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Abstract: Let G be a nontrivial graph and k ≥ 1 an integer. Given a vector of nonnegative integers
w = (w0, . . . ,wk), a function f : V (G)→ {0, . . . ,k} is a w-dominating function on G if f (N(v)) ≥ wi
for every v ∈ V (G) such that f (v) = i. The w-domination number of G, denoted by γw(G), is the
minimum weight ω( f ) = ∑v∈V (G) f (v) among all w-dominating functions on G. In particular, the {2}-
domination number of a graph G is defined as γ{2}(G) = γ(2,1,0)(G). In this paper we continue with
the study of the {2}-domination number of graphs. In particular, we obtain new tight bounds on this
parameter and provide closed formulas for some specific families of graphs.
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1. Introduction

We begin by stating the main basic terminology which shall be used in the whole work. We only
consider simple graphs G with vertex set V (G) and edge set E(G). Given a vertex v ∈ V (G), N(v) =
{x∈V (G) : xv∈ E(G)} and N[v] =N(v)∪{v}. Analogously, given a set D⊆V (G), N(D) =∪v∈DN(v)
and N[D] = N(D)∪D. The graph obtained from G by removing all the vertices in D ⊆ V (G) and all
the edges incident with a vertex in D will be denoted by G−D. A vertex v ∈ V (G) is a leaf of G
if |N(v)| = 1, and v is a support vertex of G if it is adjacent to a leaf. The set of leaves and support
vertices are denoted by L(G) and S(G), respectively. In addition, v ∈ V (G) is a semi-support vertex
if v ∈ N(S(G))\ (S(G)∪L(G)). The set of semi-support vertices is denoted by SS(G). Moreover, by
attaching a path P to a vertex v of G we mean adding the path P and joining v to a leaf of P. Given two
vertices u and v of G, the distance between u and v, denoted by d(u,v), is the minimum length of a u−v
path. The diameter of G, denoted by diam(G), is the maximum distance among pairs of vertices of G.
A diametral path in G is a shortest path whose length equals the diameter of the graph. Let k≥ 1 be an
integer and f : V (G)→ {0, . . . ,k} be a function on G. Given a set X ⊆V (G), f (X) = ∑x∈X f (x). For
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every i ∈ {0, . . . ,k}, let Vi = {v ∈ V (G) : f (v) = i}. We use the notation f (V0, . . . ,Vk) for identifying
the function f and the subsets V0, . . . ,Vk associated with it.

A set D ⊆ V (G) is a dominating set of G if N(v)∩D , /0 for every v ∈ V (G)\D. The domination
number of G, denoted by γ(G), is the minimum cardinality among all dominating sets of G. The
dominating sets and its variants in graphs are interesting study topics in graph theory. We refer to the
books [1–3] for theoretical results and practical applications.

Recently, Cabrera-Martı́nez et al. [4] introduced the following approach to the theory of domina-
tion in graphs. Given a vector of nonnegative integers w = (w0, . . . ,wk) (with w0 ≥ 1), a function
f (V0, . . . ,Vk) is a w-dominating function on G if f (N(v))≥ wi for every v ∈Vi. The minimum weight
ω( f ) = f (V (G)) = ∑

k
i=1 i|Vi| among all w-dominating functions on G is the w-domination number

of G, and is denoted by γw(G). A w-dominating function with weight γw(G) will be called a γw(G)-
function. This approach covers some different versions of domination known so far. The next particular
cases of well-known domination parameters we can defined in terms of w-domination as follows.

• The domination number of a graph G is defined to be γ(G) = γ(1,0)(G). Given a (1,0)-dominating
function f (V0,V1) on G, we say that V1 is a dominating set of G. If f is a γ(1,0)(G)-function, then
V1 will be called a γ(G)-set.

• The total domination number of a graph G with no isolated vertex is defined to be γt(G) =
γ(1,1)(G). In this case, if f (V0,V1) is a (1,1)-dominating function on G, then we say that V1
is a total dominating set of G. In addition, if f is a γ(1,1)(G)-function, then V1 is a γt(G)-set.
Detailed information on total domination in graphs can be found in the excellent book [5] and the
survey [6].

• The double domination number of a graph G with no isolated vertex is defined to be γ×2(G) =
γ(2,1)(G). In this case, if f (V0,V1) is a γ(2,1)(G)-function, then V1 is a γ×2(G)-set. The concept of
double domination in graphs are widely studied, see for example [7–10].

• The Italian domination number of G is defined to be γI(G) = γ(2,0,0)(G). This parameter was
introduced by Chellali et al. in [11] under the name of Roman {2}-domination number and studied
further in [12, 13].

