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Abstract: IoT technology applied to agriculture has produced a number of contributions in the
recent years. Such solutions are, most of the time, fully tailored to a particular functional target
and focus extensively on sensor-hardware development and customization. As a result, software-
centered solutions for IoT system development are infrequent. This is not suitable, as the software
is the bottleneck in modern computer systems, being the main source of performance loss, errors,
and even cyber attacks. This paper takes a software-centric perspective to model and design IoT
systems in a flexible manner. We contribute a software framework that supports the design of the
IoT systems’ software based on software services in a client–server model with REST interactions;
and it is exemplified on the domain of efficient irrigation in agriculture. We decompose the services’
design into the set of constituent functions and operations both at client and server sides. As a result,
we provide a simple and novel view on the design of IoT systems in agriculture from a sofware
perspective: we contribute simple design structure based on the identification of the front-end
software services, their internal software functions and operations, and their interconnections as
software services. We have implemented the software framework on an IoT irrigation use case that
monitors the conditions of the field and processes the sampled data, detecting alarms when needed.
We demonstrate that the temporal overhead of our solution is bounded and suitable for the target
domain, reaching a response time of roughly 11 s for bursts of 3000 requests.

Keywords: IoT software services; flexible sofware design; agriculture irrigation software; agriculture;
software framework; alarm detection in IoT software

1. Introduction

One of the resources that is most affected by climate change is fresh water, which is
3% of the whole amount of water in the planet. This includes frozen water: glaciers and
polar ice caps. As such, available fresh water is a small percentage and a precious resource.

Activities that consume the most fresh water, such as the irrigation of crops and
massive recreational centers (among others), have to be carefully managed for extreme
efficiency. Precisely, irrigation is the activity that consumes the most, being aproximately
70% of the overall quantity [1,2]. Not long ago, the visual inspection for decision making on
the irrigation of crops was common practice. According to [3], this was the case in around
80% of US farms.

During the last decade, IoT technology has successfully been adopted in the vast
majority of application domains, including agriculture [4] as a basic instrument for im-
plementing a resource-efficient operation. As a result, the IoT paradigm is a key step in
the way that modern systems are conceived and architected. The interconnection of a
miriad of sensing and actuating nodes constitutes a powerful infrastructure to develop
applications that monitor and actuate on the physical objects and environment, enhancing
the intelligence and capacities of the human operators and users. The application areas of
IoT span from eHealth [5], to smart manufacturing [6] and automation, smart cities, and
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many more. IoT technology applied to agriculture irrigation can significantly contribute
to the rational usage of water as abundant and precise data are obtained from the field in
real-time. This serves greatly to improving the decision making on irrigation periods and
quantities, among others.

In the last decade, the number of contributions that apply the IoT technology to
agriculture has increased significantly. The vast majority of contributions provide a system-
level architecture that monitors different parameters such as characteristics of the soil and
the environment; these data are fed some target solution platform tailored to the particular
needs of individual agriculture fields. Other solutions typically target the design of the
hardware, i.e., the sensors that will be later located on the physical deployment. However,
to the best of our knowledge, there are no software-centric solutions for the development
of IoT software systems for agriculture. The few solutions where the software side is
present are reduced to a pure instrumental level, such as the usage of a particular API for
information exchange among the deployed computer-nodes (IoT sensors, single-board
computers, etc.) and deployed nodes and the cloud backends. There is a gap at the level
of software-centered solutions that support the flexible modeling and development of
IoT agriculture.

This work designs and prototypes a software framework for actively monitoring the
water management applied to irrigation in agriculture. We propose a software framework
that can extend the capacities of mainstream IoT platforms by providing a strategy to
design IoT agriculture software in a flexible manner. Our framework is based on software
services that model the front-end functionality of the interacting nodes in IoT systems
that use a client–server communication scheme. The system model is based on federated
areas with controlling servers that: (i) store monitored parameters, (ii) analyse the data
to detect alarms that may generate corresponding actuation values; and (iii) send the
actuation values to the IoT devices. A decomposition of the software services into their
constituent operations and functions is also contributed both for client and server sides;
and the mapping of these to the main functionality such as detection and actuation in
front of anomalies and alarms is provided. We prototype the software framework for an
irrigation control IoT software system and demonstrate that the interactions are achieved
efficiently with a maximum time of 11 ms for the worst-case situation.

