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Highlights

Optimal Siting and Sizing of Electric Taxi Charging Stations Con-
sidering Transportation and Power System Requirements

Jean-Michel Clairand∗,, Mario González-Rodŕıguez, Rajesh Kumar, Shashank
Vyas, Guillermo Escrivá-Escrivá,

• Optimal siting and sizing of electric taxi charging stations are consid-
ered with coupled transportation and power systems.

• The methodology is crucial for aiding municipalities in identifying ap-
propriate location and number of ET charging spots.

• The modeling results were validated with actual data considering spe-
cific taxi driving behavior.
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Abstract

Electric vehicles (EVs) have become more popular to address transportation-
related environmental concerns. However, to integrate a massive fleet of EVs, 
it is crucial to properly build charging stations by considering the optimal 
geographical placement and number of charging spots. This task is particu-
larly challenging for users with rigid schedules such as taxi drivers. Hence, an 
optimal siting and sizing approach for an electric taxi (ET) charging sta-tion 
is proposed in this study, considering both transportation and power system 
needs. In addition, particular attention to taxi drivers’ needs is con-sidered. 
Fixed installation costs, land costs, and trip costs are the factors evaluated in 
this proposed approach. A network modeling approach based on a winner-
takes-all edge trimming was used to identify interest points of the city in 
terms of traffic flows. Ecuador’s capital, Quito, was considered a case study. A 
sensitivity analysis was also carried out to address traffic flow uncertainties 
such as trip expenses and restrictions.
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Siting and sizing, Transportation network

Nomenclature

Indices

i, j Index for nodes in transportation network

k Index for charging station

s Index for electric substation

v Index for electric taxi

Parameters

β Weighted resource leveling

∆Dk,k+1 Resource leveling term between consecutive charging stations

η Charging efficiency of charging spot [%]

ω Monetary value of travel time

Ik Current limits at station k [A]

Nch Upper limit for number of charging spots in each charging station

Pch Maximum charging power for ET charging station [kW]

Nch Lower limit for number of charging spots in each charging station

Qk, Qk Reactive power limits at station k [kVar]

Vk, Vk Voltage limits at station k [V]

dij Distance matrix element

DTk Mean travel distance of station k

Eav Average daily electricity energy required by each ET v [kWh]

Ereq Total electricity energy required to charge all ETs [kWh]
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fij Time (flow) matrix element

NV Number of taxis in Quito

NK Number of interest locations for ET charging stations

P F
s Feeder capacity at substation s [kW]

T Time horizon for charging ETs in the charging stations in a day [h]

VD Voltage drop [V]

VSS Substation voltage[V]

xink (Time) Flow indegree

xtotk Total flow degree

xkoutk (Time) Flow outdegree

Sets

E Set of edges of transportation

G Graph

K Set of charging stations

N Set of transportation nodes

S Set of electric substations

V Set of ETs

Variables

Cm Material costs [$]

Cw Workforce costs [$]

Ck Total investment cost for a charging station k [$]

Cit
k Installation costs [$]

C l
k Land cost for each charging station k [$]

3
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Ctr
k Travel cost for each charging station k [$]

nk Number of charging spots at charging station k

1. Introduction

Electric vehicles (EVs) have emerged as a viable option for address-
ing transportation-related environmental concerns, particularly emission of
greenhouse gases (GHGs) from burning fossil fuels. EVs are considerably
more efficient than cars with internal combustion engines (ICEs). They do
not pollute locally, and their average worldwide pollution level is lower, es-
pecially with greener charging sources that use renewable energy [1; 2].

EVs entail a number of potential difficulties that must be overcome. It
has been shown that large-scale use of EVs may result in power grid diffi-
culties including power losses, voltage sags, and voltage variations [3; 4; 5].
Thus, power system restrictions must be considered in charging solutions [6].
Compared with ICE cars, EVs have a restricted driving range, which can
cause ”range anxiety,” the concern of not having sufficient electrical energy
in the battery. Range anxiety may be exacerbated for taxi drivers, whose
charging behavior is likely to be considerably less flexible.

Studies examining the planning and functioning of EV charging stations
have been documented. Several studies have investigated the operation and
scheduling of EV charging stations [7], charging navigation systems for EV
charging stations [8], and transportation and electric power networks [9].