• The total Italian domination number of a graph G with no isolated vertex is defined to be γtI(G) =
γ(2,1,1)(G). This parameter was introduced by Cabrera Garcı́a et al. in [14], and independently by
Abdollahzadeh Ahangar et al. in [15], under the name of total Roman {2}-domination number.
This concept was studied further in [16] for the lexicographic product graphs.

• The {2}-domination number of a graph G is defined as γ{2}(G) = γ(2,1,0)(G). This parameter was
studied in [17–20].

In this paper we continue with the study of the last one of the aforementioned parameters: the
{2}-domination number of a graph. In Section 2, we give new combinatorial results which show the
close relationship that exists between the {2}-domination number and other domination parameters
of graphs. In Section 3 we analyse the case of trees. In particular, we show that the {2}-domination
number of any tree is exactly twice the domination number. Finally, Section 4 shows how the {2}-
domination number of lexicographic product graphs G◦H is related to γw(G). In particular, the deci-
sion on whether w takes specific components will depend on the value of γ(H).
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2. Combinatorial results

To begin this section, we show some known relationships between the {2}-domination number and
other previously defined known domination parameters.

Theorem 2.1. The following inequality chains hold for any graph G with no isolated vertex.

(i) γ(G)+1≤ γ{2}(G)≤ 2γ(G). [7]
(ii) γI(G)≤ γ{2}(G)≤ γ×2(G)−|L(G)|+ |S(G)|. [4]

The next results provide equivalent conditions for the graphs G with no isolated vertex that satisfy
the equalities given in Theorem 2.1-(i), i.e., γ{2}(G) = 2γ(G) and γ{2}(G) = γ(G)+1.

Proposition 2.2. For any graph G with no isolated vertex, the following statements are equivalent.

(a) γ{2}(G) = 2γ(G).
(b) There exists a γ{2}(G)-function f (V0,V1,V2) such that V1 = /0.

Proof. First, we assume that γ{2}(G) = 2γ(G). Hence, for any γ(G)-set D, the function g(W0,W1,W2),
defined by W0 =V (G)\D, W1 = /0 and W2 =D, is a {2}-dominating function on G with ω(g)= 2|W2|=
2|D| = 2γ(G) = γ{2}(G). This implies that g is a γ{2}(G)-function such that W1 = /0. Therefore, (b)
follows.

Conversely, if there exists a γ{2}(G)-function f (V0,V1,V2) such that V1 = /0, then V2 is a dominat-
ing set of G. Hence, 2γ(G) ≤ 2|V2| = ω( f ) = γ{2}(G). Thus, it follows from Theorem 2.1-(i) that
γ{2}(G) = 2γ(G), which completes the proof. �

Theorem 2.3. For any graph G with no isolated vertex, the following statements are equivalent.

(a) γ{2}(G) = γ(G)+1.
(b) γ(G) = 1 or γ×2(G) = γ(G)+1.

Proof. First, we assume that γ{2}(G) = γ(G)+1. Let f (V0,V1,V2) be a γ{2}(G)-function. The fact that
V1∪V2 is a dominating set of G implies that

γ(G)+ |V2| ≤ |V1|+2|V2|= γ{2}(G) = γ(G)+1.

Hence, |V2| ≤ 1. If V2 = /0, then V1 is a double dominating set of G. Hence, γ×2(G)≤ |V1|= γ{2}(G) =
γ(G)+1 and, since |L(G)| ≥ |S(G)|, we deduce that γ×2(G) = γ(G)+1 by Theorem 2.1. So, assume
that V2 = {v}. Suppose now that there exists a vertex u ∈ V1. Notice that the set (V1∪{v}) \ {u} is a
dominating set of G. Hence, γ(G)+1≤ |(V1∪{v})\{u}|+1= |V1|+1= γ{2}(G)−1, a contradiction.
Therefore, we must have V1 = /0, which implies that N(v) =V (G), i.e., γ(G) = 1.

Conversely, if γ(G) = 1 or γ×2(G) = γ(G)+ 1, then it follows from Theorem 2.1 that γ{2}(G) =
γ(G)+1, which completes the proof. �

In [7], the authors showed that the bound γ{2}(G) ≥ γ(G) + 1 is tight. On the other hand, the
following theorem shows that this bound has room for improvement.