The paper is organized as follows. Section 2 elaborates the target application scenario,
analyses the possible communication strategies that can be used, and the common function-
ality of mainstream IoT platforms. Section 3 describes the approach with the design process
based on software services; the decomposition of the internal structure of services; and the
proposed framework that details its constituent software modules, including the alarm
detection module. This section includes the mapping of the internal software services to
the framework modules. Section 4 describes the prototype implementation of the proposed
framework applied in the context of the IoT software system for controlling irrigation
in agriculture. It defines the IoT sensoring infrastructure and associated servers, as well
as the alarm conditions that guide the irrigation control. A number of experiments are
also presented that validate the temporal behavior of the designed framework. Section 5
presents the related work. Section 6 concludes the paper.

2. Application Model
2.1. Scenario Overview

The target scenario is an IoT agriculture systems that provides eco irrigation. The
IoT substrate is composed of smart sensors that sample soil and environment data; and
the server side that gathers and processes the sampled data. For this purpose, a software
framework is proposed on the IoT substrate to achieve eco irrigation: The plants receive
the needed water, but the software platform controls the quantity, amount, and frequency
of irrigation based on the data sampled by smart IoT devices located in the field.

The system includes a server platform based on services technology. Moreover, the
software functions of IoT sensor devices are also service-based.
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One of the goals of the designed platform is that the temporal behavior of the software
logic running on the IoT devices is appropriate to achieve real-time monitoring, detecting
possible anomalies or alarms, and actuating as needed.

Figure 1 illustrates the target system that includes sensors to report real-time readings
of wind speed, rain quantity, humidity, and temperature. Sensors are connected to the
control server by means of a well-defined interface. The server receives real-time data; then,
it processes these data, and generates configuration commands back to the IoT nodes.

Figure 1. System overview.

The integrated logic analyses the effects of the current atmospheric conditions such as
temperature, wind, and humidity, to activate the irrigation system. This logic also considers
the potential rain, as it includes a pluviometry sensor.

2.2. Communication Options

There are different options to implement such a scenario as far as the communication
platform is concerned and the integrated software libraries. If bare RPC (Remote Procedure
Call) software is used, faster exchange rates are achieved at the cost of supporting only
one-to-one communication between client and server sides. Using P/S (Publish-Subscribe)
supports multiple interaction models (1 to many, many to many, etc.) but the needed
distribution protocols to ensure coherency and non-duplication introduce higher over-
heads that may not pay off in many IoT scenarios. Moreover, implementing this scenario
with a communication protocol such as pub-sub or RPC is possible but error prone and
lacks sufficient flexibility to accomodate new nodes and functionality, which only need to
communicate to an area server.

Using REST-based interactions (such as [7]) to design and deploy this scenario en-
hances flexibility; but it comes at a cost that is the introduction of the protocol headers and
the associated cost of parsing them in the higher levels of the protocol. However, this can be
aleviated by using web-like interactions for constrained environments such as the CoAP [8]
protocol (Constrained Application Protocol). Additionally, the client software (browser) is
more time consuming than a native C software directly run on the hardware and operating
system. However, the lack of support functions of the native C software modules will have
to be crafted manually.

2.3. Mainstream IoT Platforms

Most current IoT platforms have a set of common modules as part of their structure.
The commom part is shown in Figure 2. The IoT platform boundaries are expressed with a
dashed line.

There are four main components that provide the basic harness and functions. These
are explained below.

The interface to IoT devices (contained inside the Proxy to Devices block) is performed
essentially by means of two different protocols: REST [9] (REpresentational State Transfer)
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or publish–subscribe. There are a number of particular instantiations and libraries that
realize both of them. Interaction through REST provides a pure client–service model, and
it improves compatibility with web protocols; whereas interaction by means of publish–
subscribe models constitute a powerful n to m communication scheme based on a consumer–
producer model.

