
����������
�������

Citation: Ibáñez, J.; Alonso, J.M.;

Alonso-Jordá, P.; Defez, E.; Sastre, J.

Two Taylor Algorithms for

Computing the Action of the Matrix

Exponential on a Vector. Algorithms

2022, 15, 48. https://doi.org/

10.3390/a15020048

Academic Editor: Frank Werner

Received: 23 December 2021

Accepted: 26 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Two Taylor Algorithms for Computing the Action of the Matrix
Exponential on a Vector

Javier Ibáñez 1 , José M. Alonso 2 , Pedro Alonso-Jordá 3∗ , Emilio Defez 1 and Jorge Sastre 4

1 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain; jjibanez@dsic.upv.es (J.I.); edefez@imm.upv.es (E.D.)

2 Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain; jmalonso@dsic.upv.es

3 Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain; palonso@upv.es

4 Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de València, Camino de
Vera s/n, 46022 Valencia, Spain; jsastrem@upv.es

* Correspondence: palonso@upv.es

Abstract: The action of the matrix exponential on a vector eAtv, A ∈ Cn×n, v ∈ Cn, appears in
problems that arise in mathematics, physics, and engineering, such as the solution of systems of
linear ordinary differential equations with constant coefficients. Nowadays, several state-of-the-art
approximations are available for estimating this type of action. In this work, two Taylor algorithms
are proposed for computing eAv, which make use of the scaling and recovering technique based
on a backward or forward error analysis. A battery of highly heterogeneous test matrices has been
used in the different experiments performed to compare the numerical and computational properties
of these algorithms, implemented in the MATLAB language. In general, both of them improve
on those already existing in the literature, in terms of accuracy and response time. Moreover, a
high-performance computing version that is able to take advantage of the computational power of
a GPU platform has been developed, making it possible to tackle high dimension problems at an
execution time significantly reduced.

Keywords: action of the matrix exponential; Taylor series; GPU computing

1. Introduction

The study of different matrix functions f (A), where A ∈ Cn×n, such as the exponential,
the trigonometric and hyperbolic functions, the logarithm or the sign, and several families
of orthogonal matrix polynomials, among which are those of Hermite, Laguerre, Jacobi, or
Chebyshev, form an attractive, wide, and active field of research due to their numerous
applications in different areas of science and technology.

In the last years, the matrix exponential eA has become a constant focus of attention
due to its extensive applications—from the classical theory of differential equations for
computing the solution of the matrix system Y′(t) = AY(t), given by Y(t) = eAt, to the
graph theory [1–3], even including some recent progress about the numerical solutions of
fractional partial differential equations [4,5]—as well as the multiple difficulties involved
in its effective computation. They have motivated the development of distinct numerical
methods, some of them classic and very well-known, as described in [6], and other more
recent and novel using, for example, Bernoulli matrix polynomials [7].

Nevertheless, sometimes it is not the computation of the function f (A) on a square
matrix A which is required by applications, but its action on a given vector v ∈ Cn,
i.e., f (A)v. Once again, the motivation for this particular problem may come from its
applicability in different and varied branches of science and engineering. As an example,
the action of the matrix sign on a vector is used in quantum chromodynamics (QCD), see [8]
for details. Furthermore, in particular, the action of the matrix exponential operator on

Algorithms 2022, 15, 48. https://doi.org/10.3390/a15020048 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15020048
https://doi.org/10.3390/a15020048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-6912-4453
https://orcid.org/0000-0001-6812-7364
https://orcid.org/0000-0002-6882-6592
https://orcid.org/0000-0002-3303-6371
https://orcid.org/0000-0002-8612-6717
https://doi.org/10.3390/a15020048
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15020048?type=check_update&version=1

Algorithms 2022, 15, 48 2 of 17

a vector appears in multiple problems arising in areas of mathematics, as in the case of
the following first-order matrix differential equation with initial conditions and constant
coefficients

Y′(t) = AY(t)
Y(0) = v

}
,

being A ∈ Cn×n and v ∈ Cn, and whose solution is in the form Y(t) = eAtv ∈ Cn—this
kind of problem occurs frequently, for example, in control theory—or in applications
involving the numerical solutions of fractional partial differential equations [9]. Moreover,
the action of the matrix exponential on a vector is also used in physics and engineering
fields such as electromagnetics [10], circuit theory [11], acoustic/elastic wave equations [12],
seismic wave propagation [13], chemical engineering [14], robotics [15], and so on.

There exist different methods in the literature to calculate the action of the exponential
matrix on a vector (see for example those described in references [16–21]). Additionally,
a comparison of recent software can be found in [22]. Among these methods, those
based on Krylov subspaces [23]—they reduce the eAv problem to a corresponding one
for a small matrix using a projection technique—and those based on polynomial or Padé
approximations, see [16,17,24] and references therein, can be highlighted.

When computing eAv, the approach using Taylor method, in combination with the
scaling and squaring technique, consists of determining the order m of the Taylor polyno-
mial Tm(A) and a positive integer s, called the scaling factor, so that eAv ≈ (Tm(2−s A))

2s
v.

Indeed, in this paper, two algorithms that calculate eAv without explicitly computing eA

have been designed and implemented in MATLAB language. Both of them are based on
truncating and computing the Taylor series of the matrix exponential, after having obtained
the values of m and s by means of a backward or forward error analysis.

Throughout this work, we will denote the matrix identity of order n as In or I. With
dxe, we will represent the result of rounding x to the nearest integer greater than or equal
to x. In the same way, bxc will stand for the result of rounding x to the nearest integer
less than or equal to x. The matrix norm ‖A‖ will refer to any subordinate matrix norm
and ‖A‖1 will be, in particular, the 1−norm. A polynomial of degree m is given by an
expression in the form Pm(x) = amxm + am−1xm−1 + · · ·+ a1x + a0, where x is a real or
complex variable, and the coefficients aj, 0 ≤ j ≤ m, are complex numbers with am 6= 0.
Moreover, we can define the matrix polynomial Pm(A), for A ∈ Cn×n, by means of the
formulation Pm(A) = am Am + am−1 Am−1 + · · ·+ a1 A + a0 I.

This work is organised as follows. First, Section 2 presents two scaling and squaring
Taylor algorithms for computing the action of the matrix exponential on a vector. Then,
in Section 3, these algorithms are implemented and their numerical and computational
properties are compared with those of other state-of-the-art codes by means of different
experiments. Next, Section 4 exposes the computational performance of our two codes
after their implementation on a GPU-based execution platform. Finally, conclusions are
given in the last section.