Theorem 2.4. For any connected graph G,

γ{2}(G)≥ γ(G)+

⌈
diam(G)+1

5

⌉
.
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Proof. Let f (V0,V1,V2) be a γ{2}(G)-function. Let P = v0v1 · · ·vk be a diametrical path of G (k =
diam(G)) and let D = {v0,v5, . . . ,v5bk/5c}. Hence, d(x,y)≥ 5 for any different vertices x,y∈D. Recall
that f (N[x])≥ 2 for every vertex x ∈V (G). Let V ′1 ⊆V1∩N[D] be a set of maximum cardinality such
that |N[x]∩V ′1| ≤ 1 for every x ∈ D. Hence, by the definitions of D and V ′1, we have that d(x,y) ≥ 3
for any different vertices x,y ∈ V ′1. Now, we claim that S = (V1 ∪V2) \V ′1 is a dominating set of G.
Indeed, suppose to the contrary that there exists u ∈V (G)\S such that N(u)∩S = /0. This implies that
either u ∈V ′1 or u ∈V0 and N(u)∩V ′1 , /0. Since f (N[u])≥ 2 and d(x,y)≥ 3 for any different vertices
x,y ∈ V ′1, we deduce that N(u)∩ S , /0, a contradiction. Therefore, S is a dominating set of G, which
implies that

γ(G)≤ |S|= |V2|+ |V1 \V ′1|
= 2|V2|+ |V1|− (|V2|+ |V ′1|)
≤ γ{2}(G)− (|V2∩N[D]|+ |V ′1|)
≤ γ{2}(G)−|D|
≤ γ{2}(G)−d(diam(G)+1)/5e .

Hence, the proof is complete. �

Let G be the family of graphs Gr defined as follows. For every integer r ≥ 3, the graph Gr ∈ G is
obtained from two different copies of a star T1 � T2 � K1,r (where h1 ∈ L(T1) and h2 ∈ L(T2)) such
that V (Gr) = V (T1)∪V (T2) and E(Gr) = E(T1)∪E(T2)∪{h1h2}. Figure 1 shows the graph G6 ∈ G.
Observe that the equality of the bound given in Theorem 2.4 is achieved for the graphs Gr ∈ G since
γ{2}(Gr) = 4, γ(Gr) = 2 and diam(Gr) = 5 for any integer r ≥ 3.

2 2

Figure 1. The graph G6, where the labels assigned to the vertices correspond to the positive
weights assigned by a γ{2}(G6)-function.

The next proposition shows a simple relationship between the {2}-domination number and the
Italian domination number.

Proposition 2.5. The following statements hold for any graph G with no isolated vertex.

(i) γ{2}(G)≤ 2γI(G)−1.
(ii) If γI(G)≥ γ(G)+1, then γ{2}(G)≤ 2γI(G)−2.

Proof. First, we proceed to prove (i). Let f (V0,V1,V2) be a γI(G)-function. Now, let D ⊆ V (G) be a
set of minimum cardinality among all the sets satisfying that N(x)∩D , /0 for every x ∈ V1. By the
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definition of f and the minimality of |D|, it is easy to check that |D| ≤ |V1|+ |V2| − 1. Now, notice
that the function g(W0,W1,W2), defined by W1 = V1 ∪D, W2 = V2 and W0 = V (G) \ (W1 ∪W2), is a
{2}-dominating function on G with weight ω(g) = ω( f )+ |D|. Therefore,

γ{2}(G)≤ ω(g) = ω( f )+ |D| ≤ γI(G)+ |V1|+ |V2|−1≤ 2γI(G)−1,

which completes the proof of (i). Finally, if γI(G)≥ γ(G)+1, then by Theorem 2.1-(i) we deduce that
γ{2}(G)≤ 2γ(G)≤ 2γI(G)−2, which completes the proof. �

By Proposition 2.5 we can deduce that the equality γI(G) = γ(G) is a necessary condition for the
graphs that satisfy the condition γ{2}(G) = 2γI(G)−1, but it is not a sufficient condition. For instance,
observe that the graph G given in Figure 2 satisfies γI(G) = γ(G) = 4 and γ{2}(G) = 6 < 2γI(G)−1.
Therefore, we pose the following open problem.

Problem 2.6. Characterize the graphs G satisfying the equality γ{2}(G) = 2γI(G)−1.

1 1

1

1

1

1

Figure 2. A graph G with γI(G) = γ(G) = 4 and γ{2}(G) = 6.

The next result relates the {2}-domination number with the domination number, the total domina-
tion number and the total Italian domination number of a graph with no isolated vertex.

Theorem 2.7. For any graph G with no isolated vertex,

γtI(G)− γ(G)≤ γt(G)≤ γ{2}(G)≤ γtI(G).

Proof. The lower bound γtI(G)− γ(G) ≤ γt(G) was given in [14]. Now, we observe that any γtI(G)-
function is also a {2}-dominating function on G. This implies that γ{2}(G)≤ γtI(G). We only need to
prove that γt(G)≤ γ{2}(G). Let f (V0,V1,V2) be a γ{2}(G)-function. Let D⊆V (G) be a set of minimum
cardinality among all the sets satisfying the following properties.

(i) V1∪V2 ⊆ D.
(ii) N(x)∩D , /0 for every x ∈V2.

