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A B S T R A C T   

Reliable distributed hydrological modeling, especially in semi-arid areas, must consider the inclusion of surface 
soil moisture (SSM) spatial information during the calibration process. This variable plays a key role in the 
evapotranspiration processes that determine the hydrological cycle. The coarse resolution of the SSM estimates 
by satellite remote sensing has restricted the application of this approach to only large basins, focusing most of 
the studies in the consideration of simply the temporal dynamics of this variable. The growing efforts in 
providing higher spatial resolution through disaggregating methodologies or new sensor estimates facilitates the 
application of this spatial approach to small basins. This paper explores the applicability of the currently 
available satellite surface soil moisture estimates for distributed eco-hydrological modelling in Mediterranean 
forest basins. On one hand, this study contributes to fill the existing research gap on the use of remote sensing 
SSM spatial patterns within the distributed hydrological modelling framework in small basins. On the other 
hand, it serves as an indirect validation method for the spatial performance of satellite SSM products. To achieve 
this goal, we implemented the eco-hydrological model TETIS in three case studies named: Hozgarganta (southern 
Spain), Ceira (western Portugal) and Carraixet (eastern Spain). The SSM estimates selected for comparison were 
Sentinel-1 SSM provided by the Copernicus Global Land Services (CGLS), SMAP SSM disaggregated using 
Sentinel-1 (SPL2SMAP_S) provided by the National Aeronautics and Space Administration (NASA), SMOS SSM 
provided by the Barcelona Expert Center (BEC), and SMOS and SMAP SSM disaggregated using the DISPATCH 
algorithm provided by Lobelia Earth. The methodology employed involved a multi-objective and multi-variable 
calibration in terms of remote sensing SSM spatial patterns and in-situ streamflow, using the Spatial Efficiency 
Metric (SPAEF) and the Nash-Sutcliffe efficiency index (NSE) respectively. Before model calibration a sensitivity 
analysis of the most influent variables was performed. The temporal and spatial comparison of the reference SSM 
products revealed inconsistencies amongst products. The disaggregating methodology determined the spatial 
agreement to a greater degree than the sensor itself (i.e. SMAP, SMOS). In spite of the differences amongst 
products, the multi-objective calibration approach proposed increased the robustness of the hydrological 
modelling.   

1. Introduction 

The reliable determination of the hydrological variables in a catch
ment has been a challenging objective for a long time. Many hydro
logical models have emerged as a response to growing demand of 
operational tools. Amongst them, deterministic distributed hydrological 
models offering spatial explicit predictions can fulfil the lack of spatial 
representation of the dominant hydrological processes when available 
in-situ observations are not sufficient. Traditionally, hydrological model 
calibration was based on solely streamflow information. However, this 

does not guarantee the correct representation of the spatial heteroge
neity of other state variables (Rajib et al., 2016; Wambura et al., 2018). 
The introduction in hydrological models of satellite derived information 
has the potential to overcome this limitation by improving models 
performance, both temporally and spatially (Laiolo et al., 2016; Lopez 
et al., 2017; Herman et al., 2018; Dembelé et al., 2020a). Additionally, it 
should not be ignored the existing relationship between vegetation dy
namics and the related hydrological processes. Thus, vegetation requires 
proper representation in eco-hydrological models to attend reliability 
requirements in catchments with representative areas of forestry or 
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agricultural uses (Pasquato et al., 2015; Ruiz-Pérez et al., 2017; Bai 
et al., 2018). 

The surface soil moisture information derived from satellite data has 
been commonly employed for improvement in the hydrological 
modelling, due to its importance in the description of the hydrological 
cycle (GCOS, 2019), especially in semi-arid areas. This has been mostly 
done via assimilation (Laiolo et al., 2016; Alvarez-Garreton et al., 2016; 
Abbaszadeh et al., 2020; Khaki et al., 2020) or direct calibration ap
proaches (Wanders et al., 2014; Silvestro et al., 2015; Rajib et al., 2016; 
Lopez et al., 2017; Dembelé et al., 2020a). Most of the studies have 
focused on the temporal dynamics of the SSM, mainly due to the coarse 
spatial resolution of the available estimates. Special attention to spatial 
patterns was restricted only to large basins (Dembelé et al., 2020a). The 
growing efforts in providing higher spatial resolution through dis
aggregating methodologies (Merlin et al., 2013;; Piles et al., 2011;Piles 
et al., 2012; Das et al., 2019) or new sensor estimates (Bauer-Mar
schallinger et al., 2019) allow to provide operational estimations at 1 
km, which is an accepted basic assumption for eco-hydrological re
sources management (Sabaghy et al., 2020). Thus, the emerging 
research performed in hydrological model evaluation and calibration 
based on spatial patterns (Koch et al.,2015; Mendiguren et al., 2017; 
Demirel et al., 2018; Koch et al., 2018; Zink et al., 2018), can be 
transferred to SSM for medium and small basins. However, there is an 
underlying uncertainty in current SSM products (Fang et al., 2016; 
Al-Yaari et al., 2019; Wang et al., 2021) and model performance is 
dependent on the selection of the reference product used for calibration 
(Dembelé et al., 2020b). In consequence, a previous analysis of their 
performance before the calibration process is necessary. 

This paper is aimed at the evaluation of the current available satellite 
soil moisture products (at 1 km spatial resolution) for distributed eco- 
hydrological modelling in Mediterranean basins. Firstly, it contributes 
to fill the existing research gap on the use of remote sensing SSM spatial 
patterns within the distributed hydrological modelling framework in 
small basins. Secondly, it serves as an indirect validation method of the 

spatial performance of satellite SSM products. To achieve these goals, we 
selected TETIS hydrological model (Francés et al., 2007), which is a 
conceptual deterministic model. In its tanks structure, processes are 
represented by parameters that are physically based and spatially 
distributed. It has a dynamic vegetation sub-model (Pasquato, 2013; 
Pasquato et al., 2015) and has been implemented in several case studies 
(e.g. Ruiz-Pérez et al 2016; Ruiz-Pérez et al., 2017; Puertes et al., 2019; 
Echeverría et al., 2019; Barrientos et al 2020). Echevarria et al (2019) 
stated the possibility of calibrating the TETIS model basing exclusively 
in satellite information. Three case studies, named Carraixet (eastern 
Spain), Hozgarganta (southern Spain), and Ceira (western Portugal), 
have been strategically selected to perform this research in the Medi
terranean Region. Four different sources of SSM estimates were 
considered for the study: Sentinel-1 SSM provided by Copernicus Global 
Land Services (CGLS), SMOS SSM provided by the Barcelona Expert 
Center (BEC), SMAP SSM disaggregated using Sentinel-1 provided by 
NASA, and SMOS and SMAP SSM disaggregated using the DISPATCH 
algorithm provided by Lobelia Earth. The methodology employed 
involved a multi-objective, multi-variable calibration in terms of remote 
sensing SSM spatial patterns and in-situ streamflow. 

The paper contents are organised as follows: section 2 introduces 
TETIS eco-hydrological model. Section 3 deals with the description of 
the study sites and the data employed in TETIS implementation together 
with a description of the SSM products considered. It includes the 
methodology employed for the remote-sensing SSM product compari
son, model calibration steps (sensitivity analysis, calibration experi
ments and assessment metrics) and model evaluation. Section 5 and 6 
provide the results and their discussion respectively. Finally, section 8 
summarizes the main conclusions derived from this study. 

2. TETIS eco-hydrological model 

TETIS is a hydrological conceptual distributed model useful for both 
for flood event and continuous simulation. The TETIS model bases the 

Fig. 1. Conceptual scheme of the TETIS hydrological model (a), diagram of the hydrological sub-model for ECO-TETIS (b) and bidimensional simplification of the 
horizontal flow for TETIS (c). 
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runoff production on the water balance calculation for each cell. The 
water is assumed to be distributed in six conceptual storage tanks 
interconnected (Fig. 1a). The tanks represent the capacity in the water 
storage by the vegetation cover (T6), the static storage (T1), the surface 
storage (T2), the gravitational storage (T3) and the aquifer (T4). The 
sixth tank (T5) represents the channel when it exists in the cell as shown 
in Fig. 1c. 

