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Abstract: The identification of the minerals composing rocks and their dielectric characterization
is essential for the utilization of microwave energy in the rock industry. This paper describes the
use of a near-field scanning microwave microscope with enhanced sensitivity for non-invasive
measurements of permittivity maps of rock specimens at the micrometer scale in non-contact mode.
The microwave system comprises a near-field probe, an in-house single-port vectorial reflectometer,
and all circuitry and software needed to make a stand-alone, portable instrument. The relationship
between the resonance parameters of the near-field probe and the dielectric properties of materials
was determined by a combination of classical cavity perturbation theory and an image charge model.
The accuracy of this approach was validated by a comparison study with reference materials. The
device was employed to determine the permittivity maps of a couple of igneous rock specimens
with low-loss and high-loss minerals. The dielectric results were correlated with the minerals
comprising the samples and compared with the dielectric results reported in the literature, with
excellent agreements.

Keywords: rock-forming minerals; microwave imaging; near-field scanning microwave micro-
scope; permittivity

1. Introduction

Identifying the minerals that constitute rocks is a fundamental task in earth sciences, as
well as in other engineering and industrial applications. Some techniques can only identify
the type and amount of the minerals comprising the rock. However, many techniques
can define the position of the heterogeneously distributed minerals within the structure.
Particularly noteworthy are polarized light microscopy, X-ray diffraction (XRD), or X-ray
fluorescence (XRF) [1–3]. The scientific literature reveals a large number of alternative tech-
niques for this identification process, such as laser-induced breakdown spectroscopy (LIBS),
scanning electron microscope supported with energy dispersed spectroscopy (SEM/EDS),
or an electron probe microanalyzer (EPMA) [4–7]. In addition, other studies report tech-
niques or algorithms, such as image treatment or neural networks, for the automatic
identification of minerals, based on the information retrieved using some of the techniques
mentioned above [8–13].

In recent years, there has been a growing interest regarding the utilization of mi-
crowave energy as a clean, green, and sustainable methodology for treating materi-
als [14–16]. In the rock industry, microwave energy can contribute to developing more
efficient, fast, and eco-friendly processes in various applications, such as fracture, cutting,
comminution, leaching, or natural stone processing [17–22].
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Complex permittivity describes the materials’ behavior in the presence of an electro-
magnetic field; therefore, it is one of the most relevant parameters to study in a high-power
microwave application process [23].

Dielectric characterization provides the absorption capabilities of the rocks and, hence,
is directly related to the heating patterns. Likewise, permittivity data provides the needed
information for the design of microwave applicators for a specific high-power application.

Permittivity measurements can be classified in a large number of techniques [24–29],
which can be categorized according to the measurable frequency range and the attributes of
the materials to be characterized, such as dielectric losses, shape, or homogeneity [30]. Since
rocks are heterogeneous materials, the approaches followed to measure their dielectric
properties are very varied.

Some authors have measured the bulk dielectric properties of a certain unidentified
volume of the complete rock specimen; hence, the permittivity obtained is a mixture of
the permittivity of the different minerals comprising the rock. For instance, Lu et al. [31]
measured the permittivity of basalt, gabbro, and granite rocks employing the coaxial
transmission line technique, shaping the rocks in the shape of a tube (7 mm outer diameter,
3 mm inner diameter, and 10 mm length) to fill the coaxial airline. Deyab et al. [32]
reported the dielectric properties of kimberlite and granite samples through the coaxial
probe technique, which retrieves the permittivity of a considerable region surrounding
the measurement tip. Similarly, Lovás et al. [33] determined the permittivity of several
minerals, such as andesite or magnesite, by a resonance cavity method using rod samples
(3 mm diameter and 12 mm length). In addition, some authors have developed methods to
employ the bulk changes in dielectric properties (and thus in the resonant parameters) to
identify physical changes in building materials [34,35].

On the other hand, some authors measured the permittivity of the homogeneous
rock-forming and accessory minerals, in pure form, isolated from the rocks. For instance,
Zheng et al. [36] employed a customized rectangular resonant cavity to determine the
dielectric properties of pulverized high-grade minerals, removing the air influence by
means of the complex refractive index (CRI) equation. However, with this approach, as
rocks are heterogeneous materials, rock-forming materials should be identified, located,
isolated, and measured.