2. Algorithms for Computing the Action of the Matrix Exponential

Let

Tm(A) =
m

∑
k=0

Ak

k!
, (1)

be the Taylor approximation of order m devoted to the exponential of matrix A ∈ Cn×n,
and let v ∈ Cn be a vector. In combination with the scaling and squaring method, the

Taylor-based approach is concerned with computing eA =
(

e2−s A
)2s

≈ (Tm(2−s A))
2s

[6],
where the nonnegative integers m and s are chosen to achieve full machine accuracy at a
minimum computational cost.

Algorithms 2022, 15, 48 3 of 17

In our proposal, the values of m and s are calculated such that the absolute forward
error for computing es−1 Av is less or equal to u = 2−53, the so-called unit roundoff in IEEE
double precision arithmetic. The absolute forward error of es−1 Av is bounded as follows:

Ea f (A, v) =

∥∥∥∥∥ ∞

∑
k=m+1

Akv
skk!

∥∥∥∥∥ ≈
∥∥∥∥ Am+1v

sm+1(m + 1)!
+

Am+2v
sm+2(m + 2)!

∥∥∥∥. (2)

Hence, if we calculate s such that∥∥∥∥ Am+1v
sm+1(m + 1)!

∥∥∥∥ ≤ u,

i.e.,

s =

⌈
m+1

√
‖Am+1v‖
(m + 1)!u

⌉
, (3)

and we verify that the following inequality is as well satisfied∥∥∥∥ Am+1v
sm+1(m + 1)!

+
Am+2v

sm+2(m + 2)!

∥∥∥∥ ≤ u, (4)

then, the absolute forward error of computing es−1 Av will be approximately less or equal to
u. Once m and s have been calculated, eAv can be efficiently computed as follows:

eAv =
(

eA/s
)s

v =

s times︷ ︸︸ ︷
eA/seA/s · · · eA/seA/s v (5)

∼=

s times︷ ︸︸ ︷
m

∑
k=0

Ak

skk!

m

∑
k=0

Ak

skk!
· · ·

m

∑
k=0

Ak

skk!

m

∑
k=0

Ak

skk!
v

=

s−1 times︷ ︸︸ ︷
m

∑
k=0

Ak

skk!

m

∑
k=0

Ak

skk!
· · ·

m

∑
k=0

Ak

skk!
w1

=

s−2 times︷ ︸︸ ︷
m

∑
k=0

Ak

skk!

m

∑
k=0

Ak

skk!
· · ·

m

∑
k=0

Ak

skk!
w2

= · · ·

=

1 time︷ ︸︸ ︷
m

∑
k=0

Ak

skk!
ws−1 = ws,

where wi =
m
∑

k=0

Akwi−1
skk!

, i = 1 : s, with w0 = v.

In this way, Algorithm 1 computes w = eAv, where A ∈ Cn×n and v ∈ Cn, starting
with an initial value m ∈ N, without explicitly working out eA. First, in lines 1–4, vectors
Av, A2v, · · · , Amv, Am+1v, Am+2v are computed and stored in the array of vectors V1, V2,
· · · , Vm+2, respectively. Then, lines 5–13 are used to determine the minimum value m and
the corresponding value s, calculated in line 7, taking into account expression (3), such that
(4) is fulfilled. Next, in lines 15–17, m is set to the maximum value allowed if expression (3)
could not be satisfied. Finally, in lines 18–29, w = eAv is computed according to (5).

Algorithms 2022, 15, 48 4 of 17

Algorithm 1 Given a matrix A ∈ Cn×n, a vector v ∈ Cn, and minimum m and maximum
M Taylor polynomial orders, m, M ∈ N, this algorithm computes w = eAv ∈ Cn by (5).

1: V1 = Av
2: for k = 2 : m + 2 do
3: Vk = AVk−1
4: end for
5: f = 0
6: while f == 0 and m ≤ M do

7: s =
⌈

m+1
√
‖Vm+1‖
(m+1)!u

⌉
8: if

∥∥∥ Vm+1
sm+1(m+1)! +

Vm+2
sm+2(m+2)!

∥∥∥ ≤ u then
9: f = 1

10: else
11: m = m + 1
12: Vm+2 = AVm+1
13: end if
14: end while
15: if f == 0 then
16: m = M
17: end if
18: w = v
19: for k = 1 : m do
20: w = w + Vk/(skk!)
21: end for
22: A = A/s
23: for i = 2 : s do
24: v = w
25: for k = 1 : m do
26: v = Av
27: w = w + v/k!
28: end for
29: end for

On the contrary, if an absolute backward error analysis for computing es−1 Av were
considered, see (10), (11), (13)–(15), and (22) from [25], then

Eab(A, v) =

∥∥∥∥∥∑
k≥0

(−1)k Am+1+kv
sm+1+kk!m!(m + 1 + k)

∥∥∥∥∥ (6)

≈
∥∥∥∥ Am+1v

sm+1(m + 1)!
− Am+2v

sm+2m!(m + 2)

∥∥∥∥.

As in both cases in which the first term of these absolute errors coincides, Algorithm 1
could be easily modified for computing es−1 Av such that Eab ≤ u. To do this, only the
condition expression in line 8, which checks whether convergence is reached, should be
replaced by

∥∥∥ Vm+1
sm+1(m+1)! −

Vm+1

sm+2(m+2)!

∥∥∥ ≤ u.
An alternative formulation to expression (2) in the absolute backward error estimation

would have been to consider only the first of the terms. In this way, starting from a
minimum value of m, the value of s is computed from the expression (3), which will already
ensure that the error committed will be less or equal to u. With that assumption, together
with the objective of reducing the matrix–vector products of the previous algorithm, we
designed Algorithm 2, which determines the appropriate values of m and s that satisfy
both purposes.

Algorithms 2022, 15, 48 5 of 17

Algorithm 2 Given a matrix A ∈ Cn×n, a vector v ∈ Cn, and minimum m and maximum
M Taylor polynomial orders, m, M ∈ N, this algorithm computes w = eAv ∈ Cn by (5).

1: V1 = Av
2: for k = 2 : m + 1 do
3: Vk = AVk−1
4: end for
5: s =

⌈
m+1
√
‖Vm+1‖
(m+1)!u

⌉
6: p = ms
7: f = 0
8: while f = 0 and m < M do
9: m = m + 1

10: Vm+1 = AVm

11: s1 =
⌈

m+1
√
‖Vm+1‖
(m+1)!u

⌉
12: p1 = ms1
13: if p1 ≤ p then
14: p = p1
15: s = s1
16: else
17: m = m− 1
18: f = 1
19: end if
20: end while
21: w = v
22: for k = 1 : m do
23: w = w + Vk/(skk!)
24: end for
25: A = A/s
26: for i = 2 : s do
27: v = w
28: for k = 1 : m do
29: v = Av
30: w = w + v/k!
31: end for
32: end for

For it, in lines 5–20, the number of matrix–vector products p required, obtained as
m × s, employing two consecutive values of m and their corresponding values of s, is
compared in each iteration of the while loop. The procedure concludes when the number
of products associated with a given degree m of the Taylor polynomial is greater than that
obtained with the immediately preceding degree.