The water volumes (H) stored in each tank are the state variables of 
the model. TETIS has a modular structure. In consequence, these H states 
depend on the conceptual schema adopted. Due to the spatially 
distributed conceptualization, the morphological and hydrologic char
acteristics of the soil in each cell also determine H states. 

The modules in TETIS are conceptualized as an interconnected three- 
dimensional mesh. T2, T3 and T4 drain into the corresponding down
stream one, following the flow directions proposed by the digital 
elevation model (DEM) and reaching the drainage network that consists 
of gullies and channels (Fig. 1c). The cases where the destination cell is a 
gully, both the overland flow and interflow integrate into it while the 
base flow drains to the downstream cell. In channel cells all the output 
flows integrate into the river channel tank (T5). Threshold areas are 
parametrized to discriminate between these three types of cells: hillside, 
gullies, and river channel. Summarizing, runoff translation along the 
basin considers that non-abstracted water circulates on the hillslopes 
until to the natural drainage network of the basin is reached. Onwards, 
water flows through the drainage network itself. Conceptual simplifi
cations of the laws of the Hydraulics in natural channels are included in 
TETIS. The kinematic wave supports the TETIS modelling approach 
assuming uniform flow, and comparable friction and channel slopes. As 
a simplification of the Saint-Venant shallow-water equations, the kine
matic wave integrated in TETIS neglects the terms corresponding to 
inertial and pressure effects in the equation of conservation of energy. 
On the other hand, the hydraulic characteristics of the riverbeds are 
parametrized in TETIS. Consequently, characteristic geomorphological 
information of the basins can be accounted for. 

The eco-hydrological configuration of TETIS includes a dynamic 
vegetation model in which the static storage tank (T1) splits into two 
tanks (Fig. 1b) associated to the different layers found in the first hori
zons of the soil: the shallow static storage (T1a), the deep static storage 
(T1b). T1a involves the processes of evaporation from the bare soil and 
superficial roots transpiration from the first few centimeters of the soil. 
T1b considers the deep roots transpiration processes from the underly
ing layer. 

In T6 the balance of the water stored by the canopy is balanced in 
terms of rainfall and evaporation from the interception considering the 
LAI. The LAI is also dynamically estimated by the dynamic vegetation 
model. TETIS plant biomass production (Pasquato et al., 2015) is based 
on the use of the light use efficiency (LUE) concept and defined in 
Equation (1). 

dBl

dt
= (LUE⋅ε⋅PAR⋅fPAR − Re)⋅φl(Bl) − klBl (1)  

where Bl (gDM.m− 2) represents the leaf biomass and LUE is given in 
gDM.MJ− 1.d-1. PAR is the photosynthetic active radiation (MJ.m− 2), 
fPAR is the fraction of PAR absorbed by the vegetation calculated from 
the Beer-Lambert law. ε is a stress factor that mainly includes moisture 
(and temperature) stress effects linking the hydrological changes to the 
vegetation performance in water-controlled systems. Re is the respira
tion (gDM.m− 2) based on tissue specific C:N ratios, air temperature and 
phenology according to Sitch et al. (2003). φl(Bl) represents the frac
tional leaf allocation and is calculated by the model as 1 − Laimax/Lai. kl 
(d-1) is the leaf natural decay factor used to consider the senescence. 
Scaling Bl by the specific leaf area, SLA (m2.gDM− 1), and by the vege
tation fraction cover, fc between 0 and 1, LAI is finally obtained (eq. 
(2)). 

LAI = Bl⋅SLA⋅fc (2)  

3. Study sites description and data 

3.1. Study sites 

Three study sites (Fig. 2) were selected to be representative of the 
climatology and the hydrology of the Mediterranean Bio-geographical 
region in the Iberian Peninsula: Ceira River basin (northwestern 
Portugal), Hozgarganta River basin (southern Spain), and Carraixet 
River basin (eastern Spain). The extension covered by natural land uses 
(i.e. with no human influence) represents at least 50% (Fig. 3). This fact 
enables to perform the comprehensive analysis proposed in this paper as 
precisely in these pixels there is a concordance on what TETIS is simu
lating and the remote sensing SSM observations (i.e. SSM driven by 
precipitation with no influence of irrigation). Apart from this, the spatial 
distribution of the stations (Fig. 3) properly represents the meteoro
logical dynamics (Table 1) in each basin. Data is provided quality 
controlled by the responsible institutions (Table 2). 

Fig. 2. Study sites location in the Mediterranean Bio-geographical region of the Iberian Peninsula: Ceira River basin (northwestern Portugal), Hozgarganta River 
basin (southern Spain), and Carraixet River basin (eastern Spain). 
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The Hozgarganta River starts at the confluence of the La Sauceda 
gorge (Province of Málaga, Spain) and the Pasada Llana canyon at 160 
m.a.s.l. This river collects water from the Los Alcornocales Natural Park 
in the province of Cádiz (Spain). After 45.6 km in natural regime, it 
discharges to the Guadiaro River, which drains to the western Medi
terranean Sea. The Hozgarganta river basin extends over approximately 

228.3 km2 of forestry main land uses dominated by coniferous, broad
leaved, and mixed forests, with some isolated presence of natural 
grasslands, moors and heathland, sclerophyllous vegetation, transitional 
woodland-shrub, pastures, and agro-forestry areas. The gauging station 
with the same name, Hozgarganta (280189, 4034238 in ETRS89/UTM 
zone 30 N, EPSG 25830) allows the consideration of the complete 

Fig. 3. Land cover, meteorological stations and gauging stations in the case studies: a) Hozgarganta River basin (Spain), b) Carraixet River basin (Spain), and c) Ceira 
River basin (Portugal). 
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natural drainage area of this tributary. Elevation range between 38 and 
1042 m above the sea level (m.a.s.l) (EU-DEM v1.1). The annual rainfall 
of data analysed in this research ranges between 550 and 1100 mm, and 
the reference evapotranspiration is close to 1200 mm. As is frequent in 
Mediterranean basins, rainfall between October and April is intense 
while summer is a dry season. In consequence, Hozgarganta suffers 
relevant runoff reduction in the upper basin during summer. In contrast, 
many pools and ponds remain permanent sustaining the local fauna. 
Mesozoic and Cenozoic eras represent the lithology that frame the hy
drogeology in the Aljibe unit, where the presence of characteristic 
sandstones and clays determine the low permeability of the basin. 

The Ceira River basin is a tributary of the Mondego River and their 
confluence is situated slightly upstream the city of Coimbra (Portugal). 
Ceira River springs in the Açor Mountains System, near Piódão village 
(1300 m.a.s.l.). During its 106 km haul, the mainstream of the Ceira 
River collects water from a catchment area of 496.89 km2. Forestry main 
land uses dominate the basin, showing three main areas: the upper basin 
where transitional woodland-shrub dominate in combination with 
moors and heathlands areas with presence of coniferous and mixed 
forests; the middle basin where these forests gain relevance; and the 
lower basin where transitional areas and complex cultivation patterns 
cover most of the land surface. Ponte Cabouco gauging station (553466, 
4447702 in ETRS89/UTM zone 29 N, EPSG 25829) provided enough 
and good quality hydrological information that revealed permanent 
flow (mean value 5.83 m3/s) and occasional winter floods of relevant 
intensity. Elevation in the basin ranges between 62 and 1380 m.a.s.l 
(EU-DEM v1.1). Annual rainfall ranges in this research between 380 and 
1040 mm (very dry years compared to historical references of annual 
rainfalls between 1000 and 1400 mm), and reference evapotranspira
tion is about 400 mm. Permeabilities are low or very low in the Ceira 
River catchment, with relevant presence of metamorphics and 

sedimentary rocks. Limestone, quartzite and Paleozoic gabbro, Tertiary- 
age deposits and terraces and gravels can be found all over the Maciço 
Antigo in the area. 