In the vast majority of current platforms, the interface to external users (such as system
operators and other actors that only visualize data) is performed by means of a web-based
protocol and a REST communication scheme. This function is represented with the User
Interface (REST) block. The usage of the web is due to the natural penetration of web
technology in virtually all application domains. The popularity of web protocols is due to
a number of reasons: its simple communication model; its ease of use; the improvement of
the performance of current tools; powerful visualization capacities; and natural integration
with paradigms such as cloud computing backends.

Figure 2. The structure of IoT platforms.

Additionally, most IoT platforms have a built-in block that stores the system informa-
tion (the System Model block). It provides facilities to define the devices and nodes that are
part of the system, their characteristics and interaction links. This block uses a data base
software (expressed here as Data Base block) that persistently stores the data of the system:
both the system model and the data gathered and generated by the platform itself.

Logic such as artificial intelligence and machine learning functions usually relies on
employing external libraries (library APIs), as it is typically not part of the internal core
per se.

3. Approach

This section describes the proposed software framework that enhances the function-
ality of common IoT platform functions. The target IoT infrastructure is specified as a
set of software services; we understand the concept of software service as a self contained
functionality piece that exposes a well-defined interface through which it receives and
transmits data.

Firstly, the service-oriented system model is explained that provides a simple interac-
tion scheme among system nodes. Then, we explain the proposed framework, describing
the modules that it integrates.

3.1. IoT System Model Based on Services

The target IoT system is based on the existence of federations of nodes (see Figure 3)
that include a number of smart IoT devices and an associated server. Federations have
been applied extensively in distributed systems and in more recent computing paradigms



Sensors 2022, 22, 9999 5 of 16

such as fog [5]. One of the reasons is the inherent ordering that favors controllability and
accountability of nodes; this is particularly useful in the case of errors or missfunctions, as
it becomes simpler to trace back until reaching the fault source.

Figure 3. IoT system federations.

In our approach, the functionality offered by nodes is modeled as services and the
interactions across nodes are modeled as service invocations and/or requests. This means
that all nodes involved in the IoT system (e.g., smart IoT devices and server nodes) expose
their functionality as service APIs (Application Programming Interface) over a REST [9]
communication scheme. In this scenario, IoT devices monitor and actuate on the physical
environment. Monitoring implies gathering data about the field conditions and sending
these data to the server; whereas actuating implies receiving actuation commands from the
server to execute them on the physical system. The server controls the system actuation.
This means that the server configures the smart IoT devices operation, and stores the
sampled data.

Figure 4 illustrates the interaction model across the nodes involved in our target IoT
system. A node can request information from (or send information to) another node by
using the appropriate REST method. The communication invocation is performed through
a well-formed URL (Uniform Resource Locator) that includes:

• node part, representing the protocol and the node domain.
• serviceX part, that includes the path to service x inside the server, and
• params part, containing the associated parameters that are the precise details about

the request.

Figure 4. Service-based communication scheme.

The specified parameters follow the scheme of URLs; this means that requests can
contain none or multiple parameters separated by the ‘&’ character in the form of key-value
pairs. An example could be: temp=24&wind=12. For the sake of clarity, Figure 4 shows
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an explicit URL containing all parameters. However, it is important to clarify that the
parameters (the key-value pairs) are communicated in a post method in a REST scheme.
That is, exchanged data are not communicated in a visible manner, but as part of the
message body.

Messages exchanged among nodes follow a format well suited to generic services.
The framework uses a de facto standard such as JSON [10] (JavaScript Object Notation)
for data exchange. JSON is nowadays one of the most widely used formats for text-
based data exchange in the majority of domains and especially in web services and REST-
based interactions.

A server-based design approach brings in a number of benefits. Firstly, it provides
the needed combination of expressive power, showing the connections and interelations
of clients and server sides; also, it offers the needed control over the communication,
since such scenarios employ a REST-based interaction that is a plain client–server scheme.
Additionally, this scheme translates into a resource efficient communication that can be
achieved by using the communication protocols for constrained environments.

Figure 5 illustrates the service-based definition with n smart IoT devices that are
connected to a server. At the top level, Figure 5 shows the service in the system. This
sample model shows a simplified version containing only one service per IoT node. The
model easily scales to more complex service configurations.

Figure 5. Service scheme at server and IoT devices.

