputs. In the context
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of transportation and logistics, some examples of these inputs are: travel times, customer
demands, service times, battery durability, etc. Whenever these inputs can be modeled by
random variables, simheuristic algorithms—which combine heuristics with simulation—
become a useful tool to address the associated optimization problem [6]. It should be
noticed that simheuristics are designed to handle situations where uncertainty can be
modeled by random variables, each of which follows a well-known probability distribu-
tion. When dealing with non-probabilistic uncertainty, fuzzy techniques might be a good
choice. Therefore, fuzzy techniques can be particularly interesting for modeling uncertainty
whenever it cannot be represented by random variables, for example: if not enough data
are available, if the data cannot be fitted to a probability distribution, or if qualitative expert
opinions must also be considered. Tordecilla et al. [7] illustrate with an example how to
combine two types of uncertainty conditions using a fuzzy simheuristics, which hybridizes
a metaheuristic with simulation and fuzzy logic. In their example, these authors assume
that only some customer demands can be modeled by random variables, while others
follow a fuzzy pattern.

A fuzzy system is based on fuzzy logic. Inputs enter the system, which computes
fuzzy outputs on the basis of a set of rules established by a human expert [7]. In order
to obtain solutions that mix information from different sources, the output of the fuzzy
system includes different degrees of membership for different groups. This means that
a fuzzy system can handlee decisions in a non-binary logic scenario, since the outputs
have a partial degree of being ‘true’ or ‘false’. Therefore, the main contribution of this
paper is to provide both conceptual and practical insights on how fuzzy simheuristics
can be applied in the optimization of different transportation systems, which include
the well-known vehicle routing problem (VRP) under uncertainty conditions, as well as
the team orienteering problem (TOP) under uncertainty conditions. A comprehensive
introduction to both problems can be found in Toth and Vigo [8] and Chao et al. [9],
respectively. Therefore, we address and discuss the novel concept of fuzzy simheuristics,
which has hardly been addressed in the literature. Accordingly, this new class of solution
methodology is designed to solve the aforementioned transportation problems, whose
performance and prospects have been duly analyzed and presented.

The remaining sections of this paper are organized as follows: Section 2 provides a
description of the optimization problems discussed in this paper, the VRP and the TOP.
Section 3 reviews related work on simheuristics and fuzzy sets in solving the aforemen-
tioned problems. The fuzzy simheuristic methodology is explained in Section 4. Section 5
describes how the proposed fuzzy simheuristic has been implemented, as well as the
process of converting deterministic benchmarks into stochastic-fuzzy ones. A series of
numerical experiments are included in Section 6. Finally, Section 7 summarizes the conclu-
sions and main results of this work.

2. Popular Optimization Problems in Transportation

This section provides an overview of the two transportation problems considered in
this paper, the VRP and the TOP.

2.1. The Vehicle Routing Problem

The VRP is a well-known combinatorial optimization problem with a vast number of
applications in the transportation sector [10]. Solving the VRP aims to design cargo vehicle
routes with minimum transportation costs to distribute goods between depots and a set of
consumers. Since the capacity of the cargo vehicles is usually taken into account, the VRP
is often referred to as capacitated VRP.

In its basic version, the distribution network of the VRP conists of a single depot
and a set of customers, geographically distributed around a coverage area. A set of cargo
vehicles, initially available at a central depot, visits customers to meet their demands.
Once all customers assigned to a vehicle have been served, the vehicle returns to the
central depot. The typical goal is to minimize the cost of distribution, serving all customers
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and without exceeding the loading capacity of the vehicles (which may or may not be
homogeneous). This distribution network can be defined as a directed graph G = (N, E),
where: (i) N = {0, 1, . . . , |C|} is the set of vertices, with node 0 being the central depot
and C being the set of customers; and (ii) E = {(i, j) | i, j ∈ N, i < j} is the set of edges
connecting pairs of nodes. Each customer i ∈ C requires a demand di > 0, which affects
the of the vehicle. The objective, in solving this problem, is to minimize the total cost of
serving all customers, subject to: (i) each route starts and ends at the central depot; (ii)
each customer is visited only once and by exactly one vehicle; and (iii) the total demand
required by the costumers on a route does not exceed the vehicle capacity. Apart from
this basic version, multiple extensions of the problem can be found in the literature,
to name a few: heterogeneous fleet of vehicles [11,12], time-windows [13,14], multiple
depots [15,16], multiple delivery levels [17,18] simultaneous pick-up and deliveries [19,20],
or combination of the former [21–23]. Many real-life versions of this problem combine
some of the aforementioned constraints and others, making them difficult to solve [24].

Figure 1 depicts the network topology of a basic VRP, in which a fleet of three vehicles
is used to serve, from a central depot, 12 customers. The vehicles depart from the depot
with loaded demand, which is delivered at each customer location. In this case, the routes
are constrained by the capacity of cargo vehicles.

cargo vehicle with 
loaded demand

customer requiring 
a demand from depot

depot

Figure 1. Network topology of a basic VRP.

2.2. The Team Orienteering Problem

One of the main differences between the TOP and the VRP is that in the former it is
not mandatory to visit all customers. In other words, some nodes can be omitted during
the generation of the routing plan. This is due to restrictions on the fleet size and on the
maximum length that can be covered by any route. In a typical TOP, rewards are collected
the first time a node is visited and therefore the objective is to maximize the total reward
collected by a fixed fleet of vehicles. Vehicles depart from an origin node and have to reach
a destination node. Cargo constraints are not usually considered in the basic version of the
TOP. However, as in the case of the VRP, many variants can be found in the literature, e.g.,:
capacity constraints [25–27], maximum driving range [28], stochastic travel times [29], etc.

