
Citation: Varela, P.; Suárez, P.;

Alcántara-Ávila, F.; Miró, A.; Rabault,

J.; Font, B.; García-Cuevas, L.M.;

Lehmkhul, O.; Vinuesa, R. Deep

Reinforcement Learning for Flow

Control Exploits Different Physics for

Increasing Reynolds Number

Regimes. Actuators 2022, 11, 359.

https://doi.org/10.3390/

act11120359

Academic Editor: Luigi de Luca

Received: 31 October 2022

Accepted: 29 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Deep Reinforcement Learning for Flow Control Exploits
Different Physics for Increasing Reynolds Number Regimes
Pau Varela 1 , Pol Suárez 2,3 , Francisco Alcántara-Ávila 3 , Arnau Miró 2 , Jean Rabault 4 , Bernat Font 2 ,
Luis Miguel García-Cuevas 1 , Oriol Lehmkuhl 2 and Ricardo Vinuesa 3,*

1 CMT—Motores Térmicos, Universitat Politècnica de València, 46022 Valencia, Spain
2 Barcelona Super Computing Center—Centro Nacional de Supercomputación (BSC-CNS),

08034 Barcelona, Spain
3 FLOW, Engineering Mechanics, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
4 Norwegian Meteorological Institute, 0313 Oslo, Norway
* Correspondence: rvinuesa@mech.kth.se

Abstract: The increase in emissions associated with aviation requires deeper research into novel
sensing and flow-control strategies to obtain improved aerodynamic performances. In this context,
data-driven methods are suitable for exploring new approaches to control the flow and develop
more efficient strategies. Deep artificial neural networks (ANNs) used together with reinforcement
learning, i.e., deep reinforcement learning (DRL), are receiving more attention due to their capabilities
of controlling complex problems in multiple areas. In particular, these techniques have been recently
used to solve problems related to flow control. In this work, an ANN trained through a DRL agent,
coupled with the numerical solver Alya, is used to perform active flow control. The Tensorforce
library was used to apply DRL to the simulated flow. Two-dimensional simulations of the flow
around a cylinder were conducted and an active control based on two jets located on the walls of
the cylinder was considered. By gathering information from the flow surrounding the cylinder, the
ANN agent is able to learn through proximal policy optimization (PPO) effective control strategies
for the jets, leading to a significant drag reduction. Furthermore, the agent needs to account for the
coupled effects of the friction- and pressure-drag components, as well as the interaction between the
two boundary layers on both sides of the cylinder and the wake. In the present work, a Reynolds
number range beyond those previously considered was studied and compared with results obtained
using classical flow-control methods. Significantly different forms of nature in the control strategies
were identified by the DRL as the Reynolds number Re increased. On the one hand, for Re ≤ 1000,
the classical control strategy based on an opposition control relative to the wake oscillation was
obtained. On the other hand, for Re = 2000, the new strategy consisted of energization of the
boundary layers and the separation area, which modulated the flow separation and reduced the
drag in a fashion similar to that of the drag crisis, through a high-frequency actuation. A cross-
application of agents was performed for a flow at Re = 2000, obtaining similar results in terms
of the drag reduction with the agents trained at Re = 1000 and 2000. The fact that two different
strategies yielded the same performance made us question whether this Reynolds number regime
(Re = 2000) belongs to a transition towards a nature-different flow, which would only admits a
high-frequency actuation strategy to obtain the drag reduction. At the same time, this finding allows
for the application of ANNs trained at lower Reynolds numbers, but are comparable in nature, saving
computational resources.

Keywords: numerical simulation; wake dynamics; flow control; machine learning; deep reinforce-
ment learning

1. Introduction

In transport applications (especially, in aeronautics), drag reduction is directly related
to a decrease in fuel use, which translates into reducing pollution and greenhouse-gas emis-

Actuators 2022, 11, 359. https://doi.org/10.3390/act11120359 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11120359
https://doi.org/10.3390/act11120359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-7909-4569
https://orcid.org/0000-0002-6031-5536
https://orcid.org/0000-0003-0704-6100
https://orcid.org/0000-0002-2772-6050
https://orcid.org/0000-0002-7244-6592
https://orcid.org/0000-0002-2136-3068
https://orcid.org/0000-0001-9340-0617
https://orcid.org/0000-0002-2670-1871
https://orcid.org/0000-0001-6570-5499
https://doi.org/10.3390/act11120359
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11120359?type=check_update&version=1


Actuators 2022, 11, 359 2 of 24

sions [1]. In the past decades, several techniques have been developed and used to reduce
drag, both passively (Bechert and Bartenwerfer [2]) and actively (Gad-el Hak [3]). Passive
methods typically rely on fixed geometric changes without using actuators. An example
of this technology would be the widespread use of winglets in aircraft. Inspired by bird
wings, winglets consist of small wing extensions at the wing tip with an angle relative to
the wing-span direction. Using winglets, lift-induced drag is decreased by reducing the
size and formation of vortices at the wing tip [4], incurring (hopefully) small increases in
the structural weight and parasitic drag. Regarding active methods, diverse techniques are
used to reduce aircraft drag and associated emissions. In the work of Tiseira et al. [5] and
Serrano et al. [6,7], the use of distributed electric propulsion is combined with boundary-
layer ingestion, setting small propellers along the wing near the trailing edge. Thanks to
both technologies, it is possible to increase the aerodynamic efficiency of small aircraft or
unmanned air vehicles (UAVs). In the same way, the location and use of both jet pumps in
wings and synthetic jets are studied to reduce the drag of different aerodynamic bodies.
An example of blowing and suction used to control turbulent boundary layers is provided
by Kametani and Fukagata [8], and a number of studies have shown the feasibility of this
approach in turbulent wings [9–12].