Other authors have studied the microwave-absorbing capabilities of rocks and miner-
als, running heating tests with domestic or industrial microwave systems and analyzing
the material behavior over time [19,37]. Accordingly, there is a lack of permittivity measure-
ment techniques that fit the requirements of heterogeneous rock specimens in the scientific
literature. Near-field scanning microwave microscopes (NSMM) can fill this gap, as they
can achieve permittivity maps of heterogeneous planar materials.

Near-field scanning microwave microscopes (NSMM) are measurement devices able
to determine the electromagnetic response of materials on length scales far shorter than
the wavelength of the emitted signal [38]. To accomplish near-field radiation, the size
of the microwave probe (D) must be smaller than the probe-to-sample distance (r), and
both parameters must be far shorter than the wavelength (λ) of the transmitted signal
(D ≤ r << λ), achieving spatial resolutions on the range of D. The fundamental element of
an NSMM is the near-field microwave probe, which is frequently implemented by a sharp
coaxial aperture [39,40]. Additionally, many scientific works explore alternative geometries
for that purpose, such as spiral resonators or open-ended circular waveguides [41,42]. An
NSMM also comprises a microwave emitter and receptor, usually a vector network analyzer
(VNA), and a positioning system [43].

Microwave probes can be configured as resonant or non-resonant structures [38]. A
resonant configuration increases sensitivity but decreases measurement bandwidth [44].
Non-resonant configurations relate the changes in the magnitude and phase of the reflection
or transmission coefficients to the physical changes of materials. On the other hand,
resonant setups employ the shifts in the resonant frequency and quality factor parameters to
determine the physical properties of the materials. The relationship between the measurable
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quantities and the physical parameters can be addressed through several techniques, such
as full-wave analysis or lumped-element circuit models [45,46]. The cavity perturbation
technique has also been widely used, since the electromagnetic fields inside the sample
are much smaller than the fields in the resonator. The theory developed by Gao and
Xiang [47] is one of the most used approaches for quantitative microscopy of complex
permittivity [40,48–50].

Nowadays, the trend of NSMM devices is moving towards achieving nanometric reso-
lutions, which requires a precise distance-following technique usually performed by means
of an additional nanoscale microscope technology, such as scanning tunneling microscopes
(STM) or atomic force microscopes (AFM) [51–53]. NSMMs have been used in a broad range
of applications, such as dielectric microscopy of substrates, defects identification, or even
biological cells imaging [54–56]. Monti et al. [57] already employed a contact-mode NSMM
device with sub-micrometric resolution to elucidate the underlying physical processes
that control the microwave heating of rocks at a fundamental level of some micrometric
hematite inclusions in a gangue matrix (around 10 µm x 10 µm size).

In a previous work [58], we demonstrate the benefits of the NSMM technology at
the micrometer scale to identify markers on anti-counterfeiting applications. Similarly,
the development of an NSMM device able to determine permittivity maps at the sub-
micrometric scale without contact between the sample and the probe would improve the
applicability of this technology in the rock industry for predicting the heating patterns of
samples to be processed under microwave irradiation. Additionally, this device would be
interesting to use as an automated system to reduce times in other industrial applications,
such as drill core logging, widely used for geological exploration in mining or geotechnics,
for lithology, mineral identification, or structures identification [59–61].

In this work, we describe the use of near-field microwave microscopy in obtaining
contactless complex permittivity scans of rocks at a sub-millimeter scale. For that purpose,
the microscope probe reported in [39] was replaced with a larger probe with a redesigned
tip, increasing the sensitivity of the near-field probe for loss factor measurements to fit
the specific requirements of this application. The methodology to calculate permittivity
values from resonant measurements reported in our previous work was also improved
by a combination of classical cavity perturbation theory and an image charge model. The
NSMM sensor was employed to determine the permittivity maps of some representative
specimens of ornamental rocks and compare the permittivity results with those reported in
previous works.

2. Materials and Methods
2.1. The Near-Field Microwave Microscope

The sensing experiments were carried out in a near-field microwave microscope
similar to the system reported in [58] with specific modifications to measure rocks.

Figure 1 illustrates a schematic diagram of the different parts that constitute the
instrument (near-field microwave probe, microwave source and detector, and positioning
subsystem) with a zoomed image of the upgraded sensor probe.