This big picture is then further expanded in Figure 6 that shows how each service
is also decomposed into a number of activities that collaborate to provide an integrated
functionality towards the outside nodes. To differentiate, constituent activities of IoT
devices are named operations; and constituent activities of server nodes are called functions.
At the server side, the constituent functions are assembled in a pipeline scheme, as the
data produced by each operation are fed to the subsequent one. Inside an IoT node, the
operations of a given service are executed in parallel, as explained below.

There are n IoT devices. Each IoT device has a set of services: s1, · · · sn. The server
has one software service, namely sn+1, that includes the logic for managing the n IoT
devices. Figure 6 shows the decomposition of services of IoT devices such as service s1 that
is composed of three operations o1, o2, o3; such operations can carry out actions such as
updating the sample rate of the device (o1), issuing actuation commands on the actuator
part of the IoT device (o2); and performing self-healing and self-monitoring actions that
result in sending some log data to the server (o3).
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Figure 6. Expanded services scheme.

At the server side, service sn+1 is made of the server functions f1, · · · f5. This means
that the server side functionality contains a pipeline of four services: f1 is the entry module
acting as a gateway and receiver for the incoming data from the remote smart devices; f2
is the parsing function that recognizes the incoming data and language, and rebuilds the
received elements and code entities; f3 is the rendering logic that presents each received
element on the IoT system dashboard; f4 is the analysis functionality that determines the
response to IoT devices, i.e., further (if any) configuration commands to be sent to the smart
devices for either actuation or self-tunning (e.g., adaptation of sampling period, etc.); f5 is
in charge of submitting the response to the IoT devices.

IoT device services represent the physical devices that can be invoked via either a
client–server or a pub–sub protocol. The result of the invocation will be a resource specified
in JSON format, e.g., {“temperature”: 15} for some temperature sample readings.

IoT devices provide the sample readings to the IoT system platform using web-based
communication and the rest paradigms with a post request such as https://www.serverabc.
com/api/iotsys16543/telemetry that invokes a particular service to which it passes a type
Content-Type: application/json for the associated data {“temperature”: 15}.

3.2. Software Modules Overview

The software framework is architected as shown in Figure 7, containing a set of mod-
ules that extend the common functions of IoT platforms in the various ways listed below.

• The IoT system needs to be architected based on services as decoupled functionality
pieces that expose clean interfaces. This is supported by the service design module.
A service-based design is highly flexible and naturally supports scalability in the
physical scenario. Adding or removing an IoT device can be mapped to the presence
or absence of a software service at the logical level.

• Alarms and actuation logic programming using event-based technology is suppported
by the alarm definition module. This part provides an external enhancement to the
identification and detection of alarms, the specification of new actuation conditions,
or the addition of threshold value checking. The module supports the programming
of these functions in an event-based language to ensure maximum web compatibility,
as most platforms expose web interfaces and use web communication protocols.

• Support for data analytics. More complex logic can be programmed for guiding the
actuation indications of the server on the field IoT devices. This is supported by the
data analysis module.

• The actuation core module is the central point of the framework operation. It guides
the actuation based on the inputs from the modules alarms and data analytics. It
leverages the communications module to interact with the devices.

• A communication module is provided that implements the mapping to the particular
networking protocols that need be used to properly interact with IoT devices and users.

https://www.serverabc.com/api/iotsys16543/telemetry
https://www.serverabc.com/api/iotsys16543/telemetry
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Figure 7. Proposed solution and enhancement.

The analysis function f4 runs the logic to detect the occurrence of situations represent-
ing an anomaly. This may trigger the system to perform corrective actions or to react to
mitigate the foreseen effects. These ocurrences are named alarms and they are programmed
inside function f4 in an event-based mode; precisely, they are part of the alarm definition
module. Figure 8 shows the activities that take place inside the server functions related to
the detection of an anomaly or alarm. Detected anomalies may have two different conse-
quences. Sometimes, they may only require to be signaled to the operator (e.g., display a
value highlighted in some red color to inform of some exceptional value or situation); how-
ever, it may be the case that the alarm implies some catastrophic effect for the system and
this may require one to invoke some exit function that discontinues the system operation
and requests the operator control until the situation is solved.

