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The mechanical vibrations of fuel assemblies have shown to give high levels of neutron noise, triggering
in some circumstances the necessity to operate nuclear reactors at a reduced power level. This behaviour
can be modelled using the neutron noise diffusion approximation in the frequency-domain. This work
presents an extension of the finite element method code FEMFFUSION, to simulate mechanical vibrations
in hexagonal reactors in the frequency domain. This novel strategy in neutron noise simulation is based
on introducing perturbations on the edges of the cells associated with the vibrating fuel assemblies,
allowing to model the movement of these fuel assemblies accurately and efficiently, without the neces-
sity of using locally refined meshes. Numerical results verify the edge-wise methodology in the
frequency-domain against the usual cell-wise frequency-domain model and the time-domain model.
The edge-wise frequency-domain methodology has also been compared to other neutronic codes, as
CORE SIM+ and PARCS.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The neutron noise is defined as the fluctuations of the neutron
flux over its steady state. These oscillations in the neutron field
can be caused by the statistical properties of the underlying
nuclear processes of fission chains (branching noise) or due to small
perturbations in the operation of a nuclear reactor (power noise).
The power neutron noise can be used to detect and localize its
causing anomalies. The early detection of such perturbations gives
the possibility to take proper actions before they affect the plant
availability and safety. One important type of anomaly in a nuclear
power plant is mechanically vibrating fuel assemblies (FA). In the
context of the Euratom CORTEX project Demazière et al. (2017),
the effect of mechanical vibrations has been studied in depth.

One useful technique to estimate the effect of a vibrating FA in
the neutron noise is to resolve the time-dependent neutron diffu-
sion equation for this transient (Vidal-Ferràndiz et al., 2020). A
numerical discrete Fourier transform is then performed to compare
the obtained results with the frequency-domain analysis. The main
advantage of the time-domain model is that it does not imply any
approximation in the perturbations. However, it needs to solve
accurately a large system of linear equations at each time-step
where the change in the neutron flux is quite small.

On the other hand, the first-order frequency-domain neutron
noise equation in the diffusion approximation can be solved for
interesting perturbations (Demazière, 2011; Mylonakis et al.,
2021). This equation must be solved after finding the steady state
of the reactor, since the static neutron flux is a variable of this
equation. The first-order noise equation is derived by considering
the static equations associated with the time-dependent ones
and assuming that the fluctuations are much smaller than the
mean values to be able to neglect second-order terms. A Fourier
transform is then performed to obtain a large linear system with
complex values in the frequency-domain. This methodology has
been applied to rectangular (Mylonakis et al., 2020; Mylonakis
et al., 2021; Kolali et al., 2021) and hexagonal reactors (Malmir
and Vosoughi, 2015; Hosseini et al., 2018; Hosseini and
Mohamadbeygi, 2021). Moreover, better approximations of the
neutron transport equation have been also applied to neutron
noise simulations as Monte Carlo calculations (Rouchon et al.,
2017; Yamamoto, 2018) or deterministic strategies as the method
of characteristic (Gammicchia et al., 2020), the discrete ordinates
approximation (Yi et al., 2021) and the SP3 approximation (Gong
et al., 2021).

Generally, to simulate the neutron noise mechanical vibrations,
refined meshes around the perturbed cell assembly are required
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(Vidal-Ferràndiz et al., 2020), which leads to complicated geomet-
ric problems if non-rectangular grids in the spatial discretization
are used. This work presents an alternative methodology to simu-
late the neutron noise produced by mechanical vibrations using
the frequency-domain model for the diffusion approximation and
the finite element method (FEM), the edge-wise strategy. This
methodology permits to introduce perturbations on the edges of
the cells to simulate the mechanical vibration of the fuel assem-
blies. The edge-wise strategy makes use of the shape functions
defined on the faces of the finite element cells. This strategy is ver-
ified, for rectangular and hexagonal reactors, with the time-
domain methodology presented in (Vidal-Ferràndiz et al., 2019;
Vidal-Ferràndiz et al., 2020). The developed codes are an extension
of the open source neutron diffusion solver FEMFFUSION (Vidal-
Ferràndiz et al., 2021).

The rest of the manuscript is organized as follows. Section 2
describes the neutron diffusion equation in the time-domain. This
Section includes a brief description of the finite element discretiza-
tion. Section 3 describes the frequency-domain first-order neutron
noise equation and its discretization with the finite element
method. Section 4 explains different strategies to introduce a
mechanical vibration perturbation in the frequency-domain in
complex geometries. Section 5 compares numerically the new
edge-wise frequency-domain model with the time-domain and
classical frequency-domain methodologies for rectangular and
hexagonal problems. Finally, the conclusions of the work are pre-
sented in Section 6.

