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Abstract

Most of the uncertainty analyses in nuclear safety studies have been carried out for transients and
accidents of the primary and secondary systems, but it is interesting to extend the analysis to
other types of structures in a Nuclear Power Plant. In this work an uncertainty analysis of a loss
of coolant and loss of cooling accident in a spent fuel pool is presented. The spent fuel pool has
been modelled with TRACE V5.0 Patch 5 using a VESSEL 3D component in Cartesian coordinates.
In addition, the model has been calibrated using Main Yankee spent fuel pool experimental data
of temperatures and flows measured in steady state conditions. Using the calibrated model, the
analysis of the accident was performed considering uncertainty in boundary conditions and in all the
coefficients included in the TRACE uncertainty quantification data module. Then, Wilks’ method
and surrogate models were considered for evaluating the figure of merit of the accident. The figure
of merit selected in this work is the time at which the cladding oxidation eaches 0.17 times the
cladding thickness before oxidation (CFR 50.46 b2). The technique use to construct the surrogate
model is the Elastic Net regression. The models were validated with cross validation and the results
showed a good fit for the suggested models. Finally, the surrogate models are capable to predict in
a few seconds an estimation of the available time until the limit is reached if the input variables
are known. This is a great save in computational effort. In addition, the Elastic Net is able to
identify most relevant variables, which are for the study transient: fuel and cladding specific heats,
rod internal pressure coefficient, burst temperature coefficient, a group of fluid regime heat transfer
coefficients, the cladding metal-water reaction rate coefficient and the cladding tolerance for the
average cores.

Keywords: Spent Fuel Pool; TRACE; Elastic Net; LASSO regression; Uncertainty Analysis; Wilks.

1. Introduction

Mainly, uncertainty analysis (UA) in nuclear safety studies has been performed for primary and
secondary system accidents and transients (D’Auria, 2017; D’Auria et al., 2012; Glaeser et al., 1994;
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IAEA, 2008; Perez et al., 2011; Pourgol-Mohammad, 2009; Sánchez-Sáez et al., 2017, 2018; Wilson,
2013). However, it is interesting to extend the analysis further, to other kind of structures of the
nuclear power plants, such as spent fuel pools (SFP). SFP keep spent fuel elements once they have
accomplished their function in the reactor. Besides ionizing radiation, SFP elements also generate a
considerable amount of heat due to the residual power, which has proven to be important for the
safety conditions in some circumstances, as for example it was evidenced in Fukushima’s accident.

In this paper, an accident involving loss of cooling plus loss of coolant through the transfer
channel of Maine Yankee SFP is analyzed. This situation is considered as one of the possible beyond
design basis accidents (Throm, 1989). The thermal-hydraulic model is constructed using TRACE
code, which, although was created to analyze large/small break LOCAs and system transients in
both pressurized- and boiling-water reactors, it has the capabilities to model TH phenomena in
three-dimensional (3-D) space. Traditionally, the TH transient simulations for SFP have been done
withcomputational fluid dynamics (CFD) codes (Chen et al., 2014; Hung et al., 2013; Oertel et
al., 2019), but their computational costs are higher. For taking into account the uncertainty in
simulation, a figure of merit (FOM) has to be defined, and in this case the time until cladding
oxidation limit is selected to perform UA using Wilks’ method and partial substitution of the TH
model by surrogate models are used. The surrogate models have been obtained by multiple linear
regression using penalized least squares throughout the Elastic Net.

The organization of the paper is as follows: section 2 introduces the accident simulated and the
model constructed for Maine Yankee SFP are described. In Section 3 are presented the statistical
techniques employed in the UA. In Section 4 the UA is carried out for the loss of cooling and loss of
coolant accident. Finally, Section 5 presents the conclusions.

2. Loss of cooling and loss of coolant accident simulated at Maine Yankee SFP

2.1. System description
In this study, the UA methodology has been applied on a loss of cooling and loss of coolant in

Maine Yankee SFP. When loss of cooling plus loss of coolant by the transfer channel transient of
the SFP occurs and considering that there is no any additional safety system available to actuate,
the accidental sequence follows the events shown in Figure 1.
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Figure 1: Events after the loss of SFP cooling system.