Figure 8. Anomaly/alarm detection and associated activities.

Mapping the server functions to the designed software module is straightforward. On
the one side, function f4 includes modules actuation core, data analysis, and alarm definition.
The actuation core module is a leading and central part, as it determines the execution flow
shown under f4 of Figure 8. On the other side, function f5 includes the communication
module to interact with external actors in the needed underlying networking protocols.

3.3. Alarm Definition

Alarms express the occurrence of an event or entering a situation that requires that
an urgent action is taken. Examples of such actions are turning on a red light to indicate
danger, and some physical action to avoid negative consequences.

In our solution, an alarm is programmed using conditional language and boolean
expressions. An example of supported alarms are explained in what follows.

Definition 1. A single variable alarm is an expression of type if e then action1, where e
is an expression of type v ⊕ δ that involves checking the value of a variable v against a prefixed
threshold δ. The symbol ⊕ represents an operation of types =, < ≤, >, ≥, so the expression is
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evaluated to either true or false. If the evaluation result is true, then action1 is performed. The
alarm can be extended with an else clause that will be executed if the expression is evaluated to
false, yielding the execution of action2. An example of a single variable alarm is if temp < 15.5
then flash red led, temp being a variable that holds temperature variables.

A multi-variable alarm is an expression of type if e then action1, where e can be decom-
posed into multiple (at least two) binary expressions such as e1 ⊕ e2, where e1 and e2 are expressions
that may contain multiple variables, logic operations, or scalar values. ⊗ represents logical opera-
tions such as logical AND, OR, NOT, among others. Expression e and all its subexpressions e1, e2,
etc., evaluate to either true or false. As in the previous case of single variable alarm, the specification
can be extended with an else clause that will be run if the expression is evaluated to be false.

4. Implementation and Results

Our solution is applied to the development of an eco irrigation system in the IoT
agriculture for delivering a solution that is capable of flexibly modifying the irrigation con-
ditions and alarms to experiment with implementation options in search for the maximum
benefit to the agriculture ecosystem and for water saving.

In this case, the design of the system contains four smart IoT devices controling four
respective sensors to measure wind, temperature, humidity of the environment, and rain
conditions. These devices are connected to an IoT platform [11] with capabilities of basic
device connectivity and telemetry presentation to which our approach is integrated.

The above provided modeling is instantiated in what follows. The client side services
are s1, · · · , s4, with each associated to the previously mentioned IoT devices; and s5 is the
server-side service. Each client-side service runs operations o1, o2, o3. For the case of the
wind sensor, o1 corresponds to setting the sampling frequency of the wind speed or wind
direction at a software level; o2 corresponds to further actuation of the device on itself, e.g.,
reducing the wind vane frequency if the wind direction is oscillating; and o3 corresponds
to setting the logging mechanisms of this sensor to report its performance.

For the alarm definition, the scenario identifies a set of operation conditions that
determine whether the system operation is normal; or determines whether an alarm has
been fired that requires action or simply informing the operator. There are single and
multi-variable conditions:

1. Wind effect. The wind is one of the worst enemies of irrigation, as it has a decisive
influence on the distribution and uniformity of the sprinkled water. This problem
is aggravated by the speed and direction of the wind. In the following are some
recommendations for a particular field and crops:

• For wind speeds over 8 km/h, it is recommended to decrease the sprinkler
spacing by 2% every 1.5 km/h increase in wind speed.

• For winds speeds exceeding 20 km/h, it is recommended not to irrigate; thus,
pumps must be stopped.

2. Temperature. Each crop has its own optimum temperature to reach the highest
yields. If the plant temperature rises above the optimal point, precision irrigation is
automatically activated. In the following are some recommendations for a particular
field and crops:

• Acceptable temperature values must stay in between 23 ◦C and 32 ◦C. Fruit
quality drops outside this range.