2. Time-dependent neutron diffusion equation

The multigroup time-dependent neutron diffusion equation can
be written as (Stacey, 2007),

V
@U
@t

þLU ¼ ð1� bÞMUþ
XK
k¼1

kkXkCk; ð1Þ

where the concentrations of the neutron precursors are given by

@Ck

@t
¼ bkFU� kdkCk; k ¼ 1; . . . ;K: ð2Þ

In the previous expressions, the matrices for G energy groups are
defined as,
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where the main unknowns of the neutron diffusion equation are the
space- and time-dependent neutron flux Uð~r; tÞ and the delayed
neutron precursor concentrations Ckð~r; tÞ for the k-th precursor
2

group k ¼ 1; . . . ;K . The rest of magnitudes are also space and time
dependent quantities that depend on the reactor materials. The dif-
fusion coefficient for the g-th energy group is represented by Dg .
The absorption and the fission macroscopic cross-sections are
denoted by Rag and Rfg , respectively. The value of Rsgg0 is the scatter-
ing cross section that goes from the g0 energy group to the g energy
group. The value of m is the mean number of neutrons produced by
fission. The value of vg denotes the neutron velocity. The spectrum
of the prompt and the delayed neutrons are denoted by vp

g and vd;k
g ,

and in this work they are assumed equal, i.e. vp
g ¼ vd;k

g for
g ¼ 1; . . . ;G, so we simply denote X :¼ Xk and then, M ¼ XF. The
fraction of the delayed neutrons is bk such that the total delayed

neutron fraction b ¼ PK
k¼1bk. Finally, the neutron precursor delayed

constants are represented by kdk .
To solve the differential equations, a spatial discretization of

the equations must be selected. In this work, a high order con-
tinuous Galerkin finite element method (Zienkiewicz et al.,
2013) is used, leading to a time-dependent algebraic system
of ordinary differential equations. The continuous Galerkin
method is the most usual finite element method because it is
more economical from the memory usage point of view.. In par-
ticular, Lagrange polynomials Nað~rÞ are used to approximate
the neutron flux and the concentration of precursors as a sum
of shape functions multiplied by the unknown expansion coeffi-
cients as

U �
XNdofs

a¼0

Na
~Ua; Ck �

XNdofs

a¼0

Na Ck;a: ð6Þ

where Ndofs is the number of weights of the Lagrange polynomials
used in the finite element method to model the problem, in other
words, the number of degrees of freedom of the problem.

Introducing the weak formulations in Eqs. (1) and (2), and con-
sidering these resulting expansions and the Galerkin approxima-
tion yield a system of discretized equations

V
d~U
dt

þ L~U ¼ ð1� bÞM ~Uþ
XK
k¼1

kdkXCk; ð7Þ

dCk

dt
¼ bkF ~U� kdkCk; k ¼ 1; . . . ;K; ð8Þ

where L;M; F and V are the matrices obtained from the discretiza-
tion of operators L;M;F and V, respectively. More details can
be found in (Vidal-Ferràndiz et al., 2014; Vidal-Ferràndiz et al.,
2016). This finite element method has been implemented by using
the open source finite elements’ library deal.ii (Bangerth et al.,
2007).

To integrate the time-dependent equation, a semi-implicit
scheme of first order is applied (Vidal-Ferràndiz et al., 2016). The
time interval ½0; T� is divided into several subintervals ½th; thþ1�.
First, the moments at t ¼ thþ1 are approximated by applying a
backward difference of first order for the partial time derivative.
The rest of terms is then substituted by its value at time thþ1,
except the concentration of precursors term that is substituted
by its value at time th. Under these assumptions, the vector of neu-
tron flux at time thþ1 is approximated by solving a linear system.
The concentration of precursors is updated along the time by using
a backward difference of first order. The resulting algebraic linear
systems are solved by using the GMRES method provided from
PETSc library (Balay et al., 2021) and the block preconditioner
developed in (Vidal-Ferràndiz et al., 2020).

For a given transient analysis in a reactor core, a static configu-
ration of the reactor is necessary to be considered as initial condi-
tion. Usually, the solution of the k-modes problem associated with
the time dependent neutron diffusion equation,



Fig. 1. Vibrating interface between two regions.
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L0 ~U0 ¼ 1
k
M0

~U0; ð9Þ

where subindex 0 denotes the value of the matrix for the config-
uration of the core at t ¼ 0, is used for this purpose (Verdú et al.,
1994). The fundamental eigenvalue is called the k-effective of the
reactor core, and its corresponding eigenfunction describes the
steady state neutron distribution in the core. This problem is
solved using the methodology presented in (Vidal-Ferràndiz
et al., 2014). In this work, we start with a critical configuration
of the reactor by dividing the fission cross-sections by the k-
effective.