The measurement probe consisted of a capacitively fed resonant coaxial cavity with
an inner conductor, enlarged and tapered to meet the requirements for near-field radiation
(D ≤ r << λ). The response of the probe around the resonance peak S11 contains all the
information required to determine the permittivity of the material.

In this work, the dimensions of the measurement probe were larger than those in
our previous design to increase the sensitivity of the quality factor response and thus the
resolution in the loss factor measurements. The size of the resonant coaxial line corresponds
to the size of a commercial RG402 line, with a sharp tip of ~50 µm radius. The length of
the coaxial line was 53.5 mm to achieve an air resonance frequency close to 2 GHz. Since
the study’s main objective is to predict the heating patterns of samples to be processed
with high-power microwave energy, we employed a resonant frequency value between
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915 MHz and 2.45 GHz, the most common frequencies to process materials under high-
power microwave irradiation [62].

Figure 1. Schematic diagram of the near-field microwave microscope: (a) schematic diagram of the
in-house vector network analyzer for measuring the reflection (S11) of the near-field microwave
microscope; (b) cross-section of the near-field coaxial resonator.

The microwave source and detector were based on an in-house, single-port vectorial
reflectometer design, described in [30] (see Figure 2). The microwave source is a frequency
synthesizer based on a phase-locked loop (PLL), comprising an external filter, a local
oscillator (OL), a voltage-controlled oscillator (ROS-2500, Mini-Circuits, Brooklyn, NY,
USA), and an ADF4113 (Analog Devices, Norwood, MA, USA), which includes the divider
and the phase detector. The reflection parameter or S11 is calculated at the receiver by
comparing the PLL’s incident signal with the signal reflected at the probe. In this regard, a
separation network, comprising two bi-directional couplers (BDCA 1-7-33 +, Mini-Circuits),
was employed previously to collect a small amount of those incidents and reflected signals.
The receiver was based on the AD8302 RF/IF Gain and Phase Detector (Analog Devices).
Since the phase response of this integrated circuit is similar for positive or negative phase
differences, two AD8302 units were needed to solve the phase ambiguity (see [33] for
further information).

The positioning subsystem comprised an XY-stage (KT-70, proxxon) with a vacuum
table attached, driven by two stepper motors and drivers (DRV8825, Texas Instruments,
Dallas, TX, USA). The probe was attached in a fixed position over the XY-stage, manually
positioned by a micrometric screw. In addition, a displacement laser (HL-G103-SJ, Pana-
sonic, Osaka, Japan) was utilized to precisely determine the tip-to-sample distance. An
Arduino board, together with a Labview piece of software running in a computer, control
all the elements of the microscope: generating the incident signal, receiving the reflected
signal, calculating the reflection coefficient and the resonant parameters, calculating the
dielectric properties, plotting the results, moving the XY-stage, and synchronizing the
movements with the measurements. Figure 2 depicts the stand-alone NSMM system.
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Figure 2. The near-field microwave microscope system.

The single-port vectorial reflectometer was allowed to stabilize for one hour before
measurements. Subsequently, a standard OSM calibration procedure was carried out from
1930 to 1970 MHz employing the 85052 B Standard Mechanical Calibration Kit (3.5 mm,
Keysight Technologies, Santa Rosa, CA, USA).

2.2. Dielectric Characterization

As described in Section 2.1, the near-field sensor was configured as a resonator; thus,
the permittivity is related to the resonance frequency (fr) and the quality factor (Q) of the
microwave structure. The fr and unloaded Q values were calculated from the reflection
coefficient measurements through the linear, fractional curve-fitting procedure reported by
Kajfez [63,64].

Figure 3 shows the response of the near-field resonant probe (fr and Q) for a set of
rod-shaped materials as a function of the tip-to-sample distance (g). These materials were
selected to cover a wide range of both dielectric constant (ε′) and loss factor (ε”) values,
with a sample size sufficient to be considered as infinite dielectric materials (15 mm height,
9.8 mm diameter) [40,65]. The fr curves exhibited similar trends to those shown by the
smaller probe reported in our previous work [58]. Nevertheless, the Q sensitivity increased
substantially due to the improvements.