We claim that D is a total dominating set of G. It follows from the definition of f and (i) that D is a
dominating set of G. Now, let v∈D. If v∈D\V2, then we have that |N(v)∩D| ≥ |N(v)∩(V1∪V2)| ≥ 1
by the definition of f . Otherwise, if v ∈ D∩V2, then |N(v)∩D| ≥ 1 by (ii). Hence, D is a total
dominating set of G, as desired. Now, by the minimality of |D|, we observe that

γt(G)≤ |D| ≤ |D\ (V1∪V2)|+ |V1∪V2| ≤ |V1|+2|V2|= γ{2}(G),

as desired. Therefore, the proof is complete. �
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By the theorem above, we deduce that if γtI(G) = γt(G), then γ{2}(G) = γt(G). However, the
opposed is not necessarily true. For instance, the graphs G with γ(G) = 1 and γtI(G) = 3 satisfy that
γ{2}(G) = γt(G) = 2. We state the following open problem.

Problem 2.8. Characterize the graphs G satisfying the equality γ{2}(G) = γt(G).

Now, we proceed to show that the bounds given in Theorem 2.7 are tight. For instance, for the graph
G given in Figure 1 we have that γtI(G) = 6, γ{2}(G) = γt(G) = 4 and γ(G) = 2. Hence, γ{2}(G) =
γt(G) = γtI(G)− γ(G).

Next, we present a well-known class of graphs which satisfies that γ{2}(G) = γtI(G). Given two
graphs G and H, the corona product graph G�H is the graph obtained from G and H, by taking one
copy of G and |V (G)|= n(G) copies of H and joining by an edge every vertex from the ith-copy of H
with the ith-vertex of G.

Theorem 2.9. [4] For any graph G with no isolated vertex and any graph H,

γ{2}(G�H) = γtI(G�H) = 2n(G).

Now, we proceed to characterize the graphs achieving the trivial bounds. Before, we need to cite
the following theorem.

Theorem 2.10. [14] Let G be a nontrivial connected graph. Then γtI(G) = n(G) if and only if G is
isomorphic to the path P3 or G′�K1 for some connected graph G′.

Proposition 2.11. For any graph G with no isolated vertex,

2≤ γ{2}(G)≤ n(G).

Furthermore,

(i) γ{2}(G) = 2 if and only if γ(G) = 1. [4]
(ii) γ{2}(G) = 3 if and only if γ×2(G) = γ(G)+1 = 3. [4]

(iii) γ{2}(G) = 4 if and only if γ×2(G) = 4 or γ(G) = 2 and γ×2(G)≥ 4. [4]
(iv) γ{2}(G) = n(G) if and only if every component of G is isomorphic to the corona graph G′�K1,

where G′ is any connected graph.

Proof. The trivial bounds directly follows from Theorem 2.7 and the fact that γt(G)≥ 2 and γtI(G)≤
n(G), i.e.,

2≤ γt(G)≤ γ{2}(G)≤ γtI(G)≤ n(G).

In order to conclude the proof, we only need to prove (iv). If γ{2}(G) = n(G), then it follows from
the previous inequality chain that γtI(G) = n(G). Hence, by Theorem 2.10 and the fact that γ{2}(P3) =

2 < n(P3), we conclude that every component of G is isomorphic to the corona graph G′�K1, where
G′ is any connected graph. The other implication is straightforward to see. Therefore, the proof is
complete. �

The next result, which is a direct consequence of the characterizations exposed in Proposition 2.11,
provides exact formulas for the {2}-domination number of join graphs. Recall that, given two disjoint
graphs G1 and G2, the join graph G1+G2 is the graph obtained from G1 and G2, with vertex set V (G1+
G2) =V (G1)∪V (G2) and edge set E(G1 +G2) = E(G1)∪E(G2)∪{uv : u ∈V (G1),v ∈V (G2)}.
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Theorem 2.12. For any graphs G1 and G2,

γ{2}(G1 +G2) =


2 if min{γ(G1),γ(G2)}= 1,

3 if min{γ(G1),γ(G2)}= 2,

4 otherwise.

Proof. First, we notice that γ(G1 +G2) ≤ 2. Hence, Theorem 2.1 leads to γ{2}(G1 +G2) ≤ 2γ(G1 +
G2)≤ 4. By Proposition 2.11-(i) and the fact that γ(G1+G2)= 1 if and only if min{γ(G1),γ(G2)}= 1,
we observe that

γ{2}(G1 +G2) = 2⇔ γ(G1 +G2) = 1⇔min{γ(G1),γ(G2)}= 1.