Additional examples can be found in the work of Voevodin et al. [13] and Yousefi
and Saleh [14], where the placement of the suction and ejection in wing airfoils is studied
to reduce aerodynamic drag or achieve efficient control of the flow around the wing in
specific flight-operating conditions. In the same way, the use of synthetic jets has been
studied to achieve this same objective, as displayed in the work of Cui et al. [15] on an
Ahmed body, or the investigation of Park et al. [16] using an array of synthetic jets applied
to a car. A comprehensive review of active flow control in a turbulent flow is provided by
Choi et al. [17].

Active-control methods rely on complicated control strategies due to their variable
behaviors and dependencies. As shown by Muddada and Patnaik [18], even the con-
trol of simple actuators to reduce the drag of a cylinder immersed in a low Reynolds
number flow can be complicated due to the interaction between boundary layers, sepa-
rating shear layers and wake. In this case, by correctly developing a control algorithm,
the drag is reduced by about 53 %, leaving ample room for improvement in the case of
achieving better control. However, thanks to the application of artificial neural networks
(ANNs) and deep reinforcement learning (DRL), it is possible to develop functional control
strategies at an affordable computational cost in similar problems, as shown by the work
by Rabault et al. [19]. An ANN is a non-parametric tool formed by layers of connected
processing nodes or neurons and it can be trained to solve complex problems [20,21].
The ANN training can take place through different types of learning, where DRL is one
of the fastest-growing in solving a wide range of cases [22,23], including flow control in
complex geometries [24,25].

DRL is based on maximizing a reward by means of an agent interacting with the
environment through actions, based on partial observations of the environment. Note
that the combination of DRL and ANN was successfully carried out to solve active flow
control in the work of Rabault et al. [19]. A proximal policy optimization (PPO) is used
to obtain the control policy of two synthetic jets on a two-dimensional cylinder in a low
Reynolds number flow. PPO parameterizes a policy function using an ANN with a set
of neuron weights given an observation state. The ANN then produces a set of moments
that describe a distribution function from which actions are sampled. It is possible to
obtain an expression for the estimation of the gradient of the reward as a function of the
neuron weights. Additionally, the PPO uses a critic network that estimates the new reward
function, which is helpful with stochastic data. Moreover, there is a limit to the maximum
update at every training step, preventing rare events from producing large rewards [26].
It was shown that DRL was feasible and enabled finding a control strategy, such that the
cylinder drag was reduced by 8 %. Rabault and Kuhnle [27] developed a framework to
parallelize environments, enabling speeding up computation and learning, thus reaching
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a better solution faster. Additionally, Tang et al. [28] validated the DRL approach in a
more complex problem using four jets on the cylinder and extending the Reynolds number
range. The results of Rabault et al. in [19,27] have been utilized in a multitude of studies
in recent years. For example, the works of Tokarev et al. [29] and Xu et al. [30], where
oscillatory rotary controls were applied to the cylinder; the study of linear stability and
low sensitivity that allows a better understanding of DRL by Li and Zhang [31], or the
effort of Ren et al. [32] where the same DRL approach is used with a solver that allows
calculations at higher Reynolds numbers, with the additional problem of controlling the
increase in turbulence around the cylinder. Applications to square cylinders, which are
relevant to civil engineering, have also been presented recently [? ], as well as using
traditional modal analysis methods for defining effective reward functions [34]. Regarding
these works, there is room for improvement through the application of high-performance
computing (HPC), enabling conducting faster calculations at higher Reynolds numbers not
previously calculated.

The main objective of this work is, indeed, to demonstrate the capabilities of the HPC
resources available today to perform aerodynamic optimization with DRL-based control at
much higher Reynolds numbers than the ones already studied in the literature. This project
proposes the use of the numerical code Alya, developed in the Barcelona Supercomputer
Center (BSC-CNS) [35], employing the HPC MareNostrum IV cluster. Alya is a tier-0
massively parallel code and is designed to solve discretized partial differential equations
using finite elements. This code has been successfully used in different problems of fluid
mechanics, including simulations of turbulent flows [36,37].

In the present work, the methodology is first detailed in Section 2, dedicated to
the numerical setup and the application of the DRL and the ANN. The results are then
summarized and discussed in Section 3, which starts with the validation of the Alya solver
in the combination of an HPC cluster to solve the DRL problem in the cylinder. Then,
the results derived from the increase in the Reynolds number, which exceed the conditions
reported in the literature, are shown. Finally, the main conclusions are collected in Section 4.

2. Methods

This section is divided into two parts: (1) the problem description and the domain
setup along the methodology (regarding the numerical simulations) and (2) the framework,
including the DRL algorithm.

2.1. Problem Configuration and Numerical Setup

The domain simulation is two-dimensional (2D) and consists of a cylinder immersed
in a flat rectangular channel without any curvature, in the same configuration as that
described in the work by Rabault et al. [19]. The domain is normalized using a cylinder
with diameter D as the reference length scale. The channel has a dimension of L = 22 in
length, aligned with the main flow direction, and a height equal to H = 4.1. The origin
of the coordinate system is set on the left-bottom corner of the channel, and the center of
the cylinder displaced towards the bottom by 0.05D units, to develop the vortex-shedding
behind it. A schematic representation of the domain is depicted in Figure 1. Aligned with
the vertical axis and symmetrically on the cylinder wall, one at the top and one at the
bottom, there are two synthetic jets with total openings of ω = 10° each. These positions of
the jets were chosen so their actuations were normal to the flow and drag reduction came
from effective actuations rather than the injection of momentum.
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Figure 1. Main domain dimensions in terms of the cylinder diameter D, where ω represents the jet
width and θ0 is the angle of the center of the jet. In light blue, the parabolic velocity profile of the
inlet and the jet are represented. The domain representation is not to scale.

