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Abstract

The increasingly evident incorporation of the electric vehicle in urban environ-

ments is an already undeniable change. Electric vehicles are appearing on the

market with more autonomy and lower prices, which is facilitating the progres-

sive change of the vehicle fleet. However, the electric vehicle brings with it the

need to provide enough charging stations distributed throughout the city, so

that the autonomy of the vehicle is not a problem. This work presents how a

genetic algorithm that analyzes the open data sources of a city is used to propose

the most suitable locations for these stations. This proposal is the input for a

series of experiments that simulate the impact that has the placement of these

stations along the city, in order to measure the benefits of the solution proposed

by the genetic algorithm. To do this, an agent-based simulation infrastructure

was built around a fleet simulator.

Keywords: genetic algorithm, electric vehicle, charging station, mobility,

agent-based simulation

1. Introduction

The motivation of this work comes from the unquestionable incorporation

of the electric vehicle (EV), which represents a substantial change in the mo-
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bility of current cities. This incorporation is an opportunity to improve the

efficiency in the mobility and to reduce emissions into the atmosphere. EV is5

currently emerging as a market segment that will cover part of the mobility of

the future. Its success depends on social acceptance, and this depends on good

government policies and country regulations. Policies to promote electric mo-

bility via regulation, economical aids, or the development of good infrastructure

that facilitate charging, can change the growth perspective of the EV and the10

citizens’ view with respect to its use. Total EV sales will grow from 2.5 million

in 2020 to 11.2 million in 2025, then reaching 31.1 million by 2030 according to

the study made by Deloitte1. The design of supranational, national and mu-

nicipal policies will be essential for consumers to use EVs. Incentives and the

installation of public charging infrastructure will help to achieve the expected15

impact and efficiency.

Without a doubt, one of the challenges in today’s cities is to have a network of

charging points that offer an adequate service to their citizens without entailing

an extremely high expense. Most cities have chosen to install a reduced number

of charging points without previously carrying out an appropriate planning of20

which are the most suitable locations for their installation. In the medium to

long term, this may result in charging points in unsuitable locations or with a

very little use. An adequate planning not in the short term, but taking into ac-

count an orderly location of the charge points as they are installed, will suppose

a better service to the citizens and a more efficient use of the infrastructures. A25

good planning of charging stations has a relevant impact on the service quality

and operation efficiency as is stated in (Brown et al., 2010) and (Wood et al.,

2015), and can reduce some anxiety in citizens who want to buy an electric car

(Dong et al., 2014).

If we study the literature related to this problem, we find a state of the30

art where, in recent years, different approaches have appeared trying to offer

1https://www2.deloitte.com/content/dam/Deloitte/rs/Documents/about-deloitte/

DI_Electric-Vehicles.pdf
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solutions to the problem of the adequate installation of charging points in a city.

As an example, in (Zhang et al., 2019) a study of recent approaches is presented.

As it will be seen in the analysis made in the following section, most of the

proposals lack of an adequate validation given the difficulty of demonstrating35

that the proposed solutions are the most appropriate. On the other hand, the

provided solutions are a fixed picture of a set of locations without taking into

account a timeline in the installation of the proposed charging points.

According to all of this, this paper presents an approach based on a multi-

objective genetic algorithm that, based on real information about a city, de-40

termines the most appropriate set of charging point locations. To do this, the

algorithm takes into account, on the one hand, maximizing the service provided

to citizens and, on the other hand, trying to minimize the cost of these locations.

In addition, the algorithm allows prioritizing some locations against others so

that an installation sequence can be established over a given period of time.45

The deployment of a charging station network, as with any modification per-

formed over the urban traffic system, involves a high investment of resources and

may have a great impact on the system’s users. Testing urban traffic changes on

the real world is therefore inadvisable, as the removal of the changes can be even

more costly than its implementation. Because of that, we find it necessary to50

use simulators, software that reproduces real-world scenarios in virtual settings,

to test and validate any solution before its implementation. As researchers, we

must differentiate between the optimization of a mathematical function that

describes our problem and the real impact that our solutions will have on the

citizenship. Simulators enable us to ensure the mathematical modeling describes55

solutions that can be adapted to real cities and measure the consequences of

implementing them.

In accordance with the stated above, the paper introduces a complete simu-

lation infrastructure that allows the evaluation of the proposed solutions against

other approaches. This infrastructure is an agent-based simulation software that60

makes use of real data on mobility in the city. These data allows a detailed anal-

ysis of the efficiency and use of the installed charging points. This simulation
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infrastructure has been used to make a comparative analysis with data from the

city of Valencia (Spain).

Summarizing, the main contribution of this work is the validation through65

agent-based simulation of a genetic algorithm developed by the authors for the

selection of the most suitable locations for the installation of electric charging

stations. For this purpose, a simulation has been used with real data on traffic,

population and activity of the city under study. These contributions include: (1)

development of a urban vehicle movement simulator with real-world data, (2)70

comparison with other charging station location algorithms based on the average

time that vehicles must wait at charging stations when they are full, and (3)

study of the amount of time that stations remain idle in order to determine

whether or not the location of that station was necessary.

Therefore, these contributions allow to experimentally test whether the ge-75

netic algorithm developed by the authors provides better solutions than other

approaches to generate better locations for EV charging stations. We will con-

sider that a solution is better if it minimizes the time that vehicles must be

waiting at a station and there is the least possible number of underutilized

stations that increase the installation cost unnecessarily.80

The structure of the paper is as follows. Next section presents an analysis

of the state of the art in this area. Section 3 explains the main characteristics

of the genetic algorithm which decides the emplacement of the EV charging

stations. Section 4 introduces the resources used for simulation and experimen-

tation of this work. Section 5 presents the experiments performed to evaluate85

the suitability of the genetic algorithm compared to other approaches. Finally,

last section draws the main conclusions and future work.

2. Background

The efficient charging of EV has become one of the key issues in order to

consolidate the implementation of EV. Currently, a large part of the research90

work is focused on trying to optimize the EV charge in a decentralized way. On
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the other hand, other approaches optimize the use of the power grid trying to

reduce the possible impact of EV on the grid (Ma and Mohammed, 2014).

Today we can find different guidelines, such as those of (EV Infrastruc-

ture Corridor Development Toolkit; Association, 2019) whose purpose is to help95

governments and administrations for the proper implementation of EV charging

stations and determine where it is best to place them. Along the same lines, the

guide (Planning for Electric Vehicle Charging Infrastructure: A Toolkit) pro-

poses processes for planning and implementing EV according to the previous

experience of governments.100

Currently, a key issue in this area is determining the most appropriate lo-

cations for a set of stations in a specific area (a city, a region, a country, etc.).