The operating range of the probe was centered between 50 µm and 250 µm, seeking
a balance between the probe’s sensitivity and the robustness against uncertainties in the
determination of g. Below 50 µm, the sensitivity of the probe would increase remarkably,
but the uncertainties in the determination of g would lead to significant uncertainties in
the retrieved permittivity results. In addition, the minor imperfections in the surface of
the materials and the non-horizontality of the base could cause the probe tip to touch the
material and be damaged. Above 250 µm, the probe’s response would be more robust
against errors in the determination of g, but the sensitivity of both fr and Q parameters
would decrease.
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Figure 3. Response of the sensor as a function of the tip-to-sample distance for different reference
materials: (a) resonant frequency; (b) unloaded quality factor.

All microwave scans were performed at a central g of 150 µm. Nonetheless, the
permittivity model should include the influence of the tip-to-sample distance to account
for possible variations of this parameter during the scan because of irregularities in the
height of the material and uneven horizontality of the material surface when placed over
the microscope’s base. At 150 µm, the maximum fr shift, presented between air (ε′= 1)
and Temex E5980 (ε′ = 67.39), was around 6 MHz. The response of the probe compresses
as the dielectric constant of the MUT increases; thus, the fr shift between air (ε′= 1) and
Rexolite (ε′= 2.57) is similar to the shift observed between Rexolite and Macor (ε′= 5.68), and
higher than the deviation exhibited between alumina (ε′= 9) and Temex E5980 (ε′ = 67.39).
Regarding the behavior of the quality factor, the maximum deviation, observed between air
(ε” = 0) and SiC (ε” = 2.07), was around 30. However, it is noteworthy that, for a given g, the
Q of materials with similar loss levels decreases as ε′ increases (fr decreases). Thus, Rexolite
(ε” = 0.0008, tan δ = 3 × 10−4) and Temex 41030 (ε” = 0.0007, tan δ = 2·10−5), materials with
similar dielectric losses, have considerably divergent Qs, 289.17 and 277.85, respectively:
for a given loss factor, the resonance widens with increasing dielectric constant.

In our previous work [58], the determination of the dielectric properties was addressed
using the microwave cavity perturbation technique (MCPT). In the near-field zone, with
evanescent waves, the field distribution can be considered as a static problem where phase
and retardation need not be considered [50]. Then, assuming a quasi-static electric field
inside the MUT [66], we employed Khanna et al. [67] to relate the shifts in fr and Q with
permittivity. For convenience, we reproduce the below formulas:

ε′ = 1 +
−∆ f

f
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η + N ∆ f

f

)
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[
∆
(

1
2Q

)]2
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1
2Q
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where ε′ = dielectric constant (dimensionless); ε” = loss factor (dimensionless); η = sample-filling
factor (dimensionless); N = sample-depolarization factor (dimensionless); f 0 = resonant fre-
quency (Hz) of the open-air cavity; fs = resonant frequency (Hz) with a dielectric material
near the tip; Q0 = quality factor (dimensionless) of the open-air cavity; Qs = quality factor
(dimensionless) with a dielectric material near the tip.

However, this model did not conform precisely to the response measured with the
higher size probe employed in this work, mainly due to the aforementioned widening
of the resonance with the increase in the dielectric constant. However, it is well known
from the literature that the determination of the dielectric constant in NSMM measurement
systems is independent of the Q changes (see Equations (5) and (6)). Hence, the parameters
η and N needed to determine the dielectric constant values from the fr measurement as
a function of g can be obtained by removing Q’s influence (Qs = Q0) on Equation (1) (see
Figure 4). To obtain these curves, three materials were employed: air, Macor (ε′ = 5.68), and
Temex E41030 (ε′ = 28.28). However, this model (Equation (2)) did not accurately reproduce
all the dielectric losses of the analyzed materials.

Figure 4. Calibration parameters, η and N, of the cavity perturbation method determined with
reference samples as a function of the tip-to-sample distance.