2.2. SNAP/TRACE model
In order to simulate the transient, the SFP model was built using TRACE code, which is shown

in Figure 2. The TH model consists of a Cartesian 3D VESSEL, a FILL component, which simulates
the inflow and two BREAK components, simulating the main outflow and the atmosphere.
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Figure 2: SNAP view of the Maine Yankee SFP TRACE model.

The X and Y coordinates of the Cartesian VESSEL were divided in 5 parts and the Z coordinate,
which represents the SFP depth, was divided in 10 levels. Using this data, the complete VESSEL
component has 250 cells. The length of each direction of the cells are presented in Table 1. The
water volume in each VESSEL cell is not the same, as it depends on the number of spent fuel
elements present in each location. Therefore, the area and volume fractions of the different cells
were calculated according to the spent fuel elements distribution. The spent fuel elements range
from Z=2 to Z=8. Above the elements, in Z=9 the SFP is full of water. At last, the Z=10 cells are
full of air and simulate the SFP building.

Table 1: Nodes measures (m) of Vessel component.

Node X Y Z

1 2.57 2.39 0.240
2 2.96 2.64 0.824
3 2.96 2.64 0.824
4 2.96 2.64 0.824
5 2.57 2.39 0.412
6 0.412
7 0.412
8 0.412
9 0.200
10 0.200

The residual power of the spent fuel elements was distributed throughout the pool by means
of HEAT STRUCTURE components according to the Maine Yankee Licensing Case, using the
data from Gay and colleagues (Gay, 1984; Gay and Gloski, 1983). In the Licensing Case, the SFP
has all of his racks full of elements, with two different areas. One of such areas comprises 70 hot
elements that generate a power of 4.8 MW and the other generates 1.6 MW. Therefore, the total
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amount of power inside the SFP is 6.4 MW. The power generated was simulated using two POWER
components, each one of them connected to a HEAT STRUCTURE component. Further and more
detailed results of the transient case (with another TRACE Version and another nodalization) can
be found in Carlos et al. (2014).

3. Uncertainty Analysis methods

In order to perform a UA one or more FOM have to be selected depending on the transient
to be analyzed. Then, the most interesting model parameters, which are being considered in the
UA have to be identified. Finally a uncertainty quantification technique was to be applied to the
response data obtained with the code. Wilks’ method is the most extended technique used for TH
simulations, among other reasons because a low number of code runs are needed to obtain a good
estimation of tolerance limit.

3.1. Figure of merit
Based on the safety limits established by the CFR 50.46 (USNRC, 2007), three different candidates

were considered to be FOM (Table 2).

Table 2: Safety variables, FOM and acceptance criteria based on CFR 50.46

Barrier Safety Variable FOM Acceptance Limit

fuel CR (calculated total oxidation
of the cladding anywhere)

TMCR (time
until MCR)

MCR (CR reaches 0.17 times the total
cladding thickness before oxidation)

fuel H2 (calculated total amount of
hydrogen generated from the
chemical reaction of the
cladding with water or steam)

TMH2 (time
until MH2)

MH2 (H2 reaches 0.01 times the
hypothetical amount that would be
generated if all of the metal in the
cladding cylinders surrounding the fuel
were to react)

fuel PCT (calculated maximum fuel
element cladding temperature)

TMPCT
(time until
MPCT)

MPCT (PCT reaches 1477K)