Regarding the boundary conditions of the problem, an inlet parabolic velocity condi-
tion was imposed and expressed as in Equation (1):

Uin(y) = Umax

[
1−

(
2

y− H/2
H

)2
]

, (1)

where [Uin(y), Vin(y) = 0] is the velocity vector and Umax is the maximum velocity reached
at the middle of the channel, which is equal to 1.5 times the mean velocity U, defined as
shown in Equation (2):

U =
1
H

∫ H

0
Uin(y)dy =

2
3

Umax. (2)

A value of Umax = 1.5 is used so that the scaling velocity of the problem is U = 1.
A no-slip condition is imposed on the cylinder solid wall, while a smooth-wall condition
is imposed on the channel walls. The right boundary of the channel is set as a free outlet
with zero velocity gradient and constant pressure. The jet velocity (vi) is a function of both
the set jet angle (θ) and the mass flow rate (Q) determined by the ANN, as described in
Equation (3):

vi = Q
π

2ωR2 cos
[ π

ω
(θ − θ0)

]
, (3)

where θ0 corresponds to the angle where the jet is centered and R is the cylinder radius.
The scaling factor π/(2ωR2) is used so that the integration of the jet velocity over the jet
width gives the desired mass flow rate Q. More details about the intensity parameters are
provided in Section 2.2.

The Reynolds number Re = UD/ν of the simulation is varied between 100, 1000
and 2000, where ν is the fluid kinematic viscosity. For the mesh, an unstructured mesh of
triangular elements with refinement near the cylinder wall and the jets was used, as shown
in Figure 2. The number of elements changes with the Reynolds number as expressed in
Table 1.
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Table 1. Parameters of the simulations for each Reynolds number considered in this work.

Re 100 1000 2000

Mesh cells (approximately) 11,000 19,000 52,000
Number of witness points 151 151 151

|Q|max 0.088 0.04 0.04
snorm 1.7 2 2
Coffset 3.17 3.29 3.29
rnorm 5 1.25 1.25

w 0.2 1 1
Tk 3.37 3.04 4.39
Ta 0.25 0.2 0.2

Actions per episode 80 100 100
Number of episodes 350 1000 1400

CPUs per environment 46 46 46
Environments 1 1 or 20 20

Total CPUs 46 46 or 920 920
Baseline duration 100 250 100

(a) Unstructured triangular mesh employed in all of the domains.

(b) Detailed mesh around the cylinder.

Figure 2. Computational grid used for the Re = 100 calculations.
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Alya is used to simulate the flow. This solver assumes that the flow is viscous and
incompressible, where the governing Navier–Stokes equations can be written for a domain
Ω as in Equation (5):

∂tu + (u · ∇)u−∇ · (2νε) +∇p = f in Ω ∈ (t0, t f ), (4)

∇ · u = 0 in Ω ∈ (t0, t f ), (5)

where ε is a function of the velocity u, which defines the velocity strain-rate tensor
(ε = 1/2(∇u + ∇Tu) ) and f is the external body force. In Equation (4), the convec-
tive form of the nonlinear term, Cnonc(u) = (u · ∇)u, is expressed as a term conserving
energy, momentum and angular momentum [38,39]. This form is known as EMAC (energy-,
momentum-, and angular-momentum-conserving equation), and its expression appears
in Equation (6). The EMAC form (Equation (6)) adds to the equation the conservation of
energy as well as linear and angular momentum at the discrete level:

Cemac = 2u · ε + (∇ · u)u− 1
2
∇|u|2. (6)

The spatial discretization of the Navier-Stokes equations is performed by means of
the finite-element method (FEM). Meanwhile, the time discretization uses a semi-implicit
Runge–Kutta scheme of second order for the convective term, and a Crank–Nicolson
scheme for the diffusive term [40]. In the time integration, Alya uses an eigenvalue time-
step estimation as described by Trias and Lehmkuhl [41]. The complete formulation of the
flow solver is described in the work by Lehmkuhl et al. [37].

At each time step, the numerical solution is obtained, and the drag FD and lift FL forces
are integrated over the cylinder surface S as follows (Equation (7)):

F =
∫
(ς · n) · ej dS , (7)

where ς is the Cauchy stress tensor, n is the unit vector normal to the cylinder and ej is
a unit vector in the direction of the main flow velocity when calculating the drag and a
vector perpendicular to the velocity of flow for the calculation of the lift force. The drag CD
and lift CL coefficients are computed as described in Equations (8) and (9):

CD =
2FD

ρU2D
, (8)

CL =
2FL

ρU2D
. (9)

2.2. DRL Setup

As discussed in the introduction, the DRL interacts with the domain through three
channels. The first channel is the observation state (s), based on the extraction of pressure
values at a series of predefined points along the domain. These points, known as witness
points or probes, are located in the same positions as in Rabault et al. [19]. Moreover,
151 witness points were distributed around the cylinder and along the wake, as shown in
Figure 3. The values of the pressure obtained at the witness points are normalized by a
factor snorm so that the state values given to the agent are between −1 and 1, approximately.
The values of snorm for each Reynolds number case are given in Table 1.
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Figure 3. Schematic representation of the computational domain, where the red dots correspond to
the location of the probes. The position of two probes is remarked as black dots for further analysis
in Section 3.3.