The Carraixet River has its source at Gàtova and collects water from 
the southern Calderona mountain range in the province of Valencia 
(Eastern Spain). After 45 km, it drains directly into the Mediterranean 
Sea north to the city of Valencia. The Carraixet upper river basin extends 
over approximately 236.5 km2 of forestry main land uses dominated by 
coniferous forests and transitional woodland-shrub areas. Natural 
grasslands and sclerophyllous vegetation represent lower stratums in the 
study site. Urban and agricultural uses dominate the lower basin with 
high presence of fruit trees plantations and complex cultivation patterns. 
The gauging station of Bétera (716948, 4387531 in ETRS89/UTM zone 
30 N, EPSG 25830) is the perfect reference outlet to consider the study 
site well represented by natural land covers. Frequently absent base flow 
characterizes the hydrology, as it is common in Mediterranean ephem
eral streams. Elevation in the basin ranges between 55 and 898 m.a.s.l 
(EU-DEM v1.1). Annual rainfall ranges between 270 and 480 mm 
approximately, while reference evapotranspiration ranges between 
1000 and 1200 mm. This fact indicates the study site is clearly semiarid. 
Following the typical Mediterranean patterns, rainfall prevail in autumn 
and spring, while reference evapotranspiration stands out in spring and 
summer (the driest season). Two main areas highlight regarding the li
thology: oldest formations dated as Triassic in the upper basin, and 
newest formations from the Quaternary in the lower basin. Conglom
erates, sandstones, limestones and multi-colored clays, combined with 
gravel soils, conglomerates, sands and silts determine the hydrogeology. 
Karst intensity is determinant for the percolation processes in the basin. 

Not relevant erosive processes take place in most of the basins sur
faces since they are mature basins with morphological stability, just in 
upper basin of Hozgarganta some erosion risk can be deducted from 
huge slopes in the tributary gorges. 

3.2. Input datasets and model setup 

Table 2 summarizes model input data used for TETIS distributed 
parameter estimation. All the inputs were conveniently reprojected and 
resampled to accommodate to the model spatial resolution (250 m) and 
temporal resolution (1d). Regarding elevation data, they were obtained 
from the EU-DEM V.1 product available at https://land.copernicus. 
eu/imagery-in-situ/eu-dem/eu-dem-v1.1. Correction of the dem, if 
necessary, consisted in filling sinks and carving the reference river 
network. Derived parameters maps involved the drainage directions 
(dd), accumulated draining cells (adc), slope (s) and hillslope velocity 
(u) calculated as 

̅̅̅̅̅
2s

√
. Land use information was obtained from the 

Corine Land Cover product 2018 release available at https://land. 
copernicus.eu/pan-european/corine-land-cover/clc2018, although 
some modifications were considered based on the Copernicus Global 
Land Service (CGLS) Land Cover product. This is the case of Ceira, in 
which burnt area pixels were reclassified with the most common pixel 
value of the CGLS for the period 2015–2020. For the case of Carraixet, 
Corine land cover the natural land uses pixels were reclassified based on 
the CGLS product. Resulting maps, were additionally compared to high 
resolution google earth images to ensure accuracy. Soil properties (field 
capacity (fc), witling point (wp) and saturated hydraulic conductivity 
(Ks)) were obtained from the 3D-Eurosoils product (Tóth et al., 2017) 
available at https://esdac.jrc.ec.europa.eu/content/3d-soil-hydraulic 
-database-europe-1-km-and-250-m-resolution. The corresponding field 
capacities and wilting points of the different soils depths provided by 
this database were conveniently regrouped in order to accommodate to 
the surface (first 5 cm) and deep layer (5 cm up to root depth or bedrock) 
of the model. Root depth was fixed for the different land uses. Optimum 
point was considered as 2/3 of field capacity. Ks and Kss were calculated 
as 1/Ks = (1/L)

∑
bi/KSi and Kss = (1/L)

∑
biÂ⋅KSi , respectively, 

Table 1 
Meteorological characterization of the case studies considering years between 
2016 and 2020.  

Case study Annual mean 
temperature 
(℃) 

Annual 
precipitation 
(mm) 

Annual reference 
evapotranspiration 
(mm) 

Hozgarganta 
River basin 

17.7 ± 0.4 826 ± 278 1212 ± 41 

Ceira River 
basin 

14.0 ± 0.3 706 ± 328 412 ± 3 

Carraixet River 
basin 

16.6 ± 0.1 373 ± 108 1142 ± 11  

Table 2 
Model input data used in study cases distributed parameter estimation. Original 
spatial resolution of source files is indicated in parenthesis. Dd refers to drainage 
directions, cda to accumulated drainage cells, so to slope, u to hillslope velocity 
(m.s− 1), wp to wilting point (mm), fc to field capacity (mm), opt to optimum 
point (mm), Ks to infiltration capacity (mm.h-1), Kss (mm.h− 1) to interflow ve
locity, Kp to percolation capacity (mm.h− 1), Ksa to saturated hydraulic con
ductivity (mm.h-1) and Kps to deep aquifer flow (mm.h-1), swd to surface water 
detention (mm), fvc to vegetation fraction cover, P to precipitation (mm), T to 
air temperature (◦C), ETO to reference evapotranspiration (mm), SR to solar 
radiation (MJ.m− 2.d-1) and Q to discharge (m3.s− 1).   

Source TETIS distributed 
parameter 

DEM EU-DEM v.1 (25 m) dd, cda, so, u 
Land Cover Corine Land Cover 2018 (100 m) Land use, fc,wp, opt 
Soil 

properties 
3D-Eurosoils (250 m) Ks, Kss, fc, wp, opt 
GLHYMPS.V2.0 (geodatabase) Kp, Ksa, Kps 
Soilsgrids (250 m) swd, porosity 

Vegetation Landsat GEE (30 m) fvc 
Hydro-meteo SiAR, SAIH-HIDROSUR, SAIH Júcar, 

SNIRH 
P , T , ET0, SR, Q  
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where L refers to the total soil depth up to the bedrock, bi the difference 
between consecutive depths and Ksi the values of the saturated hydraulic 
conductivity for the seven depths. Depth to bedrock was obtained from 
soilgrids (Hengl et al., 2017)). Percolation capacity (Kp) was directly 
obtained from the GLHYMPS V.2.0 (Huscroft et al., 2018) available at 
https://dataverse.scholarsportal.info/dataset.xhtml? 
persistentId=doi:10.5683/SP2/TTJNIU. For the case of the saturated 
horizontal hydraulic conductivity (Ksa) and deep aquifer flow velocity 
(Kps) the following assumptions were considered: Ksa = Kp and Kps =
0.1Kp. Surface water detention was calculated according to Manfreda 
et al., 2005, considering the soil texture, slope and land use. Fractional 
vegetation cover was obtained from LANDSAT NDVI data directly in the 
google earth engine platform. NDVI was scaled between the NDVI values 
of a bare soil pixel (NDVIs) and full vegetation cover pixel (NDVI∞) over 
the study region. Corresponding value of 0.13 and 0.85 respectively 
were selected for the three study regions. The mean value for the tem
poral period considered 2016–2020 was considered as TETIS input. 
Finally, hydro-meterological data was provided by the SAIH-Hidrosur 
(http://www.redhidrosurmedioambiente.es) for the case of Hozgar
ganta river and SAIH-Júcar (http://saih.chj.es/chj/saih/) for the case of 
Carraixet river. Temperature (T) and solar radiation (SR) data were 
obtained from the national system of agricultural information (SIAR) for 
the Spanish cases. In the case of Ceira river, all the information was 
provided by the Sistema Nacional de Informaçao de Recursos Hídricos 
(SNIRH). The different stations available for each basin are displayed in 
Fig. 3. Regarding the geomorphological relationships used in TETIS they 
were obtained from previous studies (Bussi et al., 2014). For Carraixet, 
the effect of transmission losses present in ephemeral rivers was taken 
into account by introducing a loss point per km along the main river 
channel. Transmission losses values were calculated following Neitsch 
et al. (2011). Mean river width for each kilometer and a channel effec
tive hydraulic conductivity of 3.75 mm.h− 1 were considered for 
calculation. 