Several studies have investigated the siting and sizing of EV charging 
stations. An optimal planning of plug-in EV fast charging stations using an 
auction-based method was proposed [10]. A unsupervised learning method-
ology for deploying charging public infrastructure for EVs in sprawling cities 
was proposed [11]. Fast-charging station siting and sizing based on a mixed-
integer nonlinear programming approach was proposed [12]. A station in the 
EV charging station planning problem was assumed, in which an in-vestor 
intended to maximize profit in a competitive environment [13]. A robust 
model of EV charging station location considering renewable energy and 
storage equipment was studied [14]. The authors of [15] determine the optimal 
charging station placement considering V2G technology, by consid-ering the 
minimization of line loading, voltage deviation, and circuit power loss. The 
optimization is performed through quantum binary lightning search
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algorithm, which is an heuristic optimization technique. In [16], a queuing-
theory-based charging station sizing algorithm that benefits EV users and 
improves spots capacity utilization is proposed. The case study of Al Ain City, 
UAE, is studied. These studies have reported essential findings for EV 
charging station sizing and siting. However, they have mainly considered 
power system requirements; traffic constraints were not considered simulta-
neously.

Other studies have focused only on road congestion, with minimal or no 
power grid limitations. The optimal location of an EV charging station was 
obtained based on actual vehicle travel patterns [17]. Pile assignment was 
used in the charging station placement problem [18]. A sizing and sit-ing 
model was proposed considering EV characteristics such as EV flow and 
charging station technical specifications [19]. A data-driven intelligent loca-
tion of public charging stations for EVs was performed considering massive 
GPS-enabled trajectory data [20]. The growth of electric vehicles in urban 
traffic networks is linked to the development of charging infrastructure. Cur-
rently, siting and sizing of EV charging stations is an open problem. The paper 
[21], describes the process of sizing and placing electric vehicle charging 
stations, establishing variables to represent charging demand, modeling the 
structure of the road network using graph theory, and solving an optimiza-
tion problem. The model’s goal is to reduce the combined cost of charging 
stations and users. The calculations show that the strategy can effectively cut 
construction and operation expenses, as well as facilitate user pricing, from 
Stockholm, Sweden.

Increasing the usage of electric energy for transportation and promoting 
EVs to reduce harmful emissions and noise is a worldwide trend. Common 
difficulties when it comes to the location of charging stations are related to 
budget and geographical constraints. The authors of [22] proposed a method 
that enables for the selection of a subset of existing parking lots for selecting 
the siting of the charging stations. In this work, a set of optimal solutions for 
multiple predefined restrictive and partially contradictory criteria was 
established using a genetic algorithm combined with fuzzy logic and Pareto 
front analysis. In [23], the location optimization of EV charging stations is 
performed by covering economic and environmental costs and using geo-
graphical information from Ireland. The authors of [24] propose a techno-
economic optimization of renewable-based charging stations in Qatar, where 
the configuration with the least net present cost is selected.

To date, a limited number of studies have investigated coupled power and
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traffic constraints for siting and sizing of EV charging stations. The siting and 
sizing problem includes power and traffic system constraints; however, the 
land cost was not considered in the placement conditions [25]. An opti-mal 
planning method was studied for the location of fast charging station for EVs 
considering operators, drivers, vehicles, traffic flow, and power grid [26]. The 
optimal location and sizing of fast-charging stations was studied [27]. A 
methodology that find the optimal location and size of public charging 
stations, which can maximize the benefit of the investment, was considered 
[28]. A multi-objective synergistic planning approach for EV fast-charging 
stations was proposed for integration into the distribution system [29]. A 
network equilibrium model that captured the spatial and temporal varia-tions 
of power and traffic flows was studied [30]; these variations are helpful in the 
siting and sizing of charging stations. In [31], a zonal approach is proposed for 
the siting and sizing of fast-charging stations. The authors of [32] propose a 
sizing of plug-in EV fast-charging stations with Markovian demand 
characterization; nonetheless, the siting problem is not considered. In [33], a 
graph automorphic approach is considered for the placement and sizing of 
charging stations.