The second channel of interaction between the DRL and the numerical simulation is
the action that is given by the control of the jets on the cylinder (a). The value of action
a is directly related to the control value of the upper jet intensity Q1, while the bottom
jet will do the opposite control to ensure a global zero mass flow rate between both jets,
i.e., Q2 = −Q1. This is a more realistic control and helps to make the numerical scheme
more stable as reflected by Rabault et al. [19]. During the training, the maximum value of
|Q1| is limited to |Q1| < 0.06 Qref ≈ 0.88 for the Re = 100 case, as in the work by Rabault
et al. [19], to avoid unrealistically large actuations. Note that Qref is the mass flow rate
intercepting the cylinder, and it is calculated as in Equation (10):

Qref =
∫ D/2

−D/2
ρUin(y)dy . (10)

For higher Reynolds numbers, this clipping value of |Q1| is reduced to 0.04. An
observation should be made here about the energy consumption of the jets. If one reduces
the drag, it would lead to a performance improvement. Nevertheless, the positive energy
balance should be obtained when comparing the energy saved by reducing the drag
compared with the energy used to actuate with the jets. However, one cannot determine
the actual energy consumption of the jets in a numerical simulation, since this highly
depends on the systems used on a real setup and, therefore, it is related to experiments and
not numerical simulations. An estimation of the energy consumption would consist of a
combination of the kinetic energy of the flow injected and the opposing to the local pressure
when injecting. Nevertheless, by restricting the mass flow rate of the jets to only 6% of the
mass flow intercepting the cylinder, the energy consumption of the jets is guaranteed to
be negligible compared with the drag reduction obtained. In addition, even though the
value of Q selected by the ANN is unique in each action, Q is not imposed as a constant
value during the entire action duration. In particular, Q is assessed as a curve to prevent
significant changes in the boundary condition between actions that could lead to numerical
discrepancies, similar to how the smooth control was presented by Tang et al. [28]. This
way, the imposed mass flow starts from the previous value Q0 and increases or decreases
linearly until the new value Q1 is achieved during the entire action time Ta = t1 − t0.
Consequently, Q in Equation (3) is presented as a function of time in Equation (11) and is
illustrated in Figure 4.

Q(t) =
Q1 −Q0

Ta
(t− t0) + Q0. (11)

It should be noted that the first action of each episode (an episode is understood as a
sequence of interactions between the neural network and the simulation, which generates
the input data for the agent algorithm) always starts from a baseline case, i.e., a periodically
stable flow without jet actuation. This baseline case uses the same domain, and the flow is
fully developed without applying jet control.
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Figure 4. Flow rate of the jet Q smoothed and applied in the numerical simulation (green) versus the
discrete Q decided by the DRL agent (red).

The third interaction channel between the DRL and the numerical simulation is the
reward or goal (r), which in this case is aimed at minimizing the cylinder drag; it is defined
in Equation (12):

r = rnorm(−〈CD〉 − w〈CL〉+ Coffset), (12)

where 〈·〉 indicates averaging over a baseline vortex-shedding period, w is a lift penalization
factor, Coffset is a coefficient to center the initial reward around 0, obtained from the value of
r at the end of the baseline simulation, and rnorm is used to normalize this reward between
0 and 1 approximately. In such a way, the agent receives the reward in an optimal range.
Note that the value of rnorm is set from an a priori guess of the expected maximum reward.
The lift penalization factor is set in such a way that the drag is minimized, and at the same
time, the effect of the possible growth of induced lift is mitigated. If this lift penalization is
not introduced into the reward function, the agent can find a strategy where both jets blow
in the same direction at their maximum strength, as discussed in Rabault and Kuhnle [27].
The values of w, Coffset, and rnorm are given in Table 1 for the different Reynolds numbers.

To summarize, the agent will choose an action (a) given a specific state (s) in order to
maximize a reward (r). The function that determines what will be the reward is a normal
distribution. During the training process, the agent will choose an action around the
average of this normal distribution. This is known as the exploration noise and it helps
the method to converge toward a better solution. Once the training has been performed,
the agent can be tested in a deterministic mode. Here, the most probable action in the
normal distribution is chosen in order to maximize the reward with the learning obtained
during the training.

Following the work by Rabault et al. [19], the ANN is designed with two dense layers
of 512 neurons and a PPO agent is selected to carry out the control. The PPO agent follows
a policy-gradient method in order to obtain the weights of the ANN. The implementation
of the DRL is done through the open-source Tensorforce library [42], which is built from
the TensorFlow open-source library [43], and it includes defining and creating both the
ANN and the control agent. The selection of the initial parameters of the DRL depends
intrinsically on the problem itself. In this case, the total number of actions is related to the
vortex-shedding period Tk = 1/ fk through the Strouhal number St = fk · D/U.

Figure 5 shows the lift coefficient of the baseline case. This figure shows that the
vortex-shedding period is Tk = 3.37 time units for the Re = 100 case and St = 0.29; this is
in agreement with both experiments [44] and simulations [19]. Taking the vortex-shedding
period as reference, the action time Ta is defined as 7.5 % of Tk, as in Rabault et al. [19].
This period of actuation was found to be large enough so the consequences of the actuation
can be perceived by the flow, and small enough so that the actuations can anticipate and
adapt to the needs of the control. In the higher-Re cases, this actuation period is reduced to
Ta = 0.2 due to their more chaotic flow behavior and, therefore, the necessity to adapt the
actuations faster. Note that because this is a 2D flow, the word chaotic and not turbulent is
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employed, which restricts more to 3D flows. Based on this simulation, it can be concluded
that before starting the DRL, the baseline case needs to be run for over 50 time units in
order to obtain a periodic stabilized flow. As suggested in the work of Rabault et al. [19],
at Re = 100 the typical time of an episode should be between 6 and 8 vortex sheddings so
that the agent has enough time to learn the suitable control policy. A total of 80 actuations
are carried out on each episode, resulting in an episode duration of 20 time units. In the
case of a higher Reynolds number, a total of 100 actions are conducted in each episode,
since the duration of each actuation is reduced.