So, assume now that γ(G1 +G2) = 2. This implies that min{γ(G1),γ(G2)} ≥ 2. Hence, γ{2}(G1 +
G2) ∈ {3,4}. Moreover, it is easy to check that γ×2(G1 +G2) = γ(G1 +G2)+ 1 = 3 if and only if
min{γ(G1),γ(G2)}= 2. Then, it follows from Proposition 2.11-(ii) that

γ{2}(G1 +G2) = 3⇔ γ×2(G1 +G2) = γ(G1 +G2)+1 = 3⇔min{γ(G1),γ(G2)}= 2,

which completes the proof. �

3. The particular case of trees

Studies on characterizing domination related parameters in trees have been very popular in the last
decades. One can find in the literature several works showing all the trees satisfying diverse properties.
For instance, and to just name a few of them, we refer to the works [21–27]. In this section, and using
a similar approach to that used in the aforementioned works, we will show that the {2}-domination
number of any tree is exactly twice the domination number. In order to prove this result, we first need
to introduce some lemmas.

Lemma 3.1. For any tree T of order n(T ) ≥ 3, there exists a γ{2}(T )-function f (V0,V1,V2) such that
S(T )⊆V2 and L(T )⊆V0.

Proof. Let f (V0,V1,V2) be a γ{2}(T )-function such that |V2 ∩S(T )| is maximum. Now, suppose that
there exists a vertex v ∈ S(T ) \V2. This implies that v ∈ V1 and so N(v)∩L(T ) ⊆ V1. Hence, the
function f ′(V ′0,V

′
1,V

′
2), defined by V ′0 =V0∪ (N(v)∩L(T )), V ′1 =V1 \ ((N(v)∩L(T ))∪{v}) and V ′2 =

V2∪{v}, is a γ{2}(T )-function such that |V ′2∩S(T )|> |V2∩S(T )|, which is a contradiction. Therefore,
S(T )⊆V2 and as a consequence, L(T )⊆V0. �

Lemma 3.2. Let T be a tree obtained from any nontrivial tree T ′ by attaching a path P2 to a vertex
v ∈ S(T ′)∪SS(T ′). Then γ{2}(T ) = γ{2}(T ′)+2 and γ(T ) = γ(T ′)+1.

Proof. Assume that T is obtained from T ′ by adding the path uu1 and the edge uv, where v ∈ S(T ′)∪
SS(T ′). Notice that any γ(T ′)-set can be extended to a dominating set of T by adding the vertex u.
Hence, γ(T ) ≤ γ(T ′) + 1. Let D be a γ(T )-set such that S(T ) ⊆ D (of course, such a set D exists
by [23]). Since v ∈ D or (N(v)∩D) \ {u} , /0, we observe that D \ {u} is a dominating set of T ′.
Hence, γ(T ′)+1≤ |D\{u}|+1 = γ(T ). Therefore, γ(T ) = γ(T ′)+1, as desired.

AIMS Mathematics Volume 7, Issue 6, 10731–10743.
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Next, let f (V ′0,V
′
1,V

′
2) be a γ{2}(T ′)-function. Notice that the function f (V0,V1,V2), defined by

V0 =V ′0, V1 =V ′1∪{u,u1} and V2 =V ′2, is a {2}-dominating function on T . Hence, γ{2}(T )≤ ω( f ) =
γ{2}(T ′)+2. Now, let g(W0,W1,W2) be a γ{2}(T )-function which satisfies Lemma 3.1. Hence, u1 ∈W0
and u ∈W2. Since v ∈ S(T ) or (N(v)∩ S(T )) \ {u} , /0, we deduce that the function g restricted to
V (T ′), is a {2}-dominating function on T ′. Hence, γ{2}(T ′)+2≤ g(V (T ′))+2 = γ{2}(T ). Therefore,
γ{2}(T ) = γ{2}(T ′)+2, which completes the proof. �

Lemma 3.3. Let T be a tree obtained from any nontrivial tree T ′ by attaching a path P3 to any vertex
v ∈V (T ′). Then γ{2}(T ) = γ{2}(T ′)+2 and γ(T ) = γ(T ′)+1.

Proof. Assume that T is obtained from T ′ by adding the path uu1u2 and the edge uv, where v ∈V (T ′).
Notice that any γ(T ′)-set can be extended to a dominating set of T by adding the vertex u1. Hence,
γ(T )≤ γ(T ′)+1. Now, let D be a γ(T )-set such that D∩L(T ) = /0 and |N[u1]∩D| is minimum. It is
easy to see that u1 ∈ D and u,u2 < D, and so D \ {u1} is a dominating set of T ′. Hence, γ(T ′)+ 1 ≤
|D\{u1}|+1 = γ(T ). Therefore, γ(T ) = γ(T ′)+1, as desired.