3.3. Satellite products 

3.3.1. Sentinel-1 SM 
Sentinel-1 (S1) soil moisture data is obtained by applying the 

Technological University of Vienna (TU-Wien) change detection method 
(Wagner, 1998) to C-band Sentinel-1 backscatter time series which are 

collected in Interferometric Wade Swath (IW) and VV-polarization mode 
(Bauer-Marschallinger et al., 2019). In a first step, backscatter values are 
terrain-geo-corrected and radiometrically calibrated, then they are 
normalized to a reference incidence angle considering the linear slope 
parameter. Finally, relative soil moisture values (expressed in %, from 
0 to 100) are derived by scaling the normalized backscatter values be
tween the historically driest (dry reference) and wettest (wet reference) 
observed values. Output spatial resolution is 1 km. Pre-processing of 
these data consisted in two phases: spatial resampling to adequate to the 
considered spatial projection and translation to absolute soil moisture 
values considering soil porosity. Porosity information was obtained from 
SOILGRIDS bulk density following Das (2013). Soil moisture values 
were previously screened for already masked invalid pixels. Finally, 
daily values were monthly aggregated. To maximize the amount of data 
considered for the analysis, a month was considered valid if it had at 
least 3 available days. For the simplicity of notation, we will refer to this 
product as S1. 

3.3.2. SMAP/S1 
SMAP/Sentinel-1 L2 Radiometer/Radar Soil Moisture (SPL2SMAP_S 

level-2) product results from the merging of Soil Moisture Active Passive 
(SMAP) radiometer data with Sentinel-1A/1B radar data through an 
active/passive downscaling algorithm. This downscaling is obtained by 
two different approaches: baseline and optional. The baseline approach 
is focused on the disaggregation of the L-band brightness temperature 
from the SMAP Level-2 Enhanced product (L2_SM_P_E) at about 33 km 
spatial resolution in EASE2 9 km grid, using the fine resolution (at 1 km) 
Sentinel radar backscatter, which are collected in IW Swath mode and 
VV and VH polarization mode. The soil moisture is then retrieved by 
applying the Single Channel Algorithm at vertical polarization (SCA-V) 
to the downscaled brightness temperature. In the optional approach, the 
soil moisture available in L2_SM_P_E is directly disaggregated at 1 km 
using the sentinel backscatter cross-sections (Das et al., 2017). For the 
rest of the paper, we will refer to SMAP-BS for the baseline approach and 
SMAP-DIS for the optional approach. In an analogous way to Sentinel-1 
SSM pre-processing consisted in spatial resampling to the reference 
spatial projection. For this case, as screening for invalid pixels consid
ering only data with good quality reduced considerably the amount of 
available data, we decided to simply filter soil moisture values by an 
upper threshold given by porosity (same as in Sentinel-1 SSM) so we 
could discard possible outliers. Finally, daily values were monthly 

Table 3 
Parameter and associated ranges considered for sensitivity analysis. For the case of Hozgarganta and Ceira [100–5000] range was used for FC6, while for Carraixet 
[0.1–100] was considered.  

Parameter Range Reference 

FC1 – Maximum Static storage factor (–) [0.8–1.5] This study 
FC2 – Evapotranspiration vegetation factor (–) [0.8–1.5] This study 
FC3 – Infiltration capacity factor (–) [0.2–1.2] This study 
FC4 – Slope velocity factor (–) [0.2–1.2] This study 
FC5 – Percolation capacity factor (–) [0.2–1.2] This study 
FC6 – Interflow hydraulic capacity factor (–) [0.1–100] 

[100–5000] 
This study 

FC7 – Deep aquifer percolation capacity factor (–) [0.2–1.2] This study 
FC8 – Connected aquifer hydraulic conductivity factor (–) [100–5000] This study 
FC9 – Kinematic Geomorphological Wave factor (–) [0.05–1.0] This study 
β – exponent soil water limitation function (–) [1–3] Williams & Albertson 2005 
ξ – exponent vegetation water stress function (–) [1–3] Williams & Albertson 2005 
Imax – maximum leaf interception storage (mm) [0.2–1.2] This study 
% root – Roots ratio in the surface layer (%/100) [0.1–0.5] This study 
k – light extinction coefficient (–) [0.3–0.7] (Ross, 1975) 
Topt – Optimum temperature (◦C) [10–30] This study 
LUE – Light Use Efficiency (gDM/MJd) [1.3–2.7] Copernicus DMP ATBD 
rr – respiration rate (gC/gNd) [0.02–0.08] This study 
kl – the leaf natural decay factor (d-1) [0.003–0.008] This study 
SLA – specific leaf area (m2/gDM) [0.01–0.03] Heinsch et al., 2003 
LAImax – maximum LAI (m2/m2) [0.5–3] This study  
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aggregated. It is worth remembering at this stage that for calibration 
purposes we are dealing with monthly spatial patterns, therefore 
possible uncertainties due to these considerations are minimized. 

3.3.3. SMOS-BEC 
SMOS soil moisture data is provided by the Barcelona Expert Center 

(BEC). We have used the Level-4 product which provides estimates of 
SMOS soil moisture at 1 km across Europe. SSM estimates are obtained 
by applying a semi-empirical downscaling algorithm that relates the 
SSM to the brightness temperature, NDVI and LST (Piles et al., 2011; 
Piles et al., 2012). Inputs to the product are: BEC SMOS Level-3 soil 
moisture, that is directly generated by the L2 SMOS from ESA Expert 
Support Laboratory (ESL) after discarding invalid pixels and binning the 
data to the 25 km EASEv2 grid. Daily SMOS L1 brightness temperature 
(provided by ESA L1C at 25 km) at both horizontal and vertical polar
ization at the Earth surface at three incidence angles (32.5◦, 42.5◦ and 
52.5◦). Daily LST or skin temperature at 12 h at around 9 km provided by 
the ECMWF model. 16-day TERRA MODIS NDVI at 1 km. During the 
process, some considerations are addressed such as sea-land contami
nation and gap-filling of original L3 soil moisture. For more information, 
we refer to the products description file (Pablos et al., 2020). Pre- 
processing consisted in spatial resampling, and monthly aggregation. 
SSM estimates were also filtered by an upper threshold provided by 

porosity. Ascending orbits (06:00 am) were used in this study. For no
tation simplification, we will refer this product as SMOS-BEC. 