Table 1 shows the computational and storage costs of Algorithms 1 and 2. The
computational cost depends on the parameters m and s and it is specified in terms of the
required number of matrix–vector products. The storage costs is expressed as the number
of matrices and vectors with which the algorithms work.

Table 1. Computational and storage costs for Algorithms 1 and 2.

Computational Cost Matrices to Be Stored Vectors to Be Stored

Algorithm 1 ms + 2 1 m + 4

Algorithm 2 (m < M) ms + 2 1 m + 4
Algorithm 2 (m = M) ms + 1 1 m + 3

Algorithms 2022, 15, 48 6 of 17

3. Numerical Experiments

In this section, several tests have been carried out to illustrate the accuracy and
efficiency of two MATLAB codes based on Algorithms 1 and 2. All these experiments have
been executed on Microsoft Windows 10 × 64 PC system with an Intel Core i7 CPU Q720
@1.60Ghz processor and 6 GB of RAM, using MATLAB R2020b. The following MATLAB
codes have been compared among them:

• expmvtay1: Implements the Algorithm 1, where absolute backward errors are assumed.
The degree m of the Taylor polynomial used in the approximation will vary from 40 to
60. The maximum value allowed for the scaling parameter s, so as not to give rise to
an excessively high number of matrix–vector products, will be equal to 45. The code is
available at http://personales.upv.es/joalab/software/expmvtay1.m (accessed on 28
January 2022).

• expmvtay2: Based on Algorithm 2. As mentioned before, it attempts to reduce the
number of matrix–vector products required by the code expmvtay1. It considers
the same limits of m and s as the previous function. The implementation can be
downloaded from http://personales.upv.es/joalab/software/expmvtay2.m (accessed
on 28 January 2022).

• expmAvtay: Code where eA is firstly expressly computed, by using the function
exptaynsv3 described in [26], and the matrix–vector product eAv is then carried
out. The code exptaynsv3 is based on a Taylor polynomial approximation to the
matrix exponential function in combination with the scaling and squaring technique.
The order m of the approximation polynomial will take values no greater than 30.

• expmv: This function, implemented by Al-mohy and Higham [17], computes etAv with-
out explicitly forming etA. It uses the scaling part of the scaling and squaring method
together with a truncated Taylor series approximation to the matrix exponential.

• expm_newAv: Code that first explicitly calculates eA by means of the function expm_new,
developed by Al-Mohy and Higham [27], and then multiplies it by the vector v to
form eAv. The function expm_new is based on Padé approximants and it implements
an improved scaling and squaring algorithm.

• expleja: This code, based on the Leja interpolation method, computes the action of
the matrix exponential of H × A on a vector (or a matrix) v [28]. The result is similar
to eH×Av, but the matrix exponential is not explicitly worked out. In our experiments,
H will be equal to 1 and default values of the tolerance will be provided.

• expv: Implementation of Sidje [23] that calculates etAv by using Krylov subspace
projection techniques with a fixed dimension for the corresponding subspace. It does
not compute the matrix exponential in isolation but instead, it calculates directly
the action of the exponential operator on the operand vector. The matrix under
consideration interacts only via matrix–vector products (matrix-free method).

To evaluate the performance of the codes described above in accuracy and speed, a
test battery composed of the following set of matrices has been used. For each matrix A,
a distinct vector v with random values in the interval [−0.5, 0.5] has been generated as
well. MATLAB Symbolic Math Toolbox with 256 digits of precision was employed in all
the computations to provide the “exact” action of the matrix exponential of A on a vector v,
thanks to the vpa (variable-precision floating-point arithmetic) function:

(a) Set 1: One hundred diagonalizable 128 × 128 complex matrices with the form
A = V × D×VT , where D is a diagonal matrix with complex eigenvalues and V
is an orthogonal matrix obtained as V = H/

√
128, being H a Hadamard matrix. The

2-norm of these randomly generated matrices varied from 0.1 to 339.4. The “exact”
action of the matrix exponential of A on a vector v was calculated computing first
eA = V × eD ×VT (see [29], p. 10) and then eAv.

(b) Set 2: One hundred non-diagonalizable 128× 128 complex matrices generated as
A = V× J×VT , where J is a Jordan matrix composed of complex eigenvalues with an
algebraic multiplicity randomly varying between 1 and 3. V is an orthogonal matrix

http://personales.upv.es/joalab/software/expmvtay1.m
http://personales.upv.es/joalab/software/expmvtay2.m

Algorithms 2022, 15, 48 7 of 17

whose randomly obtained elements become progressively larger from one matrix
to the next. The 2-norm of these matrices reached values from 3.76 to 323.59. The

“exact” action of the matrix exponential on a vector was calculated as for the above set
of matrices.

(c) Set 3: Fifty matrices from the Matrix Computation Toolbox (MCT) [30] and twenty
matrices from the Eigtool MATLAB Package (EMP) [31], all of them with a 128× 128
size. With the aim of calculating the “exact” action of the matrix exponential on a
vector, the “exact” exponential function eA of each matrix A was initially computed
according to the next algorithm consisting of the following three steps, employing the
function vpa in each of them:

1. Diagonalise the matrix A via the MATLAB function eig and obtain the matrices
V and D such that A = V × D×V−1. Then, the matrix E1 will be computed as
E1 = V × eD ×V−1.

2. Calculate the matrix exponential of A by means of the MATLAB function expm,
i.e., E2 = expm(A).

3. Take into account the “exact” matrix exponential of A only if:

‖E1 − E2‖
‖E1‖

≤ u.

Lastly, the “exact” action was worked out as E1v, obviously again using the func-
tion vpa.
Among the seventy-two matrices that initially constitute this third set, only forty-two
of them (thirty-five from the MCT and seven from the EMP) could be satisfactorily
processed in the numerical tests carried out. The 2-norm of these considered ma-
trices ranged between 1 and 10,716. The reasons for the exclusion of the others are
given below:

– The “exact” exponential function for matrices 4, 5, 10, 16, 17, 18, 21, 25, 26, 35, 40,
42, 43, 44, and 49 from the MCT and matrices 4, 6, 7, and 9 from the EMP could
not be computed in accordance with the 3-step procedure previously described.