As in the VRP case, the TOP network is composed of an origin depot, a destination
depot, and a set of customers. It can be defined as a directed graph G = (N, E), where
(i) N = {0, 1, . . . , |C|, n} is the set of nodes, including the origin depot (node 0) and the
destination depot (node n); and (ii) E = {{(i, j) | i, j ∈ C, i < j} represents the set of edges
connecting the nodes. Each customer i ∈ C offers a reward ui > 0 the first time it is
visited. A fleet of vehicles is available at the origin depot. Each vehicle visits a selected
subset of nodes in C to collect the associated rewards, and moves to the destination depot.
This process is presented in Figure 2. Note that, unlike the network topology depicted in
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Figure 1, this time a subset of nodes is not visited. Typically, these are customers located
far away from each other or offering low rewards.

node with a reward 
to be collected

origin destination

empty 
cargo vehicle

Figure 2. Network topology of a basic TOP.

3. Related Work

Real-life transportation problems deal with uncertain parameters, such as customer de-
mands, travel and service times, resource availability, etc. Modeling and solving problems
that address these types of parameters are difficult challenges, given the high complexity
and large scale that even the deterministic version of these problems tend to have in most
practical applications. To cope with this uncertainty, Oliva et al. [30] introduces the concept
of “fuzzy simheuristics”, which is a general approach that considers both stochastic and
fuzzy uncertainty. However, the vast majority of the literature on optimization of trans-
portation systems does not consider the combination of probabilistic and non-probabilistic
uncertainty in the same problem.

3.1. Simheuristics in Transportation Problems

Combining metaheuristics with simulation has proven to be a successful approach when
dealing with combinatorial optimization problems (COPs) involving probabilistic uncertainty.

Simheuristics can be considered a very efficient approach to deal with stochastic
COPs. Such efficiency is measured both in terms of computing time and solution quality,
i.e.,: (i) simheuristics consume relatively low computing times given the inclusion of fast
metaheuristics in the solution search procedure. Furthermore, promising initial solutions
are evaluated by an initial simulation using a small number of runs (i.e., more intensive
simulations are reserved only for a small group of elite solutions); and (ii) the inclusion
of metaheuristics also has an impact on enhancing the solution quality. Moreover, since
considering stochastic inputs implies that the outputs are also stochastic, simheuristics not
only assess quality of the solution in terms of traditional indicators, such as costs or profits,
but also in terms of risk and reliability values [31].

Simheuristics have been successfully employed to solve problems related to different
application fields, such as flow shop scheduling [32,33], job shop scheduling [34], waste
collection [35–37], hazardous waste management [38], facility location [39], military ap-
plications [40], healthcare [41], finance [42], telecommunication networks [43], or disaster
management [44]. Nevertheless, simheuristics have been mainly applied to the optimiza-
tion of transportation systems. Different variants can be found in the literature. For instance,
Latorre-Biel et al. [45] combine simheuristics with machine learning and Petri nets to solve
a single-depot VRP with stochastic and correlated demands. The proposed algorithm is
capable of forecasting both customer demands and their correlations. Stochastic demands
have also been considered in the VRP with multiple depots [15]. Travel times have also been
considered stochastic in the literature about VRPs. Different types of problems address this
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parameter, e.g., VRP in the context of the so-called omnichannel retailing mode with pick
up and delivery [46], two-dimensional VRP [47], or routing of electric vehicles [48].

A natural and realistic extension of the VRP is achieved by including inventory man-
agement in transportation decisions. For instance, Gruler et al. [49] uses a simheuristic
to solve a single-period inventory routing problem with stochastic demands. Stochastic
demands have also been considered in the context of agri-food supply chains. In this
case, the proposed approaches are tested by addressing a real-world case [50] or by using
benchmark instances [51]. The latter work also includes perishable products. Finally,
simheuristics have been used less frequently in other transportation and routing prob-
lems, such as the arc routing problem [52], the location routing problem [53], or the team
orienteering problem [29].

3.2. Fuzzy Sets in the VRP and the TOP

Fuzzy techniques are typically used to deal with non-probabilistic uncertainty. This
approach is especially useful when insufficient historical data are available as to model
uncertainty with probability distributions. Early work shows the potential of using fuzzy
sets in the VRP by considering travel times between nodes [54] or customer demands [55]
as fuzzy. On the one hand, Teodorovic and Kikuchi [54] propose the introduction of fuzzy
arithmetic operations in the savings computation when solving the VRP. On the other hand,
Teodorović and Pavković [55] present a procedure to decide whether or not to visit the
next customer on a route. To make this decision, these authors propose a preference index,
which indicates the strength of the inclination to make this visit. The preference index is
computed by comparing the fuzzy demand of the next customer and the fuzzy current
load of the vehicle.

Uncertainty in customer demand is a recurrent topic in the VRP literature using fuzzy
techniques. For instance, Erbao and Mingyong [56] propose a hybrid differential evolution
algorithm to solve a VRP with uncertain demands, which is additionally formulated as a
fuzzy chance constrained program. Different preference index thresholds are tested with
the objective of minimizing the total distance traveled. A similar approach is employed
by Cao and Lai [57] to solve an open vehicle routing problem with fuzzy demands. This
parameter is also considered by Shi et al. [58], who address a home healthcare open VRP
with time windows. A fuzzy chance constraint model is proposed, as well as a hybrid
genetic algorithm. A set of benchmark instances is used to test their approach. Fuzzy
customer demands are considered as well by Kuo et al. [59] and Werners and Drawe [60].