An appropriate location appears to be fundamental to facilitate the ability to

satisfy demand and thus promote its use. This problem has been addressed in

different ways, as discussed below in the following works.105

In (Zhang et al., 2019) a review of dozens of related papers after 2000

is presented. The study analyses the proposed EV charging station location

models and algorithms. According to this study, the proposed algorithms usu-

ally include Genetic Algorithms, Simulated Annealing, Tabu Search, Particle or

Swarm Optimization. Location selection algorithm is currently an interesting110

research area. Current research on location selection algorithms is out of this

work, for more details please consult (Farahani et al., 2010) or (Uyanik et al.,

2018). More recently, hybrid approaches have been employed as a combination

of different algorithms. As an example, in (He et al., 2012) authors propose a

hybrid genetic algorithm that combines a standard genetic algorithm with an115

alternate location allocation algorithm (Cooper, 1964). Lastly, the popularity

of neural network and the good results obtained for multivariate optimization

has generated several works in that line. Due to the existence of numerous re-

lated works, we will focus on the most recent works that present some kind of

validation of the results.120

According to this, in (Kaya et al., 2020) a hybrid approach is proposed in

a two stages process. First a Fuzzy AHP (Fuzzy Analytic Hierarchy Process)
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is employed for the weighting of the previously selected criteria. Then, spatial

analyses of the criteria are carried out with GIS and the performance evalua-

tion of charging station locations is done with TOPSIS (Technique for Order125

Preference by Similarity to Ideal Solution).

The work presented in (Kong et al., 2019) consists of a two-layer location

planning composed of a construction cost-based preliminary planning and an

operational cost-based accurate selection. Authors employ dynamic real-time

data instead of statistical data like many of the previous approaches. Moreover,130

the work includes a simulation platform for EV charging station location plan-

ning in different cities or areas. Although there is not much information about

the availability of the tool.

A fuzzy multi-criteria decision-making methodology is employed in (Liu

et al., 2020) to select potential charging station locations. The process is divided135

into three phases. The phase 1 establishes a comprehensive evaluation criteria,

phase 2 employs a fuzzy best-worst method for the determination of subjective

criteria weights, and finally, phase 3 makes use of a fuzzy gray relation analysis-

based model for the ranking of alternatives. The work makes a comparative and

sensitivity analyses with other similar approaches using a numerical example.140

In the work presented in (Mao et al., 2019), a location planning model of

fast charging stations is proposed considering its impact on the critical power

grid assets. The core of the proposal is a planning model which is a general-

ization of Knapsack Problem (Kellerer et al., 2004). Specifically, the heuristic

cross-entropy optimization method was employed for the planning process. The145

same authors in (Mao et al., 2020) validate the proposal on a synthetic power-

transportation coupled network.

Another interesting approach is presented in (Gong et al., 2019) with a

non-deterministic polynomial model. The approach is tested using agent-based

model developed in Anylogic2 in order to analyze the charging frequencies and150

sharing charging level for the charging stations. In this case, a validation of the

2https://www.anylogic.com/
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proposal is made although the tests carried out are on a very low scale with

only a dozen of charging stations.

Most of the reviewed works tend to use a genetic algorithm as the main

part of the decision-making process of selecting the most appropriate locations.155

Genetic algorithms have been used in a general way not only for the problem

proposed here, but also for other types of problems associated with localisation

in particular or with engineering in general. A very interesting work is presented

in Roy et al. (2019) where a Novel Memetic Genetic Algorithm (NMGA) is

presented to solve the well-known traveling salesman problem. The proposed160

GA is the combination of a multi-parent crossover technique with a Boltzmann

probability selection and can be adapted for a multitude of problems related

to urban mobility. In this line, the work proposed in Biswas and Pal (2019)

proposes a GA to solve the congestion management problem in electric power

transmission lines.165

Finally, genetic algorithms are being used recently to try to optimise the

location of different infrastructures such as hospitals Kaveh et al. (2020), bus

stations Taghavi et al. (2021) or parks Ge et al. (2020). As is evident, one of the

difficulties of these works is to validate that the generated solutions are indeed

appropriate given that the real implementation of the proposed infrastructures170

is very expensive and, also, is impossible to compare with other options in real

terms.

After the analysis of different works, we can detect the existence of differ-

ent proposals in which there are certain differences in terms of input criteria,

and fundamentally there is a lack on the validation where the effectiveness of175

the proposals should be made in environments as close to reality as possible,

as commented in (Zhang et al., 2019). In particular, authors comment that

current algorithms stay at a theoretical level and the need of verifying the pro-

posed models through simulation in a large-scale vehicle movement scenarios.

Moreover, most of the analyzed approaches focus on proposing a set of charging180

stations on a static situation, without taking into account the evolution of cities

over the next few years. In this way, a multi-year planning can be interesting to
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indicate a possible deployment of the potential charging stations over a period

of time.

According to these detected problems, other approach is the presented in185

(Palanca et al., 2020a) where a multi-objective genetic algorithm is proposed to

optimize the charging station locations by maximizing the utility using traffic

information and minimizing the cost using power grid information. The cur-

rent paper is an evolution of that algorithm where the problem of multi-year

planning is addressed. Moreover, the development of an associated simulation190

infrastructure is proposed, which allows to test the efficiency of the proposed

solutions compared to other options.

3. Genetic algorithm for the emplacement of EV charging stations

In order to find the best possible solution for the location of EV charging

stations, a genetic algorithm has been designed to find a solution that maxi-195

mizes the utility and minimizes the cost among the wide search space available.

A genetic algorithm is a type of evolutionary algorithm that is based on the

creation of multiple consecutive generations where the information of the best

past solutions is recombined in order to improve the population of solutions in

each generation.200

Combinatorial problems such as the one described in this paper can be ap-

proached with many techniques. Nevertheless, their high computational cost

must be taken into account to favor approaches that obtain solutions in a

reasonable time. In addition, we are performing multi-objective optimization,

maximizing the utility of our infrastructure but also reducing the costs of its205

implementation. Because of that, the list of suitable techniques is narrower.

At a first glance, a reasonable approach would be well-known Mixed Integer

Linear Programming (MILP), which has been successfully applied to resource

allocation problems such as ours and returns optimal solutions. Nevertheless, we

can not apply MILP to our problem because our the utility function that charac-210

terizes our problem, and therefore , one of the functions that must be optimized,
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is nonlinear, as we prove below. Besides thatIn addition, for multi-objective op-

timization we would need to select a specific nonlinear multi-objective solver, a

complex approach which would most likely take a long time to return any so-

lution. With this in mind, we opted to use metaheuristic techniques instead of215

MILP, as they provided us with near-optimal solutions in a reasonable computa-

tion time. Many of these techniques could be applied to our problem, provided

we formulated it adequately, and have the potential of obtaining a good solu-

tion. The crucial feature that made us decide on genetic algorithms was its

reliable implementation for multi-objective optimization, the Non-dominated220

Sorting Genetic Algorithm II. The efficiency of this algorithm has been proved

by multiple works and, to the best of our knowledge, was the most promising

approach given our problem formulation.

The genetic algorithm for the emplacement of EV charging stations proposed

by the authors in (Palanca et al., 2020a) and (Jordán et al., 2018) is designed to225

find the best emplacements for EV charging stations from a set of initial Points

of Interest. These Points of Interest are all the possible locations in a city to

install a charging station, defined by an expert in city planning or randomly

generated. A possible solution is an array of integers where each position is

related to a Point of Interest and its value is the number of charging poles for230

that station. If the value is 0 it means that there would not be a charging

station at that location. Otherwise, for a value of cp > 0, it is assumed that the

solution would propose the installation of a station with cp charging poles.

In addition, the genetic algorithm allows defining constraints such as the

maximum number of poles per station and the maximum number of poles in235

the city. In this way it is possible to control the maximum expenditure to be

invested in the target city. Also, the algorithm takes into account the previously

installed stations in the city, which are considered as fixed. When any of these

constraints is infringed, the individual’s fitness is penalized in proportion to how

far it is from being feasible.240

The key to the success of a genetic algorithm is a good design of its fitness

function. This is done using information extracted from open sources in the city
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where it is being run. This information allows to approximate the quality of

the solution or utility, taking into account data such as the population covered

by the proposed solution, the amount of traffic passing through the selected245

points and even the activity registered in social networks with geo-localization

among others. Additionally, the monetary cost of a solution is also considered.