(a) (b)
Figure 5. Temporal evolution of the lift coefficient in the baseline case (without jet actuation).
(a) Baseline lift-coefficient results. The vortex-shedding period is 3.37 time units. (b) Zoom-in view of
the vortex-shedding period in the baseline case.

For the high Reynolds numbers of 1000 and 2000, a parallel environment framework
was adopted to speed up the learning process using a total of 20 environments. Moreover,
in the case at Re = 1000, a comparison of the results was done when a single environment
was employed. A total of 46 MareNostrum IV central-processing units (CPUs) were used
in each environment. Therefore, a total of 46 or 920 CPUs were used depending on whether
a single environment or 20 environments were considered in the case, respectively. All of
these parameters are presented in Table 1. The general DRL framework is summarized in
Figure 6.

Baseline flow

Episode 1

Episode 2

Episode n

(...)

PPO Agent

Rewards + observation

Actions
ALYA run 0 – 100 time units

ALYA run 100 – 120 time units

Figure 6. General overview of the DRL-CFD (computational fluid dynamics) framework employed in
this work. A multi-environment approach was used to parallelize the learning and speed up training.
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3. Results and Discussion

This section is divided into three parts. First, the results obtained using the Alya
solver and the DRL applied are validated using literature data. Once validated, the higher
Reynolds number results are discussed, for which no precedent has been found in the
literature. Finally, a cross-application of agents is analyzed to save computational resources
in resolving cases with high Reynolds numbers.

3.1. CFD and DRL Code Validation

As can be seen in the work by Rabault et al. [19], for a Re = 100, through the correct
actuation of the DRL, it was possible to achieve a decrease in the cylinder drag of 8 %.
These results were validated in other simulations, such as Li and Zhang [31], and applied
in similar research [29,45,46].

Figure 7 shows eleven different “trainings” launched and the average CD obtained
for the last vortex-shedding period of the different episodes. It can be seen that all cases
follow the same learning trend, where most of the said learning is observed in the first
hundred episodes. The main trend is obtained by adjusting a fourth-degree polynomial fit
using the average coefficient data, and its purpose is to help to visualize the data. From this
point on, the slope of the CD decrease is not so pronounced, reaching a stable solution for
350 episodes.

Figure 7. Evolution of CD in the last vortex-shedding period as a function of the episode.

The obtained learning is then applied to the previously-shown baseline. To this end,
one of the 11 trained agents is randomly selected and is run in a deterministic mode. This
deterministic simulation is initiated from the conditions of the baseline case at 100 time
units from the start. The CD and CL trends are shown in Figure 8, which indicates that a
value of CD = 2.95 is obtained after applying the control, i.e., a decrease of 8.9 % compared
with the baseline case. The CD improvement is calculated as a function of the baseline CD:

improvement =

[
1− CD

controlled

CD
baseline

]
× 100. (13)
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Figure 8. Temporal evolution of CD (left) and CL (right) obtained through the application of the DRL
control (at t = 100), run in a deterministic mode, for Re = 100.

This result is rapidly achieved from the moment the control is applied. In the case of
CL, the mean remains approximately at 0. However, the amplitude of the variation of this
coefficient has been reduced, as shown by the lower standard deviation obtained. This may
indeed have great beneficial consequences from the structural and stability points of view.

The control imposed on each jet is represented in Figure 9. As discussed above, the con-
trol starts at 100 time units of simulation, so the values of injected or suctioned mass prior
to this time are null. Having imposed the synthetic-jet condition, everything injected by one
jet (positive values) will be equivalent to what is suctioned by the other (negative values).
In the first 10 time units approximately, the control of greater amplitude leads to a signifi-
cant reduction in the drag, maximizing the reward. Next, the transitional control seeks to
obtain a more stable actuation. After 25 time units, the solution is practically periodic.

Figure 9. Flow rate through each jet as a function of time after applying the DRL control.

More information about the control is obtained by observing the contours of instan-
taneous velocity and pressure for the controlled and uncontrolled cases, as shown in
Figure 10. The DRL agent reduces CD by manipulating the wake vortex: it increases the
size of the recirculation region and reduces both the frequency and the amplitude of the
von Kármán street downstream of the cylinder. A similar conclusion is obtained from
the instantaneous pressure field, which exhibits a decrease in the pressure maxima after
applying the control. Comparing our results with those by Rabault et al. [19], it can be seen
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that the response of the control is practically the same except for very small differences that
can come from the different numerical schemes to resolve the flow.

(a)

(b)
Figure 10. Instantaneous flow fields at Re = 100, where for each pair of images, the baseline
case without control is depicted on the top and the controlled case is depicted on the bottom.
(a) Instantaneous magnitude of the velocity fields. (b) Instantaneous pressure fields.

Increasing the Reynolds number also requires reducing the period of actuation, as men-
tioned in Section 2.2. Additionally, increasing the Reynolds number leads to a more complex
flow, thus a higher number of episodes are expected to be necessary to complete the train-
ing. Therefore, parallelization using 20 environments has been adopted when simulating
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higher-Re cases. The parallelization using a multi-environment approach is fully detailed
in the work of Rabault and Kuhnle [27].

In Figure 11, a comparison between employing a single environment and a 20 multi-
environment approach is conducted for a case of Re = 1000. It can be observed that if
the Reynolds increases an order of magnitude, in this case, the number of episodes for
the DRL to act to the same degree is three times greater using only one environment,
as compared with Figure 7. The same solution can be obtained by parallelizing through
20 environments, using 50 episodes in each environment, which helps to reduce the real
calculation time significantly.