Although these and other studies have recommended the optimal location 
and size of EV charging stations, they have focused on passenger automobiles. 
The location and size of charging stations for public transportation with vari-
able schedules, such as electric taxis (ETs), have received less attention. The 
allocation of fast-charging ET stations was proposed, with particular atten-
tion to taxi services [34; 35; 36]; however, power system conditions were not 
strongly considered. Several studies have considered construction of fast-
charging stations, which has been linked to battery degradation. Their time 
and location requirements differ from those of private passenger EVs. In-
stalling only fast-charging stations for ETs is not technically advisable, as it 
may cause battery damage leading to unusability.

The majority of studies discuss theoretical instances rather than realis-
tic case studies, using restricted data and assumptions rather than actual
data that considers transportation circumstances. Coordinated ET charg-
ing station siting and sizing based on real-world traffic and power-system
circumstances are proposed in this study. This paper is an extension of a
previous conference [37], which has significantly been improved. The key
contributions of this study are presented as follows.

• A comprehensive siting and sizing methodology for ET charging sta-
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tions is developed based on actual data. Particular attention is devoted
to the needs of taxi drivers regarding operating schedules by considering
trip costs.

• The optimal investment for charging stations is determined by consid-
ering power grid and transportation constraints to ensure sustainable
purchase of ETs.

• A sensitivity analysis is performed to resolve uncertainties, considering
probable trip expenses and restrictions to present more realistically
acceptable results.

The remainder of this paper is organized as follows: The approach for
location and sizing of ET charging stations is described in Section 2. The
case study and assumptions are presented in Section 3. Section 4 discusses
the results of the case study. Section 5 summarizes the key conclusions.

2. Methodology for sizing and locating charging stations

The recommended strategy for locating and sizing ET charging stations
is presented in this section. The first step consists of identifying potential
locations for ET charging stations based on actual traffic conditions. After
identifying the interest points, the optimal number of charging spots to be
installed is calculated.

For the siting and sizing of EV charging stations specifically for taxis,
a technical criterion that can help determine the location and number is
the type of road. For example, on urban roads, charging stations include
fewer charging spots because they use the existing low-voltage power distri-
bution infrastructure of such roads. From the transformers that already feed
different loads (homes and businesses), the distribution company installs in-
dividual charging points distributed along the street or at taxi stops. Thus,
both low-voltage cabling and transformers are available for charging at night
when the consumer load (homes and businesses) decreases. Capacity is avail-
able for charging point loads. A flowchart of the proposed methodology is
presented in Figure 1.

2.1. Transportation Modeling

For the transportation modeling, points of interest around the city are 
identified. The city street network was modeled as a graph, built using
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Transportation

Network

Electrical

Network

Substrate:

Street network

(OSMnx)

Tra c ow

extraction:

Google API

Siting:

25 interest

points

Sizing

Optimal

Investment

Cost

- Instalation costs

- Trip costs

- Land costs

Sensitivity

Analysis

MILP model

- Sizing costs

- Power system constraints

- Transportation constraints

- Logisctical constraints

- Monetary value of travel time

- Weighted resource leveling

- Winner-takes-all

edge trimming

- Minimum tra c ow

for siting charging piles

Figure 1: Flowchart of proposed ET charging station siting and sizing methodology.

the Python OSMnx API [38], where nodes are interest points connected by 
streets in a driving path, where the driving distance and time were acquired 
using the Google Directions API. The interest points are determined using an 
edge trimming heuristic for simplifying the city street graph, based on a 
winner takes all approach, where the best edge was selected during the 
trimming process. The resulting graph gives us the interest points with the 
best connections. The process is mostly automated, which is useful to model 
city street networks and traffic flow. In this particular case, we are not 
building all possible origin and destinations for taxis but based our analysis on 
the resulting network of interest points around the city [21; 22].

Other usual approach for trimming a graph is based on node removal
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instead of edge removal, as is our case. The trimming is done from the struc-
tural properties of the network, i.e., the edge length. A structural measure 
for the nodes usually employed is the network degree, for the city network, 
given that is a regular grid (approximately), node based measured are pretty 
uniform. Thus, we carry out the trimming based on edges, as built from iden-
tifying interest points and their full connected paths as driving distances, and 
times. We could think of edge-based algorithms such as building a spanning 
tree, but the restriction of the algorithm, of nodes connected without cycles, 
did not give a proper structure to build the intended network. Thus, we 
opted for a heuristic based on winner-takes-all approach.