Next, let f (V ′0,V
′
1,V

′
2) be a γ{2}(T ′)-function. Notice that the function f (V0,V1,V2), defined by

V0 = V ′0∪{u,u2}, V1 = V ′1 and V2 = V ′2∪{u1}, is a {2}-dominating function on T . Hence, γ{2}(T ) ≤
ω( f ) = γ{2}(T ′)+ 2. Now, let g(W0,W1,W2) be a γ{2}(T )-function such that g(N[u1]) is minimum
among all γ{2}(T )-functions which satisfy Lemma 3.1. Hence, it is easy to check that u,u2 ∈W0
and u1 ∈W2, and so the function g restricted to V (T ′), is a {2}-dominating function on T ′. Hence,
γ{2}(T ′) + 2 ≤ |g(V (T ′))|+ 2 = γ{2}(T ). Therefore, γ{2}(T ) = γ{2}(T ′) + 2, which completes the
proof. �

We are now ready to prove that γ{2}(T ) = 2γ(T ) for any tree T .

Theorem 3.4. For any tree T , we have

γ{2}(T ) = 2γ(T ).

Proof. First, we proceed to prove that γ{2}(T )≥ 2γ(T ) by induction on the order of the trees. Let T be
any tree. We observe that if diam(T )≤ 3, then it is easy to check that γ{2}(T )≥ 2γ(T ). This establishes
the base case. So assume that diam(T )≥ 4 (notice n(T )> 4) and any tree T ′ with n(T ′)< n(T ) satisfies
γ{2}(T ′)≥ 2γ(T ′). Now, we root the tree T at a leaf vertex r belonging to a diametrical path in T . Let
h be a vertex such that d(r,h) = diam(G). Clearly, h ∈ L(T ). Let s be the parent of h, and let v be the
parent of s. We now proceed with the following claims.

Claim I. If |N(s)| ≥ 3, then γ{2}(T )≥ 2γ(T ).

Proof. Let f (V0,V1,V2) be a γ{2}(T )-function which satisfies Lemma 3.1. Hence, s∈V2 and h∈V0. Let
T ′ = T −{h}. Notice that f restricted to V (T ′) is a {2}-dominating function on T ′, which implies that
γ{2}(T ) = ω( f ) = f (V (T ′)) ≥ γ{2}(T ′). Also, since s ∈ S(T ′)∩S(T ), we deduce that γ(T ′) = γ(T ).
Thus, by the previous inequalities and the induction hypothesis we obtain that

γ{2}(T )≥ γ{2}(T
′)≥ 2γ(T ′) = 2γ(T ),

which completes the proof of Claim I. (�)

Claim II. If |N(s)|= 2 and |N(v)| ≥ 3, then γ{2}(T )≥ 2γ(T ).
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Proof. Let T ′ = T −{h,s}. Notice that v ∈ S(T ′)∪ SS(T ′). Hence, by Lemma 3.2 we have that
γ{2}(T )= γ{2}(T ′)+2 and γ(T )= γ(T ′)+1. Also, by the induction hypothesis we have that γ{2}(T ′)≥
2γ(T ′). Therefore,

γ{2}(T ) = γ{2}(T
′)+2≥ 2γ(T ′)+2 = 2(γ(T ′)+1) = 2γ(T ),

which completes the proof of Claim II. (�)

Claim III. If |N(s)|= |N(v)|= 2, then γ{2}(T )≥ 2γ(T ).

Proof. Let T ′= T−{h,s,v}. By Lemma 3.3 we have that γ{2}(T ) = γ{2}(T ′)+2 and γ(T ) = γ(T ′)+1.
Also, by the induction hypothesis we have that γ{2}(T ′)≥ 2γ(T ′). Therefore,

γ{2}(T ) = γ{2}(T
′)+2≥ 2γ(T ′)+2 = 2(γ(T ′)+1) = 2γ(T ),

which completes the proof of Claim III. (�)

Therefore, γ{2}(T ) ≥ 2γ(T ), as desired. Finally, by Theorem 2.1 we have that γ{2}(T ) ≤ 2γ(T ).
Thus, γ{2}(T ) = 2γ(T ), which completes the proof. �

4. The particular case of lexicographic product graphs

The lexicographic product of two graphs G and H is the graph G◦H whose vertex set is V (G◦H) =
V (G)×V (H) and (u,v)(x,y) ∈ E(G◦H) if and only if ux ∈ E(G) or u = x and vy ∈ E(H). Notice that
for any u ∈ V (G) the subgraph of G ◦H induced by {u}×V (H) is isomorphic to H. For simplicity,
we will denote this subgraph by Hu. Moreover, the neighbourhood of (x,y) ∈ V (G)×V (H) will be
denoted by N(x,y) instead of N((x,y)). Analogously, for any function f on G◦H, the image of (x,y)
will be denoted by f (x,y) instead of f ((x,y)).