3. Humidity. Acceptable ambient humidity is related to the particular plants. Moreover,
the sensibility to water excess or deficit is also dependent on the particular plant
and soil quality (e.g., carbon presence in soil). Such data are specific for each type of
soil and are related to the humidity value at a matrix potential. The condition to be
checked here is shown below:

• A humidity value in the range from −20 kPa to −75 kPa is considered normal.
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4. Pluviometry. It is used in agriculture for irrigation control. This agricultural sensor
records and sends data about the additional water content or the amount of precip-
itation. The value of the pluviometry sensor may cause the irrigation pump to be
disconnected. A recommendation considered in this example is that values less than
50 L in a week are considered normal and do not have an effect in the irrigation
process. Values over 100 L will stop the irrigation pump for a day.

Table 1 shows the conditions checked in the system in order to decide whether the
irrigation process has to be adjusted. The first column represents the normal operation
state; in this state, any action on the irrigation pump is not required, so that the irrigation
process will continue to operate normally. The second column determines a moderate
risk on the effectiveness of the irrigation due to windy conditions, mild temperatures,
or increasing humidity; this will require one to decrease the irrigation level, avoiding
unnecessary watering. The third column identifies risky conditions due to, for instance,
high winds; this will result in stopping the irrigation process, as it will have a negligible
effect on the actual watering of the crops.

In the following, it is demonstrated how the alarms are implemented in the software
framework that reflect the conditions specified in Table 1. The algorithm is shown in
JavaScript, which is the language in which the alarm detection module is implemented .
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irrigation process has to be adjusted. The first column represents the normal operation
state; in this state, any action on the irrigation pump is not required, so that the irrigation
process will continue to operate normally. The second column determines a moderate
risk on the effectiveness of the irrigation due to windy conditions, mild temperatures,
or increasing humidity; this will require one to decrease the irrigation level, avoiding
unnecessary watering. The third column identifies risky conditions due to, for instance,
high winds; this will result in stopping the irrigation process, as it will have a negligible
effect on the actual watering of the crops.

In the following, it is demonstrated how the alarms are implemented in the software
framework that reflect the conditions specified in Table 1. The algorithm is shown in
JavaScript, which is the language in which the alarm detection module is implemented.

var wind;
var temperature;
var humidity;
var rain;
var risk;
var info;

function NormalParameters () {
if ((wind < 8) && (temperature > 23 && temperature < 32) &&
(humidity > -75 && humidity < -20) && (rain < 50)) {

return false;
info = ‘‘The parameters are in the normal range of wind,
temperature, humidity and rain.’’;
risk = ‘‘No risk.’’;

}
}

function ModerateRisk () {
if ((wind > 8 && wind < 20) || ((temperature < 23 &&
temperature > 16) || (temperature < 38 && temperature > 32))
|| (humidity > -20 || humidity > -75) || (rain > 50 && rain < 100)) {

return true;
info = ‘‘The parameters are out of range.’’;
risk = ‘‘The risk is moderate.’’;

}
}

function HighRisk (){
if ((wind > 20) || (temperature > 38 || temperature < 16) ||
(humidity > -20 || humidity > -75) || (rain > 100)) {

return true;
info = ‘‘The parameters are out of range.’’;
risk = ‘‘The risk is high.’’;

}
}
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Table 1. Definition of risk levels for alarm detection.

No Risk Moderate Risk High Risk

wind < 8 km/h wind > 8 km/h AND wind < 20 km/h wind > 20 km/h

temperature > 23 (temperature < 23 AND temperature > 16) temperature > 38
AND OR OR

temperature < 32 (temperature < 38 AND temperature > 32) temperature < 16

humidity > −75 humidity > −20 humidity > −20
AND OR OR

humidity < −20 humidity > −75 humidity > −75

rain < 50 rain > 50 AND rain < 100 rain > 100

The software framework has been tested to ensure that the proposal conforms to the
needed temporal behavior. We have used the bare capacities of an IoT platform [11]. As a
persistent storage option, we have used a PosgreSQL database. Our interest is to validate
our solution, obtaining measures about the response time perceived by the client side.
Then, we have measured the communication interaction at the client side, detecting the
time when the server initiates the sending of the response. Table 2 shows this response
time behavior for different request bursts and for four different experiments (E1 through
E4). We observe that for a light demand from the framework (i.e., a burst of 10 service
requests), the cost is 229 ms. A mid-low burst rate leads to a cost of 1.02 s; whereas, the
communication becomes more efficient for high (1000) and very high (3000) bursts with a
cost of 2.31 s, and 9.349 s, respectively. Moreover, we have obtained the average times for
each burst rate.