Considering quasi-static fields, Gao and Xiang [47] developed a model for the case of
a conducting spherical tip radiating over a dielectric material employing an image charge
model and the MCPT. The relationship between the dielectric constant and the fr shift for
the case of soft contact (g = 0) was determined as follows:

∆ f
f0

= −A
(

ln(1− b)
b

+ 1
)

(5)
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where b = (ε′ − 1)/(ε′ + 1), and A is a constant to be minimized, related to the geometry of
the near-field probe. For our specific case, where there is an air gap between the dielectric
sample and the probe’s tip (g > 0), the equations became an iterative problem, as follows:

∆ fs

fs
= −A

∞

∑
n=1

btn

a′1 + a′n
(6)

a′n = 1 + a′ +
1

1 + a′ + a′n−1
,tn =

b
1 + a′ + a′n−1

tn−1 (7)

where ∆fs = fs − f 0. The initial conditions were as follows: a′ = g/Ro, being g the tip-to-
sample distance and R0 the tip radius; a′1 = 1 + a′; and t1 = 1. For both configurations, the
dielectric losses were determined to be related to the fr and Q shifts, as follows:

∆
(

1
Q

)
=

1
Qs
− 1

Q0
= −(B + tan δ)

∆ fs

fs
(8)

where B is a constant to be minimized and tanδ = ε”/ε′. Over the years, some scientific
works have tried to improve the accuracy of this model, especially concerning dielectric
losses, adding new constants or quadratic terms to Equation (8) [48–50]. Finally, Gregory
et al. [40] reported the use of Equation (6) with the complex resonant frequency (fs* in
Equation (9)) to avoid the use of Equation (8).

fS
∗ = fS

(
1 +

j
2Q

)
(9)

The increase in the size of the probe and the geometry of this tip has allowed the use
of Equation (6) with the complex resonance parameter (Equation (9)) to model the response
of this new probe with the improved sensitivity of Q. However, the parameters minimized
showed certain dependence with frequency or dielectric constant, as reported in previous
works [48,49] for the parameters determined in the dielectric loss equation. Figure 5
shows the dependence of A with the logarithm of the dielectric constant of some reference
materials (Rexolite, Acetal, PVC, Alumina, SiC, and Temex E5980). This result would
preclude the use of this method to calculate the complex permittivity from the relative
shifts of fr and Q in our case, since it would require prior knowledge of the dielectric
constant value of the measured material. To overcome this limitation, Equation (1) (with
Qs = Q0) was employed with the parameters interpolated in Figure 4 to determine the
dielectric constant values. This value was employed to determine A from Figure 5, and the
loss factor values were calculated using Equation (6) with the complex resonant frequency
concept (Equation (9)).

2.3. Rock Samples

Two rock specimens were selected to test the proposed microscopy technique. The
selected rocks, representing felsic and mafic families, are used widely in ornamental
material construction as natural stones.

Rocks pieces were cut in sections of 10 × 10 × 2 cm with the surface polished to
improve the readability of the system. The mineral composition of the rock specimens
depicted in Figure 6 was determined by petrographic polarized light microscopy, chemical
microanalysis EDX in a scanning electron microscope (SEM), and X-ray analysis of the bulk
sample and the magnetic fraction. Table 1 summarizes the dielectric properties references
of the rock-forming minerals found in this analysis.
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Figure 5. Calibration parameter A of the image charge model determined with reference samples as
a function of the dielectric constant.

Figure 6. Microscope images of two types of rock: (a) gneiss (Q—quartz; Kf—potassium feldspar;
P—plagioclase; B—biotite; A—aegirine-augite pyroxene; H—hornblende; M—magnetite; Py—pyrite);
and (b) anorthosite (L—labradorite plagioclase; Px—pyroxene; I—ilmenite).
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Table 1. Permittivity references of the rock-forming materials of the rock specimens.

Material Frequency (GHz) Permittivity Reference

k-Feldspars 2.00 5.18-j0.023 [68]
9.37 5.12-j0.011 [69]
9.37 4.75-j0.044 [69]

Biotite 1.00 5.9-j0.002 [70]
Plagioclase (Labradorite) 2.45 6.01-j0.09 [71]

Plagioclase 2.45 3.49-j0.020 [37]
Plagioclase (albite) 2.45 5.62-j0.039 [36]
Pyroxene (augite) 2.45 6.80-j0.182 [36]

Hornblende 2.45 14.45-j0.324 [36]
2.45 8.91-j0.233 [37]
2.45 7.37-j0.026 [71]

Magnetite 2.45 14.5-j2.5 [72]
Pyrite (Shanxi Lu′an) 2.45 8-j0.75 [73]