Each charging station and each charging pole have a fixed cost, which means

that a solution that takes advantage of the stations by putting several poles on

them will have a more reasonable cost than putting more single-pole stations.250

The cost of each station also considers the distance to the nearest power plant

(called transformer substations) from which it would obtain power.

Nevertheless, the utility of placing a station is influenced by whether or

not there are other stations in the surrounding area. This is because for a

distribution of stations in the city (the selected PoIs that will be stations), the255

centroidal Voronoi tessellation is calculated. Hence, each station acts as the

centroid of its Voronoi polygon that limits with the nearest stations. Then,

the geometric intersection between the Voronoi polygon and the circumference

formed by the influence radius (a parameter of the problem) of each station is

done. The resulting area is defined as the influence area of the station. So only260

the geographical data that falls inside that area is considered as covered by the

station (population, traffic, and social networks activity).

Figure 1 represents a neighborhood in Valencia in which there are three PoIs.

The left part of the figure shows that if only two of these PoIs are selected as

charging stations, their areas of influence do not coincide. However, in the right265

part of Figure 1 we can see that if the three PoIs are selected as stations, their

areas of influence are reduced by making the intersection between the Voronoi

polygon (for simplicity, we do not represent all the lines of the polygons) and

the circumference with the radius of influence of each station.

The utility of each station depends on the surrounding stations, since if they270

are close to each other, their area of influence is reduced when the Voronoi

polygon intersects the circumference of the radius of influence around the sta-

tion. This causes the utility function to be nonlinear, so linear programming
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Figure 1: Example of a neighborhood in Valencia with three PoIs where two or three of them

are selected to be charging stations. In each case, the resulting influence area of each station

formed by the intersection between its circumference of influence and the Voronoi polygon

can be seen.

techniques cannot be used to solve this problem.

The utility of an individual Φ is defined as the sum of the attributes that

cover the area of the corresponding PoI (i.e., population, traffic, and social

activity). This is done for every PoI cpi in which at least one charging pole is

placed. The equation is as follows:

utility =
∑

∀cpi>0∈Φ

(ωP · Pi + ωT · Ti + ωA ·Ai) (1)

where Pi is the covered population of the station in the influence area3 of the275

PoI ; Ti represents the covered traffic of the streets in the influence area of the

PoI; Ai is the number of social activity itemstweets that are geo-located in the

influence area of the PoI; and each ω is the corresponding weight of the different

attributes that are considered for the utility. The social activity items represent

coordinates that show the activity of social networks users at some moment. An280

example of these items is geo-located tweets from the Twitter social network.

3The geometric intersection between the Voronoi polygon and the circumference formed

by the influence radius.
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The cost (Θ) of an individual Φ is defined as:

Θ =
∑

∀cpi>0∈Φ

(Θcp · cpi + ΘEi
) + ΘS · |Φ| (2)

where Θcp is the fixed cost of a charging pole; cpi is the number of charging

poles at each PoI of the individual; ΘEi
is the energy cost of cpi; ΘS is the fixed

cost of a station; and |Φ| is the number of activated stations in Φ where at least

one charging pole is located (and hence a station is placed). In other words, |Φ|285

is the number of cpi ∈ N1 (where N1 = {x ∈ N|x > 0}).

Since there are two objectives to optimize in the fitness function, we use a

multi-objective approach such as the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) (Deb et al., 2002) to maximize the utility while minimizing

the cost of installing stations. The rank 1 solutions4 returned by the NSGA-II290

algorithm are not dominated, which means that one objective value cannot be

improved without decreasing another objective value. Figure 2 shows a result

of the multi-objective algorithm along the explored generations.

The NSGA-II algorithm uses its own selection operator that chooses the best

individuals with respect to the Pareto frontier. The crossover operator that we295

use in our implementation is the uniform technique, in which each attribute

(gene) is randomly selected from one of the parents to create a child. Finally,

the selected mutation operator is the uniform integer technique, which generates

a new integer value within a provided range with an independent probability of

each attribute (gene) being mutated.300

The genetic algorithm is implemented using the µ+λ approach of the deap5

library of Python, where µ is the number of individuals to select for the next

generation, and λ is the number of children to produce at each generation. We

consider a µ value equal to the population size (number of individuals) of the

problem, and a λ value of half the population size.305

4There may be solutions of lower ranks (2, 3, etc.). Any lower rank solution would be

dominated by higher rank solutions, and thus, rank 1 solutions are not dominated.
5https://github.com/DEAP/deap
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Figure 2: Utility and cost throughout 150 generations. The blue line shows how the utility

grows until it reaches a positive value (with no penalties). Also the red line shows the cost,

which is drastically reduced near the 88th generation.

3.1. Long-term urban planning

The possibility of including previously installed stations has also been used

to be able to plan stations in a city not only in one-shot but over time. It is

common in the urban planning decisions of a city to carry out the projects in

different phases over time and not with a single initial investment. To this end,310

the genetic algorithm we present is capable of planning a deployment of stations

over time, specifying the speed of deployment and the number of new stations

each year. This allows to go towards a long-term planning that optimizes the

use of the stations in the city and minimizes the investment.

The way the algorithm develops this behavior is thanks to its ability to315

receive a series of fixed stations as input. It starts computing the solution for

the first year, with the constraints that are established for that year in terms of

number of stations, number of poles per station, etc. Then the output of this

year is used as input for the next year of the series, by interpreting the input

as fixed stations that can not be removed. The stations will be permanently320

included in the deployment plan, but they can be upgraded with more poles over

the stages computed by the algorithm for each year. This way, the algorithm

13



can make a deployment plan for several years in a city, where each year more

stations and poles are installed until it reaches the final stage where the goal of

installed stations is reached.325

Figure 3 shows an example of how the urban plan for installing stations

changes over the years. In the figure three snapshots of three years (2022, 2026

and 2030) are shown and the number of poles per station (green pins) and the

number of stations (green and yellow circles) grow over the years in those points

of interest where the genetic algorithm determines that is more important.330

Figure 3: An example of the proposed solution over the years. These figures show how

the number of stations grow and the area assigned to each station (represented as Voronoi

polygons) decrease over the years.

The rest of this paper deals with the experimentation that has been carried

out to validate the advantage of the proposed solutions and the modifications

that have been made to a tool also developed by the authors, SimFleet, to run

the experiments.

4. Materials & Methods335

In this section, we present how we have prepared the experimentation that

shows how the results of the genetic algorithm improve non-informed results.

14



For this purpose, the experimentation has been designed through simulation. A

simulation software of open urban fleets, called SimFleet, has been used. This

simulation package has been developed by the authors and allows to check how340

the use of the charging stations and the traffic flow evolves with different con-

figurations of location of charging stations. Additionally, it has been necessary

to develop a series of complements for the SimFleet simulator in order to adapt

it to the experiments needed in this work. In this section, we present the Sim-

Fleet simulator, the necessary components that have been developed for the345

experimentation, and the experiments setup.

4.1. SimFleet

SimFleet (Palanca et al., 2019) is a multi-agent based simulator of urban

fleets based on the SPADE platform (Escrivà et al., 2006; Palanca et al., 2020b).