3. First-Order Neutron Noise Equation

The first-order neutron noise theory is developed by splitting
every time dependent term, expressed as Xð~r; tÞ, into their mean
value, X0, which is considered as the steady-state solution, and
their fluctuation around the mean value, dX, as

Xð~r; tÞ ¼ X0ð~rÞ þ dXð~r; tÞ: ð10Þ
These fluctuations are assumed to be small compared to the mean
values jdXð~r; tÞjnjX0ð~rÞj. This allows to neglect second-order terms
ðdXð~r; tÞ � dXð~r; tÞÞ � 0.

The different magnitudes are then split as,

L ¼ L0 þ dL ¼ LD0 þLA0 þ dLA; ð11Þ
M ¼ M0 þ dM; ð12Þ
F ¼ F0 þ dF; ð13Þ
U ¼ U0 þ dU; ð14Þ
Ck ¼ Ck;0 þ dCk: ð15Þ
where the fluctuations of the diffusion coefficients are neglected
(i.e. dDg � 0). Therefore, dL ¼ dLA. These approximations were
demonstrated to be valid for light water reactor applications
(Larsson and Demazière, 2009; Vidal-Ferràndiz et al., 2020). More-
over, we have assumed that the fissile element does not change
during the transient, so dX ¼ 0. Neutron precursor data (bk; k

d
k)

and velocities do not fluctuate along the time either.
Applying theneutronnoise separations from(11) to (15) intoEqs.

(1) and (2), removing the second-order terms, and using the static
Eqs. (9), we obtain the first-order neutron noise diffusion equation,

V
@

@t
dU¼�L0dU�dLAU0þð1�bÞM0dUþð1�bÞdMU0þ

XK
k¼1
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After that, a Fourier Transform defined as,

f ðxÞ ¼ F½f ðtÞ�ðxÞ ¼
Z 1

�1
expð�ixtÞf ðtÞdt; ð18Þ

is performed to get

VixdU¼�L0dU�dLAU0þð1�bÞM0dUþð1�bÞdMU0þ
XK
k¼1

kdkXdCk; ð19Þ

ixdCk¼bkdFU0þbkF0dU�kdkdCk; k¼1; . .. ;K: ð20Þ

This frequency-domain formulation permits substituting the equa-
tions related with the concentration of the delayed neutron precur-
sors (20) into the equation of the neutron flux (19). This step leads
to the multigroup neutron noise diffusion equation,

ixVþL0 � cM0ð ÞdU ¼ �dLþ cdMð ÞU0; ð21Þ
where

c ¼ ð1� bÞ þ
XK
k¼1

kkbk

ixþ kk
: ð22Þ
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In the usual 2 energy groups approximation and without consider-
ing up-scattering, the first-order diffusion neutron noise equation
can be written as

AdU ¼ BU0; ð23Þ
where

A ¼
ix
v1
� ~rD1

~rþ R0
a1 þ R0

12 � cmR0
f1 �cmR0

f2

�R0
12

ix
v2
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2
4

3
5;

B ¼ �dRa1 � dR12 þ cdmRf1 þcdmRf2

dR12 �dRa2

� �
: ð24Þ
4. Cell-wise and edge-wise models of a vibrating fuel assembly

Now, we describe how to model the vibration of a FA as a per-
turbation of cross sections in the frequency-domain, following the
‘‘�=D model”, (Pázsit, 1988; Jonsson et al., 2012; Vidal-Ferràndiz
et al., 2020; Zoia et al., 2021). In the following, a mechanical oscil-
lating FA is modelled as several vibrating interfaces between
homogeneous materials. The cross section, Ra, at the interface
x ¼ b between two material regions, as the one shown in Fig. 1,
is described as:

RaðxÞ ¼ 1�Hðx� bÞð ÞRI
a þHðx� bÞRII

a; ð25Þ
where H is the unit step function, RI

a and RII
a are the cross sections

at region I and II, respectively. Therefore, a vibrating assembly can
be described as two in-phase moving interfaces (one moving inter-
face on one side of the assembly and another moving interface on
the other side of the moving assembly). For the sake of simplicity,
only one moving interface is first considered in the derivations pre-
sented hereafter.