Ilmenite 2.45 3.75-j0.24 [72]
2.45 23.6-j11.2 [71]

The felsic rock selected was a high-grade granitic gneiss. The analysis of the rock identi-
fied quartz, potassium feldspar (microcline), and alkaline plagioclase as major components,
pyroxene (aegirine-augite) and biotite as secondary, and associate minerals represented
by amphibole (hornblende), tourmaline, and opaque minerals. These opaque minerals
were mainly magnetite (Fe3O4) (that appeared in aggregates with apparent inter-crystalline
porosity and occasionally pyrrhotite (SxFe1-x)-associated) and dispersed pyrite (FeS2).

The mafic rock selected was anorthosite, a peralkaline gabbro with blueish and
greenish-grey color. The rock was composed massively by macroscopic Na–Ca plagioclase
of labradorite type domain and minor content of pyroxene and biotite. In addition, the rock
was composed by a significant amount of oxide ores, mainly ilmenite (FeTiO3) with some
magnetite (Fe3O4) associated.

3. Experimental Results and Discussion
3.1. Dielectric Measurements of Reference Materials

The complex permittivity of the reference samples, employed to determine the re-
sponse of Figure 3, were measured to verify the accuracy of the procedure described in
Section 2.2. Each dielectric sample was positioned on the microscope base centered in the
axis of the near-field probe. From the point of soft contact, the Z-axis was moved upwards
to three different tip-to-sample distances (100 µm, 150 µm, and 200 µm), measuring the re-
flection parameter employing the reflectometer and determining the resonance parameters,
fr and Q. The parameters N and η corresponding to each g were determined to calculate
the dielectric constant of the measurements. With the results obtained, the appropriate A
parameter was interpolated to obtain the loss factor. All measurements were retrieved at a
room temperature of 23 ◦C (see Table 2).

To assess the accuracy of the results, the permittivity of the reference materials was also
measured in a closed TM010 cylindrical cavity (98 mm diameter, 20 mm height) analyzed
by the mode-matching technique described in [74]. The error (measurement bias), also
reported in Table 2, provides a complete image of the device’s performance and corresponds
to the absolute difference between the measured mean value and the reference value. The
reported standard deviation values provide information mainly related to the uncertainties
in the height positioning and the stability of the electronics.
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Table 2. Dielectric properties: results of reference materials and associated standard deviations.

Material

Dielectric Constant Loss Factor

g (µm)
Mean Std Dev Reference Error (%)

g (µm)
Mean Std Dev Reference Error (%)

100 150 200 100 150 200

Air 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.00
Rexolite 2.55 2.57 2.57 2.56 0.01 2.53 ± 0.05 1.23 0.000 0.002 0.007 0.003 0.003 0.001 ± 0.000 >10
Acetal 2.88 2.90 2.92 2.90 0.02 2.96 ± 0.05 2.06 0.105 0.113 0.123 0.114 0.009 0.120 ± 0.006 5.65
PVC 3.09 3.07 3.12 3.09 0.03 3.09 ± 0.06 0.11 0.024 0.027 0.031 0.027 0.004 0.025 ± 0.001 9.75

Macor 5.69 5.63 5.66 5.66 0.03 5.68 ± 0.11 0.35 0.020 0.026 0.031 0.026 0.005 0.024 ± 0.001 7.44
Alumina 8.97 9.10 8.93 9.00 0.09 8.94 ± 0.18 0.68 0.012 0.025 0.020 0.019 0.006 0.006 ± 0.000 >10

SiC 14.53 14.74 14.69 14.66 0.11 14.53 ± 0.41 2.20 2.134 2.077 2.128 2.113 0.031 2.092 ± 0.105 1.09
Temex
E41030 29.19 28.32 29.56 29.02 0.64 28.28 ± 0.56 2.63 0.068 0.000 0.130 0.066 0.065 0.001 ± 0.000 >10

Temex
E5980 69.88 72.19 65.79 69.28 3.24 67.25 ± 1.34 3.02 0.000 0.000 1.014 0.338 0.585 0.018 ± 0.006 >10

The determination of the dielectric constant revealed an excellent accuracy, with errors
constrained below 3%, in comparison with the reference values.