In this work, we make use of SimFleet to test different configurations of charging350

stations in a city. For that, we execute simulations over the same city area but

varying the amount of distribution of charging stations as well as the number

of EVs that drive around the scenario.

Since SimFleet is a multi-agent simulator, each of the elements that take

part in the simulation are represented by an intelligent agent. This allows to355

define an intelligent behavior for each vehicle, station or any other element that

takes part in the simulation.

SimFleet is an open fleet simulator which has three main roles: the vehicle,

the passenger and the fleet manager. The user of this simulator may introduce

different behaviors for each of the roles (or ultimately for each of the individ-360

ual agents) to get different measures of the simulation (i.e. number of travels,

distance traveled, mean time that the passengers were waiting for a transport,

etc.). SimFleet is a simulator originally focused on the management of open

fleets, like taxi fleets or last mile delivery fleets, so an important part of its

architecture are the fleet managers. Fleet managers are designed to serve as365

brokers between customers and fleet drivers, in order to select the best trans-

port for a trip (the closest vehicle, the cheapest driver, etc.). To do this, the
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SimFleet user may configure the strategies that each role is going to run. You

can configure the strategy for a customer to accept or refuse a trip proposal, the

strategy for a vehicle to make an offer for a trip and even the strategy of a fleet370

manager to decide which vehicles to redirect a trip request. By now the reader

will have observed that SimFleet is focused on the negotiation of vehicle fleets,

but not for the simulation of independent vehicles that do not belong to any

fleet and that do not have to pick up passengers to take them from one point to

another. To this end, some changes have been made to the simulator in order375

to make it appropriate for the experiments we wanted to run. As a side effect,

the result has been a more generic and versatile simulator that allows to make

much more interesting experiments with vehicles in urban scenarios. In the next

sections 4.1.1 and 4.1.2 we present some of the changes that have been added

to SimFleet. These changes, as well as the simulator itself, can be downloaded380

and used with an open source license from the SimFleet’s repository6.

4.1.1. Free-floating vehicles

In the previous versions of SimFleet (1.x) vehicles were supposed to be pro-

fessional drivers that belong to a fleet and whose work is to pick up passengers

from a start point and to take them to a destination point. The most common385

example is a fleet of taxis, but this is also valid for last mile delivery transports

where a driver may use her vehicle (no matter if it is a bike, a car, etc.) to pick

up a package and deliver it to the customer.

However, for the experiments of this work we wanted to simulate drivers that

move along a city for their common trips (going to work, going home, etc.). This390

kind of trips do not involve to pick up a passenger after a negotiation process,

but the vehicle knows in advance where it has to go. To this end, SimFleet

has been modified to include free-floating vehicles which are completely free to

move along the whole map without any previous negotiation nor passenger pick

up process. This allowed us to simulate traffic flows and how some changes in395

6https://github.com/javipalanca/simfleet
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the city (like the position of charging stations) influence the city’s traffic.

4.1.2. Station role

In order to allow vehicles to go to a fuel station or EV charging station

we needed to create a new role in the simulator, the Station role. This role is

played by agents who represent a charging station. A charging station has a400

fixed position in the map (defined by its latitude and longitude) and, in the case

of an EV charging station, it has some properties that define its capabilities.

Some of these properties are the number of charging poles, which define how

many cars can be charging their batteries simultaneously, and the power of the

stations, which defines how much time a vehicle needs to be using the station405

to get its batteries filled.

With these elements, we included the station role in the simulation and then

vehicles can request a place in the station to charge their batteries. When the

charging poles are used by other vehicles the requesting vehicle may wait in a

queue until a pole is free.410

Additionally, some measures are collected to analyze how good the distri-

bution of stations is in the city. Some of these measures are the mean waiting

time in the queues or the mean time that the stations are idle.

4.2. Load and Charging Stations Generators

The Load Generators, introduced in (Mart́ı et al., 2020), enable SimFleet415

users to create complex simulation experiments that present different distri-

butions of agents and elements. To do so, they create or fill a SimFleet con-

figuration file, which describes the simulations in SimFleet, according to some

user-defined parameters. Following, we briefly explain how the generators work

and what are they used for in this work.420

In general, the generators work with a GeoJSON file which represents the

area of the city where the simulation will take place. The city area is then

divided according to the desired type of distribution. Afterwards, the area is

populated with the agents and other elements of the simulation experiment.
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Such elements will always be placed on valid positions; i.e: positions that corre-425

spond to a street or road. This positions are represented by latitude-longitude

points, obtained by OSRM7, a routing engine that finds shortest paths in road

networks. In this case, we use it to obtain the nearest valid point to a certain

pair of coordinates. Two generators where developed: a Charging stations gen-

erator, which distributes exclusively charging stations over the city area; and a430

Load generator of movements in a city, which populates the city area with a

certain number of agents and assigns a route to them, thus creating movement

or simulation load.

4.2.1. Charging stations generator

The charging stations generator creates a random, uniform, radial or prob-435

abilistic distribution of n charging stations with p available charging poles. As

explained above, this distribution is performed over the area of the city where

the simulation will take place. According to the type of distribution, the gener-

ator splits the area into a series of polygons in which stations will be allocated.

The first three distributions are based on a geometric division of the simulation440

area, while the probabilistic one populates the map based on real city data, and

is therefore arguably informed.

The random distribution generates n valid points with random x and y

coordinates that are within the city area. Such points serve as the emplacement

for the stations of the simulation experiment.445

The uniform distribution trims the city area against a grid of a similar size,

effectively dividing the city area into squared-like polygons. The number of

cells in the grid is determined by the number of stations n. If n is a perfect

square, the grid will have
√
n rows and columns and, consequently, exactly n

cells. Otherwise the grid will have one more column than rows if the map is450

wider than higher or vice-versa if the map is higher than wider. Once the city

area is divided, stations are located in the centroid of every polygon, iteratively.

7http://project-osrm.org/
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If the number of stations is higher than the number of polygons, the process

may locate two or more stations in the same polygon choosing, however, random

valid points inside it instead of the already occupied central point.455

As for the radial distribution, it is performed by trimming the city area

against c concentric circles that define the city in ring-like polygons. Those

rings are, in time, divided into eight parts by intersecting them with a squared

area divided in eight triangles that go from every vertex and middle point of a

side to the center of the area. The stations are again allocated in the centroid460

of the resulting polygons although this time the allocation starts in the inner

circle and moves towards the outer. Similarly as in the uniform distribution, if

there are more stations to place than polygons, the process will begin again but

placing stations in random valid points of each polygon.

In the aforementioned distributions, the assignation of charging poles to465

charging stations is, by default, uniform, having each station either p/n or

p/n − 1 poles. There is an alternative method that assigns a random amount

of charging poles to a random station. The latter method ensures both that

every station has at least one pole and that no station has more than a certain

percentage of the total stations.470

The probabilistic distribution receives, in addition to the charging poles to

distribute, a minimum distance between stations (min dist) and a maximum

number of poles that can be allocated in a single station (max poles). The

allocation begins by dividing the city uniformly into a configurable number of

cells, much like the uniform distribution does. Then, it uses cadastral, traffic,475

and social network activity data to assign a probability to each cell. These

probabilities define the chances a polygon has to be selected to install a station

in it. The allocation of charging poles is done by iteratively selecting one polygon

and adding a pole to the closest valid point to its centroid. The selection

of polygons is performed semi-randomly according to their probabilities. A480

polygon can be selected more than once, which would increase the amount of

charging poles in its station. Finally, the distribution ensures that every station

is at least min dist apart from another station and that no station has more
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max poles charging poles. This distribution stands out from the geometry-

based alternatives due to the use of real-world data to base the location of the485

stations on.