Two requirements must be met to prototype a transportation system:

1. a foundational structure, such as a city street network, generally rep-
resented as a grid

2. a traffic flow model.

OSMnx produces a graph G = (N , E), where the nodes N corresponds 
to the interest points and the edges E to the paths (streets) connecting the 
interest points around the city. Quito street network was built using the 
package Open Street Maps in Python [39]. The edge length was used as a 
criterion for trimming the extracted network. The graph G can be represented 
as the adjacency matrix D, where elements smaller than the 75th percent, 
dij < p75th, become zero. The OD matrix is summarized at the node level, 
where the node degree is expressed as:

xtota = xink + xoutk (1)

with:
xink =

∑
j

fij (2)

and:
xoutk =

∑
j

fji (3)

where xin is the time flow indegree, xkout the time flow outdegree, and xtot
k k k measures the traffic flow of each point that is a candidate for the 

placement
of charging station k.

9

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



2.2. Problem Formulation

It is possible to obtain a large number of NK candidate charging stations.
The number of charging spots nk is defined as a decision variable for each
ET charging station k. For each charging station, the search space for the
number of charging locations was examined, and optimization was performed.
The goal is to minimize the cost of establishing public charging stations for
electric vehicles. The cost of ET travel is included in the overall price as
it is a significant incentive for taxi drivers to use EVs. For each charging
station, a typical fixed installation cost, land cost, and trip cost are defined,
representing the overall cost to be modeled for the charging station size.

Ck = Cit
k + C l

k + Ctr
k (4)

As each interest point is located in a different zone with different land
prices, the land cost is a variable.

The installation cost is assumed to be:

Cit
k = Cm + Cw (5)

The fixed costs are represented by the two terms. The first term refers
to material costs, including the price of the electric equipment and charging
stations. The second term refers to workers responsible for constructing
parking lots with charging stations.

The work includes a trip cost because the transportation needs of taxi
drivers must be considered to incentivize the purchase of ETs. For each
charging station k, the travel cost is a variable term defined as:

Ctr
k = ω ·DTk (6)

The objective is to minimize the sizing costs of the ET charging stations
formulated as Eq. (7):

min C = min
∑
k∈K

Ck (7)

Subject to:
Qk ≤ Qk ≤ Qk (8)

Vk ≤ Vk ≤ Vk (9)
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| Ik |≤ Ik (10)

nk · Pch ≤ P F
s (11)

Nch ≤ nk ≤ Nch (12)

∑
k∈K

nk · Pch · η · T ≥ Ereq (13)

nk+1 − nk ≤ β ·∆Dk,k+1 (14)

Constraint (8) represents the lower and upper limits of reactive power 
necessary for compensation at charging station k. Constraint (9) imposes the 
lower and upper voltage limits at each bus i. Constraint (10) imposes the 
lower and upper voltage limits at each bus k, guaranteeing the maximal 
current limits in each feeder. The electrical substation capacity limit of each 
charging station k belonging to substation s ∈ S is imposed by constraint (11). 
The minimum and maximum number of charging spots in each charging 
station are defined by constraint (12). During the time range in which taxi 
drivers are free to stop and charge their EVs, constraint (13) ensures that all 
charging stations can supply the total required energy for all taxi drivers. 
Constraint (14) is a ramp-up limit between each charging station, suggesting 
that there should be a maximum difference between charging stations for the 
shortest driving distance to discourage taxi drivers from going long distances 
if all charging station spots are used.

Mixed-integer linear optimization can be used to address this problem.
Active and reactive power limits for each charging station represent the power
flows that can occur at a bus or node in a network. As the time-series loading
data for substations and the conductor parameters were not available, an
alternative approach to the T&D network load flow was used. A power flow
only provides the minimum and maximum voltage values for one year at the
sub-station end and not at the node. The voltage at a node can be obtained
by accounting for the voltage drop (along its length) from the substation
voltage:

Vk = VSS − VD (15)
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However, the total load at each node was not available for evaluating the
current for ET charging.