An interface moving as bðtÞ ¼ b0 þ � sinðxptÞ, results in:

Raðx; tÞ¼ 1�Hðx�b0��sinðxptÞÞ
� �

RI
aþHðx�b0��sinðxptÞÞRII

a:

ð26Þ
Using a first order Taylor expansion, the cross section perturbation
can be expressed as

dRaðx; tÞ ¼ RI
a � RII

a

� �
� sinðxptÞÞdðx� b0Þ; ð27Þ

and, in the frequency-domain, the perturbation is written as follows

dRaðx;xÞ ¼ �ip� RI
a � RII

a

� �
dðx� b0Þðdðx�xpÞ þ dðxþxpÞÞ:

ð28Þ
where the contributions associated with frequencies different to the
vibrating frequency, xp, are neglected, including the negative fre-
quencies. The effect of second harmonics is studied in (Zoia et al.,
2021 and Vidal-Ferràndiz et al., 2020).

Now, it is assumed that in Eq. (23),

dUð~r; xÞ ¼ dÛð~rÞdðx�xpÞ; ð29Þ
Bð~r; xÞ ¼ dB̂ð~rÞdðx�xpÞ: ð30Þ
Thus, the equation to be solved is

AðxpÞdÛ ¼ B̂U0; ð31Þ
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where AðxpÞ is the operator A evaluated at x ¼ xp, so that the
term dðx�xpÞ is not introduced in the numerical calculation.

For the spatial discretization of Eq. (31) it is used the same con-
tinuous Galerkin finite element method as in the one selected for
the time-domain formulation of Eq. (21), obtaining, in this way,
an algebraic linear system of equations with the following
structure

Ad~U ¼ B ~U0; ð32Þ
where

A ¼ ixV þ L0 � cM0ð Þ; B ¼ �dLþ cdMð Þ;
L0;M0; dL, dM and V are the matrices obtained from the discretiza-
tion of operators L0;M0; dL; dM and V, respectively. The

unknowns vector d~U contains the corresponding coefficients of dÛ
in terms of the Lagrange polynomials. The vector ~U0 is the dis-
cretization of the static neutron flux, which is obtained from the
solution of the k-modes problem (9). The spatial discretization for
the static problem and the neutron noise problemmust be the same
in order to get coherent results because the reactor must be critical
before the frequency-domain calculation is undertaken.

To treat the term dðx� b0Þ, appearing in Eq. (28) in the spatial
discretization,we can make use of the conventional cell-wise
methodology or the novel edge-wise one.

4.1. Cell-Wise Methodology

A common approximation consists of distributing the cross sec-
tion perturbation over the spatial region of the vibration, cell-wise
methodology (CW), which is convenient for cell-based codes
(Demazière, 2011; Vidal-Ferràndiz et al., 2020). This approxima-
tion is based on the fact that, for a small �, the delta distribution
can be approximated by a suitable nascent delta function, F�,

dðxÞ ’ F� ¼
1
2� x 2 ½��;þ��
0 xotherwise

(
ð33Þ

so that � at the denominator cancels out with the term of the first-
order contribution in the Taylor expansion.

dRðCWÞ
a ðxÞ ¼ � ip

2
RI
a � RII

a

� �
; x 2 ½��;þ��: ð34Þ

To introduce this perturbation in the finite element calculation, the
matrix B is given by:

B ¼
B11 � � � BG1

..

. . .
. ..

.

BG1 � � � BGG

2
664

3
775; ð35Þ

where the element ij of the block gh is given by:

Bghði; jÞ ¼
XNe

e¼1

B
ðeÞ
gh

Z
Xe

NiNjdV ; ð36Þ
Fig. 2. Example of a locally refined mesh around the interface perturbation for a
cell-wise methodology.

4

where the perturbed area X have been divided into Ne elements,

such that X ¼ SNe
e¼1Xe. B

ðeÞ
gh is the value of Bgh at the cell e using

the cell-wise perturbed cross sections defined in Eq. (34).
To obtain an accurate solution of the neutron noise with the

cell-wise methodology, it is necessary to use locally refinedmeshes
around the interface perturbation, as the one shown in Fig. 2. This
local refinement produces numerous cells and, thus, bigger matri-
ces associated with the linear systems need to be solved. Also, take
into account that to construct this refined mesh compatible with
the hexagonal geometry is a difficult task that has to be con-
structed specifically for each perturbed assembly. This type of
refined meshes can contain hanging nodes or unstructured zones.