4.2.2. Load generator of movements in a city

This generator creates simulation load in terms of agent movement in the

city where the simulation is performed. The agent movement is characterized

by n agents of type t that follow a route of at least min dist meters. The agents490

can spawn upon the start of the simulation or be delayed by d seconds. In

addition, the n agents may be divided in batches of agents per batch agents,

having every batch an incremental delay. The movement (routes) performed by

the agents may be random or based on real data. For the random movement,

routes are generated choosing random origin and destination points for each495

agent, always considering they must be at least min dist meters apart. Once

an agent spawns, it will do so on its route’s origin point and its execution will

finish once it reaches its destination.

In order to base the movement of agents on real data, thus creating real-

istic routes, the informed movement generator was developed. This generator500

uses information about the population, traffic and social network activity in

different areas of the city to select origin and destination points of the routes

accordingly, similarly to the probabilistic charging station generator. Initially,

a granularity is defined, which indicates in how many areas will the main city

area be divided. A higher granularity will result in smaller areas and there-505

fore more possible points to build routes. Once the city is divided, the amount

of information (population, traffic, social network activity) that occurs in each

area is used to define a probability distribution over all areas of the city, as-

signing to each one a selection probability. According to that probability, the

routes will be created selecting two different areas at least min dist meters away510

from each other, and then a point within each area is selected as an origin or

destination, as appropriate in each case. By adjusting the weight of each type

of data over the selection probability, we can base routes for electric vehicle
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agents which are more influenced by traffic and population in contrast to routes

for taxi customers, more based on population and social network activity, for515

instance. For further clarification on how the probability distribution is created

and employed, please refer to (Mart́ı et al., 2020).

In this work, the charging stations generator was used to compare different

distributions of charging stations over the city of Valencia, Spain. Uniform,

radial, random, and probabilistic distributions of electric stations were created520

and compared against the one obtained by the genetic algorithm described in

Section 3. On the other hand, the informed movement generator was used to

populate the city area with transport agents representing electric vehicles (EVs)

and assign them realistic routes. During the development of their movements,

EVs will require to charge their batteries and will do so going to the nearest525

station. Finally, by comparing SimFleet’s metrics for simulation evaluation

among various executions, we can analyze the effect of different distributions

of charging stations over the time EVs waited in a station to charge, being

therefore able to tell apart more efficient distributions.

4.3. Experiments setup530

With all the previous elements we have prepared a set of experiments that

allows us to check how the solutions proposed by the genetic algorithm work

compared to other. Figure 4 shows how the different elements of the simulation

were interconnected.

The experimentation through simulations has been focused on the city of535

Valencia, Spain. The working area considered for Valencia is depicted in Figure

5. We have all the necessary data (cadastral, traffic, and social network activity)

to generate vehicle movements that reproduce reality, as well as to compute so-

lutions from our genetic algorithm for the placement of electric vehicle charging

stations.540

Our final objective is to compare the suitability of the distribution of electric

vehicle charging points in the city of Valencia generated by the proposed genetic

algorithm against other distribution alternatives, such as: uniform, radial, and

21



Figure 4: Schematic overview of the whole experimental process

random. Figure 6a shows an example of 50 charging poles obtained by the

genetic algorithm within the working area of Valencia (a number in a point545

represents the amount of charging poles in that station, while the absence of a

number implies that there is only one charging pole).

The uniform, radial, random, and probabilistic distributions are generated

using the algorithms proposed in (Mart́ı et al., 2020) and described above for the

automatic generation of charging station locations. In the following paragraphs,550

we briefly explain how each of these distributions are created for the city of

Valencia. For further details we refer the reader to (Mart́ı et al., 2020).

The uniform distribution divides uniformly8 the working area of the city into

8The uniform distribution does not refer to a probability distribution but to how charging
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Figure 5: Working area of Valencia city.

equal size cells to place the charging stations in the closest valid points (it has

to be a street of the city) of the centroid of each cell. If there are not enough555

cells because of the shape of the map, the rest of charging points are distributed

randomly in different cells of the grid in a random position inside that cell.

Figure 6b shows a uniform distribution of 50 stations with the corresponding

polygons.

The radial distribution divides the city into a series of determined concentric560

circles and triangles that cut them to determine the polygons where the charging

stations will be located. Then, each station is allocated in the closest valid

point of the centroid of each polygon. To perform this allocation the algorithm

considers both the amount of stations per circle as well as the polygons a circle

has in order to allocate the stations as uniformly as possible. Figure 6c shows a565

radial distribution of 50 stations with the corresponding polygons in Valencia.

The random distribution of charging points is created by generating random

x and y coordinates inside the working area of the city for each charging point

that has to be located. Then, the closest valid point in the map (it has to be

a street of the city) is obtained and it is stored as a station location if it is570

points are divided in the city.
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(a) Genetic. (b) Uniform.

(c) Radial. (d) Probabilistic.

Figure 6: 50 charging poles in different distributions with polygons.

still contained in the city map; otherwise, new coordinates are generated until

finding a valid location.

Finally, the probabilistic distribution divides the working area similarly to

the uniform distribution and assigns a selection probability to each polygon.

The probability is computed according to the amounts of population, traffic575

and social network activity that occur inside each polygon. When a polygon is
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selected, a charging station will be deployed inside it. If a polygon is selected

more than once, the number of charging poles of the station will be increased

in one each time. The selection of polygons is performed semi-randomly ac-

cording to their probabilities, taking into account a minimum distance among580

station and a maximum number of charging poles in a single station. Figure

6d presents a probabilistic distribution of 50 charging poles within the working

area of Valencia.

Figure 7: Vehicles informed movement probabilities in a 22-cell grid.

In order to test the suitability of a distribution of charging points, we will

measure values such as waiting time of vehicles at stations that represents con-585

gestion, among others. Thus, two types of vehicle movement or mobility pat-

terns are generated in the city.

On the one hand, the vehicles random movement is generated by putting

random points of origin and destination in the city for each of the vehicles

in the experiment with a minimum distance min dist established between the590

origin and destination.

On the other hand, the vehicles informed movement is generated using cadas-

tral, traffic, and social network activity data, in a similar way to the probabilistic

station distribution, to determine the probability of vehicles in each area of the
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city. These probabilities are used to generate the points of origin and destination595

of vehicles, always having a minimum distance min dist between these points.

Figure 7 depicts a 22-cell grid with the corresponding probabilities of locating

the origin/destination point of a vehicle (we note that for the experiments of

Section 5, the grid has 930 cells).

It should be noted that the informed movement is much more adjusted to600

reality than the random one since the former is generated considering the real

data that determine the greater or lesser presence of vehicles in the city. In this

sense, tests are proposed with a number of electric vehicles between 2500 and

4500 that want to charge their batteries at the same time in the city.

As an example for both random and informed vehicles movement, Figure 8a605

presents a 30x30 grid of points to be possible origin and destination points of

vehicles in the city. We should note that in the case of the informed movement

each point corresponding to the centroid of a cell has an associated probability

while in the random movement the probability would be the same to each point.