– Matrices 2 and 15 incorporated in the MCT and matrices 1, 3, 5, 10, and 15
belonging to the EMP incurred in a very high relative error by some code, due to
the ill-conditioning of these matrices.

– Matrices 8, 11, 13, and 16 from the EMP were repeated, as they were also part of
the MCT.

Figures 1–3 show, respectively, the results of the numerical analyses carried out by
means of each of the different codes in comparison with the three types of matrices consid-
ered. In more detail, these figures depict the normwise relative errors (a), the performance
profiles (b), the ratios of normwise relative errors between expmvtay1 and the rest of the
implementations (c), the lowest and highest relative error rates (d), the polynomial orders
and the Krylov subspace dimensions (e), the ratios of matrix–vector products between
expmvtay2 and the other codes (f), the response time (g), and the ratio of the execution time
between expmvtay2 and the remaining functions (h).

Algorithms 2022, 15, 48 8 of 17

0 20 40 60 80 100

Matrix

10-16

10-14

10-12

10-10

R
e
la

ti
v
e
 e

rr
o
r

cond*u

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(a)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

p

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(b)

0 20 40 60 80 100

Matrix

10-2

10-1

100

101

102

103

R
e
la

ti
v
e
 e

rr
o
r

ra
ti
o

Er(expmvtay2) / Er(expmvtay1)

Er(expmAvtay) / Er(expmvtay1)

Er(expmv) / Er(expmvtay1)

Er(expm_newAv) / Er(expmvtay1)

Er(expleja) / Er(expmvtay1)

Er(expv) / Er(expmvtay1)

(c)

Lowest relative error rate

33%

30%

14%

19%

4%0%

Highest relative error rate

0%10%

25%

65%

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(d)

0 20 40 60 80 100

Matrix

0

20

40

60

80

100

A
p
p
ro

x
im

a
ti
o
n
 p

o
ly

n
o
m

ia
l
o
rd

e
r expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(e)

0 20 40 60 80 100

Matrix

10-1

100

101

102

M
a
tr

ix
-v

e
c
to

r
p
ro

d
u
c
t
ra

ti
o

P(expmvtay1) / P(expmvtay2)

P(expmAvtay) / P(expmvtay2)

P(expmv) / P(expmvtay2)

P(expm_newAv) / P(expmvtay2)

P(expleja) / P(expmvtay2)

(f)

Codes
0

2

4

6

8

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

(g)

0 20 40 60 80 100

Matrix

0

5

10

15

20

E
x
e
c
u
ti
o
n
 t
im

e
 r

a
ti
o

T(expmvtay1) / T(expmvtay2)

T(expmAvtay) / T(expmvtay2)

T(expmv) / T(expmvtay2)

T(expm_newAv) / T(expmvtay2)

T(expleja) / T(expmvtay2)

(h)

Figure 1. Experimental results for Set 1. (a) Normwise relative errors. (b) Performance profile.
(c) Ratio of relative errors. (d) Lowest and highest relative error rate. (e) Polynomial, interpolation and
subspace orders. (f) Ratio of matrix–vector products. (g) Execution time. (h) Ratio of execution time.

Algorithms 2022, 15, 48 9 of 17

0 20 40 60 80 100

Matrix

10-16

10-14

10-12

10-10

10-8

R
e
la

ti
v
e
 e

rr
o
r

cond*u

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(a)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

p

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(b)

0 20 40 60 80 100

Matrix

10-2

100

102

104

106

R
e
la

ti
v
e
 e

rr
o
r

ra
ti
o

Er(expmvtay2) / Er(expmvtay1)

Er(expmAvtay) / Er(expmvtay1)

Er(expmv) / Er(expmvtay1)

Er(expm_newAv) / Er(expmvtay1)

Er(expleja) / Er(expmvtay1)

Er(expv) / Er(expmvtay1)

(c)

Lowest relative error rate

30%

27%
11%

24%

5%4%0%

Highest relative error rate

0%3%
16%

81%
expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(d)

0 20 40 60 80 100

Matrix

0

20

40

60

80

100

A
p
p
ro

x
im

a
ti
o
n
 p

o
ly

n
o
m

ia
l
o
rd

e
r expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(e)

0 20 40 60 80 100

Matrix

100

101

102

M
a
tr

ix
-v

e
c
to

r
p
ro

d
u
c
t
ra

ti
o

P(expmvtay1) / P(expmvtay2)

P(expmAvtay) / P(expmvtay2)

P(expmv) / P(expmvtay2)

P(expm_newAv) / P(expmvtay2)

P(expleja) / P(expmvtay2)

(f)

Codes
0

2

4

6

8

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

(g)

0 20 40 60 80 100

Matrix

0

5

10

15

20

E
x
e
c
u
ti
o
n
 t
im

e
 r

a
ti
o

T(expmvtay1) / T(expmvtay2)

T(expmAvtay) / T(expmvtay2)

T(expmv) / T(expmvtay2)

T(expm_newAv) / T(expmvtay2)

T(expleja) / T(expmvtay2)

(h)

Figure 2. Experimental results for Set 2. (a) Normwise relative errors. (b) Performance profile.
(c) Ratio of relative errors. (d) Lowest and highest relative error rate. (e) Polynomial, interpolation and
subspace orders. (f) Ratio of matrix–vector products. (g) Execution time. (h) Ratio of execution time.

Algorithms 2022, 15, 48 10 of 17

0 10 20 30 40

Matrix

10-16

10-15

10-14

10-13

10-12

10-11

R
e
la

ti
v
e
 e

rr
o
r

cond*u

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(a)

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

p

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(b)

0 10 20 30 40 50

Matrix

10-2

100

102

104

106

108

R
e
la

ti
v
e
 e

rr
o
r

ra
ti
o

Er(expmvtay2) / Er(expmvtay1)

Er(expmAvtay) / Er(expmvtay1)

Er(expmv) / Er(expmvtay1)

Er(expm_newAv) / Er(expmvtay1)

Er(expleja) / Er(expmvtay1)

Er(expv) / Er(expmvtay1)

(c)

Lowest relative error rate

20%

22%

22%

22%

2%
8%

6%

Highest relative error rate

0%5%2%

24%

29%

40%

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(d)

0 10 20 30 40 50

Matrix

0

20

40

60

80

100

A
p
p
ro

x
im

a
ti
o
n
 p

o
ly

n
o
m

ia
l
o
rd

e
r

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

expv

(e)

0 10 20 30 40 50

Matrix

10-1

100

101

102

M
a
tr

ix
-v

e
c
to

r
p
ro

d
u
c
t
ra

ti
o

P(expmvtay1) / P(expmvtay2)