3.3.4. SMAP and SMOS DISPATCH 
Alternatively, SMAP and SMOS soil moisture estimates at 1 km were 

obtained considering the DISaggregation based on a Physical and 
Theoretical scale Change (DISPATCH) algorithm (Merlin et al., 2013)). 
Two different low resolution Surface Soil Moisture (SSM) products were 
used in this study: the SMOS mission Level 2 swath-based SSM and the 
SMAP mission Enhanced Level 3 Radiometer Global Daily 9 km 
EASE-Grid SSM. Both products were used as input to the downscaling 
algorithm. DISPATCH disaggregates low-resolution SSM to higher res
olution SSM by using a soil evaporative efficiency (SEE) term at higher 
resolution to model the spatial variability within a low-resolution pixel. 
SEE, defined as the ratio of actual to potential evaporation, is derived 
using Land Surface Temperature (LST) and Normalized Difference 
Vegetation Index (NDVI) data. The distribution of the high-resolution 
SSM around the mean value of the low-resolution SSM products is 
possible through the spatial link between the optical-derived SEE and 
SSM(Merlin et al., 2012) . In this study, the MODIS version-6 LST 
products onboard Terra (MOD11A1) and Aqua (MYD11A1) and NDVI 
product onboard Terra (MOD13A) were used to derive the 1 km SEE 
fields. DISPATCH also uses elevation data extracted from the GTOPO30 

Fig. 4. Sobol sensitivity analysis for the 3 basins considered. Upper row refers to discharge results while lower row to the soil moisture. Sobol’s first and total indices 
are displayed in blue and orange, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

J. Gomis-Cebolla et al.                                                                                                                                                                                                                         



Journal of Hydrology 608 (2022) 127569

8

digital elevation to correct the LST data for topographic effects. A more 
detailed description of the disaggregation methodology can be found in 
(Merlin et al., 2013). Same pre-processing of the final soil moisture 
values as the previous cases was considered. In this case, only days in 
which the downscaling was completely successful (i.e. proper repro
duction of the 1 km spatial features) were considered. These products 
will be named from here on as SMAP-DPAT and SMOS-DPAT. 

4. Methods 

4.1. Surface soil moisture products comparison 

Comparison of the products was performed both temporally and 
spatially. Temporal agreement amongst products was assessed using 

Table 4 
Calibration parameters ranges for the case studies.   

Hozgarganta Ceira Carraixet 

FC1 [0.8–1.3] [1.2–1.5] [1.3–1.6] 
FC2 [0.6–1.3] [0.6–1.3] [1.0–1.3] 
FC3 [0.2–0.8] [0.2–0.8] [0.2–0.6] 
FC4 1 1 1 
FC5 [0.2–0.8] [0.2–0.8] 0.3 
FC6 [1500–3000] 1000 [0.2–10] 
FC7 0.2 [0.2–1] 0.2 
FC8 1000 [4000–5000] [100–500] 
FC9 [0.1–0.6] 1 [0.05–0.15] 
%root 0.1–0.4 0.1–0.4 0.1–0.4 
LAImax 0.7–5 0.7–5 0.7–5  

Fig. 5. Temporal evolution of the standardized monthly values for the different soil moisture products considered. Upper, middle and lower row refer to Hoz
garganta, Ceira and Carraixet, respectively. Monthly aggregated precipitation values are also displayed. For the case of Hozgarganta, 03–2018 precipitation value 
was truncated for a better visualization and for Ceira, the period 08–2017 to 08–2018 has no precipitation records. 
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series of aggregated at basin level soil moisture values and spatially 
distributed correlation images. SSM values were normalized using 
temporal Z-scores (period 2016-2020) in order to discard existing biases 
amongst products and make them comparable. . Finally, spatial pattern 
agreement was obtained by visual comparison of spatial Z-score SSM 
images. These scores were calculated based on spatial mean and stan
dard deviation of the mean SSM image (period 2016–2020). 

4.2. Model calibration 

4.2.1. Sensitivity analysis 
Prior to model calibration we performed a Sobol sensitivity analysis 

(Sobol et al., 2001; Saltelli et al., 2002-2010) that ranked which pa
rameters were more significant to model performance and allowed us to 
reduce the number of parameters to calibrate. This method is based on 
an analysis of variance decomposition. It can be applied to non-linear 
models as no assumption between model input and output is required. 
Assuming that all model inputs are independent, output model variance 
can be decomposed into component variances from individuals and their 
interactions. The sensitivity of a single parameter or their interaction 
can be assessed by the percentage contribution to the total variance. 
These percentages are the so called Sobol’s sensitivity indices. Sobol’s 
first index correspond to the independent contribution of the input 
variables, Sobol’s second index to the interaction among inputs vari
ables and Sobol’s total index correspond to the gathering of these two 
effects. This technique has been widely used for parameters sensitivity 

analysis in hydrological models (Song et al., 2015), providing an in- 
depth understanding of hydrological processes (Zhang et al., 2013). 
Main drawback is the high computational intensity associated requiring 
nx(2m+2) model evaluations if second order effects are included 
(Herman & Usher, 2017) where n are the samples and m the model 
parameters. For a more detailed mathematical description, we refer to 
original works describing the method (Sobol et al., 2001; Saltelli et al., 
2002-2010) and recent reviews for sensitivity analysis in hydrological 
modelling (Song et al., 2015). 

For this study, in order to minimize the associated computational 
cost while still preserving representativeness of the results, Sobol anal
ysis was applied over a semi-lumped version of the model (i.e. natural 
land uses, which are the ones to be calibrated, were considered to share 
same vegetation parameters while urban and agricultural land uses 
corresponding parameters were previously fixed to reference values). 
This approach substantially reduced the number of parameters in the 
analysis (9 hydrological parameters + 11 vegetation parameters). 
Sensitivity analysis was performed separately considering for stream
flow and surface soil moisture. Nash-Sutcliffe efficiency index (Equation 
(3)) was used as the standard error metric in both cases. For streamflow, 
NSE was evaluated against discharge observations, while for SSM mean 
simulated values (considering the natural land uses for aggregation) 
were considered for model deviation assessment. Sensitivity analysis 
was performed over the calibration period. Sample size for the analysis 
was fixed at 500 corresponding to 21,000 model evaluations. Initial tests 
ensured the convergence of these results. Sensitivity parameters and 

Fig. 6. Temporal correlation coefficient (R values) of the different soil moisture products for the three basins considered. Correlation coefficients were calculated 
considering standardized values. 
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associated lower and upper bounds are summarized in Table 3. They 
were based on previous works using TETIS eco-hydrological model 
(Ruiz-Pérez et al., 2017; Puertes et al., 2019; Echeverría et al., 2019), 
manually refined to ensure a good performance of the model during the 
analysis. All the calculations were performed using the Python SALib 
toolbox (Herman & Usher, 2017). 

In Fig. 4, Sobol’s sensitivity analysis indices are displayed. A 
threshold of 1% (dotted line) was considered for discriminating between 
sensitive and insensitive parameters (Tang et al., 2007). Several con
clusions can be derived from Fig. 4: 1) regarding vegetation sub-model 
% roots and Laimax can be considered as the most sensitive parameters 

(for both SSM and Q). It can be deduced that LAI can be more influent 
than some hydrological parameters in the proper representation of the 
discharge. 2) regarding hydrological sub-model, different sensitive pa
rameters were found for the different basins considered according to 
their hydrological characteristics. For Hozgarganta, we observed that a 
more important contribution of the interflow followed by direct runoff. 
In Ceira, an accurate baseflow description in the model becomes 
important for the reproduction of observed values. For Carraixet, direct 
runoff is the major contribution to the observed streamflow, followed by 
interflow. 

4.2.2. Calibrations experiments and assessment metrics 
The initial parameters range values were established by screening 

the simulations performed during the sensitivity analysis (NSE values 
greater than 0.5). Calibration parameters and associated ranges are 
summarized in Table 4. For the case of % roots and Laimax parameters 
they were calibrated specifically for each of the natural land uses 
considered. These are according to the Corine classification: broad
leaved forests, mixed forests, coniferous forests, natural grasslands, 
moors and heathland, sclerophyllous vegetation, transitional woodland- 
shrub and sparsely vegetated areas. For the rest of the vegetation pa
rameters, they were fixed according to previous values of the literature. 
Topt was fixed at 18 ◦C according to Ruiz-Perez et al., 2017. Respiration 
ratio was fixed to a value of 0.066 (gC/gNd) according to Bonan et al., 
2003. Kdecay was fixed to 0.56 according to the values provided by Zhang 
et al., 2014. From Montaldo et al., 2005, senescence factor was fixed in 
the range from 0.008 to 0.004 (value of 0.006 in that study) adequating 
to the different land uses. LUE values were obtained from the Copernicus 
Dry Matter Productivity ATBD and SLA values from Heinsch et al., 2003. 
Imax was fixed to a value of 0.2 according to Manfreda et al. (2005). 