Recently, Cabrera-Martı́nez et al. [4] showed that the Italian domination number of every lexico-
graphic product graph G ◦H can be expressed in terms of five different domination parameters of G.
Specifically, they show that γI(G ◦H) = γw(G) (where w ∈ {2}× {0,1,2}l and l ∈ {2,3}) and the
decision on whether the equality holds for specific values of w0, . . . ,wl depends on the value of the
domination number of H. Later, the same authors [28] showed how the secure (total) domination num-
ber and the (total) weak Roman domination number of lexicographic product graphs G◦H are related
to γs

w(G) or γw(G) (where γs
w(G) represents the secure version of γw(G), see [29]). These previous

studies show an interesting way to study the domination parameters in lexicographic product graphs.
In such a sense, in this section we show how the {2}-domination number of G ◦H is related to

γw(G). In particular, the decision on whether w takes specific components depends on the value of
γ(H). For this purpose, we need to expose the following lemma.

Lemma 4.1. For any graph G with no isolated vertex and any nontrivial graph H, there exists a
γ{2}(G◦H)-function f (V0,V1,V2) satisfying that f (V (Hx))≤ 2 for every x ∈V (G).

Proof. Given a {2}-dominating function f on G◦H, define the set E f = {x ∈V (G) : f (V (Hx))≥ 3}.
Let f (V0,V1,V2) be a γ{2}(G◦H)-function such that |E f | is minimum among all γ{2}(G◦H)-functions.
Suppose that E f , /0 and let u ∈ E f , we consider the following two cases.
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Case 1. f (V (Hu))≥ 4 or f (V (Hu)) = 3 and ∑x∈N(u) f (V (Hx))≥ 1. In this case, let u′ ∈ N(u) such that
f (V (Hu′)) is maximum among all vertices adjacent to u. So, if f (V (Hu)) = 3, then f (V (Hu′)) ≥ 1.
Consider now the function f ′ : V (G)×V (H)→{0,1,2} defined on G◦H as follows.

• f ′(u,v) = f ′(u′,v) = 2 and f ′(u,y) = f ′(u′,y) = 0 for some v ∈V (H) and every y ∈V (H)\{v};
• f ′(x,y) = f (x,y) for every x ∈V (G)\{u,u′} and y ∈V (H).

Notice that f ′ is a {2}-dominating function on G◦H with ω( f ′)≤ ω( f ) and |E f ′|< |E f |, which is
a contradiction with the minimality of |E f |.

Case 2. f (V (Hu)) = 3 and f (V (Hx)) = 0 for every vertex x ∈ N(u). In this case, let u′ ∈ N(u). If there
exists v ∈V (H) such that f (u,v) = 2, then there exists v′ ∈ N(v) such that f (u,v′) = 1 because f is a
{2}-dominating function. Notice that the function g, defined by g(u,v) = g(u,v′) = g(u′,v) = 1 and
g(x,y) = f (x,y) for every (x,y) ∈ V (G ◦H) \ {(u,v),(u,v′),(u′,v)}, is a {2}-dominating function on
G◦H with ω(g) = ω( f ) and |Eg|< |E f |, which is a contradiction with the minimality of |E f |. Hence
V (Hu)∩V2 = /0, which implies that there exist v,v′,v′′ ∈V (H) such that f (u,v)= f (u,v′)= f (u,v′′)= 1
and f (x,y) = 0 for every (x,y)∈V (Hu)\{(u,v),(u,v′),(u,v′′)}. Consider now the function g′ : V (G)×
V (H)→{0,1,2} defined on G◦H as follows.

• g′(u,v) = g′(u,v′) = g(u′,v) = 1 and g′(u,v′′) = 0;
• g′(x,y) = f (x,y) for every (x,y) ∈V (G◦H)\{(u,v),(u,v′),(u,v′′),(u′,v)}.

By the definitions of f and g′, one can see that g′ is a {2}-dominating function on G ◦H with
ω(g′) = ω( f ) and |Eg′|< |E f |, which is a contradiction with the minimality of |E f |.

Therefore, from the two cases above, we deduce that E f = /0, i.e., f (V (Hx))≤ 2 for every x ∈V (G),
which completes the proof. �

Theorem 4.2. For any graph G with no isolated vertex and any nontrivial graph H, we have

γ{2}(G◦H) =


γ{2}(G) if γ(H) = 1,

γ(2,2,1)(G) if γ(H) = 2,

γ(2,2,2)(G) if γ(H)≥ 3.

Proof. Let f (V0,V1,V2) be a γ{2}(G ◦H)-function which satisfies Lemma 4.1. Define the function
g(W0,W1,W2) on G as follows.

W0 = {u ∈V (G) : f (V (Hu)) = 0},

W1 = {u ∈V (G) : f (V (Hu)) = 1},

W2 = {u ∈V (G) : f (V (Hu)) = 2}.

Observe that γ{2}(G◦H) = ω( f ) = ω(g). Now, we proceed to prove that g is a γ(w0,w1,w2)(G)-function.
To prove this claim and find the values of w0, w1 and w2, we differentiate the next three cases.