4.2. Edge-wise methodology

Another possibility is to directly introduce the perturbation on
the edges of the vibrating assembly, edge-wise methodology
(EW). Using this strategy, the use of a refined mesh near the per-
turbation is avoided. The perturbation is

dRðEWÞ
a ðxÞ ¼ �ip� RI

a � RII
a

� �
; x 2 Cf ; ð37Þ

where Cf is a fuel assembly edge where the perturbation is intro-
duced. This scheme can be implemented in the finite element
method through the integrals along the perturbed edges,

Bghði; jÞ ¼
XNf

f¼1

B
ðf Þ
gh

Z
Cf

NiNjdS; ð38Þ

where B
ðf Þ
gh is the value of Bgh at the face f using the edge-wise per-

turbed cross sections defined in Eq. (37). This integral over the edge
of the cell appears also in the treatment of vacuum and albedo
boundary conditions when the high-order finite element method
is used, (Vidal-Ferràndiz et al., 2014; González-Pintor et al., 2009).

This edge-wise strategy permits to efficiently introduce
mechanical FA vibrations in hexagonal reactors. Fig. 3 shows a
vibration in the x direction and the edge-wise calculation can be
written as:

dREWðaÞ
a ¼ ip� cosðp=3Þ Rð1Þ

a � Rð4Þ
a

� �
¼ ip�

2
Rð1Þ
a � Rð4Þ

a

� �
; ð39Þ

dREWðbÞ
a ¼ ip� cosðp=3Þ Rð4Þ

a � Rð2Þ
a

� �
¼ ip�

2
Rð4Þ
a � Rð2Þ

a

� �
; ð40Þ

dREWðcÞ
a ¼ ip� Rð3Þ

a � Rð4Þ
a

� �
; ð41Þ

dREWðdÞ
a ¼ ip� Rð4Þ

a � Rð5Þ
a

� �
; ð42Þ

dREWðeÞ
a ¼ i� cosðp=3Þ Rð6Þ

a � Rð4Þ
a

� �
¼ ip�

2
Rð6Þ
a � Rð4Þ

a

� �
; ð43Þ

dREWðf Þ
a ¼ ip� cosðp=3Þ Rð4Þ

a � Rð7Þ
a

� �
¼ ip�

2
Rð4Þ
a �Rð7Þ

a

� �
; ð44Þ
Fig. 3. Scheme of a hexagonal assembly vibrating in the x direction.



Table 1
Cross sections of the homogeneous material of the 1 D slab reactor.

g Dg Rag mRfg R12

(cm) (1/cm) (1/cm) (1/cm)

1 1.40343 1.17659 e–2 5.62285 e–3 1.60795 e–2
2 0.32886 1.07186 e–1 5.90546 e–2

Table 2
Kinetic data for the 1 D slab reactor.

beff keff (s
�1) v1 ðcms�1Þ v2 ðcms�1Þ

0.0065 0.0767 1.8230 e+7 4.1306 e+5
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where factor cosðp=3Þ ¼ 1=2 is introduced in faces a; b; e and f due
to their inclination with the vibration direction (see Fig. 3). Note
that, the spatial delta function is not taken into account because
the integrals are taken along the edges, as Eq. (38) shows.
5. Application to case studies

5.1. One-dimensional slab reactor

The first and simplest studied case is a homogeneous one-
dimensional slab reactor of longitude 2a ¼ 300 cm with zero flux
Fig. 4. Amplitude of the neutron noi

Fig. 5. Relative error of the neutron noise a

5

boundary conditions. Table 1 shows values of the cross sections
of each homogeneous material. The value of the mean number of
neutrons produced by fission is assumed to be m ¼ 2:5. The kinetic
data of this problem are shown in Table 2. A point generic absorber
of variable strength perturbation is situated at x0 ¼ �30 cm with a
frequency of 1 Hz and a strength of dRa1 ¼ Ra1 and dRa2 ¼ Ra2. This
problem has been solved analytically using the Green’s functions
technique exposed in Demazière (2011).

Fig. 4 shows the relative neutron noise amplitude obtained by
using FEMFFUSION, CORE SIM+ (Demazière, 2011; Mylonakis
et al., 2021) and from the analytical solution. The FEMFFUSION cal-
culation has used the edge-wise methodology inserting the pertur-
bation at the interface situated at x0 ¼ �30 cm and The CORE SIM

+ computation has used an equidistant mesh of 60 cells of 5 cm
each, where the point perturbation is inserted uniformly in the cell
containing the point source. Fig. 5 displays the relative error of the
neutron noise amplitude for the one-dimensional slab. The relative
se for the one-dimensional slab.

mplitude for the one-dimensional slab.