Considering the hydrological and vegetation parameters a total of 
22, 16 and 16 parameters were to be calibrated for the cases of Hoz
garganta, Ceira and Carraixet respectively. For Hozgarganta and Car
raixet, calibration period was 2016–2017 and validation period was 
2018–2019. For the case of Ceira, calibration period was 08–2015 to 
07–2017 and validation period 03–2019 to 07–2020. Approximately an 
additional year (7 months for the case of Ceira) was considered for 
model warm-up before calibration for each of the basins considered. 
Calibration was performed based on a multi-objective approach using 
the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM- 
UA) algorithm (Vrugt et al., 2003a) considering discharge (Q) and 

Fig. 7. Soil moisture spatial anomalies for the different soil moisture products 
and basins considered. Displayed are the spatial standardized anomalies in the 
range [-2, 2]. 

Fig. 8. Calibration NSE and SPAEF values for the three pareto points selected (Q, SSM and Q-SSM) and for the different basins considered.  
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surface soil moisture (SSM) observations. The MOSCEM-UA algorithm 
combines the strengths of the complex evolution’ used in the Shuffle 
Complex Evolutionary (SCE-UA) algorithm (Duan et al., 1992) and the 
probabilistic search method known as covariance-annealing used in 
Shuffled Complex Evolution Metropolis (SCEM-UA) (Vrugt et al., 2003b) 
together with and improved version of the assignment method aptitude 
(Zitzler and Thiele, 1999) to determine an efficient estimate of the 
Pareto frontier. For this study the initial population was obtained as the 
product of the number of complexes (for this study 10 complexes were 
selected) and 2*nvar + 1 (being nvar the number of variables). Scale 
factor (β) and L (number of new candidates in each complex) were ob
tained following Vrugt et al., 2003a. Number of iterations were set so 
that at least 5000 function evaluations were performed. Objective 
functions were the NSE [-∞,1] for discharge while the Spatial Efficiency 
Metric (SPAEF) [-∞,1] (Koch et al., 2018) for the evaluation of the 
spatial agreement between the remote sensing-based soil moisture ob
servations and TETIS soil moisture simulations. SPAEF is bias insensitive 

and focused only on spatial patterns (Demirel et al., 2018). These met
rics are provided in Equations (3) and (4). 

NSE = 1 −
∑n

i=1(Qsi − Qoi)
∑n

i=1(Qoi − Qo)
(3)  

where Qs and QO are the simulated and observed flows on day i, n is the 
total number of days and Qo is the mean daily measured flow for the 
analysed period. 

SPAEF = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α − 1)2
+ (β − 1)2

+ (γ − 1)2
√

(4)  

where α is the Pearson correlation coefficient (ρ(A,B) between the 
observed SSM map (A) and simulated SSM map (B) for a particular 
month, β is the fraction of coefficient of variations representing spatial 
variability and γ is the percentage of histogram intersection. This 
calculation is performed after normalization of the observed and simu

Fig. 9. Spatial patterns for the calibration period for the cases of study (Q-SSM-case). Displayed are the spatial standardized anomalies in the range [-2, 2].  
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lated maps using z-scores (i.e. mean equal to 0 and standard deviation 
equal to 1). For each particular image (i.e. month) a SPAEF value was 
obtained. The mean value of these scores was considered as represen
tative of the corresponding time series. 

The multi-objective calibration was performed for all the products 
considered and for the study cases. As the adjustment for Q and SSM is 
different amongst the non-dominated solutions, we selected for poste
rior analysis three solution candidates: best performance in Q (Q-case), 
best performance in SSM (SSM-case) and a compromise solution in the 
performance of both Q and SM (Q-SSM-case). The first two points were 
selected by seeking for the point in the pareto frontier that maximises 
the corresponding objective functions (i.e. NSE for Q and SPAEF for 
SSM). The third point was the one with minimum Euclidean distance to 
the reference point. This reference point is obtained considering the best 
objective value for each of the two objectives functions. Previous to 
distance calculation, these objective function values were normalized 
between the maximum and minimum values respectively. 

4.3. Model evaluation 

Evaluation of the different experiments (Q-case, SSM-case and Q- 
SSM-case) was performed by quantitative analysis of NSE and SPAEF 
metrics. In addition, for Q-SSM-case, spatial patterns are provided for a 
visual assessment of the agreement between simulated and observed 
SSM. Series aggregated at basin level and spatially distributed correla
tion maps allowed the comparison of the temporal dynamics of SSM. 

5. Results 

5.1. RS soil moisture inter-comparison 

Fig. 5 shows the temporal dynamics of the soil moisture products 
considered over the respective basins. Values were calculated consid
ering natural land uses (i.e. no irrigation). Fig. 6 displays the spatially 
distributed correlation coefficient images, for completeness they were 
calculated over the whole basin area. 

It is clearly observed (Fig. 5) that for the three cases of study, Ceira is 
the one in which a clear temporal agreement between the different soil 
moisture products exists. Most discrepant product is S1, which also re
produces a discrepant behaviour for the other two study cases. The 
temporal evolution showed some negative (08–2016 till 12–2019) and 
positive (year 2020) bias in S1 for this study case. In addition, the 
temporal correlation coefficient for S1 ranges between − 0.2 to 0.8, 

while the rest of the cases yield values in the range 0.8–1.0 (Fig. 6). 
Nevertheless, all products represent the corresponding monthly rain 
events (period 08–2017 to 08–2018 has no precipitation records) 
(Fig. 5). In the case of Hozgarganta, main discrepancies arise also for S1 
product that still shows some clear bias and SMOS-DPAT product, with a 
positive value in 2017 that do not relate to the observed precipitation 
(Fig. 5). The temporal correlation coefficient for S1/SMOS-DPAT ranges 
between − 0.2 to 0.8/0.6 respectively,while the rest of the cases yield 
values in the range 0.8–1.0 (Fig. 6). The SSM temporal evolution clearly 
follows the precipitation evolution (Fig. 5). For Carraixet, main 
discrepant temporal evolutions are S1 and SMOS-BEC. For S1, a clear 
bias is observed. In addition, it does not follow precipitation monthly 
amounts (2018, 2019 and 2020). Fig. 6 shows S1 correlation coefficient 
values in the range of − 0.2 to 0.6. It is worth highlighting that this poor 
performance is related to land uses. While inconsistencies were observed 
for the forest and natural land uses (upper part of the basin) they have 
been found less evident for the agriculture uses (lower part of the basin). 

Fig. 7 displays the spatial patterns that refer to the standardized 
spatial anomalies of the mean values for the period 2016–2020. Spatial 
patterns matched for products that share the same disaggregating 
methodology. This fact is reproduced for the three cases of study. For 
Hozgarganta, SMAP-DIS and SMAP-BS share a similar spatial pattern 
while also for the case of SMAP-DPAT and SMOS-DPAT. SMOS-BEC 
provides the most discrepant spatial pattern amongst products. For 
Ceira, SMAP-DIS/SMAP-BS, SMAP-DPAT/SMOS-DPAT/S1 show a 
comparable behaviour, respectively. SMOS-BEC shares a more similar 
pattern to this last one group For Carraixet, same behaviour as in Ceira is 
reproduced, in exception of SMOS-BEC. 