Case 1. γ(H) = 1. Let u ∈V (G). First, we assume that u ∈W0. Hence, f (V (Hu)) = 0, which implies
that for any v ∈ V (H) we obtain that f (N(u,v)\V (Hu)) ≥ 2. So, g(N(u)) ≥ 2. Now, we assume that
u∈W1. By definition, there exists the unique vertex v∈V (H) such that f (u,v)= 1. Since γ(H)= 1, for
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any y ∈V (H)\{v}, we have that f (N(u,y)\V (Hu))≥ 1. Thus, we have g(N(u))≥ 1. Consequently,
we have that g is a {2}-dominating function on G, and so γ{2}(G)≤ ω(g) = ω( f ) = γ{2}(G◦H).

On the other hand, notice that for any γ{2}(G)-function h(X0,X1,X2) and any γ(H)-set {v}, the
function h′(X ′0,X

′
1,X

′
2), defined by X ′1 = X1×{v}, X ′2 = X2×{v} and X ′0 = V (G ◦H) \ (X ′1 ∪X ′2), is

a {2}-dominating function on G ◦H. Hence, γ{2}(G ◦H) ≤ ω(h′) = ω(h) = γ{2}(G). Therefore, if
γ(H) = 1 then γ{2}(G◦H) = γ{2}(G).

Case 2. γ(H) = 2. Let u ∈V (G). As in Case 1 we conclude that g(N(u))≥ 2 for every vertex u ∈W0.
Assume now that u ∈W1. By definition, there exists the unique vertex v ∈V (H) such that g(u,v) = 1.
Since γ(H) = 2, we deduce that there exists a vertex v′ ∈V (H)\N[v] such that f (N[(u,v′)]∩V (Hu)) =
0. This implies that f (N(u,v) \V (Hu)) ≥ 2. Hence, g(N(u)) ≥ 2 for every vertex u ∈W1. Finally,
we assume that u ∈ W2. Since γ(H) = 2, we observe that there exists v ∈ V (H) such that either
f (u,v) = 0 and f (N(u,v)∩V (Hu)) ≤ 1 or f (u,v) = 1 and f (N(u,v)∩V (Hu)) = 0. This implies that
f (N(u,v) \V (Hu)) ≥ 1, and as a consequence, g(N(u)) ≥ 1. Therefore, g is a (2,2,1)-dominating
function on G, and so γ(2,2,1)(G)≤ ω(g) = ω( f ) = γ{2}(G◦H).

On the other hand, given any γ(2,2,1)(G)-function h(X0,X1,X2) and any γ(H)-set D = {v,v′}, we can
define the function h′(X ′0,X

′
1,X

′
2) on G ◦H by making X ′1 = (X1×{v})∪ (X2×D), X ′2 = /0 and X ′0 =

V (G◦H)\X ′1. It is straightforward to check that h′ is a (2,2,1)-dominating function on G◦H. Hence,
γ{2}(G◦H)≤ ω(h′) = ω(h) = γ(2,2,1)(G), and therefore, if γ(H) = 2 then γ{2}(G◦H) = γ(2,2,1)(G).

Case 3. γ(H) ≥ 3. First, we notice that for every u ∈ V (G), there exists a vertex v ∈ V (H) such that
f (N[(u,v)]∩V (Hu)) = 0. This implies that f (N(u,v) \V (Hu)) ≥ 2. Hence, g(N(u)) ≥ 2 for every
vertex u ∈V (G), which implies that g is a (2,2,2)-dominating function on G. Therefore, γ(2,2,2)(G)≤
ω(g) = ω( f ) = γ{2}(G◦H).

On the other hand, let h(X0,X1,X2) be a γ(2,2,2)(G)-function and let v ∈ V (H). Notice that the
function h′(X ′0,X

′
1,X

′
2), defined by X ′1 = X1×{v}, X ′2 = X2×{v} and X ′0 = V (G ◦H) \ (X ′1 ∪X ′2), is

a (2,2,2)-dominating function on G ◦H. Thus, γ{2}(G ◦H) ≤ ω(h′) = ω(h) = γ(2,2,2)(G), and so if
γ(H)≥ 3 then γ{2}(G◦H) = γ(2,2,2)(G).

According to the three cases above, the result follows. �

5. Conclusions

In this paper, we have studied the {2} domination number of a graph. Among the main contribu-
tions, we emphasize the following.

• We have shown the close relationship that exists between the {2} domination number and other
domination parameters such as (total) domination number and (total) Italian domination number.

• We have provided closed formulas on the {2} domination number for some families of graphs.
• In a specific section, we focused on the study of the parameter in lexicographic product graphs.

We next propose some open problems which we consider to be interesting:

(i) Characterize the graphs G such that γ{2}(G) = γtI(G) and γ{2}(G) = γtI(G)− γ(G).
(ii) Settle Problem 2.8.

(iii) We propose to study the {2} domination number of other product graphs.
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