P(expmAvtay) / P(expmvtay2)

P(expmv) / P(expmvtay2)

P(expm_newAv) / P(expmvtay2)

P(expleja) / P(expmvtay2)

(f)

Codes
0

5

10

15

20

25

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

expmvtay1

expmvtay2

expmAvtay

expmv

expm_newAv

expleja

(g)

0 10 20 30 40 50

Matrix

0

100

200

300

400

500

600

700

E
x
e
c
u
ti
o
n
 t
im

e
 r

a
ti
o

T(expmvtay1) / T(expmvtay2)

T(expmAvtay) / T(expmvtay2)

T(expmv) / T(expmvtay2)

T(expm_newAv) / T(expmvtay2)

T(expleja) / T(expmvtay2)

(h)

Figure 3. Experimental results for Set 3. (a) Normwise relative errors. (b) Performance profile.
(c) Ratio of relative errors. (d) Lowest and highest relative error rate. (e) Polynomial, interpolation and
subspace orders. (f) Ratio of matrix–vector products. (g) Execution time. (h) Ratio of execution time.

Algorithms 2022, 15, 48 11 of 17

For each of the methods under evaluation, the normwise relative error Er(A, v) com-
mitted in the computation of the action of the exponential function of a matrix A on a
vector v was calculated as follows:

Er(A,v) =
‖exp(A, v)− ẽxp(A, v)‖2

‖exp(A, v)‖2
,

where exp(A) denotes the exact solution and ẽxp(A, v) represents the approximate one.
Figures 1a–3a present the normwise relative error incurred by each of the seven codes

under study. The solid line that appears in them plots the function kexpu, where kexp (or
cond) means the condition number of the matrix exponential function ([29], Chapter 3) for
each matrix and u represents the unit roundoff in IEEE double precision arithmetic. The
matrices were ordered by decreasing value their condition number. It is well-known that
the numerical stability of each method is exposed if its relative errors are positioned not far
above this solid line, although it is always preferable that they are below. Consequently,
these figures reveal that expv is the code that most frequently presents relative errors above
the kexpu curve, being therefore the least numerically stable of all the codes analysed for
the matrices used in the numerical tests. The rest of the codes can be said to offer high
numerical stability.

The percentage of cases in which expmvtay1 incurred in a normwise relative error
less, equal or greater than the other codes is listed in Table 2. As can be appreciated,
expmvtay1 always provided a higher percentage of improvement cases than the rest of its
competitors, especially over expv followed by expm_newAv, expleja, and, with very similar
rates, by expmAvtay and expmv. On the other hand, the gain in accuracy by expmvtay1 over
expmvtay2 is not noticeable, and it can be concluded that the latter will also offer a notable
improvement in the reliability of the results compared to the rest of the methods.

Table 2. Normwise relative error comparison, for the three sets, between expmvtay1 and all
other codes.

Set 1 Set 2 Set 3

Er(expmvtay1)<Er(expmvtay2) 39% 39% 9.52%
Er(expmvtay1)>Er(expmvtay2) 36% 38% 9.52%
Er(expmvtay1)=Er(expmvtay2) 25% 23% 80.95%

Er(expmvtay1)<Er(expmAvtay) 69% 65% 61.90%
Er(expmvtay1)>Er(expmAvtay) 31% 35% 38.10%
Er(expmvtay1)=Er(expmAvtay) 0% 0% 0%

Er(expmvtay1)<Er(expmv) 69% 58% 61.90%
Er(expmvtay1)>Er(expmv) 31% 42% 38.10%
Er(expmvtay1)=Er(expmv) 0% 0% 0%

Er(expmvtay1)<Er(expm_newAv) 97% 89% 90.48%
Er(expmvtay1)>Er(expm_newAv) 3% 11% 9.52%
Er(expmvtay1)=Er(expm_newAv) 0% 0% 0%

Er(expmvtay1)<Er(expleja) 91% 93% 80.95%
Er(expmvtay1)>Er(expleja) 9% 7% 19.05%
Er(expmvtay1)=Er(expleja) 0% 0% 0%

Er(expmvtay1)<Er(expv) 100% 98% 88.10%
Er(expmvtay1)>Er(expv) 0% 2% 11.90%
Er(expmvtay1)=Er(expv) 0% 0% 0%

In a very detailed way, Table 3 collects the values corresponding to the minimum
and maximum normwise relative error committed by all the functions for the three sets
of matrices employed, as well as the mean, median, and standard deviation. While the
minimum relative errors incurred by the codes are very similar, it is easy to observe how
the maximum relative error and, consequently, the largest values in the mean, median,

Algorithms 2022, 15, 48 12 of 17

and standard deviation corresponded in general to expv, which turned out to be the least
reliable code, closely followed by expleja and expm_newAv. For all these metrics, the other
methods, all based on the Taylor approximation, provided better values, analogous to
each other.

Table 3. Minimum, maximum, mean, median, and standard deviation values of the relative errors
committed by all the codes for Sets 1, 2, and 3, respectively.

Min. Max. Mean Median Std. Dev.