Accordingly, a substation loading analysis was performed to calculate the
minimum and maximum power at each node. It was assumed that each
substation could be loaded to 80% of its rated capacity. Further, based on
land price, the substations were considered loaded to 50% or 70% of their
capacity. In prime locations, with prices exceeding 600 $/m2, substations are
more heavily loaded; it is safe to assume a practical maximum loading limit
of 70%. For all other substations with locations in less economically active
zones, their operating limit was assumed to be 50% of their capacity. As
each substation is sized to serve either one, two, or three types of consumers,
industrial, residential, and commercial, EV charging must increase loading
beyond the safe limits. Thus:∑

k∈K

nkPchη < P F
s (16)

Accordingly, the minimum and maximum space for EV loading were con-
sidered to be an additional load of 5–15%. Thus, for 66 MVA substations,
which are primarily residential, a minimum of 5% of the rated capacity can
be accommodated as the EV charging load. A maximum EV charging load
corresponding to 15% of the rated capacity was allowed. For other large
substations, 75–80% of the rated capacity was used as the operating limit
considering EV charging in addition to other loads. A practical assessment
of substation loading and distribution of EV charging load was conducted to
model the power flow constraints.

The methodology can be summarized by the following pseudocode:
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Data: Network, Traffic flow, Power grid parameters 
Set cost variables;

Result: Optimal siting based on interest points

Process
City network and traffic flow based on winner takes all edge 
trimming and minimum traffic flow;
Define cost function Set power grid conditions based on interest 
points in the city;
Minimize cost function subject to constraints;
Obtain optimal sizing for each charging station at minimum 
investment cost;
Perform sensitivity analysis considering monetary value time 
and resource weighted leveraging ;

Algorithm 1: Siting and sizing process

3. Case Study and Assumptions

A case study of Quito, Ecuador was chosen based on the mayor’s com-
mitment to gradually replace internal combustion taxis with EVs. Quito is
located 2,800 m above sea level; automobile combustion is inefficient as a re-
sult of the high altitude, resulting in considerable pollution issues. As taxis
are a large source of traffic and noise, the mayor must provide other modes
of transportation.

3.1. Potential locations of ET charging stations

The urban traffic flow mapping in Quito was completed in a previous
study [40]; numerous prospective ET charging stations were chosen.

The city can be modeled as a street network [41], as a weighted multi-
graph G = (N , E ,W). A graph is a set of nodes N interconnected by a set
of edges E which are weighted connections with weights W . Each vertex
ni ∈ N , corresponds to an interest point in the city, and is embedded with
its geographical position. Each edge ei ∈ E , corresponds to the streets,
avenues, and highways, with an embedded a geometry, indicated by a vector
representing its geographic spatial component. An edge can be defined as
the ordered tuple ei = (ni, nj) connecting nodes ni and nj. The Python
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OSMnx library was used for extraction and modeling of the street network
of Quito. OSMnx is a Python package that allows geospatial data to be
downloaded from OpenStreetMap to model, project, visualize, and analyze
real-world street networks and other geospatial geometries [38].

Once the city street network substrate has been defined, traffic flow in-
formation must be obtained. The Google Distance Matrix API was used to
extract real-time traffic data from one vertex vi to its connected neighbors in
the street network [40]. The Google Distance Matrix API provides the travel
distance and time based on the recommended driving route ek between two
vertices ek = (ni, nj). The extracted driving distance and driving time define
the weight of the street edge ek, and can be represented as the unordered
tuple wk = (dij, fij) = (driving distance, driving time). Requests are made
to the Google Distance Matrix API, providing the start and end points cor-
responding to the origin ni and destination nj nodes for each connection in
the city street network. Registers for traffic and flows record data with the
following structure: Each register, for the traffic, flows, records the data with
the following structure:

from(latitude, longitude),

to(latitude, longitude),

mean time,

mean distance.

The extracted data for the edge weightsedges of the’ edgesweights, can be
summarized as described in Eq. 1; the weight times fij are used to model
the incoming and outgoing flows for each node.

In this study, 25 candidate locations were selected based on their mini-
mum average time, according to the explanation at the beginning of Section
II. The number of locations must be considered for geographically dispersed
charging stations in the city; installing too many charging spots in the same
station could lead to grid issues. Figure 2-left shows the 25 candidates for EV
charging stations in blue, and the electrical substations in red, located in the
north center of Quito. A fully connected graph for the 25 selected locations
was built using the driving traffic distances extracted from the Google API.