As mentioned before, the flow is more complex, and its structures are less periodic
and more chaotic. To analyze the flow, the instantaneous and average velocity fields are
represented in Figure 12.

Figure 11. Evolution of CD in the last vortex-shedding for each episode employing a single environ-
ment (left) or a 20-multi-environment approach (right) showing the learning curve indexed by the
episode number for one of the 20 environments.

The obtained results are consistent with those of Ren et al. [32], which report an
extensive flow analysis of the same Reynolds number. The control produces an elongation
of the recirculation bubble behind the cylinder, reducing at the same time the hydrodynamic
drag. For this Reynolds number, the control strategy found by the PPO agent is based on
synchronous blowing. This strategy is similar to that found in lower Reynolds numbers: the
jets produce an ejection or suction, generating a flow opposite to that caused by the wake.

3.2. DRL Application at Reynolds Number 2000

Through the use of parallelization with a multi-environment strategy, even higher
Reynolds numbers can be achieved. The results obtained for training with Re = 2000 are
discussed below and, to the authors’ knowledge, there is no record of applying DRL control
to such a high Reynolds number in the literature.

The CD and CL obtained through the application of learning in a deterministic mode
are represented in Figure 13. This figure contrasts sharply with the one observed with
Re = 100 (Figure 8). In this case, the starting baseline flow is much more chaotic, which can
be seen in the magnitude of the peaks of both variables. The average drag coefficient of the
non-controlled flow is CD = 3.39. After the control, the average in this period is CD = 2.79,
which means more than 17 % of CD improvement. In this case, it has been chosen to
represent the mean in the entire controlled period and not during the last vortex-shedding
since, as the solution behaves more erratically, it could lead to an average that is far from
reality. Regarding the lift coefficient, the applied control manages to set the average CL with
a close value to 0, maximizing the reward function as desired and avoiding a systematic
biased strategy (see Appendix B in Rabault and Kuhnle [27]). Moreover, the absolute value
of the peaks during the oscillating periods is reduced but not as much as in the case of
Reynolds number 100, due to the chaotic nature of the flow at this higher Reynolds number.
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(a)

(b)
Figure 12. Instantaneous and average flow fields at Re = 1000, where for each pair of images,
the baseline case without control is depicted on the top and the controlled case is depicted on
the bottom. (a) Instantaneous magnitude of velocity fields. (b) Average magnitude of velocity fields,
where the mean streamlines are indicated in black.

Figure 13. Temporal evolution of CD (left) and CL (right) obtained through the application of the
DRL control (at t = 50), run in a deterministic mode, for Re = 2000.



Actuators 2022, 11, 359 15 of 24

In Figure 14 the average velocity and pressure fields are shown both for the baseline
and the controlled deterministic case. As can be seen in the average velocity field com-
parison, the separation point in the controlled case is further downstream of the cylinder.
This way, the average wake is narrowed faster in the controlled case, lowering the drag
produced. This phenomenon is easier to observe if the difference between the baseline and
the controlled case is considered as shown in Figure 15. This figure shows that the more
significant difference between the controlled and uncontrolled cases occurs in the separa-
tion zone. At the same time, as observed for lower-Reynolds number control, the pressure
drop behind the cylinder is reduced when controlled.

(a)

(b)
Figure 14. Average flow fields at Re = 2000, where each pair of images, the baseline case without
control is depicted on the top and the controlled case is depicted on the bottom. (a) Average magnitude
of velocity fields. (b) Average pressure fields.
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(a)

(b)
Figure 15. Difference in the mean flow fields at Re = 2000, between the controlled and baseline case.
(a) Difference in the mean magnitude of velocity fields. (b) Difference in mean pressure fields.

This control strategy is completely different from that used low at lower Reynolds
numbers of values Re = 100 and 1000. In order to better understand this control strategy,
a chronological velocity and pressure field snapshot is plotted in Figure 16. In this case,
the control strategy does not involve the elongation of the recirculation bubble behind the
cylinder. The flow separation is controlled and energized by a high-frequency actuation
of the jets. The separation point is moved behind the cylinder lowering the drag of
the cylinder, similar to the Eiffel paradox phenomenon, also known as the drag crisis,
as defined by Stabnikov and Garbaruk [47]. The agent attempts to minimize the drag with
this high frequency, breaking the vortices produced after the cylinder into smaller and
less-energetic ones.

Additionally, one video (of the velocity and pressure fields) is shared to aid the
visualization. The corresponding link can be found at the end of the document in the “Data
Availability Statement”.
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Figure 16. Magnitude of the velocity (left) and pressure (right) field progression at Re = 2000.
The control starts at t = 50, therefore the first two panels of each column correspond to the uncon-
trolled case and the rest (involving smaller vortices) correspond to the controlled flow.
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3.3. Cross-Application of Agents

Once the CD improvement results have been obtained for all the calculated Reynolds
numbers thanks to the use of DRL, the cross-application of agents for a flow at Re = 2000
is studied.

Cross-application of agents involves applying a previously trained ANN with a differ-
ent Reynolds number flow to solve a similar problem, using the achieved learning in other
conditions. The final objective is to reduce the computational cost of training the DRL agent,
since training an ANN with a lower Reynolds number is less expensive. This approach
can be very beneficial as long as the results produced by the agent are comparable, i.e., the
physics are similar enough between the two different cases.

Here it is investigated the drag reduction obtained by the agents previously trained
for Reynolds numbers 100 and 1000 when they are applied in a deterministic mode to the
flow of Re = 2000, as can be seen in Figure 17.