Fig. 6. Phase of the neutron noise for the one-dimensional slab.
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maximum differences (RMD) between FEMFFUSION and the ana-
lytical solution are 0.22% and 1.56 % for fast and thermal neutron
noise amplitudes, respectively. For CORE SIM+, the relative maxi-
mum errors are 0.54 % and 1.56%, respectively. The highest errors
are located around the perturbation. Fig. 6 shows the phase of
the neutron noise. A close agreement between the three strategies
can be observed both on the neutron noise amplitude and on the
neutron noise phase.

5.2. Two-dimensional rectangular case

Next, an example of a simple rectangular reactor with a moving
assembly is presented. This example has 3� 3 assemblies, where
Fig. 7. Material distribution of the 2 D rectangular example.

Fig. 8. Amplitude of the neutron noise for the 2 D

6

the central assembly is vibrating with a frequency of 1 Hz and an
amplitude of 1 mm in the x direction, as Fig. 7 shows. The size of
the reactor is 60� 60 cm. Fig. 7 also displays the material configu-
ration of the example. Table 7 shows the cross sections used for
this case. In this case, it is also assumed that m ¼ 2:5. The kinetic
data for this problem are the same as the ones used in the previous
problem, which are shown in Table 2.

Four different calculations have been compared in this example.
First, a cell-wise frequency-domain calculation is performed with
FEMFFUSION (Cell-wise FD). This calculation uses a 56� 24 mesh,
where four thin layers of cells of 1 mm are introduced to insert the
perturbation source on the path of the moving assembly. Secondly,
an edge-wise frequency-domain calculation is done with FEMFFU-

SION where the perturbation is introduced on the moving inter-
face (Edge-wise FD calculation). This calculation uses a 24� 24
equidistant mesh and provides accurate results without additional
cells. Thirdly, as reference, a time-domain calculation is performed
with the time-domain version of FEMFFUSION code. This code cal-
culates the position of the vibrating assembly each time step and
employs a volume homogenized cross section in the integration
of the neutron diffusion equation. A refined mesh around the mov-
ing interfaces is used. Fourthly, a time-domain calculation per-
formed with the time-dependent nodal code PARCS is studied.
The same refined mesh is used for the time-dependent codes
PARCS and FEMFFUSION and the frequency-domain cell-wise
FD calculation.
rectangular example along the line y ¼ 0 cm.



Fig. 9. Phase of the neutron noise for the 2 D rectangular example along the line y ¼ 0 cm.

Fig. 10. Material distribution of the 2 D hexagonal example.
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Fig. 8 shows a comparison of the relative neutron noise ampli-
tude through the central line of the reactor (y ¼ 0 cm) using these
4 strategies. Fig. 8 shows the neutron noise phase for this reactor
example. Table 4 shows the Relative maximum difference (RMD)
and relative average difference (RAD) of the magnitude of the neu-
tron noise with respect to FEMFFUSION time-domain computation
for the other 3 strategies. Only small differences among the four
strategies, less than 4 %, can be observed around the moving inter-
faces of the vibrating assembly. In this way, the fastest calculation
in terms of CPU time is to use the edge-wise FD calculation, which
does not make use of a refined mesh near the perturbation, with-
out loss of accuracy (see Fig. 9).
Table 3
Cross sections of the materials of the 2 D examples.

Material Group Dg

(cm)

1 1 1.5000
2 0.4000

2 1 1.5000
2 0.4000

Table 4
Relative maximum difference (RMD) and relative average difference (RAD) of the magnitud
the line y ¼ 0 cm.

Fast Group

RMD (%) RAD

Cell-wise FD 0.47 0.
Edge-wise FD 0.47 0.

PARCS 3.89 1.

7

5.3. Two-dimensional hexagonal example

Here, an example of a simple hexagonal reactor with a moving
assembly is presented. This example describes a 7 assemblies reac-
tor, where the central assembly is vibrating with a frequency of
1 Hz and an amplitude of 1 mm in the x direction. The pitch of each
hexagonal assembly is 15 cm. Fig. 10 displays the material config-
uration of this example. The cross sections and the kinetic data
used are the same as in the previous example (Table 3 and Table 2,
respectively).