3.2. Uncertainty data for TRACE parameters
UA requires the selection of relevant input variables for the transient to allow the propagation of

the uncertainty from the input variables to FOM. In this work, 37 variables included in the TRACE
V5.0 Patch5 uncertainty quantification data module, which consists of a list of sensitivity coefficients
(USNRC, 2017) were selected, as well as other 5 variables related to the fuel characteristics: Axial
losses, Average pellet tolerance (Av pellet), Average cladding Inner tolerance (Av cladding), Hot
core pellet tolerance (HC pellet) and Hot core cladding inner tolerance (HC cladding). These 5
variables have been found relevant in previous works (Feria and Herranz, 2017; Geelhood et al.,
2009). The 37 variables of the TRACE module list of sensitivity coefficients, are distributed as
U[0.9, 1.1] since their probability density functions are unknown. For the other uncertain variables,
normal distributions are suposed. In particular, “Axial losses”" as N(µ = 1, σ = 0.025); “Av Pellet”
and “HC Pellet”" (in mm) as N(µ = 4.37, σ = 0.0065); and “Av cladding” and “HC cladding” (in
mm) as N(µ = 4.47, σ = 0.02), where the normal distributed variables are truncated to µ± 2σ.

4



3.3. Uncertainty analysis using the Wilks’ method
Wilks’ method (Wilks, 1942, 1941) uses the order statistics as tolerance limits. Let X be a

continuous random variable with a cumulative distribution function (CDF), Fx(·) and a simple
random sample of size n of X. Let X1:n ≤ X2:n ≤ . . . ≤ Xr:n ≤ . . . ≤ Xn:n the order statistics
from the sample. According to Wilks´ method the smallest number n of code runs to be performed
to obtain the r-th order one-sided tolerance interval, or tolerance limit, of a particular FOM, is given
by the following inequality:

1−
n∑

k=n−r+1

(
n

k

)
pk(1− p)n−k ≥ γ (1)

where p is the coverage probability and γ is the confidence level of the one-sided tolerance
interval. It is common practice in BEPU applications, to use the 95/95 for the upper side (or 5/95
for the lower side) tolerance limit (p/γ) according to current regulatory practice. When first-order
statistics (i.e. r = 1) is employed, it imposes the use of a sample size of 59 sets of TH input variables
randomly selected from their pdf and performing 59 code runs, one for each set. However, in some
cases first-order statistics can lead to very conservative results. Thus, applying the Wilks’ formula
to higher order statistics usually produces more accurate results but increases the computational
burden, as more runs are needed. For example, if r is 2 and p/γ are 5/95, the minimum number of
code runs needed to satisfy such criteria is n = 93. In this work, Wilks’ method is used for n = 93
in order to estimate the tolerance limits of the FOM since a value of n = 59 gives very conservative
results and n > 93 increases significantly the computational cost (Sánchez-Sáez et al., 2018).

3.4. Uncertainty analysis using surrogate models
The substitution of the TH code by a surrogate model for obtaining one or more FOM of interest

is a technique employed in the simulation of the performance of complex systems and, particularly,
in nuclear safety analysis (Carlos et al., 2013; Di Maio et al., 2016; Sánchez-Sáez et al., 2017),
which allows performing a larger number of simulations with a reasonable computational cost and
obtain the FOM of interest, instead of the whole system performance. So that, first FOM must be
selected first appropriately. In this work, the technique proposed to undertake the UA is the Elastic
Net regression, which is based on multiple linear regression where the coefficients are estimated by
penalized least squares.

3.4.1. Ordinary least squares
Let standard multiple linear regression model, presented in Equation 2.

Y = β0 +
p∑
j=1

βjXj + ε. (2)

Where Y is the observed dependent response variable (the FOM), and β0 +
∑p
j=1 βjXj is a

linear combination of unknown parameters β and p independent variables Xj . The estimation of β
coefficients can be done by ordinary least squares, which consists in minimize the Equation 3.

n∑
i=1

(Yi − β0 −
p∑
j=1

βjxij)2 (3)
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3.4.2. Elastic Net techniques
As an alternative to ordinary least squares, we can fit an Elastic Net model. Elastic Net consists

of penalized least squares for obtaining the β parameters in multiple linear regression in order to
reduce the model variance in spite of increasing the bias (Zou and Hastie, 2005). Elastic Net is
useful when the number of predictors are elevated and the sample size is reduced as is in the work
case.

With the objective of defining the Elastic Net, the 2 models on which it is based are described
below. They are the Ridge regression (Kennard and Hoerl, 1970) and the LASSO (Least Absolute
Shrinkage and Selection Operator) regression (Tibshirani, 1996).