Figure 17. Temporal evolution of CD obtained through cross-application of agents trained at Re = 100
(left) and Re = 1000 (right) in a deterministic mode to a case with a Reynolds number of 2000.

The cross-application of the agent trained at Re = 100 does not yield a result that
reduces drag in a flow at Re = 2000. No drag improvement is obtained because the nature
of the flow where the agent is applied is too different from the one where it was trained.
However, when the trained agent at Re = 1000 is applied for the case of Re = 2000, a sig-
nificant drag reduction is produced. An average CD value of 2.74 is obtained, translating
into a 19 % drag reduction improvement compared with the baseline flow. This is a slightly
larger drag reduction than that obtained by the agent trained at Re = 2000. This small
difference can be attributed to the chaotic nature of the flow, from evaluation run to eval-
uation run, and sub-optimal trade-off with respect to the actual reward function due to
less good control of the lift and drag fluctuations, as will be discussed later. The fact that
two similar results are obtained with different natures of control strategies, as explained in
Section 3.2, may indicate that the flow at Re = 2000 belongs to a transition regime toward
a higher Reynolds number flow, which only admits a high-frequency control in order to
obtain the drag reduction. Therefore, being in this transition regime would admit both
controls yielding comparable results. In order to go deep into this topic, higher Reynolds
numbers must be simulated, but that goes beyond the scope of this article. At the same
time, this is a doubly positive result since it confirms the fact that it is possible to apply
deep-learning models previously trained at lower Reynolds number but within the same
Re regime (similar dynamics) while saving time and computational resources [48].

The average CD comparisons for each agent used in the cross-application at Re = 2000
are shown in Figure 18 (left). As detailed in the previous section, the control strategy varies
significantly as the Reynolds number increases. At Re = 100 and 1000, the control attempts
to keep the recirculation bubble behind the cylinder, at Re = 2000, high-frequency suction
and blowing of the jets is applied to quickly force the flow transition, breaking the vortices
into smaller ones. Despite these differences in the control strategies between the agents
trained at Re = 1000 and 2000, both are capable to obtain a comparable drag reduction in
a flow at Re = 2000. As shown in Figure 18 (right), the CL bias obtained using the policy
from Re = 1000 is higher than that obtained using the policy of Re = 2000. Moreover, CL
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fluctuations are larger when employing the agent trained at Re = 1000 (not shown here for
the sake of brevity). Note that the Re = 2000 strategy reduces the drag almost as much as
using cross-application of agents and, at the same time, exhibits a slightly better performance
in the lift; since the lift is part of the reward function, the agent trained at Re = 2000 achieves
a higher reward at Re = 2000 than the agent trained at Re = 1000. Nevertheless, the small
differences between both "trainings" may be reversed for different baseline flows (changing
the initial condition). This is similar to the results observed by Ren et al. [32].

Figure 18. Average CD (left) and average CL (right) comparison between three different cross-
application of agents.

In Figure 19, the average magnitude of velocity field at Re = 2000 is shown for the
cross-application of the agent trained at Re = 1000. At first glance, the existent bias in the
average velocity field, which is directly linked with the asymmetric lift behavior, is noticeable.

Figure 19. Average flow fields at Re = 2000, using the training obtained for Re = 1000.

In order to quantitatively observe the different control strategies, the power-spectral
density (PSD) of the actions is plotted for the policy of Re = 2000, and the cross-application
of agents, Re = 1000 and 100, in Figure 20 (left). The latter two agents share the same
strategy, which consists of a low-frequency action with no significant content at medium
and high frequencies. In contrast, with the policy of Re = 2000, the frequency spectrum is
distributed, with a peak at a frequency of 1.1. In Figure 20 (right), the frequency spectrum
of the pressure at the probe in the detachment region indicated in Figure 3 is shown.
A low frequency of 0.24 governs the baseline flow, corresponding to the vortex-shedding
frequency. This frequency is mitigated by the policy of Re = 2000 in higher frequencies.
Specifically, the frequency peak at 1.1 is a consequence of the corresponding actuation at
this frequency, which is responsible for breaking the flow into smaller vortices as seen
in Figure 16. On the other hand, it can be seen how the agent trained at Re = 1000
tends towards a completely different strategy in terms of frequency, actuating with a low-
frequency strategy. The agent trained at Re = 100, also uses this low-frequency actuation,
but it does not have the capabilities to influence the pressure field. As mentioned before,
in those cases, the agent attempts an opposition control strategy increasing the recirculation
bubble to minimize the drag.
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Figure 20. Power-spectral density of the action output, Q, for the Re = 2000 case, with its own
policy and two cross-application policies (left) and for pressure in the probe near the cylinder in the
separation zone (right).

4. Conclusions

In this work, the high-performance CFD solver Alya was coupled with an ANN DRL
agent to simulate and control the flow around a 2D cylinder with two jets attached to
the cylinder surface. The main control objective was set on the reduction of the average
drag. For the first time, the Reynolds number of the canonical 2D cylinder control problem
from Rabault et al. [19] was extended to Re = 2000, providing new insights into the DRL
control strategies for highly complex and dynamic flows. Additionally, the Re = 100 and
Re = 1000 cases were studied for validation and comparison purposes.