Time-windows constraints are also quite frequently considered uncertain in the fuzzy
VRP literature. The idea is that the information about the earliest and latest times at which
customers must be visited is imprecise or vague. For instance, Ghannadpour et al. [61]
address a realistic multi-objective dynamic VRP with time windows. In this case, the time
windows are related to the level of customer satisfaction. This satisfaction is sought to be
maximized. In turn, the aim is to minimize the number of vehicles used, the total distance
traveled, and the waiting time of the vehicles. A solving approach based on a genetic
algorithm is proposed. The relation between the level of customer satisfaction and the
fuzzy time windows is also examined by Tang et al. [62]. It is proposed a multi-objective
model that seeks to both minimize the distance traveled and maximize the level of the
customer service. Fuzzy time windows are also considered by Xu et al. [63], López-Castro
and Montoya-Torres [64], and Brito et al. [65]. The latter authors also consider the vehicle
capacity as a fuzzy parameter. Finally, fuzzy sets are additionally used to model parameters
such as service times [66,67] and travel times [68].

Fuzzy techniques have hardly been used in the TOP. The TOP is similar to the VRP,
but in the former a fixed fleet of vehicles needs to collect rewards by visiting customers,
and since there is a maximum time or distance that each vehicle can cover, it is often the case
that not all customers can be visited [9]. Hence, the main objective of the TOP is to maximize
the collected reward without exceeding the route length threshold. The orienteering
problem (OP) refers to the single-vehicle (and less challenging) version of the TOP. Verma
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and Shukla [69] and Ni et al. [70] consider OPs in which both the collected rewards
and the travel times are fuzzy. The former authors propose a parallel algorithm as a
solving approach, whereas the latter employ a genetic algorithm. Regarding the TOP,
Brito et al. [71] propose a greedy randomized adaptive search procedure (GRASP) to solve
this problem considering fuzzy rewards and fuzzy travel times. A fuzzy linear program is
formulated to model the addressed problem, with the objective of maximizing the total
collected reward. Oliva et al. [30] introduce the concept of “fuzzy simheuristics” to deal
with the general case where both stochastic and fuzzy uncertainty is present, e.g., when
the parameter(s) related to a subset of customers are stochastic, whereas the parameter(s)
related to another subset of customers are fuzzy. Hence, considering all parameters of the
problem as stochastic, fuzzy or deterministic are particular cases. These authors consider
that the customer rewards are uncertain. Finally, fuzzy simheuristics are also employed by
Tordecilla et al. [7] to solve a location routing problem in which the size of the depots is an
additional variable to consider. Different variability levels are taken into account in order to
test the behavior of the proposed solution approach when customer demands are uncertain.
To the best of our knowledge, the works by Oliva et al. [30] and Tordecilla et al. [7] are
the only papers dealing simultaneously with stochastic and fuzzy scenarios in NP-hard
transportation or location problems. Hence, significant challenges open up for future
research in this field.

4. A General Solving Methodology

Both the VRP and TOP are NP-hard problems [72,73]. Therefore, due to the combina-
torial nature of these problems, the use of exact solving approaches is often limited by the
size of the problem instances. When dealing which real-life instances, which are typically
large-scale instances, the use of heuristics and metaheuristics has proven to be a good alter-
native [74]. Although metaheuristics are capable of finding near-optimal (or even optimal)
solutions to many different combinatorial optimization problems in reasonable computing
times, these approaches have been mainly designed to solve deterministic versions of these
problems. Consequently, metaheuristics are not able to cope adequately with stochastic
components, being their application constrained against uncertain scenarios as the ones
proposed in this paper. In order to tackle uncertainty, metaheuristics have been combined
with simulation methods in recent years. The resulting simheuristic approaches, apart from
finding cost-effective solutions for the deterministic problem—through the optimization
component—are also able to provide efficient solutions for the stochastic scenario [6].

In many real-life situations, large-scale and complex optimization problems assume
different degrees of uncertainty, not only of a stochastic but also of a fuzzy (non-stochastic)
nature. The latter might occur, for instance, when the volume of observations is low or
the available data are of insufficient quality. In this case, the accurate modeling of the
uncertainty sources simply does not follow the natural pattern of modeling them only as
stochastic variables following a probability distribution. Instead, fuzzy inference systems
(FIS) are also considered to achieve this goal.

In this paper, we propose a fuzzy simheuristic approach to solve both the VRP and
the TOP under general uncertainty scenarios (i.e., those including both probabilistic as
well as non-probabilistic uncertainty). This hybrid solution approach combines a multi-
start (MS) metaheuristic with MCS and FIS to deal with stochastic and fuzzy variables,
respectively. Specifically, this solution method is composed of three stages. The first stage
refers to the construction of an initial feasible solution through a savings-based constructive
heuristic, which is designed considering the characteristics of each problem. The second
stage consists of enriching this heuristic with biased-randomized (BR) decisions [75], which
are then incorporated into a MS framework–in order to generate multiple solutions. This
stage, in addition to exploring different regions of the solution space, conducts a short
number of simulations on a set of promising solutions in order to evaluate their efficiency
under stochastic conditions. Finally, the third stage is a refinement one, in which a larger
number of simulation runs are applied to a set of elite solutions. This procedure allows to
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obtain a more accurate estimation of the different solution properties. Since the number
of solutions generated during the search can be large and the simulation process is time
consuming, we have limited the number of short simulation runs to 100. Regarding the
number of simulations in the refinement step, it has been set to 1000.

Figure 3 depicts a high-level description of the proposed methodology. As explained,
this process starts from solving the deterministic problem, whose corresponding solution
is submitted to a short simulation procedure, i.e., the exploratory stage. Consequently, new
solutionsare generated for both the stochastic and the fuzzy environment. These steps are
repeated until a stopping criterion is met. Finally, the best-found solutions (or a set of elite
solutions) are submitted to a large number of simulation runs—the intensive stage—in
order to obtain a more accurate summary of output variables, such as total cost/reward
and risk/reliability values.