In addition, Figure 8b represents 100 routes of vehicles in the city that are610

generated using the previous points.

(a) 30 rows and columns. (b) 100 routes.

Figure 8: Load granularity in a 30x30 map and 100 routes example.
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The electric vehicles in the simulations in the city of Valencia move to the

nearest charging station, without considering other parameters such as the oc-

cupation of the station or the length of the queue. This is a realistic way to

represent what is currently happening in the gas stations or charging points, so615

the distribution of the charging points in a city should be done adapting it to

the actual demand. Therefore, it is out of the scope of this work to use other

techniques such as those proposed in (Jordán et al., 2018) and (Jordán and On-

aind́ıa, 2015; Jordán et al., 2020) to optimize and coordinate the rational use

of charging points that involve communication and having knowledge of what620

other agents could do at any time.

Finally, in order to test all this, three different experiments have been defined

depending on the number of charging points that are placed in the city, 50, 100,

and 200. It should be noted that in the case of our genetic algorithm these

charging points are placed in an incremental manner, i.e., the 100 charging625

point experiment consists of the 50 charging points of the previous experiment

plus another 50 additional points, and the same with the 200 experiment that is

based on the 100 charging point experiment above. In this way, we can recreate

an incremental installation over several years of charging points in a city to

better meet demand.630

Table 1 presents the parameters used to run the genetic algorithm in the

city of Valencia. The first four parameters, represent the initial population

of the genetic algorithm, the number of generations to obtain a final solution,

and the probabilities of crossover and mutation. Then, the initial number of

Points of Interest in the city is 1333, but these points are reduced through635

a clustering algorithm to 234 points, so there is at least 300 meters between

each possible station. The charging poles to locate are 50, 100, and 200 in each

experiment, while the maximum number of charging poles per station is 10. The

weights for the population (ωP ), traffic (ωT ), and social network activity (ωA)

are determined as 0.2, 0.4, and 0.4, respectively. In addition, the cost for each640

charging station is 50000e (including one pole), and each additional charging

pole costs 10000e. Each meter from the charging station to the transformer

27



Parameter Value

population 1000

generations 100

crossover prob. 0.5

mutation prob. 0.05

number of PoIs 1333 → 234 (after clustering)

distance PoIs 300

total poles to locate 50, 100, 200

max poles per station 10

ωP 0.2

ωT 0.4

ωA 0.4

cost station 50000

cost pole 10000

cost distance energy 150

energy radius 100

influence radius 300

Table 1: Genetic algorithm parameters for Valencia.

substation costs 150e. Finally, the maximum energy radius to connect the

charging station is 100 meters, and the influence radius of the station is 300

meters, that is, it only considers the data of that area for the utility value.645

5. Results

This section presents the experimental results that have been made to test

the suitability of the distribution proposed by our genetic algorithm of the EV

charging stations against other distributions by simulating mobility in SimFleet.

Three experiments have been mainly carried out in which 50, 100 and 200650

charging points have been placed, respectively, in the city of Valencia. Therefore,
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the main measure with which we evaluate the suitability of each distribution

in these experiments is the mean waiting time of the vehicles in the queue at

the charging stations. In addition, we also analyze the percentage of stations

that remain idle in the experiments. Finally, an overall discussion is held on the655

results obtained in these experiments.

5.1. Experiment 1: 50 charging points

The first experiment we propose consists of 50 charging points that can

be distributed throughout the city of Valencia, specifically in the designated

working area (Figure 5). This experiment aims to show a first implementation660

of charging points as the demand they could adequately meet is not very high,

but could be sufficient for the number of current electric vehicles in the city.

The measure by which we will assess the suitability of the five charging

point distributions (i.e. genetic, probabilistic, uniform, radial, and random) is

the waiting time of the vehicles in the queue of the charging stations. It should665

be noted that when a charging station has no free points, vehicles that have

moved there must wait in order of arrival until there is a free slot to charge.

Thus, when a high demand area of the city has few charging points, the waiting

time for vehicles will increase. This overall measure is therefore intended to

determine whether the distribution of charging points in the city is in line with670

vehicle demand.

In the figures below concerning the experiments, we show the waiting time

in a box plot. In this sense, a box plot shows the mean, median (Q2 or 50th

percentile), minimum (Q0 or 0th percentile) and maximum (Q4 or 100th per-

centile) values (the whiskers) excluding outliers, and the quartiles 1 (Q1 or 25th675

percentile) and 3 (Q3 or 75th percentile) that define the box and the interquar-

tile range. With this representation it is easy to see both the mean values of a

data series as well as its variability.

Figure 9a shows the box plot of the electric vehicles waiting time for 2500

to 4500 vehicle agents in the city of Valencia with random movement for the680

five different charging point distributions. Generally, the uniform distribution
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gets the best results in this case, followed by the random distribution. The

distributions genetic, probabilistic, and radial obtain similar results between

them depending on the number of agents, but are the worst overall with respect

to the other distributions. Since these are random vehicle movements, i.e. the685

points of origin and destination of the vehicles are random points in the city

(separated by a minimum distance, in this case 1500 meters), the distributions

that have a shorter waiting time for the vehicles are those that distribute the

charging stations uniformly or randomly. Thus, their waiting times are shorter

because we are dealing with between 2500 and 4500 agents, so the randomness690

of movements with so many agents is distributed evenly throughout the city,

but without attending to any criteria or real data.
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Figure 9: Box plot of waiting time of vehicles to charge with 50 charging points in the city,

in different distributions and number of agents. In each box, the circle represents the mean

and the horizontal line represents the median.

Therefore, in order to check how the distributions of charging points behave

in more realistic conditions, we are going to analyze the waiting time of the ve-

hicles but with informed movements that have been created considering the real695
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mobility data of the city of Valencia, as already indicated above. In Figure 9b,

we can see the waiting time of vehicles with informed movement for a number of

agents between 2500 and 4500 for each of the distributions mentioned above. In

this case, the distribution of the genetic algorithm obtains significantly better

results than the other distributions, followed by the probabilistic distribution.700

This is because the genetic algorithm and the probabilistic distribution do con-

sider the real data of the city, so the distributions of charging points are made

with respect to the actual traffic and movement in the city. For the genetic

distribution, it should be noted that even in the instances with more agents, the

waiting time does not grow as quickly as it does in the other distributions.705

In conclusion, the distribution of charging stations of the genetic algorithm is

less appropriate than some of the other distributions if the movements of vehicles

are completely random, however, the distribution of the genetic algorithm far

surpasses all other distributions (including the probabilistic one) when dealing

with vehicle movements generated with real data.710

In the following experiment the number of charging points is increased to 100

in the city, with the particularity that the 50 in this experiment are retained

for the distribution of the genetic and random algorithm. For probabilistic,

uniform and radial distributions, it is necessary to re-distribute the charging

points according to the new dimensions of the polygons that divide the city715

map.

5.2. Experiment 2: 100 charging points

Figure 10a presents the results of the waiting time for vehicles with random

movements for different numbers of vehicles and different distributions with 100

charging points in the city. In general, the radial distribution obtains the worst720

results, while the uniform distribution obtains the best results followed by the

random one. However, it is noteworthy that the difference between the results

of the genetic distribution with respect to the uniform or random distribution is

not very significant. The reason behind this may be that by placing 100 charging

points in the city, and even if the movement is random, the distribution of the725
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genetic already covers relatively homogeneously the whole city. That is why the

results do not differ so much with the distributions that work best, as it was the

case in the previous experiment with 50 charging points (Figure 9b) because

the city could not be covered uniformly to accommodate distributed random

movements.730
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Figure 10: Box plot of waiting time of vehicles to charge with 100 charging points in the city,

in different distributions and number of agents. In each box, the circle represents the mean

and the horizontal line represents the median.