Ridge regression. Ridge regression is very similar to ordinary least squares, except that the coefficients
Ridge are estimated by minimizing a slightly different quantity. In particular, the Ridge regression
coefficient estimates β are the values that minimize the Equation 4.

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)2 + λ

p∑
j=1

β2
j , (4)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equation {eq:ridge} trades
off two different criteria. As with least squares, Ridge regression seeks coefficient estimates that
fit the data well, by making the residual sum of squares, i.e.

∑n
i=1(yi − β0 −

∑p
j=1 βjxij)2, small.

However, the second term, λ
∑
j β

2
j , called a shrinkage penalty, is shrinkage small when β1, ..., βp

are close to zero, and so it has the effect of shrinking penalty the estimates of βj towards zero.

LASSO regression. LASSO regression is similar to Ridge, except for the penalization, which in this
case is as is shown in Equation 5.

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)2 + λ

p∑
j=1
| βj | (5)

where λ ≥ 0 is a tuning parameter, to be determined separately as in Ridge.

Elastic Net regression. For last, the Elastic Net is the joint between Ridge and LASSO so the
parameters βi are estimated by minimizing the Equation 6.

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)2 + α(λ
p∑
j=1
| βj |) + (1− α)(λ

p∑
j=1

β2
j ), (6)

where α determines the amount of LASSO and Ridge that contains the Elastic Net. When
α = 1 is exactly the LASSO and when α = 0 we have the Ridge. In this work, the Elastic Net is
constructed with R software (R-team, n.d.) using the library “glmnet” (Friedman et al., 2010).

3.5. Goodness of the surrogate model and cross-validation
When we have different models constructed with different techniques, or when we have multiple

choices among the complexity of the models, we must provide some estimation of the goodness of
the fit. One of the most employed estimators of the goodness of the fit is the mean squared error
(MSE) between fitted and real values stated in Equation 7.
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MSE = 1
n

n∑
i=1

(yi − ŷi)2 (7)

This estimator shows how good the fit of the sample is, but it does not say much about prediction.
For estimate the goodness of the fit in terms of prediction, the Cross-Validation (CV) can be used
(Kohavi, 1995). In particular, in this work the k-fold CV is used. It consists of splitting the data in
k partitions, in order to hold the observations of one of the partitions for testing the model trained
with the other k − 1 partitions and average the test estimation for the k partitions. Therefore,
the k-fold CV method is employed for selecting the tune parameters of the Elastic Net and for
assessing the goodness of the fit out of sample (prediction) of the different techniques. In this case,
moreover, the k selected is k = 10 based on Breiman and Spector (1992) and Kohavi (1995) since is
recommended as a good compromise in the bias-variance tradeoff.

3.6. Probability density function
Wilks’ method provides the tolerance limit of the FOM. Nevertheless, it is interesting to obtain

more information about the behavior of the FOM, such as the probability density function (PDF).
The PDF of the FOM can be estimated if the TH code runs sample is large enough (Carlos et al.,
2013; Di Maio et al., 2016). But, when the runs sample is small, like in this study, it is necessary
to search for alternatives. One of them relies on the surrogate models and feed them with a huge
number of inputs (e.g. N = 100000) and obtain a pseudo-PDF of the FOM. With the pseudo-PDF
we can obtain samples of n = 93 and obtain the tolerance limit as in Wilks’ or an estimation of
lower confidence interval for the percentile p calculated using the ranks showed in Equation 8 (Helsel
and Hirsch, 2002).

Rl = np+ zγ/2 ·
√
np (1− p) + 0.5 (8)

Where n is the sample size, z is the standard normal distribution and (1− γ) is the confidence
level of the interval. The computed ranks, Rl and Ru are rounded to the nearest integers.