Deterministic
VRP/TOP

Metaheuristic Component

Deterministic Solution

Fuzzy Component

Stochastic Component

Stochastic Solution

Stopping 
criterion met?

Fuzzy Component

Stochastic Component

Exploratory Stage

Intensive Stage

Fuzzy Solution

Best Stochastic Solution

Best Fuzzy Solution

Y

N

Start

Figure 3. High-level flowchart of the proposed solution method.

In order to facilitate reproducibility, the low-level details of each of the stages of the
described methodology are provided below:

1. The constructive heuristics for solving the VRP and TOP are based on the savings
concept [76]. Despite being structurally similar for both problems, their particularities
are introduced to adquately cope with each respective case, as follows:

• Firstly, a dummy solution is constructed. This hypothetical solution is composed
of a set of routes, each of them being designed to serve one customer. The vehicle
departs from the origin depot, visits the customer and continues the trip towards
the destination depot. In the case of the TOP, this stage takes into account the
maximum tour length when designing these dummy routes. That is, those
dummy routes whose total travel time is greater than this limit are automatically
discarded. Similarly, in the case of the VRP, this stage takes into account the
maximum loading capacity of each vehicle (i.e., if the demand of a customer is
higher than this capacity, this customer is discared).

• Secondly, a savings list (SL) is created, which includes all the edges connecting
two different locations. For each edge (i, j) ∈ SL, a savings value is computed
according to Equation (1), for the VRP, and (2), for the TOP. In both cases, tij
represents the time- or distance-based cost associated with traveling from node i
to node j, 0 is the origin depot. In the case of the TOP, n represents the destination
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depot, while ui and uj represent the rewards obtained when customers i and j are
visited for the first time. In the case of the TOP, considering a linear combination
of both travel time and reward allows us to define an ‘enriched savings’ concept
that reflects not only the desire of maximizing the total collected reward, but also
takes into account how far a customer is from the rest of nodes on the emerging
route [29]. Once computed, the SL list is sorted in descending order of savings
value, which implies that edges with the highest savings are placed at the top of
the list.

sij = t0i + tj0 − tij (1)

sij = α(tin + t0j − tij) + (1− α)(ui + uj) (2)

• The sorted SL reflects the most promising movements to reduce the correspond-
ing costs. In this way, the savings edge at the top of the SL is selected to perform
the merging of the associated routes. This procedure is performed only if a feasi-
ble combined route is generated. For the VRP, two routes can only be merged
if the vehicle capacity is not exceeded. Alternatively, for the TOP, two routes
can only be merged if the total travel distance does not exceed the maximum
tour length. Once the selected savings edge is checked, it is deleted from the
SL. Then, the new edge at the top is selected to continue this procedure, which
is repeated until the SL is empty. At the end of this process, a feasible solution
is generated.

2. The described heuristics are deterministic, which implies that the same decisions are
made whenever they start from the same configuration. To change this behavior, these
deterministic heuristics are transformed into a probabilistic algorithms by ‘smoothing’
the selection of candidates from the SL using a probability distribution. This concept
is called biased-randomization (BR), and is described in Dominguez et al. [77]. In our
case, the geometric probability distribution was adopted, as suggested in Ferone
et al. [78]. Introducing BR decisions in our heuristics requires dealing with additional
parameters, such as the β ∈ (0, 1), which defines the geometric distribution. The value
of this parameter was set after a quick tuning process over a random sample, establish-
ing a good performance for both algorithms whenever β falls in the interval (0.3, 0.4).
Algorithm 1 describes the heuristic operational structure. Note that the difference
between the two algorithms, designed to solve their respective problems, consists in
how the SL is constructed (line 2). Finally, the resulting BR algorithms are embedded
into a multi-start (MS) framework in order to generate many alternative solutions.
Then, the best-found solution is updated and returned at the end of this procedure.

Algorithm 1: Biased-Randomized Algorithm.

Data: set of nodes V, parameter β ∈ [0, 1]
1 sol ← createDummySolution(V)
2 SL← createSavingsList(sol)
3 SL← sort(SL)
4 while there are edges in SL do
5 e← selectEdgeFromList(β, SL)
6 i← getOrigin(e)
7 j← getEnd(e)
8 iRoute← getEvolvingRouteOfNode(i)
9 jRoute← getEvolvingRouteOfNode(j)

10 if all route-merging conditions are satisfied then
11 sol ←mergeRoutesUsingEdge(e, iRoute, jRoute, sol)
12 end
13 SL← deleteEdgeFromList(e, SL)
14 end
15 return sol
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3. The last stage refers to the incorporation of both simulation and fuzzy components
into the BR-MS framework, so that promising solutions are processed to estimate their
expected costs (Algorithm 2). For the VRP and TOP, the uncertain variables represent
the customer demands and the travel times, respectively.

• For stochastic variables, a new value is assigned to each random element based
on its probability distribution. For stochastic variables, the MCS is used to
estimate them.

• For fuzzy variables, the new value of each element is based on its fuzzy function.
Accordingly, fuzzy variables are estimated through the FIS. This procedure is
explained more thoroughly in Section 5.