The standard deviation values also exhibited little variability as a function of the
tip-to-sample distance. However, the error increased slightly with the dielectric con-
stant increment due to the compression in the resonant frequency response discussed
in Section 2.2.

From the discrepancies observed in the results concerning the reference values, the
accuracy of the loss factor measurement was below 10% within the range from 10−2 to 101,
a noticeable result considering the large tip-to-sample distances employed in this work.
Below 10−2, even though the percentage errors were above 10%, the system is valid to
determine whether it is a low-loss or a high-loss material. The standard deviation of the
loss factor values revealed low figures with g variations for most materials. However, the
compression effect of Q shifts was noticeable for high dielectric constant materials. For
instance, the loss factor results calculated for Temex 5980 revealed fluctuations between
10−3 and 100. Nevertheless, it is important to highlight that the common use of the loss
tangent definition (ε”/ε′) would mitigate this issue.

3.2. Permittivity Maps of Rock Specimens

The rock specimens were placed on the base of the microscope and fixed with the
aid of the suction vacuum table. The tip-to-sample distance was set to 150 µm by means
of the displacement laser and the Z-axis stage. Microwave scans explored a surface area
of 33 mm × 33 mm with a spatial step of 100 µm. For each point of the surface scan, the
dielectric properties were calculated from the information collected from the microwave
reflectometer and the displacement laser, using the approach described in Section 2.2. All
measurements were performed at a room temperature of 23 ◦C.

3.2.1. Gneiss

Figure 7 shows the dielectric mark of the gneiss rock specimen. The dielectric pattern
of both dielectric constant and loss factor results was very similar, agreeing with the mineral
classification reported in [36]. Figure 7a shows a large area with moderate dielectric constant
values ranging between 4 and 6 and a specific area in the left top corner, in which the values
were above 10. Concerning the loss factor response, Figure 7b shows that most rock areas
had low loss factor values and, therefore, had a reduced ability to absorb electromagnetic
energy. However, other small regions disseminated throughout the specimen did exhibit
moderate or high loss factor values.
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Figure 7. Dielectric images of the gneiss specimen: (a) dielectric constant response and (b) loss factor
results (Q—quartz; Kf—potassium feldspar; P—plagioclase; B—biotite; A—aegirine-augite pyroxene;
H—hornblende; M—magnetite; Py—pyrite).

From the petrographic analysis shown in Figure 6a, it was possible to correlate the
rock’s mineral composition with the measured permittivity. First, we found a large quantity
of quartz mineral, a material commonly employed as a microwave inert element for
microwave processing applications [75]. In these areas, the dielectric constant was around
4 with loss factor values below 10−2, which indicated the low capacity of quartz to absorb
microwave energy as exhibited in the heating experiments reported in [76] and in other
related reports [70]. The petrographic analysis also determined a significant presence of
K-feldspars (microcline). In these areas, the permittivity obtained was between 4 and 5 for
the real part and in the range of 10−2 for the imaginary part, with the results agreeing well
with those reported in [68,69].

Sorting the materials by their permittivity results, the area with dielectric constant
values between 5 and 6 and loss factor in the range from 10−2 to 0.1 corresponds to the
biotite and plagioclase content. These results agree closely with those obtained in [70,71]
and differ from those reported in [37]. Following, we found the pyroxene aegirine-augite
and hornblende content, with dielectric constant results ranging from 6 to 7 and dielectric
losses between 0.1 and 0.2. These results agree well with the permittivity reported of augite
pyroxene in [36]. Again, the data reported in the literature provides dissimilar results
for hornblende, with dielectric constant values ranging from 7 to 14.45 and loss factor
values ranging from 0.02 to 0.32 [36,37,71]. Nevertheless, the dielectric loss of pyroxene and
hornblende appears to be higher than those of the surrounding materials (quartz, feldspar,
biotite, or plagioclase) since the content of this mineral is easily distinguished in the loss
factor map. However, regarding the dielectric constant, the calculated values were lower
than those in the literature, probably due to the penetration capabilities of electromagnetic
waves at microwave frequencies [58] and the small size of the crystals of these minerals in
this rock specimen observed in the petrographic analysis of the sample.