Figure 2-right shows the Hamiltonian cycle connecting the ten selected
charging stations. A Hamiltonian cycle visits each node only once, and re-
duces the overall driving distance. Each site has a distinct land cost. Table
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Figure 2: Left panel: potential locations of electrical substations and charging stations in
the city of Quito. Right panel: potential locations of charging stations and Hamiltonian
cycle connecting them.

1 summarizes the sites of interest with the shortest flow time, the associ-ated 
land costs, and the nearest substation capacity. The land costs were obtained 
from local property sales company [42]. The power grid data was obtained 
based on the local electricity distribution company, which is Em-presa El
´ectrica Quito [43], and from the Ecuadorian Regulatory company, which is 
Arconel [44].

3.2. ET Charging Parameters

After identifying the potential locations of ET charging stations, the num-
ber of charging spots at each charging station was calculated. To this end, the 
daily peak load and daily required energy for the ETs were estimated. A 
practical estimation approach for arrival of ETs at charging stations is 
presented, based on accurate data from taxi driver travel behavior, which 
differs significantly from that of typical drivers. As taxi drivers drive much 
longer distances than a typical driver, they experience more range anxiety. 
Hence, the arrival time depends on the state of charge (SOC) of the ET, 
determined based on the travel distance as per reference [45]. The arrival 
process at the charging stations is described as a Markovian queuing system.
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Table 1: Interest points with minimum flow time selected as pre-feasibility stations.

node mean time (min) land cost ($/m2) substation
capacity
(MW)

1 6.44 600 66
2 7.03 600 66
3 11.07 780 20
4 11.72 780 20
5 11.67 780 20
6 10.42 950 20
7 11.76 2000 40
8 10.76 780 20
9 10.62 1200 200
10 10.01 1300 200
11 10.80 1300 200
12 9.07 1200 20
13 11.99 2000 20
14 12.11 2000 40
15 9.75 2000 10
16 7.94 1400 10
17 8.48 1130 20
18 10.78 1400 20
19 8.41 780 20
20 10.75 780 20
21 10.77 780 166
22 8.43 780 166
23 11.67 600 166
24 12.29 600 66
25 11.58 600 66
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Figure 3: Histogram of the daily required energy for ETs [46]

The system is defined as MMCK per the Kendall notation. The inter-arrival 
(M) and service times (M) are exponential; arrival is governed by a Poisson 
process, with C servers and queue capacity K, the maximum number of EVs 
that can be accommodated in the servers.

There are 8,633 taxis in Quito. With so few ETs in Quito, charging 
behavior must be analyzed to provide a charging load curve for optimal 
charging station sizing. To that end, GPS data from driving behavior were 
gathered from taxi drivers in Quito [46]. A gasoline-to-electricity conversion 
rate is used to divide the required electricity energy by the number of taxis, 
resulting in an average required energy of 30.35 kWh per taxi. For simplicity 
the value is rounded to nearest integer of an average of 30 kWh per taxi. 
The histogram of the daily required energy for ETs is illustrated in Figure
3. The average required energy was calculated from Figure 3

Most taxi drivers take a break from 3–8 p.m., after lunch, and when there
are few clients. This will result the time horizon. Based on the previously
traveled distance, 50% of the required energy should be delivered during these
periods, which is when the assumed peak load is observed, and corresponds
to an Eav of 15 kWh. The other 50% will be delivered at night in taxi drivers
homes, which is not considered in this study. Thus, the energy required in
Eq. (13) results in:

Ereq =
∑
v∈V

v · Eav (17)

A few ETs have been purchased in Quito and other Ecuadorian cities;
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Table 2: System Parameters for Case Study

Parameter Value

Number of taxis NV 8633
Time horizon T for charging ETs [h] 5
Spot charging power Pch [kW] 22
Charging efficiency of charging spot η [%] 0.9
Maximum number of charging spots Nch 40
Minimum number of charging spots Nch 5
Daily electricity required by ET Eav [kWh] 15
Assumed land used for an individual parking lot [m2] 20
Monetary value of travel time ω 3,500
Weighted resource leveling β 10

the BYD e5 model was chosen to represent the taxi driver demographic [47].
This EV has a charging power of Pch=22 kW; the charging efficiency η was
assumed to be 90 % [48].