4. Results

4.1. Simulation results. Base case.
The base case considered is the simulation of the SFP model transient with all the variables in

their nominal values. The evolution of the safety variables of interest, exposed in Table 2, related
to their limits are shown in Figure 3, e.g. the ratio CR/MCR associated with the FOM of interest
TMCR. The one that reaches its limit in the first place is the time when maximum cladding reacted
(oxidation) percentage reaches the limit, TMCR, which occurs at 110256 s (30.63 hours). The next
variable which reaches its safety limit is the hydrogen formation, at 112832 s (31.34 hours). Finally,
the PCT reaches its limit at 113808 s (31.61 hours). Therefore, the TMCR is adopted as the FOM
of this study.
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Figure 3: Evolution of FOM related to safety limits.

4.2. Results of the Uncertainty analysis
Using simple random sampling with the uncertain variables selected in this work and explained

in 3.2, 93 TRACE simulations were run in order to perform the UA. Figure 4 shows the temporal
evolution of the CR for the n=93 simulations. Specifically, in all the simulations the shape is the
same but they are shifted. Figure 5 shows the information about TMCR for each simulation via box
and whisker diagram.

4.2.1. Tolerance limit with Wilks’ method
In order to estimate the value which covers the 5/95 tolerance limit, the Wilks’ method was

employed for the FOM. For the second order statistic (n2 = 93) gives 109555 s (30.43 hours).

4.2.2. Elastic Net regression as surrogate model
In this section, two different Elastic Nets as surrogate model to obtain the TMCR are constructed

and compared. These surrogate models address explicitly the effects of all the uncertainty variables
on the FOM. However, only a set of the most relevant ones is identified once the surrogate model is
built.

For the Elastic Net, it is necessary to tune parameters α and λ of Equation 6. In particular, the
CV estimated error was calculated for 41 different and equidistant values of α, from 0 to 1. For
each α, 500 CV repetitions were performed for choosing the λ optimum. In each of the repetitions
of the CV, an error estimation curve was obtained for different values of λ. There are 2 different
approaches for selecting the λ optimum value: the λ that minimizes the error, λmin , or the λ that
is one standard deviation from λmin, the λ1se. The median of the 500 CV repetitions errors are
shown in Figure 7. The lowest error was reached with α = 0.95 for the λmin approach, and with
α = 1, which corresponds with the LASSO regression, for the λ1se approach. The models with the
selected values of α for both approaches were constructed (0.95, λmin), (1.0, λ1se). Figure 6 shows

8



90000 95000 100000 105000 110000 115000 120000

0
20

40
60

80
10

0

Time (s)

C
R

 (
%

)

MCR (17%)

Figure 4: Evolution of the maximum oxidation in
cladding of the SFP for the full model runs.

109000

110000

111000

112000

Base case (110255.875 s)

TMCR (Time when max cladding reacted > 17%)

T
M

C
R

 (
s)

Figure 5: Time when maximum cladding reacted per-
centage is above the limit for the TH code simulations.

one of The CV repetition for the selected values of α. The λmin and the λ1se are highlighted with
dotted lines. In addition, the number of variables depending on λ are indicated in the superior axis.
It can be observed that with λ1se approach a more parsimonious model is obtained.
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Figure 6: CV Error and coefficient values for Elastic Net regression models

Table 3 shows the β coefficients of each regression adjusted, as well as the values of the CV (root
squared) errors for each method, λmin and λ1se. Taking into account these errors, the method that
fits better is the Elastic Net with a λmin approach, but the Elastic Net with a λ1se is the most
parsimonious model since it addresses 10 variables in comparison with the 14 variables for the first
one. Moreover, the variables selected in both approaches were nested, as all the variables in the
Elastic Net with λ1se are included in the Elastic Net with λmin.
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Table 3: Comparative of the regression models