Once the deterministic version of each problem is solved, their respective solutions
are submitted to a exploratory stage, in which only a low number of simulation (qshort)
runs are performed to avoid jeopardizing the time of the metaheuristic component [79].
These ‘short’ simulation runs are applied only to solutions that meet an acceptance
criterion (line 8). Altering these stochastic and fuzzy values involves a re-evaluation
of both the objective function and the constraints, so that the expected cost/reward
of each promising solution can be computed. These short simulation runs allow
multiple elite solutions to be found (line 11). In this way, once the BR-MS main loop
is completed, a larger number of simulation (qlong) runs are executed for each elite
solution (line 17). Consequently, the algorithm is able to obtain more accurate values
of the output variables. Finally, a reduced set of best-found solutions is returned.
From this set, managers can assess not only the expected costs/rewards but also the
risk or reliability values associated with each solution, as described in Chica et al. [6].

Algorithm 2: Fuzzy Simheuristic.
Data: set of nodes V, geometric distribution parameter β, number of short

simulations qshort, number of long simulations qlong, maximum number of
iterations maxiter

1 initSol ← BiasedRandAlgorithm(V, β)
2 simulation(initSol, qshort)
3 bestSol ← initSol
4 niter ← 0
5 while niter < maxiter do
6 sol ← BiasedRandAlgorithm(V, β)
7 if detCost(sol) < detCost(bestSol) then
8 simulation(sol, qshort)
9 if expCost(sol) < expCost(bestSol) then

10 bestSol ← sol
11 Elite← Elite ∪ {sol}
12 end
13 end
14 niter ← niter + 1
15 end
16 foreach sol ∈ Elite do
17 simulation(sol, qlong)
18 end
19 Elite← sort(Elite)
20 bestStochSols← selectTopSols(Elite)
21 return bestStochSols
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5. Computational Experiments

The proposed fuzzy simheuristic has been implemented using Python 3.8 and tested
on a common PC with a multi-core processor Intel i7 and using 8 GB of RAM. The algorithm
was executed five times with different seeds for a maximum time of 100 s for each instance.
To the best of our knowledge, there are no instances in the literature for the stochastic-
and-fuzzy problems described above. Accordingly, we have extended the well-known
deterministic benchmarks proposed by Chao et al. [9] and Augerat et al. [80] for the
TOP and the VRP problems, respectively. The following subsections describe in detail the
process used to transform these deterministic benchmarks into stochastic-fuzzy ones.

5.1. A Fuzzy-Stochastic Approach for the VRP

In order to check the performance of our algorithm, we compare it with some bench-
mark instances that can be found in the literature. From Augerat et al. [80], we have chosen
29 of the classical instances that can be suitable for our study. The nomenclature of the
instances is as follows: ‘L− nXX − kY’ where L ∈ {A, B, E} is the set identification, XX
denotes the number of customers and Y establishes the number of vehicles. For carrying
out the experiments, we assumed that the demand di of each customer i is uncertain and,
therefore, we have modeled it either as a stochastic or as a fuzzy variable.

Regarding the stochastic scenario, the instances were extended by considering that
the stochastic demand Di follows a log-normal probability distribution. The parameters
of this distribution were adjusted according to the mean E[Di] = di ∀i ∈ N, where di
is the deterministic demand, and the variance Var[Di] = c · di. The parameter c is a
design parameter that allows us to set up the level of uncertainty. It is expected that, as c
converges to zero, the results of the stochastic version will converge to those obtained in
the deterministic scenario. In our experiments, we have utilized the value c = 0.25, which
introduces a medium level of uncertainty. Concerning to the fuzzy scenario, we consider
the demand Di, for each customer i, as a fuzzy variable. This demand can be estimated as
low, medium, or high (L, M, H). Likewise, we assume that the vehicle remaining capacity,
RC, is an input variable of the fuzzy system. Besides, each of the aforementioned demand
levels is defined by a triangular fuzzy number Di = (d1i, d2i, d3i). Figure 4 shows the
membership functions of these fuzzy sets. Similarly, the remaining vehicle capacity RC
is represented by a triangular fuzzy number RC = (rc1, rc2, rc3), which takes the values
low (L), medium (M) or high (H) capacity. Figure 5 displays the membership function
of the capacity fuzzy sets. Note that both the demands and the remaining capacities are
expressed as a percentage of the total vehicle capacity, i.e., 0 ≤ Di ≤ 1 and 0 ≤ RC ≤ 1.

Figure 4. Fuzzy sets for the customer i demand.



Appl. Sci. 2021, 11, 7950 11 of 22

Figure 5. Fuzzy sets for the remaining capacity after visiting customer i.

For each node i, we define a preference index, pi, as the output of the fuzzy system,
such that 0 ≤ pi ≤ 1. When this index takes the maximum value (pi = 1) then the next
node of a route will be visited for sure as the remaining capacity RC of the vehicle can meet
the demand Di+1. Moreover, if pi = 0, then we are sure that Di+1 > RC and, consequently,
the vehicle needs a replenishment at the depot. The preference index is classified into very
low (VL), low (L), medium (M), high (H) and very high (VH) levels. The membership
function related to each of these categories can be seen in Figure 6. The reasoning rules that
determine the preference to travel to the next node–depending on the levels of the demand
and the remaining capacity–are featured in Table 1. After performing a set of fine-tuning
experiments, we established the threshold value to visit the next node to p = 0.25. This
means that whenever the calculated pi is greater than 0.25, the next node will be visited;
otherwise, the vehicle will return to the depot for a replenishment. The calculation of
a specific value for pi requires converting the input variables into a crisp value. Hence,
the estimated crisp values of the demand and the remaining capacity, the membership
functions and the reasoning rules are employed in a fuzzification-defuzzification process
to obtain the preference index. In our case, the defuzzification method applied was the
well-known center-of-gravity method to obtain the output crisp value.

Figure 6. Fuzzy sets for the preference strength to travel to customer i.
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Table 1. The rules used in the Fuzzy system for the VRP.