5.2. Model performance for the different soil moisture products 

5.2.1. Calibration 
Fig. 8 displays the calibration results for the study cases (values are 

summarized in Table S1 of supplementary material). Q is well repre
sented in every case analysed. Only exception was found in the analysis 
of some products in Carraixet for the SSM-case (NSE < 0.4) and Ceira- 
SMOS-BEC for the SSM-case (NSE < 0.5). Q-case provided the best 
NSE values in every case study, although Q-SSM-case raised comparable 
results (NSE 0.65–0.75). SSM-case showed the best SPAEF values with 
slight differences comparing to other approaches. However, SPAEF 
values can provide maximum deviations greater than 0.45 for the 
different product combinations and study cases. This fact indicates that 
the spatial agreement between the soil moisture products and the model 

Fig. 10. Temporal correlation coefficient (R value) of observed estimates against TETIS simulations for the calibration period (Q-SSM-case). They are displayed in 
the range [0,1] for a better visualization. 
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Fig. 11. Temporal evolution in the calibration period of the monthly TETIS SSM predictions for the different configurations considered (Q-SSM-case).  
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simulations will become more determinant in the selection of the best 
performing combinations than the NSE. Carraixet is clearly the one in 
which TETIS provides a major spatial agreement, followed by Ceira and 
Hozgarganta. Focusing on the comparison of the different product 
combinations for each of the study case, we observe that for Hozgar
ganta, SMOS-DPAT followed closely by SMAP-DPAT provides the best 
SPAEF values for all the cases (Q (-0.243), SSM (-0.117) and Q-SSM 
(-0.215)). SMOS-BEC and SMAP-DIS provide a similar performance 
(ranging from − 0.250 to − 0.318 in every cases) while SMAP-BS and S1 
provide the worst performance (SPAEF lower than − 0.340 in every 
case). For Ceira, SMAP-BS and SMAP-DIS are the worst ranking in SPAEF 
values (values lower than − 0.4). S1, SMOS-BEC, SMOS-DPAT and 
SMAP-DPAT provide a better performance. In the Q-SSM case, S1 ranks 
the best in NSE (value of 0.726) while SMOS-BEC ranks the best in 
SPAEF (value of − 0.112). SMOS-DPAT, however ranks better than 
SMOS-BEC in NSE while still having closer SPAEF values (-0.137). 
SMAP-DPAT is the one amongst these four that provides the worst 
performance in SPAEF. For Carraixet, SMOS-BEC provides a different 
behaviour. It always provides worst performing SPAEF values for the 
three cases, thus indicating that TETIS is never able to reproduce the 
associated spatial patterns. For the rest of the products, S1, SMAP-DPAT 
and SMOS-DPAT rank the best in terms of spatial agreement. 

Fig. 9 displays the spatial patterns for the calibration period (Q-SSM- 
case). SMAP-DPAT and SMOS-DPAT showed the major agreement for 
Hozgarganta, Ceira and Carraixet. In addition, S1 works properly for 
Ceira and Carraixet, although the number of available pixels in Ceira is 
not significant to state the agreement. SMOS-BEC must be highlighted in 
the case of Ceira. Similar main spatial patterns were provided by TETIS 
for the reference products. Transitional pixels between the main 
different areas of the standardized anomalies were highly affected by the 
reference product considered in the calibration process, in exception of 
Carraixet in which the main spatial patterns are best fitting the reference 
product. 

Fig. 10 shows the correlation coefficient maps (Q-SSM-case). TETIS 
simulations provide the worst agreement with S1 for all the study cases 
and SMOS-DPAT for Hozgarganta. Other cases have correlation coeffi
cient values greater than 0.8, thus indicating the temporal agreement. 
Exceptions are SMAP-DIS for Ceira and Hozgarganta and SMOS-BEC for 
Carraixet with correlation values between 0.2 and 0.8. Temporal evo
lution of SSM were coherent to precipitations in every case study 
(Fig. 11). Differences between reference products were observed only in 
terms of absolute SSM values. 

5.2.2. Validation 
Fig. 12 displays the validation results for the three case studies 

(values are summarized in Table S2 of supplementary material). TETIS 
tends to provide a worse performance during the validation phase than 
during the calibration phase. Only cases in which this is not accom
plished are SSM-case for Ceira (SMAP-DPAT, SMOS-BEC) and Carraixet 
(all products in exception of SMOS-BEC). For Carraixet, calibrating the 
model in order to adjust to only one variable will result in an improper 
performance. While NSE values in the calibrating phase (Fig. 8) are 
acceptable they are not able to reproduce the validation observations 
(Fig. 12). On the contrary, adjusting only to SSM provides an unac
ceptable performance in calibration (NSE < 0.4) while a surprisingly 
good performance during validation. These results indicated that the 
inclusion of SSM in a multi-objective calibration increased the model 
capability to reproduce not only the SSM spatial patterns but also the Q 
in different hydrologic periods. Considering the Q-SSM-case , for all the 
study cases and products combinations NSE > 0.5 is provided. Cali
brations and validation NSE values are also in agreement. This indicates 
that all the combinations provide a realistic description of the discharge 
and therefore supporting the validity of the multi-objective calibration 
approach. 

Moving to each study case comparison, for Hozgarganta the cali
bration candidate’s combinations SMAP-DPAT and SMOS-DPAT provide 
NSE values > 0.65, being SMAP-DPAT the best option in terms of SPAEF 
with slight differences with the rest of the products. However, SPAEF 
values are lower than − 0.2 thus preventing to state the agreement be
tween the models estimates and products observations. In consequence, 
no particular product can be highlighted for its performance in both Q 
and SSM in the Hozgarganta study case. Moving to Ceira, again SMAP- 
DPAT and SMOS-DPAT provide the best performance in both NSE and 
SPAEF. Although S1 and SMOS-BEC still provided acceptable results in 
terms of NSE, the spatial performance was worse (SPAEF < -0.2). SMOS- 
DPAT is preferred because of the good performance in both calibration 
and validation periods. Finally, for Carraixet, S1, SMAP-DPAT and 
SMOS-DPAT provided good performance in both NSE and SPAEF. It is 
remarkably that S1 actually provided the best NSE metric, in spite of the 
unrealistic temporal behaviour observed, followed closely by SMOS- 
DPAT and SMAP-DPAT. 

Fig. 13 displays the spatial patterns for the validation period (Q-SSM- 
case). Results are analogous to the calibration period. SMAP-DPAT and 
SMOS-DPAT still provided the best agreement in all the case studies, 
with S1 performing particularly well also in Carraixet. Fig. 14 shows the 

Fig. 12. Validation NSE and SPAEF values for the three pareto points selected (Q, SSM and Q-SSM) and for the different basins considered.  
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Fig. 13. Spatial patterns for the validation period for the cases of study (Q-SSM-case). Displayed are the spatial standardized anomalies in the range [-2, 2].  
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correlation coefficient maps. S1 again provided the worst temporal 
agreement with a slight improvement in Ceira. The rest of the combi
nations provided correlation values over 0.5 with SMAP products best 
fitting. Finally, the SSM temporal evolution in this period (Fig. 15) again 
is coherent to precipitations in every case study, still showing main 
differences in terms of absolute SSM values. 