In this case, three different calculations were performed. First, a
frequency-domain edge-wise calculation is done. In this calcula-
tion, the perturbation source is inserted on the edges of the vibrat-
ing hexagonal assembly. As the assembly is moving in the x
direction, the vertical edge has the double perturbation strength
than the diagonal edges due to the fact that cosðp=3Þ ¼ 1=2. Sec-
ond, as reference, two time-domain calculations were performed
with FEMFFUSION. These calculations used a fixed mesh and vol-
ume averaged cross sections to represent the movement of the
assembly each time-step, but with two different meshes, a uniform
fixed mesh using 336 cells (called: TD N = 336) and a more refined
uniform mesh using 2688 cells (called: TD N = 2688).

Fig. 11 shows the relative neutron noise amplitude in this
simplified example computed with the edge-wise FD strategy
Rag mRfg R12

(1/cm) (1/cm) (1/cm)

0.000 0.000 2.000 e–02
8.000 e–02 1.350 e–01

0.000 0.000 2.000 e–02
8.500 e–02 1.350 e–01

e of the neutron noise with respect to FEMFFUSION time-domain computation along

Thermal Group

(%) RMD (%) RAD (%)

16 0.76 0.25
16 1.37 0.39
24 3.41 1.05



Fig. 11. Amplitude of the neutron noise for the 2 D hexagonal example along the y ¼ 0 line.

Table 5
Relative maximum difference (RMD) and relative average difference (RAD) of the magnitude of the neutron noise with respect to FEMFFUSION edge-wise computation for the 2 D
hexagonal example along the y ¼ 0.

Fast Group Thermal Group

RMD (%) RAD (%) RMD (%) RAD (%)

TD N = 336 231.06 23.54 173.26 18.32
TD N = 2688 24.95 2.80 18.26 2.11
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and the time-domain computations over the midline of the
reactor. Table 5 shows the RMD and RAD of the neutron noise
amplitude. These results show that the time-domain computa-
tion with a coarse mesh (N = 336) does not represent accu-
rately the neutron noise results, and it displays a non-physical
non-symmetric behaviour. The coarse mesh shows an average
difference of more than 18 %. On the other hand, the edge-
wise frequency-domain strategy and the time-domain strategy
with the fine mesh (N = 2688) show similar results, even
though a small non-symmetry behaviour can be seen in the
Fig. 12. Phase of the neutron noise for the 2 D

8

time-domain fine mesh calculation. Their relative average differ-
ent is less than 3 %. The elevated relative maximum differences
are around the centre of the reactor, where the noise amplitude
is zero. Fig. 12 shows the neutron noise phase for this problem.
The common discontinuous change of 180 degrees in the neu-
tron noise phase around the perturbed assembly is observed
(Vidal-Ferràndiz et al., 2020). Similar conclusions as the ones
obtained for the noise amplitude are gathered for the noise
phase computations, i.e. the time-domain computation with a
coarse mesh does not represent accurately the phase results,
hexagonal example along the y ¼ 0 line.



Fig. 13. Materials layout of the VVER-1000 reactor.

Table 6
Cross section data for VVER-1000 reactor.

Material Group Rtr;g Rag

(1/cm) (1/cm)

1 1 2.409871 e–1 8.38590 e–3
2 8.629380 e–1 6.73049 e–2

2 1 2.410237 e–1 1.15550 e–2
2 8.560110 e–1 8.10328 e–2

3 1 2.389109 e–1 8.94430 e–3
2 8.630550 e–1 8.44801 e–2

4 1 2.390411 e–1 1.19932 e–2
2 8.597200 e–1 9.89671 e–2

5 1 2.389384 e–1 9.11600 e–3
2 8.669450 e–1 8.93878 e–2

Fig. 14. Static results for th
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while the EW-FD strategy and the TD strategy with the fine
mesh show similar results.

5.4. Two-dimensional VVER-1000

As a more realistic case of study, a two-dimensional version of a
hexagonal VVER-1000 reactor core without reflector is considered
(Chao and Shatilla, 1995). This reactor has a 1/6 cyclic symmetry,
but as the inserted perturbation is not symmetrical, the whole
reactor must be modelled. The assembly pitch is 23.6 cm. The core
is composed of 163 fuel assemblies. Fig. 13 shows the materials’
layout of the core. Vacuum boundary conditions are assumed for
this problem. Table 6 shows the cross section data for this reactor.
The kinetic data of this problem are assumed to be the same as the
ones used in the previous problems, shown in Table 2.

A mechanical vibration is inserted in the fuel assembly marked
with a cross (�) in Fig. 13. The mechanical vibration has an ampli-
tude of 1 mm and 1 Hz of frequency.