Demand
Remaining Capacity

L M H

L M H VH
M L M H
H VL L M

5.2. A Fuzzy-Stochastic Approach for the TOP

The deterministic benchmark used contains a total of 320 instances that are distributed
in 7 subsets. The instances are identified following the nomenclature ‘pa.b.c’, where a
represents the subset, b defines the number of available vehicles, and c identifies the
specific instance under study. For experimentation purposes, we have considered that
the uncertainty is located in the travel times between two pairs of nodes. To extend the
instances to be employed in the stochastic scenarios, we have assumed that travel times,
Tij, follow a log-normal probability distribution. In setting up the stochastic instances,
we assume that E[Tij] = tij, ∀(i, j) ∈ N, where tij is the travel time for the corresponding
deterministic instance. We set the variability in the travel times with reference to the
deterministic travel time such that Var[Tij] = c · tij, and c ≥ 0. As in the VRP problem,
we have utilized the value c = 0.25 to induce a medium level of uncertainty in the travel
times. With the aim of extending the instances to be used also in fuzzy scenarios, we have
considered the travel times for each pair of nodes, tij, as a fuzzy variable. This variable
has been modeled using a fuzzy inference system. We have assumed the case of electric
vehicles and used their battery levels, as well as the reward of each node, as the input
variables of the fuzzy system. The battery level (Q) of each vehicle can be estimated as
low (L), medium (M), or high (H). The low and high levels are represented by a triangular
fuzzy number Q = (q1, q2, q3), while the medium level follows a trapezoidal fuzzy number
Q = (q1, q2, q3, q4). All battery values are expressed as a proportion of the total battery
level, i.e., 0 ≤ Q ≤ 1. The membership function of this fuzzy set is displayed in Figure 7.
Similarly to the battery level, the reward of each node has been categorized using three
fuzzy sets: low (L), medium (M), or high (H), where each of them follows a triangular
distribution. The reward values have been represented as a proportion of the maximum
reward that can be collected at any node of all the possible nodes to be visited.

Figure 7. Fuzzy sets for the battery of each vehicle.

Finally, the output of the fuzzy system gives a preference index, p, which indicates
the inclination to visit the next node in the route. This index depends on both the reward
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of the next node and the remaining battery of the vehicle. This preference index has been
defined between 0 and 1, i.e., 0 ≤ p ≤ 1. When p = 1, the vehicle will definitely visit the
next node in the route, since the vehicle will reach the node. On the contrary, when p = 0,
we are sure that the vehicle will not reach the next node, and the vehicle will remain in the
current node. In this case, the route will present a failure, because the vehicle fails to reach
the final depot, and consequently, the total reward of the route has been onlyt partially
collected. We have classified the preference as: very low (VL), low (L), medium (M), high
(H), or very high (VH). Each of these categories is represented by a fuzzy set. Finally, we
have established a set of reasoning rules (Table 2), which describe the knowledge needed to
determine the preference to visit the next node. After a quick fine-tuning process, we have
set the threshold value for visiting the next node to p ≥ 0.45. Note that this is a sensitive
value, as a larger value could lead to generating overly conservative routes, while a value
close to 0 could lead to risky decisions. In order to transform the input variables into a crisp
value, the contribution of each membership function is combined on the inference, while
a union operator is used to determine the output distribution. Subsequently, the center-
of-gravity method is applied in order to obtain a crisp output value corresponding to the
preference value.

Table 2. The rules used in the Fuzzy system for the TOP.

Battery
Reward

L M H

L VL L M
M L M H
H M H VH

6. Results and Discussion

Tables 3 and 4 display the results of selected instances with different characteristics
for the VRP and the TOP problems, respectively. In the case of the VRP and the TOP,
the results—with the exception of the gap column—are measured in terms of distance
and reward units, respectively. The first column of the tables identifies the instances.
We have divided the remaining columns into three different parts. First, our best-found
deterministic solutions (OBD) are presented (these solutions do not consider stochastic
or fuzzy variables, they refer to the deterministic version of the problem). We compare
the gap of our solutions (column 2) with respect to the best-known solutions (column 1).
In the second part of the table, we present the obtained solutions for the stochastic scenario.
Column 3 displays the expected cost when the OBD is evaluated under a stochastic scenario,
with the corresponding level of uncertainty. To compute the expected cost, a simulation
process has been applied to the OBD solution. Similarly, the next column shows the
expected cost obtained using our simheuristic approach for the stochastic version of the
problem. The last part of the table reports the results obtained considering fuzzy scenarios.
Thus, column 5 reports the best hybrid fuzzy-stochastic solutions. To compute these
solutions, we assume that half of the nodes follow a log-normal distribution, and the
remaining half are considered to be fuzzy. In the case of the TOP, where the uncertainty is
related to the edges, we have considered the origin node to evaluate the type of uncertainty.
Finally, the last column of the table reports the solutions obtained in a scenario with a high
level of uncertainty, where all the uncertain variables are considered as fuzzy.

Notice that, although the goal of this paper is not to solve the deterministic version
of the problem, the results show that our approaches are highly competitive for the de-
terministic version of both problems. For the VRP problem, we obtain an average gap of
0.39%, with a maximum gap of 1.27%. Furthermore, the obtained gap is 0.0% for the TOP
problem. These results highlight the quality of our base algorithms, which constitutes the
optimization component in our fuzzy simheuristic, validating their potential to be used in
uncertainty scenarios.
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Table 3. Comparison of results, in terms of traveled distance, for the different VRP scenarios.