Table 2. Response time in front of different request rates.

Request Burst E1 E2 E3 E4

10 0.229403 0.164141 0.129209 0.125360
100 1.020914 0.383103 0.493095 0.448629
1000 2.316834 3.6164326 4.487297 3.591282
3000 9.349804 8.853687 11.730795 14.558191

Table 3 shows the average cost per request. It is observed that, as the number of
requests increases, the time it takes for each request to reach the server and back decreases.
The observed trend is the one that was initially expected. That is, for a high request number,
the underlying platform is close to its saturation; and it saturates if we cross the limits with
a very high request burst-rate.

Table 3. Average response time (in ms) in front of different request rates.

Request Burst Average

100 5.864345
1000 3.502961
3000 11.123119

The trend can be better compared with the plot shown in Figure 9. Here, a summary
of all the collected data is shown in four descriptive measures. The size of each box marks
the dimensions of the IQR (InterQuartile Range): the difference between the third and first
quartiles of the distribution. The median value is marked with a red line inside each box.
Minimum and maximum values are represented by short horizontal lines outside of the
box. If any outliers are present, they are marked as red crosses.
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Figure 9. Summary of temporal behavior of test 1.

Additionally, we have designed and performed a second test on the temporal be-
haviour of our solution for the communication of different data sizes. It is important to
recall that in the first test, we have explored the temporal behavior of our solution and have
explored the limits and utilization boundaries of the underlying IoT platform. Then, this
second test stays within the boundaries that allow the underlying IoT platform to function
normally, as derived from the initial test.

In the second test, we have used the JSON data exchange format (also used for
serialization) and explored the temporal cost for different burst rates (low for 10; medium
for 100; high for 1000; and very high for 2000). Table 4 shows the obtained results, as we
progressively vary the number of requests and the size of the exchanged data.

Analyzing Table 4, we observe that increasing the size of the JSON file does not
increase the arrival time of the data. For instance, focusing on the temporal cost for a low
burst-rate, we observe a similar cost for all data sizes (13 bytes through 3312 bytes) with
225 µs difference. On the other hand, we observe a behavior that is coherent with the initial
test: increasing the request burst-rate does not directly impact the communication time.

Table 4. Temporal behaviour as the exchanged data size and the request bursts increase (in seconds).

Data Size (In Bytes) Low Medium-Low High Very High

13 bytes 0.645241 1.444396 4.866774 9.102204
24 bytes 0.831007 0.462578 2.845448 s 5.985796
91 bytes 0.640276 0.659791 2.258518 s 5.636820
201 bytes 0.968613 0.573597 4.297246 s 5.968502
408 bytes 0.468909 1.569857 1.457807 s 6.145699
824 bytes 0.828033 0.606376 3.987770 s 7.754083

1656 bytes 0.794128 0.687427 5.127063 s 7.394538
3312 bytes 0.894942 0.438648 3.574610 s 13.520767

Figure 10 summarises the results of the test, exhibiting a quite stable lower bound of
the first quartile temporal results for all data sizes. There are evident differences between
the upperbound, but these are due to the internal characteristics of underlying platfom.
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Figure 10. Summary of response times

In summary, the effect of the proposed solution is minimal and the temporal behavior
is directly related to the underneath layers that we analyzed in the initial test. We observed
that the sending time increases as the number of requests raises. This was evidenced in the
accumulated times; but also when breaking down the total into average cost, as the latter
decreases with the number of request increases. These tests allow us to extract conclusions
such as, for example, what to do to reduce the sending time. For this, smart IoT devices
that do not require real-time interaction can be programmed to collect data from a number
of sampling periods and summarize them in a single JSON data message. However, we
must consider the downside, which is that the cost of sending small JSON objects is higher
given the inherent productivity of the underlying communication protocol such as [12],
among others.

5. Related Work

IoT technology applied to agriculture irrigation can significantly contribute to the rational
usage of water, as abundant and precise data are obtained from the field in real-time.