Variable Description LASSO λmin LASSO λ1se

(Intercept) 105290.5 104729.9
Av cladding Average cladding tolerance -6834453 -5935775.8
annMistLIHTCSV Liquid to interface annular-mist heat transfer coefficient -308 -39.2
bubSlugVIHTCSV Vapor to interface bubbly-slug heat transfer coefficient -130.9
stratVIHTCSV Vapor to interface stratified heat transfer coefficient -46.1
spLHTCWallSV Single phase liquid to wall heat transfer coefficient -30.3
spVHTCWallSV Single phase vapor to wall heat transfer coefficient 4996.9 4760.2
subcHTCWallSV Subcooled boiling heat transfer coefficient -729.2 -455.8
cladMWRxnRteSV Cladding metal-water reaction rate coefficient -2689.1 -2354.2
RodIntPressSV Rod internal pressure coefficient 823.3 528.8
burstTempSV Burst temperature coefficient -1202 -901.1
bSlgVSIntDragSV Interfacial drag (bubbly/slug Vessel) coefficient 47.2
cladSpHtSV Cladding Specific Heat 506.5 262.3
invAnnVWHTCSV Vapor to wall inverted annular heat transfer coefficient -267.2 -1.7
fuelSpHtSV Fuel specific heat 4200 3937.2
CV RMSE 228 241.6
Variables 14 10

4.3. Safety tolerance limits obtained with the surrogate models
The surrogate models built can be used for predicting the response, the FOM, whatever the

value adpopted by the relevant input variables. Furthermore, using a large set of input values of the
variables, a pseudo-population that replicates the FOM of interest can be built. With 100000 different
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sets of input values the estimated PDF of the FOM is obtained, and showed in Figure 8). In addition,
the 5th percentile confidence interval is calculated for each of the estimated pseudo-populations.
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Figure 8: pdf estimated for the surrogate models

The tolerance limit 5/95 with the Wilks’ method can be calculated. It is sampled n=93 FOM
values for each of the 2 pseudo-population and the tolerance limit was estimated via order statistics.
The process was repeated 1000 times in order to check the variability of the sampling. Figure 9
shows the tolerance limits predicted by both Elastic Nets. Moreover, they are compared with the
TH code Wilks’ estimations of the tolerance limit 5/95. The median values of the pseudo-population
limits, in hours, are shown in Table 4. The estimations for the Elastic Net with a λmin approach
have a median value very similar to TH wilks’ estimation. On the other hand. The estimations for
the Elastic Net with λ1se are slightly higher. Therefore, in the last case they are less conservative
than the TH code Wilks’ estimations.
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Figure 9: tolerance limits estimated from different populations/models

Table 4: Medians, in hours, of the tolerance limits estimated with order statistics

Population Second order
statistic (h)

Thermal Hydraulic Code 30.432
Elastic Net λmin 30.437
Elastic Net λ1se 30.461

5. Conclusion

In this paper, uncertainty analysis of a loss of cooling and loss of coolant accident in a SFP
was performed. The 5/95 tolerance limit with the Wilks’ method was obtained using second order
statistic (i.e. n = 93). This time available, since the transient starts, until the maximum cladding
reacted exceeds 17%, i.e. TMCR, was 30.432 hours.
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In addition, the n = 93 simulations of the TH code were used to build two surrogate models,
based on Elastic Nets, with which the 5/95 limits have also been obtained. With these models, the
tolerance limits were close to those obtained with the TH code simulations.

The choice of the method for constructing the surrogate model depends on the particular
objectives of the study. The different techniques have a similar performance. The best model
in terms of number of variables was the Elastic Net with a λ1se approach, while the best model
according to the CV error was the Elastic Net with a λmin approach. From the 42 initial uncertain
variables (37 from TRACE sensitivity module and 5 external), with Elastic Net with a λmin approach
they have been reduced to 14 (13 from TRACE module and 1 external). With the Elastic Net with
a λ1se, the number of relevant variables is reduced even more, to 10 (9 from TRACE module and 1
external). TRACE module relevant variables, are related with the fuel charactheristics (fuel and
cladding specific heats, rod internal pressure coefficient and burst temperature coefficient), heat
transfer coefficients and the cladding metal-water reaction rate coefficient. The only one external
relevant variables is the cladding tolerance for the average cores.

Finally, the surrogate models are capable to predict in a few seconds an estimation of the
available time until the limit is reached if the input variables are known. This is a great save in
computational effort as the TH code spends 21 hours, in average, for each simulation. In addition,
only the relevant input parameters need to be given attention in a more accurate way based on the
particular surrogate model built.
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