Deterministic Scenario Stochastic Scenario Fuzzy Scenario

Instance BKS OBD GAP (%) Det Stochastic Stoch-Fuzzy Fuzzy
(1) Sol. (2) (1)–(2) Sol. (3) Sol. (4) Sol. (5) Sol. (6)

A-n32-k5 787.1 787.2 0.01% 1117.0 797.5 1119.0 1245.4
A-n33-k5 662.1 662.1 0.00% 895.4 667.8 811.6 988.8
A-n33-k6 742.7 742.7 0.00% 860.6 755.0 868.6 990.8
A-n37-k5 672.5 674.2 0.26% 974.8 682.4 926.8 1044.3
A-n38-k5 733.9 739.7 0.79% 768.4 761.5 945.0 1118.5
A-n39-k6 833.2 835.2 0.24% 835.7 835.3 1118.1 1236.4
A-n45-k6 952.2 957.1 0.51% 1074.2 1030.0 1264.9 1510.4
A-n45-k7 1147.4 1156.4 0.79% 1251.6 1161.2 1438.8 1754.7
A-n55-k9 1074.5 1085.9 1.06% 1128.6 1126.9 1292.8 1584.8
A-n60-k9 1360.6 1365.8 0.38% 1380.4 1371.5 1791.1 2135.4
A-n61-k9 1040.3 1049.0 0.83% 1128.4 1118.6 1361.2 1622.5
A-n63-k9 1633.7 1641.0 0.45% 1720.9 1689.4 2248.6 2847.1
A-n65-k9 1184.7 1195.2 0.89% 1332.2 1271.5 1594.6 1936.4
A-n80-k10 1776.2 1792.7 0.93% 2013.0 1838.5 2761.4 3334.5
B-n31-k5 676.1 676.5 0.06% 697.5 677.3 693.2 1068.4
B-n35-k5 958.9 959.4 0.05% 1053.4 1033.2 1215.4 1588.0
B-n39-k5 553.2 553.7 0.08% 585.6 584.6 855.3 1037.3
B-n41-k6 835.8 840.8 0.60% 924.9 862.8 1152.2 1344.5
B-n45-k5 754.0 754.7 0.10% 776.4 768.3 1085.0 1202.7
B-n50-k7 744.2 744.2 0.00% 789.4 778.1 991.7 1235.8
B-n52-k7 754.5 756.8 0.31% 852.1 763.8 1084.5 1355.6
B-n56-k7 716.4 719.4 0.42% 802.6 735.5 1023.0 1340.3
B-n57-k9 1602.3 1603.8 0.09% 1915.8 1700.0 2047.6 2723.9
B-n68-k9 1300.2 1306.5 0.48% 1491.7 1359.1 1776.7 2348.9
B-n78-k10 1250.6 1256.6 0.48% 1413.0 1383.9 1759.8 2146.6
E-n22-k4 375.3 375.3 0.00% 375.3 375.3 376.4 502.3
E-n30-k3 505.0 505.0 0.00% 505.0 507.9 742.4 838.0
E-n33-k4 837.7 839.4 0.21% 839.7 839.7 1183.0 1506.9
E-n76-k10 841.3 852.0 1.27% 926.0 902.9 1194.6 1336.8

Average 941.6 945.8 0.39% 1049.3 978.6 1266.3 1549.2

Regarding the uncertainty scenarios—which represent the main contribution of this
paper—Figure 8a,b depict an overview of Tables 3 and 4, respectively. In these box plots,
the vertical axis represents the gap that was obtained in the stochastic and fuzzy scenarios
with respect to the OBD solution—which is used here as a reference value. The latter can be
considered as an ideal scenario with perfect information, which is not the case in scenarios
with stochastic or fuzzy components. Concerning the stochastic solutions, the results show
that those provided by the simheuristic clearly outperform the solutions of the deterministic
version of the problem when these are simulated for all the considered problems, i.e., using
the OBD solutions for the stochastic scenario is not a good idea, since it leads to sub-optimal
solutions. On average, an improvement of about 7.91% is observed for the VRP problem,
while an improvement of about 1.72% is reported for the TOP problem. These results justify
the importance of using hybrid simulation-fuzzy methods when dealing with optimization
problems under uncertainty.

Regarding the fuzzy scenarios, Figure 9 displays a summary of the presented results
for different problems. The vertical axis represents the gap obtained for the different
optimization methods with respect to the OBD solution. This figure shows that the solution
quality worsens as the uncertainty level increases. This is due to route failures occurring
during the execution stage, which penalize the entire route and, therefore, cause an extra
cost. Figures 10–13 illustrate a numerical example for the VRP instance A-n80-k10. Figure 10
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depicts the configuration of the deterministic solution and its associated cost (1797.05). This
cost can be seen as a lower-bound reference value in a scenario with perfect information.
Figures 11–13 show a representation of the obtained solution considering different levels
of uncertainty. As the level of uncertainty increases, the total cost also increases, i.e., the
highest cost (1860.94) is reached in the completely fuzzy scenario, where the solution cost
has increased up to 3.43% with respect to the deterministic solution. This extra cost is
mainly caused by the rise in failure costs, since a greater number of detours and round-trips
are expected when the uncertainty in the demand at each node is higher. Note also that the
solutions have different configurations in each scenario, since the optimization algorithm
attempts to generate routes that reduce the risk of failure.

Table 4. Comparison of results, in terms of collected reward, for the different TOP scenarios.