A number of works have appeared for IoT agriculture irrigation over the last decade,
right when the IoT paradigm experimentation became popular. It is important to note that
the literature related to the IoT agriculture system experiments has a large bias towards
sensor-hardware development and final system development that achieves the initially
specified functional characteristics. This is evidenced in [13] and particular examples are
are [14–16]. Nevertheless, to the best of our knowledge, there are practically no contribu-
tions that take a software-centric perspective to IoT agriculture. The software is typically
taken as an instrumental piece in the context of an overall final system development. This is
a common ground to other IoT domains such as medical systems or industrial automation
and manufacturing [17,18].

Approaches such as [19,20] focus on the design of customized sensors for irrigation
and sensing of field characteristics. These are different from our approach in that they focus
on the hardware design of the IoT sensors.

Other research lines have engineered solutions for the automated irrigation in fields
focusing on the system level view such as [21,22]. Some contributions such as [23] focus
on the hardware and also provide the design and development of an operator interface
for usability, but not focusing on interoperability. They are different from ours in that they
target a particular deployment; whereas, we propose a rather software-oriented approach
to design the system based on the web service interfaces that the intervening nodes (IoT
sensors and servers) provide. This provides high interoperability and yields to modular
designs of IoT systems, where nodes can be easily replaceable.
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Other works have combined wireless sensing, IoT technology, and the cloud for
storing the monitored data. Examples are [24], which uses the cloud to store the sensed
data; Ref. [25], which provides a study on the actual performance of communication
between wireless sensing and the cloud backend; Ref. [26] relies on the inherent usage
of services for monitoring without further attention and uses the cloud backend to store
monitored parameters on which to later process to infer the actuation actions; others such
as [27] that have approached the fog paradigm in the search for improving performace,
although it is a quite immature contribution; or [28], which designs a smart irrigation
system that stores the monitored field values in the cloud. However, these cloud-based
approaches relying on the storage of data in the cloud servers can be improved by using
storage closer to the physical object (the field), as we propose. Additionally, our solution
provides a structured service-based design scheme that allows designers and engineers to
draw an initial map of the application-level logic that will be later more easily instantiated
in the physical domain.

Intelligent decision making in combination with the IoT sensing of crops has also been
explored in a number of solutions. This is in the case of [29] for improving temperature
management in greenhouses, which has an effect in irrigation; Ref. [30] that provided
an initial tracing pattern over business models based on events; Ref. [31] that reviews a
number of other contributions on agricultural IoT technology in general to which artificial
intelligence is also applied; or [32], which proposes a neural network used for decision
making respecting water supply, and fertilizer spray, among others.

There are also a number of contributions on system-level architectures for IoT-based
agriculture that directly or indirectly impact water management. In [33], it is presented
how to model solutions for monitoring water content in the soil. Another example is the
contribution of [34], which describes in detail the most commonly required components
(mostly focusing on hardware) of an IoT-based irrigation system.

As a result, and to the best of our knowledge, there is no solution that contributes a
software framework to design IoT agriculture irrigation systems from the point of view
of architecting them flexibly based on software services. This software-centric approach
provides a modular scheme that can be integrated in current IoT platforms, preserving the
temporal behavior required by the system. We use our previous work ([35] describing an
evaluation process for IoT platforms to perform the temporal validation of our proposal.
This previous work provides a structured baseline to identify the relevant software aspects
in an IoT project in order to validate the temporal behavior of key software pieces of the
overall system such as the IoT platform.

6. Conclusions

This paper has proposed a software framework that integrates strategies to design and
develop the software of IoT systems for irrigation control. The approach allows designers
to easily model IoT systems based on software services that interact through REST-based
protocols over a client–server model. The framework decomposes the client and server
sides of an IoT system into the precise constituent functions and operations, to draw a
clean map to the designer of where to hook further software services that may be needed
to enhance the overall functionality of the system. As a result, the framework enhances
the capacities of mainstream IoT platforms, providing a software hook that supports
the programming of the alarm detection to improve the decisions over irrigation instants.
Experiments have demonstrated that the temporal behavior of the proposed framework and
communication between client and server preserves the required latencies and validates the
solution. We show that even for high communication bursts of 3000 requests, the latency is
kept consistently below 11.2 s.
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