For the case of the 100-point distribution of informed vehicle movement

represented in Figure 10b, the waiting time of the vehicles at the stations is

significantly lower for the resulting distribution of the genetic algorithm com-

pared to the other distributions. In fact, in this case this difference is much

greater than in the case with 50 charging points in the previous experiment (see735

Figure 9b). The probabilistic distribution behaves similar to that of the genetic

algorithm with respect to the rest of the distributions, however, the genetic algo-

rithm distribution provides lower mean waiting times (between 33.6-42.5% dif-

ference) than the probabilistic one.The probabilistic distribution also performs
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well behind the distribution of the genetic algorithm. However, the difference740

it is slightly significant. Thus, it is confirmed that the distribution obtained

with the genetic algorithm is much more appropriate to reality than the other

distributions, as could already be suspected in the previous experiment.

Again, in order to further check the feasibility of each of the distributions,

we move to the next experiment in which we double the number of charging745

points to 200. We remind that, in the case of the distribution of the genetic

algorithm, the 200 charging points experiment is built starting from the previous

experiment of 100 points, which in turn already started from the 50 charging

points experiment.

5.3. Experiment 3: 200 charging points750

The results of the waiting time of the vehicles for this experiment with

200 charging points and random movement represented in Figure 11a are quite

similar to the equivalents of the previous experiment with 100 charging points

(see Figure 10a). However, in this case the probabilistic distribution has the

worst results followed by the radial distribution. On the other hand, the uniform755

distribution has the best results, followed by the random distribution, and then

the genetic distribution. In this case, it becomes clear again that with random

vehicle movements the uniform or even the random distribution get good results

because they cover the whole city almost uniformly. This is so for the randomly

generated movement because we are considering substantial amounts of agents760

(2500 in the smallest case) that creates a uniform distribution of the agents’

positions in the city.

Figure 11b presents the results of the vehicle waiting time for the 200 charg-

ing points experiment and vehicle movement based on real data. In this case,

the best results are still for the distribution of the genetic algorithm followed by765

the probabilistic distribution, as in the previous experiments with the informed

vehicle movements (Figures 9b and 10b). It can be seen in Figure 11b that

after the genetic and probabilistic distributions, the next best results are with

the uniform distribution, followed by the radial and finally the random distribu-
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Figure 11: Box plot of waiting time of vehicles to charge with 100 charging points in the city,

in different distributions and number of agents. In each box, the circle represents the mean

and the horizontal line represents the median.

tion. Thus, these results seem most natural and intuitive when we imagine how770

different distributions can work in a city, that is, when there are enough stations

to place, a probabilistic or a uniform distribution still works relatively well; a

radial distribution works a little worse if the city does not have totally central-

ized traffic (for example, Valencia has a central area with a very limited access

to traffic in the old town); and a random distribution, although it can behave775

similar to a uniform one if there are enough charging points to be distributed,

it is still deficient with 200 points considering vehicle movements based on real

data.

In conclusion, the uniform distribution would be appropriate if the move-

ments of vehicles in the city followed a totally random or uniformly distributed780

pattern throughout the map. However, it is unlikely that the traffic of any

city in the world has this behavior, and specifically, this has not been observed

in Valencia, the city object of our study. Therefore, if we consider the actual
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movement of vehicles (based on real data) in the city, the best distribution of

charging points of electric vehicles among those compared in this study has785

been obtained by the genetic algorithm proposed by our work (Palanca et al.,

2020a). Thus, we can say that it is demonstrated by simulation with real data

the viability of our approach after analyzing different experiments.

5.4. Analysis of idle stations in the experiments

In the previous subsections, we have analyzed the results of the waiting790

time of the vehicles at the charging stations for the different distributions. In

order to complement this analysis and to better understand what happens in the

different distributions, we will now show the percentage of charging stations that

remain idle in the previous experiments. The objective in this case is twofold:

on the one hand, if there is a high percentage of stations which are not used,795

this may mean that the waiting time at the other stations will be greater, as

they must serve more vehicles. On the other hand, from the point of view of the

administrators or municipalities which place the charging stations in the city,

this implies a disbursement of money which results in a poor use of resources,

as well as a worse service to users.800

Table 2 presents the percentage of idle stations for the previous experiments

of 50, 100, and 200 charging points with the different distributions and number

of agents for the case of random vehicle movement. Overall, it can be seen that

the radial distribution has the highest percentage of idle stations in all three

experiments, with between 14% and 28%. This may be due to the nature of this805

distribution, which puts many points in the central area of the city and some of

these points take up most of the vehicles in the area and leave others idle. In

this sense, it is also worth remembering that the city of Valencia has a central

area with a very limited traffic flow and that is almost not accessible by car. In

addition, the radial distribution can also put some points in areas too far from810

the activity very close to the city limits (see example of Figure 6c), where it is

likely that no traffic is generated.

Regarding the uniform and random distributions in Table 2, the percentage
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50 charging points

distribution

agents genetic probabilistic uniform radial random

2500 0% 0% 2% 14% 0%

3000 0% 0% 2% 14% 0%

3500 0% 0% 2% 14% 0%

4000 0% 0% 2% 14% 0%

4500 0% 0% 2% 14% 0%

100 charging points

distribution

agents genetic probabilistic uniform radial random

2500 0% 0% 0% 28% 3%

3000 0% 0% 0% 27% 3%

3500 0% 0% 0% 28% 3%

4000 0% 0% 0% 27% 3%

4500 0% 0% 0% 28% 3%

200 charging points

distribution

agents genetic probabilistic uniform radial random

2500 0% 0% 5% 23.5% 3.5%

3000 0% 0% 4.5% 23% 4%

3500 0% 0% 4.5% 23.5% 3%

4000 0% 0% 4% 23% 3%

4500 0% 0% 4.5% 23% 3%

Table 2: Percentage of idle charging points with random vehicle movement. The best values

of each experiment are represented in bold.

of idle stations remains quite low, in some cases being 0%, and at most 5% and

4%, respectively, in the experiment with 200 charging points. In these cases, as815

mentioned above, the use of stations is high because the random movement of

vehicles is relatively evenly distributed throughout the city when dealing with

large numbers of vehicles, so the probability of a station not being used because

no vehicle appears nearby is quite low.

Finally, the most remarkable result is that both the distribution of the ge-820

netic algorithm and the probabilistic one have no idle stations in any of the

experiments of Table 2. Therefore, we can say that the stations are used 100%

in these two distributions, which indicates that the location of the stations in

these distributions is totally adequate in this sense, even with the random move-
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ment that was not the most beneficial for these approaches.825

50 charging points

distribution

agents genetic probabilistic uniform radial random

2500 0% 0% 4% 16% 2%

3000 0% 0% 4% 16% 2%

3500 0% 0% 2% 14% 2%

4000 0% 0% 2% 14% 2%

4500 0% 0% 2% 14% 0%

100 charging points

distribution

agents genetic probabilistic uniform radial random

2500 0% 1% 14% 33% 15%

3000 0% 1% 15% 33% 17%

3500 0% 0.5% 9% 33% 11%

4000 0% 0% 11% 34% 13%

4500 0% 0% 0% 10% 33%

200 charging points

distribution

agents genetic probabilistic uniform radial random

2500 1% 2.5% 25.5% 38.5% 30%

3000 1.5% 2.5% 24% 37% 29%

3500 0.5% 1.5% 22% 34.5% 25%

4000 0.5% 1.5% 22% 36% 25.5%

4500 0% 1.5% 20% 33.5% 23.5%

Table 3: Percentage of idle charging points with informed vehicle movement. The best values

of each experiment are represented in bold.