Deterministic Scenario Stochastic Scenario Fuzzy Scenario

Instance BKS OBD GAP (%) Det Stochastic Stoch-Fuzzy Fuzzy
(1) Sol. (2) (1)–(2) Sol. (3) Sol. (4) Sol (5) Sol. (6)

p1.2.f 80 80 0.0 78.9 79.3 77.4 76.8
p1.2.i 135 135 0.0 127.6 129.4 125.2 117.9
p1.2.k 175 175 0.0 169.3 174.4 164.6 143.2
p1.2.n 235 235 0.0 228.8 232.7 216.2 189.7
p1.3.n 190 190 0.0 182.5 189.6 180.0 174.1
p1.4.j 75 75 0.0 59.3 63.3 51.3 45.1
p1.4.k 100 100 0.0 98.3 99.9 99.9 95.8
p1.4.l 120 120 0.0 118.9 119.2 118.6 117.1
p1.4.m 130 130 0.0 98.2 102.9 91.5 86.3
p1.4.n 155 155 0.0 99.9 104.0 107.5 98.2
p1.4.o 165 165 0.0 159.4 164.2 148.6 143.6
p1.4.p 175 175 0.0 171.3 174.4 163.7 155.5
p2.2.d 160 160 0.0 150.6 150.6 150.0 137.5
p2.2.i 230 230 0.0 223.4 226.3 228.5 204.0
p2.3.i 200 200 0.0 191.5 195.2 186.7 177.9
p3.2.c 180 180 0.0 179.1 179.2 178.9 160.2
p3.2.d 220 220 0.0 212.3 217.5 197.7 179.8
p3.2.g 360 360 0.0 358.3 358.8 308.2 297.9
p3.2.q 760 760 0.0 748.5 755.2 663.4 630.6
p3.2.r 790 790 0.0 768.3 774.9 656.1 638.5
p3.3.e 200 200 0.0 198.2 199.0 195.7 187.6
p3.4.g 220 220 0.0 212.6 217.3 205.0 191.3
p5.2.d 80 80 0.0 75.5 77.4 73.7 70.7
p5.2.k 670 670 0.0 643.3 662.1 646.0 612.5
p5.2.p 1150 1150 0.0 1135.4 1138.1 1105.1 1073.0
p5.3.f 110 110 0.0 107.4 109.1 107.6 103.0
p5.3.o 870 870 0.0 856.2 865.1 836.9 806.9
p5.4.g 140 140 0.0 135.3 137.9 134.3 129.2
p5.4.t 1160 1160 0.0 1139.5 1148.4 1107.4 1068.1
p5.4.u 1300 1300 0.0 1279.5 1286.3 1239.2 1198.2
p6.2.d 192 192 0.0 185.4 188.1 177.8 164.2
p6.2.e 360 360 0.0 276.4 297.2 285.4 277.9
p6.2.f 588 588 0.0 577.4 580.0 519.5 501.2
p6.2.g 660 660 0.0 648.3 650.5 584.9 569.2

Average 362.8 362.8 0.0 349.9 354.3 333.3 318.3
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Figure 8. Gaps of different optimization methods with respect to the OBD solution. (a) Results for
the VRP dataset. (b) Results for the TOP dataset.
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Figure 10. Best solution for VRP-Deterministic scenario.

Figure 11. Best solution for VRP-Stochastic scenario.
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Figure 12. Best solution for VRP-Stochastic and Fuzzy scenario.

Figure 13. Best solution for VRP-Fuzzy scenario.

7. Conclusions

This work has introduced the “fuzzy simheuristic” methodology to deal with NP-
hard transportation problems under uncertainty scenarios, both probabilistic and fuzzy in
nature. This uncertainty is tackled in a general way, since we consider that both stochastic
and fuzzy uncertainty are present in many real-life transportation systems. Hence, pure
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deterministic, pure stochastic, and pure fuzzy scenarios represent particular cases that
can also be addressed by employing our fuzzy simheuristic methodology. Since our
methodology combines metaheuristics with stochastic and fuzzy simulation, it takes the
best characteristics of both worlds, i.e., (i) the metaheuristics component provides the
efficiency necessary to explore the solution space in order to find near-optimal solutions
in short computational times. This characteristic becomes highly relevant when dealing
with transportation problems, which are usually NP-hard; and (ii) the stochastic/fuzzy
simulation component provides suitable tools to cope with different types of uncertainty,
in order to provide high-quality solutions in terms of expected costs, expected profits,
or risk/reliability indicators. A set of numerical instances of two well-known transportation
topics—the vehicle routing problem (VRP) and the team orienteering problem (TOP)—
demonstrates these advantages.

The simultaneous consideration of stochastic and fuzzy uncertainty arises whenever a
subset of elements in a transportation problem–e.g., customers, roads, or vehicles–allows
us to model some uncertainty aspects using probability distributions, while others require
fuzzy techniques due to their vagueness or to the lack of enough historical data. The well-
known VRP and TOP have been useful in testing our approach. For the VRP, we have
studied a numerical example in which demands associated with a group of customers
are stochastic, while a different group of customers presents fuzzy demands. Regarding
the TOP, we have analyzed a case study in which travel times between customers are
stochastic for a group of edges, and fuzzy for another group. The obtained results show
that employing our approach leads to improve the solution quality—in terms of total cost
for the VRP, and total collected reward for the TOP—when uncertainty is considered. All in
all, these numerical examples illustrate the efficiency of the proposed methodology to solve
transportation problems combining, at the same time, deterministic, stochastic, and fuzzy
elements, something that has been rarely explored in the existing literature despite its
relevance in real-life applications.

The challenges for future work are huge, given the increasing necessity of providing
agile and very good solutions to real-world transportation problems considering uncer-
tainty. In this sense, richer versions of the VRP and the TOP can employ and adapt
our fuzzy simheuristic approach. This can be done, for instance, by including decisions
about inventory management, multiple depots, facility location, or time windows, as well
as by incorporating external dynamic conditions that force us to constantly update the
routing plans.
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