6. Discussion 

Coarse spatial resolution of satellite SSM (SMAP and SMOS) esti
mates products have only provided the opportunity of considering the 
temporal dynamic of the SSM variable when regional studies of hydro
logical implementation were approached. Since the existing down
scaling methods (Piles et al., 2011; Piles et al., 2012; Merlin et al., 2013) 
provide increased spatial resolutions in addition to new sensor estimates 
(Bauer-Marschallinger et al., 2019), we postulate that the inclusion of 
spatial patterns in the implementation of hydrological models may 
improve their performance. There is a lack of testing the improved 
spatial information of these downscaled products in small basins, spe
cifically in the Mediterranean region. This study evaluates the suitability 
of several 1 km spatial SSM estimates (S1, SMAP-BS, SMAP-DIS, 
SMOS-BEC, SMAP-DPAT, SMOS-DPAT) for this purpose. As first step, a 
comparison of the available products is required. We observed that the 
agreement among the spatial and temporal dynamics of the evaluated 
products is not as good as expected. The suitability of hydrological 
distributed models for the reproduction of main hydrological state 
variables have already been demonstrated (Ruiz-Pérez et al 2016; 
Ruiz-Pérez et al., 2017; Puertes et al., 2019; Echeverría et al., 2019; 
Barrientos et al 2020). Thus, we can consider these models as validation 
tools to test the performance of the available comparable products. 
Particularly, the TETIS conceptual model has demonstrated to be a good 
choice for this purpose (Echeverría et al., 2019). This paper encom
passes: first, the multi-objective and multi-variable calibration of the 
model considering previously described SSM products; second, the 
analysis of Pareto frontiers in terms of temporal dynamics of streamflow, 
spatial agreement of SSM, and both; finally, the performance compari
son amongst the different products. Despite the significant differences 

amongst SSM products, results showed an improvement when the SSM 
spatial patterns were considered in the calibration process. We observed 
that not all the products have the same agreement with TETIS results. 

In the comparison of the SSM products, we observed a relative 
temporal agreement in exception of S1 that has different temporal dy
namics. This product showed a strong overestimation of the SSM during 
dry months in Carraixet. Previous studies (Escorihuela and Quintana- 
Seguí, 2016) pointed out that in semi-arid regions the artificial increase 
in soil moisture can be the result of the increase in the effective soil 
roughness due to volume scattering. This poor performance can be also 
associated to different factors. Firstly, S1 retrieval algorithm does not 
consider vegetation dynamics on radar backscatter signal thus leading to 
potential biases during vegetation full development (Bauer-Marschal
linger et al., 2019). In addition, the sensitivity of the C-band backscatter 
is likely to be reduced in high density vegetated areas with leaf area 
index larger than 0.6 (Ohja et al., 2021). The temporal agreement be
tween products is higher in Ceira than the other two basins. The location 
of the study sites may have influence in the SSM retrieval. Although the 
three basins share some issues in the soil moisture retrieval (topography, 
dense vegetation), it is true that Ceira is in an easier to solve area for the 
retrieval. Carraixet is close to the coast, thus some noise can affect due to 
sea-land disturbance. Water areas present near Hozgarganta can also 
disfavour the SSM retrieval. Nevertheless, in spite of some exceptions 
(S1 and SMOS-DPAT for Hozgarganta) all the products generally agree 
in their temporal dynamics (correlation coefficient greater than 0.4 in 
Fig. 6). Portal et al., 2020, performed a comparison between SMAP and 
SMOS products over the Iberian Peninsula, and they observed the same 
general temporal agreement. In this study, they also pointed out that the 
methodology employed for the downscaling depend on the scale infor
mation the SSM products employed (S1 radar backscatter, LST, NDVI, 
land use). We observe this same conclusion for the products considered. 
Fig. 7, shows that for spatial patterns the disaggregating methodology 
employed is more relevant than the sensor (i.e. SMOS, SMAP, S1). 

Traditional approaches consider only streamflow information in the 
calibration process. Considering another state variable as unique 
objective function does not prevent the problem of equifinality. There
fore, to follow a multi-objective approach is recommended (Dembelé 

Fig. 14. Temporal correlation coefficient (R value) of observed estimates against TETIS simulations for the validation period (Q-SSM-case). They are displayed in the 
range [0,1] for a better visualization. 
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et al., 2020b). Although calibrating considering separately in Q and SSM 
will result in good implementations, we decided to compare their effect 
in the pareto frontier. Selecting the best performing non-dominated 
solutions in terms of Q and SSM gave us an idea of their relevance in 
a comparable context. Comparing the calibration and validation phases 
we found that the model conducted more robustly when both Q and SSM 
information was considered through the selection of an optimum non- 
dominated solution. Particularly, intermittent streams such as Carra
ixet will improve the adjustment of its hydrology (i.e. SSM patterns) 
through this approach during dry periods in which Q is not enough 
representative. This fact was advanced by the sensitivity analysis (Fig. 4) 
where correction factor related to the static storage (FC1) was the most 
relevant. 

The spatial pattern of the precipitation intensely determines the SSM 
spatial patterns offered by the model. Thus, the calibration considering 

different SSM reference products introduced variations limited to tran
sitional areas between homologous main spatial patterns. This endorses 
the fact that using physically based models is a good criterion to validate 
satellite products. The dependency on the calibration and validation 
periods is expected to be additionally high. Nevertheless, we cannot test 
this hypothesis since the SSM observed data is limited mostly to the 
period from 2015 to present. SPAEF results are frequently negative or 
mostly nulls similar to other authors (i.e. Dembelé et al, 2020a). These 
evidence possible causes: incoherencies in the SSM retrieval, lack of 
representativity in spatial resolution, temporal limitations of satellite 
products, and/or differences in input data generation. The influence of 
land use has been reported by Burgin et al. (2017) and soil hydraulic 
properties has been previously reported by (Baroni et al., 2010, Livneh 
et al., 2015; Ayana et al., 2019). SMAP-DPAT and SMOS-DPAT were the 
products that provided better spatial agreement to the TETIS outputs. 

Fig. 15. Temporal evolution in the validation period of the monthly TETIS SSM predictions for the different configurations considered (Q-SSM-case).  
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Additionally, S1 provided remarkable agreement in Carraixet. In Ceira 
case study, we cannot state the agreement to S1 since few pixels are 
available for comparison. Thus, to decide while S1 is useful in the 
Mediterranean region, other basins need to be evaluated. On the con
trary, we can state that Lobelia products provide the best representation 
of the SSM spatial patterns in the selected case studies. 

Limitations in this study open the door to future research. Higher 
spatial resolution, higher reliability of spatial products, and higher 
temporal coverage may lead to improved adjustments. Results can be 
model dependent; in consequence we encourage other models to be 
tested under this approach. Recently, new metrics for spatial pattern 
comparison have aroused (such as SPAEF), however this is still an active 
field of research. New metrics, algorithms and objective functions 
should be considered before performing similar analysis. Inclusion of 
spatial patterns from complementary state variables in multi-objective 
calibration efforts is challenging but it is expected to offer promising 
results (Dembelé et al., 2020a). 

7. Conclusions 

We explored the usefulness of eco-hydrological distributed model
ling as a validation tool for remote sensing SSM products. This study 
provides a valuable advance in the filling of the existent gap in the 
validation of the spatial patterns of current SSM products. The study 
frame is the Mediterranean region in which three small basins were 
selected as representative case studies. Within this context, differences 
in temporal and spatial dynamics of the reference products were found. 
The multi-objective calibration approach proposed increased the 
robustness of the modelling despite the differences amongst products. 

While SMAP-DPAT and SMOS-DPAT achieved the best agreement in 
terms of spatial and temporal representativeness, the other products 
showed some strengths. S1 did not provided a realistic temporal evo
lution. In contrast, the spatial patterns fitted correctly the distribution 
provided by TETIS model. Unfortunately, the data is not sufficient in all 
the basins. This is the case of Ceira. In Carraixet S1 agreement was 
comparable to SMAP-DPAT and SMOS-DPAT results. SMAP-BS and 
SMAP-DIS showed an opposite behaviour, with a good temporal repre
sentation but poor spatial representativeness for some specific cases. 
This is more evident in the case of Ceira. Finally, SMOS-BEC followed the 
line of SMAP-BS and SMAP-DIS, showing spatial disagreement between 
model simulations and observations. 

Limitations of this study have been highlighted. Model dependency, 
uncertainties in SSM products, temporal calibration/validation periods 
restrictions (2015-present). Although results are dependent on the basin 
characteristics (case-specific) this paper provides evidence on the ne
cessity to incorporate the spatial patterns information in the calibration 
of hydrological model 
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