The results of the percentage of idle stations for the above experiments and

their different distributions with informed movements (based on real data) are

found in Table 3. In this case, the same pattern as in the previous results in

Table 2 is repeated for the radial distribution. This distribution still has the

highest percentage of idle charging stations and in addition, these percentages830

are a little higher, since they have increased from being in the range of 14-28%

to 14-38.5% depending on the case. The reason for this increase may be that, as

it is a question of movement based on real vehicle data, the radial distribution

is not favored because traffic in Valencia is not totally centered on the midpoint

where it coincides with the old town with traffic restrictions.835
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With regard to the uniform distribution, the percentage of idle stations with

informed movement increases notably with respect to that of random move-

ment, specifically in the experiment of 100 charging points it goes from 0% to

values between 9-15%, and in the experiment of 200 charging points it goes from

values of 4-5% to 20-25.5%. Similarly, the random distribution also increases its840

percentage of idle stations with respect to the random movement experiments.

As with the uniform, this is especially the case in the 100 and 200 charging point

experiments, since the 50 charging point experiment, being so few to cover all

vehicle activity, is rather unlikely to leave any stations idle. Thus, the random

distribution is increased from 3% to a range of 11-17% of idle stations in the845

100 charging point experiment, while with 200 charging points the change is

from 3-4% to 23.5-30%. Thus, the incidence of the informed movement on the

percentage of idle stations is remarkable in both the uniform and the random

distribution, since in this case the vehicle movements are not randomly dis-

tributed and balanced by the city, but follow the probability that is based on850

the real activity data.

Regarding the probabilistic distribution, it also has a slightly increase in

the percentage of idle stations with respect to the random vehicle movement

only in the 100 and 200 charging point experiments. However, the idle stations

percentage is just 1% at most with 100 charging points, and 1.5-2.5% with 200855

charging points.

Finally, the percentage of idle stations for the distribution of the genetic algo-

rithm is kept at 0% for the informed vehicle movement except in the 200 charging

point experiment where it is between 0-1.5%. Thus, in this case the difference

with respect to the other distributions is notable (except for the probabilistic860

distribution, for which the difference is not so significant), which endorses the

results obtained in the previous experiments on the waiting time of vehicles.

This implies that we can state that the distribution of charging points carried

out by the genetic algorithm is the best with respect to the other distributions

given its best results in the performed experiments.865
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5.5. Discussion on the results

In this series of experiments we have analyzed different metrics to assess

which may be the best option to decide the location of a set of charging points

in Valencia (Spain). To do so, we have compared the distribution performed

by the genetic algorithm we propose with respect to a probabilistic distribution870

(based on the information of the city, i.e., population, traffic, and social networks

activity), a uniform distribution, another radial distribution, and a random

distribution. In addition, these experiments have been carried out by simulating

(using the SimFleet tool) different numbers of vehicles in the range of 2500 to

4500 that want to charge their batteries at the same time in the city, and875

that follow a random movement pattern or another informed pattern (based

on real data of population, traffic, and social network activity in the city under

study). The aim was to overload the system to see how each distribution behaves

to absorb all the demand. The main conclusions we can draw from all these

experiments are the following.880

When the vehicles in the simulation follow a random movement (their point

of origin and destination is generated randomly anywhere in the city) the dis-

tributions of charging points that obtain the best results are the uniform and

the random ones. This makes sense since we are dealing with a large number of

vehicles which, by placing their origin position at random in the city, end up be-885

ing distributed more or less evenly. For this reason, uniform distribution, and in

part also random distribution (especially in experiments with a greater number

of charging points), manage to better cover the demand for vehicle charging.

However, it is important to highlight that the random movement of vehicles

does not correspond exactly to the reality of a city, since both the morphology890

of the streets as well as other factors such as the number of inhabitants, traffic

restrictions, or the areas of greatest interest determine how vehicles move in the

city.

Consequently, the experiments that are most important due to their simi-

larity to the real world are those carried out with the informed movement of895

vehicles, i.e. those in which the points of origin and destination have been deter-
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mined based on real data, so that each area into which the city has been divided

has a probability of being either a point of origin or destination depending on

the activity that is generated in it. With regard to these experiments with the

informed movement of vehicles, the best results have been obtained with the900

distribution of the genetic algorithm that has significantly outperformed the

other distributions, including the probabilistic distribution, that also considers

the information of the city to locate the charging stations.

Therefore, we can claim that the best distribution for the studied city is

made by the genetic algorithm that places stations more intelligently in the city905

to respond to the actual demand considering the mobility that is recreated with

real data.

6. Conclusions

The importance of an infrastructure that promotes the implementation of

electric vehicles in an urban context has led to the proposal of a genetic algo-910

rithm for the placement of electric vehicle charging stations. This evolutionary

algorithm uses multi-objective techniques and considers real data from the city

under study. In addition, a long-term solution is also implemented in which

new charging points and stations are added in subsequent years according to

the needs planned by the municipalities.915

Furthermore, to validate the solutions of the genetic algorithm, a complete

simulation system (based on the SimFleet simulator) has been implemented

in which a considerable number of electric vehicles travel around the city and

must charge their batteries. In this sense, a simulation system is necessary

since the implementation in reality of any distribution of charging stations is920

very expensive, making simulation crucial to validate the proposed solutions.

This simulation system has been used to compare the station distribution of

the genetic algorithm with other distributions that could be made in a city, i.e.

uniform, radial, or random.

The main results of the experiments carried out through simulation show925
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that the best distribution of those analyzed is that made by the proposed genetic

algorithm. This occurs in the simulations in which the mobility of electric

vehicles in the city is based on real data.

This paper has presented as contributions: (1) the development of a sim-

ulator for urban vehicles which allows the simulation of vehicle movements by930

using data extracted from open data sources like traffic, population and social

networks geo-located activity, (2) a set of experiments to validate the solution

proposed by the genetic algorithm developed by the authors; these experiments

validate that the waiting time at charging stations is minimized and (3) a mech-

anism that allows to detect undesirable situations before the deployment of the935

solution, like the number of idle stations, this is, stations that are located at

unnecessary places or that are underutilized while increasing the installation

cost.

As future work, both the genetic algorithm and the simulator could be mod-

ified to extend the problem of placing electric vehicle charging stations in an940

interurban context. In this sense, the installation of charging stations could

be planned in areas that include entire regions with various cities involved, or

even at the level of an entire country or set of countries. This would provide an

interurban or state infrastructure of charging stations that would promote the

use of electric vehicles since users would have a sufficiently complete network945

within reach of the autonomy of their vehicle batteries. More cases of study will

be developed, including different cities and public transport systems to make

simulations as real as possible. Finally, the genetic algorithm could be improved

by using local search techniques such as simulated annealing.
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