Based on quotes, the fixed investment cost of each charging location,
including materials and labor, is estimated to be $ 3000 [42]. The surface
area of the land used for each parking lot was assumed to be 20 m2.

The minimum number of spots nk in each charging station k is considered
to be five, and the maximum is 40 The monetary value of travel time ω is
considered to be 3,500, and the weighted resource leveling β is considered to
be 10. In Table 2, the system parameters for case study are summarized.

3.3. Stakeholders involved
The proposed methodology for the siting and sizing of ET charging sta-

tions is relevant to the different nature of stakeholders involved. For public 
nature stakeholders, such as the city hall and state government, because this 
study facilitates the introduction of ETs in the community stimulating green 
and climate change policies in the area in which they are interested and are 
currently investing. For private nature, there are different stakeholders to 
consider. For zone distributors, the optimization of the charging station fa-
cilitates the use of the distribution network, avoiding pressures to enlarge the 
electrical local network to face the increment in the electrical load due to the
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introduction of ETs. For traders, it enables the consumption and the incre-
ment of business because of the new energy consumption, especially in hours 
with an actual lower consumption (nights and weekends) for ETs stimulated 
by new tariffs that may be proposed. Finally, taxi companies, because can 
move to electrical technology with lower exploitation costs and lower CO2 
penalties that public entities are introducing, especially in the center of the 
cities. Some of the new stations may be installed with private funds directly 
by the taxi companies.

3.4. Model Simulation

Eqs. (7)-(14) represent the sizing model corresponding to a mixed-integer
nonlinear programming (MINLP) problem. To avoid a complex formulation,
the problem can be decomposed into two subproblems. The decoupled prob-
lem starts with constraints (8)-(10), obtaining a maximum power constraint
that can be delivered to each charging station, and then to constraints (11)-
(14), which are mainly logistic and transportation constraints.

In this study, GAMS 33.1.0 with CPLEX performed the simulations of
the proposed MILP model using an Intel Core i7-8700 with 32 GB of RAM
[49].

When solving mixed integer programming (MIP) models, CPLEX em-
ploys branch-and-cut search. The branch-and-cut process handles a node-
based search tree. Every node represents a linera programming (LP) or 
quadratic programming (QP) subproblem to be processed, that is, solved, 
tested for integrality, and maybe further studied. CPLEX continues to pro-
cess active nodes in the tree until there are no more active nodes available or a 
limit is reached. The formation of two new nodes from a parent node is 
referred to as a branch. A branch happens when the boundaries on a single 
variable are changed, and the new bounds apply to that new node as well as 
any of its descendants. A cut is an additional constraint to the model. The 
goal of adding any cut is to reduce the size of the solution domain for contin-
uous LP or QP problems represented at the nodes while leaving legal integer 
solutions in place. As a result, the number of branches necessary to solve the 
MIP is reduced. [50]. Solving MILP problems necessitates significantly more 
numerical calculation than solving comparably sized pure linear problems. 
The solution of simple integer problems takes an inordinate amount of time.
[49].
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Figure 4: Number of charging spots and costs for an ET penetration level of 30%.

4. Results and discussion

Three scenarios were investigated, with different amounts of EV penetra-
tion (30%, 40%, and 50%).

4.1. Number of charging spots and costs

For an ET penetration of 50%, the total number of charging spots and
the associated expenses are presented in Table 3.

As the land cost is high, the station with the fewest charging spots is
Station 14, with eight charging spots. The maximum number of charging
spots is reached at stations with the lowest land cost.

The number of charging spots to be installed and the total investment
costs for each charging station for ET penetration of 30%, 40%, and 50% are
illustrated in Figures 4, 5, and 6, respectively. With 30% ET penetration,
several charging stations reach their charging spot number or power limit.
A total of 393, 524, and 654 charging spots must be constructed for ET
penetration levels of 30%, 40%, and 50%, respectively.

Table 4 summarizes the investment costs for ET penetration of 30%, 40%,
and 50%. Between ET penetration of 30% and 50%, fixed costs increase by
40%, land costs by 93%, and trip costs by 72%.