The most striking outcome of the Re = 2000 case is that the DRL agent uses a radically
different strategy from those obtained at lower Reynolds numbers while still being able
to provide a 17 % drag reduction. In the new strategy, the agent attempts to delay the
detachment point in the cylinder surface using a high-frequency signal in the actuation
of the jets, similar to what can be observed in drag crisis phenomena. It is shown that
the cylinder wake is narrowed by the breakdown of the detaching vortices into smaller
structures. This strategy contrasts with the one obtained at a lower Reynolds number,
where the agent acts at a lower frequency to perform opposition control and to elongate the
recirculation bubble behind the cylinder. These results are further verified with the spectral
analysis of the jet actuating signals and a pressure witness point in the wake. Table 2
summarizes the results from this paper and provides an overview of the results in previous
works. Information about drag reduction, the control strategy, and the configuration of the
jet location is also provided.

The applications of agents trained at Re = 100 and Re = 1000 on the Re = 2000 case
were investigated (namely cross-applications). It was shown that the Re = 100 agent is not
able to reduce the drag in the high Reynolds number regime due to the different dynamics
of the system. On the other hand, the Re = 1000 provides satisfactory results, which even
beat the Re = 2000 agent itself (19 % drag reduction), even though the mean wake displays
an asymmetric pattern in this case, which corresponds to an overall reward (including lift
bias penalization) that is lower than with the agent trained at Re = 2000. Still, this opens
up the door to accelerating the training of an agent by first exposing it to a lower Reynolds
number flow, which demands a lower computational effort, and then finalize the training
at the target Reynolds number condition.

As a final observation, the actual time that the agent takes to calculate the output action
once it receives the input state is negligible for an ANN consisting of 2 layers of 512 neurons
each, and it could be considered instantaneous. Therefore, it will be completely possible to
implement these schemes in real time. In the experiments, there can be some non-negligible
delay times depending on the hardware systems used in the experiment. However, if the
training is performed in the same conditions, i.e., the delay is also present during the
training, the agent will learn a strategy that works under such circumstances. In addition,
if the agent is trained in a numerical environment and applies it on the experimental side,
then the state sent as an input must consider the known delay in the experiment.
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Table 2. Summary of the results and strategies. In the strategy, column E states the elongation of
the bubble of recirculation and D states the delay of the detachment point through a high-frequency
actuation. Note that for the four cases of Tang et al. [28], a unique agent is trained through transfer
learning for all four Reynolds numbers and jets have small x-velocity components.

Re Work CD Reduction Strategy Configuration

100 Present work 8.9% E 2 jets (1 top & 1 bottom)
100 Rabault et al. [19] 8% E 2 jets (1 top & 1 bottom)
100 Tang et al. [28] 5.7% E 4 jets (2 top & 2 bottom)
200 Tang et al. [28] 21.6% E 4 jets (2 top & 2 bottom)
300 Tang et al. [28] 32.7% E 4 jets (2 top & 2 bottom)
400 Tang et al. [28] 38.7% E 4 jets (2 top & 2 bottom)

1000 Present work 20.0% E 2 jets (1 top & 1 bottom)
1000 Ren et al. [32] 30% E 2 jets (1 top & 1 bottom)
2000 Present work 17.7% D 2 jets (1 top & 1 bottom)

Author Contributions: Conceptualisation: R.V., J.R. and O.L.; investigation: all authors; data curation:
P.V., P.S., F.A.-Á., A.M., J.R. and B.F.; software: J.R., A.M., B.F. and O.L.; writing—original draft: P.V.,
P.S. and F.A.-Á.; editing: all authors; funding: L.M.G.-C., O.L. and R.V. All authors have read and
agreed to the published version of the manuscript.

Funding: Pau Varela is partially supported through a grant for the mobility of doctoral students
provided by Universitat Politècnica de València and the program Erasmus Prácticas E+ 2020-1. R.V.
acknowledges funding from the ERC through grant no. “2021-CoG-101043998, DEEPCONTROL”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The YouTube link to “Deep reinforcement learning for flow control on a
cylinder at Re = 2000” is https://youtu.be/8R3adCQmeEA, accessed on 28 November 2022.

Acknowledgments: The authors acknowledge the contribution of Maxence Deferrez to this work. R.V.
acknowledges funding from the ERC through grant no. “2021-CoG-101043998, DEEPCONTROL”.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

Abbreviations
AFC active flow control
ANN artificial neural network
BSC-CNS Barcelona Supercomputing Center—Centro Nacional de Supercomputación
CFD computational fluid dynamics
CFL Courant–Friedrichs—Lewy
CPU central processing unit
DRL deep reinforcement learning
EMAC energy-, momentum-, and angular-momentum-conserving equation
FEM finite-element method
HPC high-performance computing
PPO proximal policy optimization
PSD power-spectral density
UAV unmanned aerial vehicle

https://youtu.be/8R3adCQmeEA
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Roman letters
a action
CL lift coefficient
CD drag coefficient
Coffset offset coefficient of the reward
D cylinder diameter
ej vector used in force calculation
f external forces, frequency
fk vortex shedding frequency
F Force
FD drag force
FL lift force
H channel height
L channel length
n unit vector normal to the cylinder
Q mass flow rate
Q∗ normalized mass flow rate
Qref reference mass flow rate
p pressure
r reward
rnorm reference value of the reward after control
R cylinder radius
Re Reynolds number
S surface
s observation state
snorm reference pressure in the observation state
St Strouhal number
t time
t0 initial time
t f final time
Ta action period
Tk vortex-shedding period
u flow speed
Ū mean velocity
Uin inlet boundary velocity in x direction
Umax inlet boundary velocity in the middle of the channel
Vin inlet boundary velocity in y direction
vi jet velocity
w lift penalization
x horizontal coordinate
y vertical coordinate
Greek letters
ε velocity strain-rate tensor
ν kinematic viscosity
Ω domain
ω jet angular opening
ρ density
σ standard deviation
ς Cauchy stress tensor
θ jet angle
θ0 center jet angle
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