expmvtay1 1.23× 10−16 1.95× 10−14 5.22× 10−15 3.75× 10−15 4.42× 10−15

expmvtay2 1.23× 10−16 1.78× 10−14 5.46× 10−15 4.76× 10−15 4.35× 10−15

expmAvtay 1.70× 10−16 2.27× 10−14 7.41× 10−15 6.54× 10−15 5.46× 10−15

expmv 1.52× 10−16 2.62× 10−14 6.80× 10−15 4.98× 10−15 5.55× 10−15

expm_newAv 4.54× 10−16 1.63× 10−13 3.51× 10−14 2.68× 10−14 3.16× 10−14

expleja 1.58× 10−16 2.15× 10−13 4.37× 10−14 2.78× 10−14 4.69× 10−14

expv 1.55× 10−16 6.83× 10−12 4.09× 10−13 5.79× 10−14 1.01× 10−12

expmvtay1 5.34× 10−16 1.72× 10−14 5.55× 10−15 4.07× 10−15 4.40× 10−15

expmvtay2 5.34× 10−16 3.08× 10−14 5.49× 10−15 3.87× 10−15 4.89× 10−15

expmAvtay 5.15× 10−16 2.71× 10−14 6.45× 10−15 5.85× 10−15 4.87× 10−15

expmv 4.04× 10−16 2.45× 10−14 6.57× 10−15 5.05× 10−15 5.41× 10−15

expm_newAv 9.63× 10−16 3.79× 10−14 1.02× 10−14 7.91× 10−15 8.30× 10−15

expleja 3.68× 10−16 1.98× 10−13 4.22× 10−14 2.21× 10−14 5.03× 10−14

expv 6.13× 10−16 8.42× 10−10 1.58× 10−11 8.64× 10−14 9.70× 10−11

expmvtay1 1.81× 10−16 9.12× 10−9 2.17× 10−10 3.64× 10−16 1.41× 10−9

expmvtay2 1.82× 10−16 9.12× 10−9 2.17× 10−10 3.76× 10−16 1.41× 10−9

expmAvtay 1.25× 10−16 4.94× 10−9 1.18× 10−10 5.04× 10−16 7.62× 10−10

expmv 1.75× 10−16 2.94× 10−9 7.01× 10−11 3.47× 10−16 4.54× 10−10

expm_newAv 1.25× 10−16 1.44× 10−8 3.44× 10−10 9.88× 10−16 2.23× 10−9

expleja 1.80× 10−16 1.45× 10−6 3.50× 10−8 1.05× 10−15 2.23× 10−7

expv 1.47× 10−16 9.43× 10−7 2.25× 10−8 1.27× 10−15 1.46× 10−7

Figures 1b–3b, corresponding to the performance profiles, depict the percentage of
matrices in each set, expressed in terms of one, for which the error committed by each
method in comparison is less than or equal to the smallest relative error incurred by
any of them multiplied by α. It is immediately noticeable that expmvtay1 and expmvtay2
achieved the highest probability values for the vast totality of the plots, expmvtay1 showing
a slightly highest accuracy than expmvtay2 in Figure 1b and similar in the other figures.
The scores achieved by expmAvtay and expmv do not differ much from each other, and
they are somewhat lower than those provided by the previous codes. Clearly, expm_newAv,
expleja, and expv exhibited the poorest results, with a significantly lower accuracy than
the other codes.

These accuracy results are also confirmed by the next two types of illustrations.
Figures 1c–3c reflect the ratio of the relative errors for any of the methods under study and
expmvtay1. Values of these ratios are decreasingly ordered and exposed according to the
quotient Er(expmvtay1)/Er(expmvtay2). Most of these values are greater than or equal
to 1, showing once again the overall superiority of expmvtay1, and correspondingly of
expmvtay2, over the other functions.

As a pie chart, and for each of the sets, Figures 1d–3d show the percentage of matrices
in which each method resulted in the lowest or highest relative error. According to the
values therein, for Sets 1 and 2, expmvtay1 and expmvtay2 gave rise to the lowest errors
on a highest percentage of occasions. Notwithstanding, for Set 3, these percentages were
almost equally distributed among expmvtay1, expmvtay2, expmAvtay, and expmv. If our
attention is now turned to the highest relative error rates, expv gave place to the worst
results in most cases, leading to values equal to 65% and 81% for Sets 1 and 2, respectively.

Algorithms 2022, 15, 48 13 of 17

For Set 3, this percentage dropped to 40%, followed in a 29% by expleja and in a 24% by
expm_newAv.

Table 4 compares the minimum, maximum, mean, and median values of the tuple m
and s, i.e., the order of the Taylor approximation polynomial and the value of the scaling
parameter used by the first four methods. For the other codes, the parameter m is not
comparable as it represents the degree of the Padé approximants to the matrix exponential
(expm_newAv), the selected degree of interpolation (expleja) or the dimension of the Krylov
subspace employed (expmv). Additionally, s denotes the scaling value (expm_newAv) or the
scaling steps (expleja), but it is not provided for expv, because this code does not work
with the scaling technique.

Table 4. Minimum, maximum, mean, and median parameters m and s employed for Sets 1, 2, and 3,
respectively.

m s

Min. Max. Mean Median Min. Max. Mean Median

expmvtay1 40 44 40.13 40.00 1 45 23.65 23.00
expmvtay2 40 58 45.07 44.00 1 43 17.77 20.00
expmAvtay 9 30 27.54 30.00 0 7 5.29 6.00
expmv 15 55 53.94 55.00 1 38 17.03 17.00
expm_newAv 7 13 12.94 13.00 0 9 7.47 8.00
expleja 16 100 97.63 99.00 1 9 4.40 4.50
expv 30 30 30.00 30.00 - - - -

expmvtay1 40 43 40.34 40.00 1 45 25.60 25.50
expmvtay2 40 58 45.85 44.00 1 44 19.08 21.00
expmAvtay 25 30 27.50 27.50 0 7 5.50 6.00
expmv 45 55 54.09 55.00 2 37 18.96 19.00
expm_newAv 13 13 13.00 13.00 2 9 7.59 8.00
expleja 66 100 98.05 99.00 2 11 5.80 5.00
expv 30 30 30.00 30.00 - - - -

expmvtay1 40 60 40.83 40.00 1 45 8.10 1.00
expmvtay2 40 60 41.52 40.00 1 45 7.26 1.00
expmAvtay 12 30 25.45 25.00 0 8 2.07 0.00
expmv 17 55 42.05 42.50 1 189 9.26 2.00
expm_newAv 9 13 12.24 13.00 0 11 2.62 1.00
expleja 18 100 65.48 72.00 1 583 105.44 6.00
expv 30 30 30.00 30.00 - - - -

Regarding the mean values, expmv needed the highest orders of approximation polyno-
mials, followed by expmvtay2, expmvtay1, and expmAvtay. The function expv was always
invoked using the default value of m, which corresponded to 30. Concerning the value of s,
also in average terms, expmAvtay always required the smallest values, while expmvtay1,
in the case of matrix Sets 1 and 2, or expmv, in the case of Set 3, demanded the highest
values. Alternatively, Figures 1e–3e graphically represent the values of m required in the
computation of each of the matrices that compose our test battery by the distinct methods.

In addition to the above analysis related to the accuracy of the results provided by all
the codes, their computational costs have also been examined from the point of view of the
number of matrix–vector products and the execution time invested by each of them. Thus,
Table 5 lists the total number of matrix–vector products carried out by the seven codes in
the computation of the matrices of our three sets. As can be noted, expmvtay2 performed
the lowest number of products, followed by expmvtay1. Then, following an increasing
order in the number of operations involved, expmv, expleja, expmAvtay, and expm_newAv
would be cited, exchanging the position of these last two codes for Set 3. By far, the largest
number of products was carried out by expv.

Algorithms 2022, 15, 48 14 of 17

Table 5. Matrix–vector products (P) corresponding to the codes under evaluation for Sets 1–3.