Figures 7, 8, and 9 show the investment costs per station for ET pene-
tration of 30%, 40%, and 50%, respectively. The most significant costs are
land and trip costs.
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Table 3: EV characteristics

Station Number Cost

1 40 1244.5
2 40 1302.8
3 17 786.6
4 17 814.3
5 21 1003.4
6 21 1008.9
7 40 2895.5
8 17 773.6
9 40 2142.4
10 34 1836.5
11 40 2239.6
12 21 1043.1
13 21 1532.6
14 8 586.2
15 10 673.8
16 10 508.5
17 21 983.0
18 21 1216.7
19 17 673.5
20 21 954.9
21 17 774.1
22 40 1587.4
23 40 1767.5
24 40 1829.4
25 40 1758.1
Total 654 31936.8
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Figure 5: Number of charging spots and costs for an ET penetration level of 40%.
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Figure 6: Number of charging spots and costs for an ET penetration level of 50%.
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Figure 7: Investment costs for an ET penetration level of 30%.

4.2. Sensitivity Analysis
A sensitivity analysis was performed for the monetary value of trip time

ω and weighted resource leveling β to address uncertainties concerning prob-
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Table 4: Summary of the various investment costs for different ET penetration levels

ET penetration (%) 30 40 50

Fixed costs (k$) 1,179 1,572 1,962
Land costs (k$) 6,405 8,804 12,357
Trip costs (k$) 13,460 18,339 23,162
Total costs (k$) 21,045 28,715 37,481
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Figure 8: Investment costs for an ET penetration level of 40%.
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Figure 9: Investment costs for an ET penetration level of 50%.

able travel expenses and restrictions. Parameter β was varied from 5 to 15
in increments of 0.2. Parameter ω was varied from 2,000 to 5,000 in 60
increments.

The surface plots of land costs and total investment costs for an ET
penetration of 30% are shown in Figures 10 and Figure 11, respectively.
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Figure 10: Investment costs depending on β and ω.

Figure 11: Total investment costs depending on β and ω.

It is observed that land costs vary substantially, especially with variations
in the weighted resource leveling β. The surface plot of the total costs is
relatively flat; variation in the monetary value of travel time ω does not lead
to a change in costs. However, an increase in the weighted resource leveling
β leads to an increase in costs.

4.3. Discussion
The optimal siting and sizing of various kinds of EVs is a topic that need to 

been significantly investigated for the proper integration of EVs in power 
systems and the diffusion of market sales. Some works such as [25; 26; 27; 28; 
29; 30; 31] have already considering both the power and traffic constraints and 
present robust methodologies. However, this paper presents a new way of 
reducing traffic jams by considering winner takes all methodology. In
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addition, the particular time schedules and time rigidity of taxi drivers have 
been considered. With this proper planning of ET charging stations, this 
will result in a higher adoption and sales of EVs for public transportation.

To achieve reduction in emissions in transportation, it not sufficient to 
electrify various fleets, but the electricity should originate from renewable 
generation. In Ecuador there was a large investment in renewable generation 
based on hydroelectricity in the 2007-2017 decade. In 2018, 72.58% of the total 
produced electricity was from renewable energy, from which 97.47% is from 
hydroelectricity, 1.8% from Biomass, 0.18% from solar PV, 0.38% from wind, 
and 0.21% from bio-gas [51]. Thus, Ecuador is a country that has a strong 
potential to reduce its global emissions in transportation by shifting to electric 
mobility, and it is crucial to have policies for investing in public charging 
stations such as for ETS.

5. Conclusions

Optimal siting and sizing of ET charging stations are determined in this
study to minimize total charging costs, considering transportation and power
system restrictions. The city of Quito, Ecuador was investigated as a case
study. The total costs include installation costs, land costs, and trip costs. A
network modeling approach based on a winner-takes-all edge trimming was
used to identify interest points of the city in terms of traffic flows, and 25
prospective ET charging stations were identified. The driving behavior of
taxi drivers in Quito was also considered.

The findings indicate the number of charging spots that should be in-
stalled in each station. A higher number of charging spots to be installed
was observed in the charging stations with lower land costs. A sensitivity
study was also performed to address parameter variability in the proposed
model.
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