This problem is calculated with a frequency-domain and a time-
domain methodology using second order polynomials in the finite
element method and a globally refined grid with 48 cells per hexa-
gon. The total number of cells is 62592. The obtained multiplica-
tive factor for this problem is keff= 1.00645. Fig. 14 shows the
static results in the VVER-1000 reactor computed with the edge-
wise FD strategy. Fig. 15 shows the neutron noise amplitude for
mRfg Rfg R12

(1/cm) (1/cm) (1/cm)

4.81619 e–3 1.86139 e–3 1.64977 e–2
8.46154 e–2 3.48111 e–2
4.66953 e–3 1.81560 e–3 1.47315 e–2
8.52264 e–2 3.50622 e–2
6.04889 e–3 2.36371 e–3 1.56219 e–2
1.19428 e–1 4.91322 e–2
5.91507 e–3 2.31026 e–3 1.40185 e–2
1.20497 e–1 4.95721 e–2
6.40256 e–3 2.50773 e–3 1.54981 e–2
1.29281 e–1 5.31856 e–2

e VVER-1000 reactor.



Fig. 15. Noise amplitude for the VVER-1000 reactor computed with the EW-FD strategy.

Fig. 16. Noise phase for the VVER-1000 reactor computed with the EW-FD strategy.

Fig. 17. Amplitude of the neutron noise for VVER-1000 reactor along the y ¼ 95:378 cm line.
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Fig. 18. Relative difference of the neutron noise amplitude between time-domain and edge-wise FD methodologies for the VVER-1000 reactor along the y ¼ 95:378 cm line.

Table 7
Relative maximum difference (RMD) and relative average difference (RAD) for the VVER-1000 reactor along the y ¼ 95:378 cm line.

Fast Group Thermal Group

RMD (%) RAD (%) RMD (%) RAD (%)

Noise Amplitude 6.06 0.67 18.69 1.21
Noise Phase 2.26 0.31 5.06 0.38

Fig. 19. Phase of the neutron noise for VVER-1000 reactor along the y ¼ 95:378 cm line.
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this problem. In this Figure, the neutron noise is concentrated in
the boundaries of the vibrating assembly. The fast noise spreads
over a larger region than the thermal neutron noise. Fig. 16 dis-
plays the noise phase for this problem. The usual change of 180
degrees in the neutron noise phase around the perturbed assembly
is observed in the fast noise, and an additional change of phase can
be observed inside the perturbed assembly. This fast change of
phase cannot be accurately represented by the diffusion approxi-
mation because the transport effects grow with the gradient of
the neutron flux.

Fig. 17 shows the relative neutron noise amplitude computed
with the edge-wise FD strategy and the time-domain model.
Fig. 18 displays the relative difference between the both method-
ologies, and Table 7 shows the RMD and the RAD for the VVER-
1000 reactor along the y ¼ 95:378 cm line. Edge-wise FD strategy
11
and the time-domain model show similar results, the relative aver-
age differences are less than 1.3 %, and the maximum differences
are located at the boundaries of the perturbed assembly. Fig. 19
shows the neutron noise phase for this problem. In the neutron
noise phase, the agreement is closer because the relative average
differences are about 0.4 %.
6. Conclusions

This work presents a neutron noise diffusion simulator in the
frequency-domain developed using a high-order finite element
method. It can deal with different kinds of reactor geometries
and refinements. This code permits to introduce perturbations on
the edges of the cells introducing the edgewise methodology and
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allowing to model the mechanical vibrations of fuel assemblies
accurately and efficiently, without using locally refined meshes
around the perturbation. This feature is of special interest to sim-
ulate mechanical vibrations in non-rectangular geometries, as in
hexagonal reactors.

Verification studies compare the frequency-domain simulations
using the edge-wise methodology with the usual frequency-
domain cell-wise model and the time-domain methodology. Small
differences are shown in the results and this verifies the edge-wise
model, showing that this methodology is efficient and can be
implemented easily without the need to build ad hoc refined
meshes near the perturbed assembly. This is an advantage because
the size of the numerical problem to be solved is reduced and the
generation of the mesh is simplified, especially in hexagonal
geometries. In this way, the edge-wise methodology permits to
simulate mechanical vibrations in three-dimensional hexagonal
reactors without using complicated refined meshes. The edge-
wise frequency-domain methodology has been also verified
against other codes, as CORE SIM+ and PARCS in rectangular reac-
tors, obtaining results with good accuracy.

The limitations of the proposed strategy are concentrated in the
use of the diffusion approximation because the neutron noise in
the surroundings of the perturbed fuel assembly does not satisfy
all the hypothesis needed to make valid the diffusion approxima-
tion. Future works will be devoted to study higher approximations
of the neutron transport equation to model FA vibrations in the
frequency-domain.
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