Set 1 Set 2 Set 3

P(expmvtay1) 95,292 104,037 15,240
P(expmvtay2) 83,378 90,958 14,374
P(expmAvtay) 207,195 210,389 64,988
P(expmv) 108,172 116,018 17,985
P(expm_newAv) 210,744 212,619 60,645
P(expleja) 150,838 165,606 40,787
P(expv) 2,490,385 3,663,677 1,278,078

In a more detailed way, Figures 1f–3f show the ratio between the number of matrix–
vector products required by expmvtay1, expmAvtay, expmv, expm_newAv, or expleja and
that needed by expmvtay2 in the computation of the matrices of the test sets, decreasingly
ordered according to the quotient P(expmvtay1)/P(expmvtay2). In order not to distort these
figures and to better appreciate the rest of the results, the ratio with respect to expv has not
been considered, due to its excessively high number of products demanded. In the case of
Sets 1 and 2, this factor reached values greater than or equal to one in the vast majority of
the matrices. For Set 3, it took values belonging to the intervals [1.00, 1.19], [0.89, 43.45],
[0.31, 8.93], [0.85, 35.97], and [0.25, 25.78], respectively, for expmvtay1, expmAvtay, expmv,
expm_newAv, and expleja.

It is convenient to clarify that expmAvtay computes matrix–vector products to obtain
the most appropriate values of the polynomial order (m) and the value of the scaling (s),
especially with regard to the estimation of the 1-norm of Ap or ApB operations, where
A and B are square matrices and p is the power parameter. In addition, this function
works out matrix products not only in the calculation of these mentioned values, but
also in the evaluation of the Taylor approximation polynomial by means of the Paterson–
Stockmeyer method. Something very similar could be said about expm_newAv, as matrix–
vector products will be carried out by the function expm_new in the estimation of the 1-norm
of power of matrices, and matrix products will be as well required when calculating the
matrix exponential by means of Padé approximation. As a consequence, the computational
cost of each matrix product for expmAvtay and expm_newAv was approximated as n matrix–
vector products, where n represents the dimension of the square matrices involved.

On the other hand, Table 6 reports the amount of time required by all the codes
in comparison to complete its execution. As expected according to the matrix–vector
products, expmvtay2 spent the shortest times, closely followed by expmvtay1. Exceedingly
time-consuming resulted to be expv, particularly for Sets 1 and 2. The execution time of
expv was more moderate in the case of Set 3, where the response times of expmAvtay and
expm_newAv were also remarkable due to the explicit computation of the matrix exponential
and its subsequent product by the vector. Figures 1g–3g display graphically these same
values by means of bar charts. Again, expv times have not been included so as not to distort
the graphs.

Table 6. Execution time (T), in seconds, spent by all the codes for Sets 1–3.

Set 1 Set 2 Set 3

T(expmvtay1) 2.53 2.80 3.01
T(expmvtay2) 2.37 2.57 2.86
T(expmAvtay) 3.89 3.89 23.29

T(expmv) 4.56 4.79 4.34
T(expm_newAv) 3.88 3.81 21.65
T(expleja) 7.41 7.96 3.27
T(expv) 444.14 648.40 72.89

Finally, in Figures 1h–3h, and always following a descending sequence in the quo-
tient T(expmvtay1)/T(expmvtay2), the ratios of the computation times spent by expmvtay1,

Algorithms 2022, 15, 48 15 of 17

expmAvtay, expmv, expm_newAv, and expleja versus expmvtay2 in each matrix computa-
tion are plotted. In the specific case of expmv, this ratio took values within the intervals
[1.54, 7.96], [1.35, 7.23], and [0.42, 10.21], respectively, for the Sets 1 to 3. As can be easily
noticed in the figures, the results corresponding to expmAvtay and expm_newAv were the
highest ones for any set.

4. Algorithm Migration to a GPU-Based Computational Platform

For the next experiment, we provide a GPU-CUDA implementation able to be executed
from a MATLAB environment. The MATLAB routine receives an argument that points out
on which system do we want to execute the algorithm. This way, we can easily select the
system and compare execution times and accuracy.

Figure 4 shows execution time (left) and speed up (right) when executing the algo-
rithm on a GPU environment. The system used for this experiment comprises an Intel(R)
Core(TM) i9-7960X CPU @ 2.80GHz with 16 cores that is denoted as “CPU” in the figure.
The GPU device is a NVIDIA Quadro RTX 5000 under the CUDA Driver Version 11.2
(3072 cores). Matrices used in the figure are randomly generated with absolute values

between 0 and 1, resulting in an accuracy ||xc−xg ||
||xc || ≈ 10−16. The main result we can observe

is that behaviour of the speed increase. For a problem size less than n ≈ 2500, we do not
obtain profit using the GPU. For larger problem sizes, we see more and more speed increase
as the size increases, achieving more than two times the performance with the GPU than
with the CPU, and achieving slightly better results for expmvtay1 than for expmvtay2.

0

0.1

0.2

0.3

0.4

0.5

0.6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
(s

.)

Problem size

expmvtay1 on CPU
expmvtay1 on GPU
expmvtay2 on CPU
expmvtay2 on GPU

0.5

1

1.5

2

2.5

3

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Problem size

Speed up with expmvtay1
Speed up with expmvtay2

Figure 4. Comparison of time (seconds) and performance (speed up) of expmvtay1 and expmvtay2
being executed on both a CPU and a GPU subsystems.

5. Conclusions

In this paper, two algorithms devoted to the computation of the action of the matrix
exponential on a vector have been described. Their numerical and computational perfor-
mance have been evaluated in several experiments under a testbed composed of distinct
state-of-the-art matrices. In general, these algorithms provided a higher accuracy and a
lower cost than state-of-the-art algorithms in the literature, with expmvtay1 achieving a
slightly higher accuracy in some occasions at a slightly higher cost than expmvtay2.

Both algorithms have been migrated in their implementation to be able to run and
take advantage of a computational infrastructure based on GPUs or a traditional computer,
such execution being configurable and fully transparent to the user from the MATLAB
application itself.

Algorithms 2022, 15, 48 16 of 17

Author Contributions: Conceptualization, J.I., J.M.A., and E.D.; methodology, J.I., J.M.A., P.A.-J.,
E.D., and J.S.; software, J.I., J.M.A., and P.A.-J.; validation, J.I., J.M.A., and P.A.-J.; formal analysis,
J.I., J.M.A., P.A.-J., E.D., and J.S.; investigation, J.I., J.M.A., P.A.-J., E.D., and J.S.; writing—original
draft preparation, J.I., J.M.A., P.A.-J., E.D., and J.S.; writing—review and editing, J.M.A. and P.A.-J.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Vicerrectorado de Investigación de la Universitat
Politècnica de València (PAID-11-21).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors wish to thank Marco Caliari, from the Università di Verona, Italy, for
sharing the source code of the function expleja with us.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gleich, D.F.; Kloster, K. Sublinear Column-wise Actions of the Matrix Exponential on Social Networks. Internet Math. 2015,

11, 352–384.
2. De la Cruz Cabrera, O.; Matar, M.; Reichel, L. Analysis of Directed Networks via the Matrix Exponential. J. Comput. Appl. Math.