Finally, we can find the oxide ores magnetite and pyrite. The complex permittivity
calculated for the aggregated magnetite content, located in the left top corner, was close
to 12-j1. This value was very similar to the results reported in [72] at 2.45 GHz. The loss
factor results showed certain variability within this aggregate, maybe due to the apparent
inter-crystalline porosity observed during the petrographic analysis. The permittivity
determined for the pyrite content (8-j0.3) was slightly lower to the values described in [73],
presumably due to the small size of the grains dispersed through the sample.
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3.2.2. Anorthosite

Figure 8 shows the dielectric mark of the anorthosite rock specimen. The dielectric
pattern of both the dielectric constant and the loss factor responses was similar to that
which happened in the rock analysis described in Section 3.2.1. Figure 8a presents an area
with moderate values of dielectric constant in the range of 6, which correspond to the zone
of moderate–low losses in the range of 0.1, shown in Figure 7b. The rest of the rock was
composed of minerals with high permittivity, both in dielectric constant and loss factor.

Figure 8. Dielectric images of the anorthosite specimen: (a) dielectric constant response and (b) loss
factor results (L—labradorite plagioclase; Px—pyroxene; I—ilmenite).

The area with moderate permittivity values corresponds mainly to the Na–Ca pla-
gioclase of labradorite composition. The dielectric constant determined for this mineral
is around 6-j0.1, which is in complete agreement with that reported in [71]. The dielectric
response of the small quantities of pyroxene exhibited a permittivity slightly higher than
that of the labradorite plagioclase, as reported in [36].

The area with high permittivity values corresponds to the ilmenite metal oxide. Previ-
ous studies in the literature reported permittivity values of this mineral with significant
variability. For instance, at 2.45 GHz permittivity of ilmenite was reported to be 3.75-j0.24
in [72] and 23.6-j11.2 in [71]. Apart from the significant differences found, most of the
works agree that this metal oxide have high permittivity in both the real and imaginary
parts. With these permittivity values, the processing of this area with microwave energy
would be excellent: the high dielectric constant values would focus the electromagnetic
field in these zones of the rock, and the dielectric losses would allow microwave heating.

Indeed, there is some variability in the permittivity values of the minerals analyzed,
both in our work and in those reported by other authors, probably due to the diverse
composition of the minerals and their purity, the texture of the measured material (micro-
or macro-crystals, powder) [71,77], the influence of the surrounding components, or the
uncertainties of the different methods [36]. Nevertheless, our system has been shown
to agree well with the results reported in most of the previously published studies, thus
validating the applicability of the non-contact near-field microwave microscope developed
for the dielectric characterization of rocks, as well as for identifying and spotting the
minerals that compose them.
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4. Conclusions

In this work, we describe the use of a near-field scanning microwave microscope
as a new device for the non-contact dielectric characterization of rock specimens at the
micrometer scale.

The measurement instrument includes an in-house microwave reflectometer to allow
autonomous performance and additional hardware and software elements to make the
measurement procedure simple and straightforward.

To allow contactless loss factor measurements, we developed a near-field sensor with
enhanced quality factor sensitivity and, thus, increased loss factor resolution. The response
of this near-field microwave cavity as a function of the tip-to-sample distance was modeled
through a combination of the classical MCPT with an image charge theory. A comparative
measurement campaign of dielectric materials with other well-established instruments
was carried out to validate the proposed measurement technique. The dielectric constant
accuracy was within the range of 3%, and the error in the loss factor was constrained below
10% within the range 10−2 to 101, a remarkable result for the high tip-to-sample distances
employed in the measurements.

Two types of rock with felsic and mafic compositions were selected to be analyzed with
the developed sensor. Dielectric maps showed that the gneiss sample had low absorption
capabilities, except in specific points disseminated throughout the rock. On the other
hand, the permittivity response of the anorthosite specimen depicted moderate and high
dielectric losses, and hence, presents excellent capabilities to be processed under microwave
irradiation. The results obtained were found to agree well with the results reported in
the literature, thus validating the performance of the proposed non-contact near-field
microwave microscope.

This method will allow the identification of minerals and their dielectric characteriza-
tion in the actual state in which they are found in the rock under study. In addition, the
developed NSMM with enhanced sensitivity could also be employed as a stand-alone tool
to determine permittivity maps of planar materials at microwave frequencies in a broad
range of sensing applications.
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