2019, 355, 182–192.
3. De la Cruz Cabrera, O.; Matar, M.; Reichel, L. Centrality Measures for Node-weighted Networks via Line Graphs and the Matrix

Exponential. Numer. Algorithms 2021, 88, 583–614.
4. Zhao, Y.L.; Ostermann, A.; Gu, X.M. A low-rank Lie-Trotter splitting approach for nonlinear fractional complex Ginzburg-Landau

equations. J. Comput. Phys. 2021, 446, 110652.
5. Jian, H.Y.; Huang, T.Z.; Gu, X.M.; Zhao, Y.L. Fast compact implicit integration factor method with non-uniform meshes for the

two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation. Appl. Numer. Math. 2020, 156, 346–363.
6. Moler, C.; Van Loan, C. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Rev.

2003, 45, 3–49.
7. Defez, E.; Ibáñez, J.; Alonso-Jordá, P.; Alonso, J.; Peinado, J. On Bernoulli matrix polynomials and matrix exponential approxima-

tion. J. Comput. Appl. Math. 2020, 404, 113207. https://doi.org/10.1016/j.cam.2020.113207.
8. van den Eshof, J.; Frommer, A.; Lippert, T.; Schilling, K.; van der Vorst, H.A. Numerical methods for the QCDd overlap operator.

I. Sign-function and error bounds. Comput. Phys. Commun. 2002, 146, 203–224.
9. Jian, H.Y.; Huang, T.Z.; Ostermann, A.; Gu, X.M.; Zhao, Y.L. Fast IIF–WENO Method on Non-uniform Meshes for Nonlinear

Space-Fractional Convection–Diffusion–Reaction Equations. J. Sci. Comput. 2021, 89, 13.
10. Wang, S.; Peng, Z. Space-time parallel computation for time-domain Maxwell’s equations. In Proceedings of the 2017 International

Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, 11–15 September 2017; pp. 1680–1683.
11. Reiman, C.; Das, D.; Rosenbaum, E. Discrete-Time Large-Signal Modeling and Numerical Methods for Flyback Converters. In

Proceedings of the 2019 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 28 February–1 March 2019;
pp. 1–6.

12. Araujo, E.S.; Pestana, R.C. Time evolution of the first-order linear acoustic/elastic wave equation using Lie product formula and
Taylor expansion. Geophys. Prospect. 2021, 69, 70–84.

13. Kole, J. Solving seismic wave propagation in elastic media using the matrix exponential approach. Wave Motion 2003, 38, 279–293.
14. Falati, M.; Hojjati, G. Integration of chemical stiff ODEs using exponential propagation method. J. Math. Chem. 2011, 49, 2210–2230.
15. Hammoud, B.; Olivieri, L.; Righetti, L.; Carpentier, J.; Del Prete, A. Fast and accurate multi-body simulation with stiff viscoelastic

contacts. arXiv 2021, arXiv:2101.06846.
16. Caliari, M.; Kandolf, P.; Zivcovich, F. Backward error analysis of polynomial approximations for computing the action of the

matrix exponential. BIT Numer. Math. 2018, 58, 907–935.
17. Al-Mohy, A.H.; Higham, N.J. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators.

SIAM J. Sci. Comput. 2011, 33, 488–511. https://doi.org/10.1137/100788860.
18. Rostami, M.W.; Xue, F. Robust linear stability analysis and a new method for computing the action of the matrix exponential.

SIAM J. Sci. Comput. 2018, 40, A3344–A3370.
19. Fischer, T.M. On the stability of some algorithms for computing the action of the matrix exponential. Linear Algebra Its Appl. 2014,

443, 1–20.
20. Fischer, T.M. On the algorithm by Al-Mohy and Higham for computing the action of the matrix exponential: A posteriori

roundoff error estimation. Linear Algebra Its Appl. 2017, 531, 141–168.
21. Güttel, S.; Kressner, D.; Lund, K. Limited-memory polynomial methods for large-scale matrix functions. GAMM-Mitteilungen

2020, 43, e202000019.

https://doi.org/10.1016/j.cam.2020.113207
https://doi.org/10.1137/100788860

Algorithms 2022, 15, 48 17 of 17

22. Caliari, M.; Kandolf, P.; Ostermann, A.; Rainer, S. Comparison of software for computing the action of the matrix exponential.
BIT Numer. Math. 2014, 54, 113–128.

23. Sidje, R.B. Expokit: A Software Package for Computing Matrix Exponentials. ACM Trans. Math. Softw. (TOMS) 1998, 24, 130–156.
24. Zhu, X.; Li, C.; Gu, C. A new method for computing the matrix exponential operation based on vector valued rational

approximations. J. Comput. Appl. Math. 2012, 236, 2306–2316.
25. Sastre, J.; Ibáñez, J.; Ruiz, P.; Defez, E. Accurate and efficient matrix exponential computation. Int. J. Comput. Math. 2013,

91, 97–112.
26. Ruiz, P.; Sastre, J.; Ibáñez, J.; Defez, E. High perfomance computing of the matrix exponential. J. Comput. Appl. Math. 2016,

291, 370–379.
27. Al-Mohy, A.H.; Higham, N.J. A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM J. Matrix Anal. Appl.

2009, 31, 970–989.
28. Caliari, M.; Kandolf, P.; Ostermann, A.; Rainer, S. The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential.

SIAM J. Sci. Comput. 2016, 38, A1639–A1661.
29. Higham, N.J. Functions of Matrices: Theory and Computation; Society for Industrial and Applied Mathematics: Philadelphia, PA,

USA, 2008.
30. Higham, N.J. The Matrix Computation Toolbox. 2002. Available online: http://www.ma.man.ac.uk/~higham/mctoolbox

(accessed on 28 January 2022).
31. Wright, T.G. Eigtool, Version 2.1. 2019. Available online: http://www.comlab.ox.ac.uk/pseudospectra/eigtool (accessed on 28

January 2022).

http://www.ma.man.ac.uk/~higham/mctoolbox
http://www.comlab.ox.ac.uk/pseudospectra/eigtool

	Introduction
	Algorithms for Computing the Action of the Matrix Exponential
	Numerical Experiments
	Algorithm Migration to a GPU-Based Computational Platform
	Conclusions
	References

