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ABSTRACT

By varying the degree of correlation in stealthy hyperuniform (SHU) materials, the continuous evolution from uncorrelated disorder to
periodic media is possible and allows us, as such, to study the fate of the bimodal distribution, the characteristic of a diffusive transport.
Considering the wave transport through a SHU distribution of a given number of scatterers and at a given frequency, the transition from a
diffusive to a transparent medium is clearly observed only below the Bragg frequency. This transition is characterized by a threshold value of
the stealthiness at the vicinity of which the material abruptly changes from diffusive to transparent. In contrast, no such clear transition is
observed at or above the Bragg frequency and, surprisingly, a seemingly bimodal distribution of the transmission eigenvalues still
characterizes the SHU materials, even when strongly correlated.
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Interferences play an essential role in wave transport through
complex heterogeneous media. They give rise to phenomena that pre-
vail in the scattering properties of such media and open up numerous
applications for wave control. Enhanced backscattering, conductance
fluctuations, or the Anderson localization in disordered media1–3 as
well as the band structure of the transmission spectrum in periodic
media4,5 are well-known examples of interference induced phenom-
ena. Another striking example is the bimodal distribution of the trans-
mission eigenvalues (TEVs) in the transport through a diffusive
disordered medium.6–14 The TEV distribution PðsÞ indeed exhibits
two peaks corresponding to closed, almost fully reflected, eigenchan-
nels (s! 0) and open, almost fully transmitted, eigenchannels
(s! 1). Of particular interest are the latter, in which existence
implies, that, given a sufficiently controlled pattern of the incident
wave, it can be transmitted with almost no energy loss through an oth-
erwise opaque medium. This counter-intuitive effect has given rise to
the wavefront shaping technique, following the first experimental evi-
dence by Vellekoop andMosk.15

Between the limit cases of fully disordered and perfectly crystal-
line media, correlated materials, that is, scattering systems in which
disorder displays spatial correlations, have emerged as new possibilities
to control waves16–19 and design functional materials.20,21 Also, one

may wonder about the fate of the bimodal property when introducing
correlations, especially since this property will no longer be observed
in strongly correlated, crystalline, structures, which will rather be fully
opaque or transparent due to Bragg scattering.

A good candidate to investigate the continuous transition from
diffusive to transparent materials is the class of hyperuniform materi-
als.22 Hyperuniform materials are made of a discrete distribution of
scatterers on a correlated point pattern, the long-range density fluctua-
tions of which vanish. In Fourier space, this translates in a vanishing
structure factor SðqÞ when jqj ! 0. A particular class of hyperuniform
materials, which we will consider in this paper, is that of stealthy
hyperuniform (SHU) materials, for which the structure factor vanishes
on a finite domain jqj < qc, the bound of which depends on a stealthi-
ness parameter, v (see below), that allows us to continuously tune the
material from fully disordered to perfectly ordered.23–35 As a conse-
quence, the material is transparent to long-wavelength incident waves
under the assumption of single scattering. Experimental evidence
of this kind of structure has been recently shown for airborne
acoustic36,37 as well as for electromagnetic waves.17,32,38

In this work, we investigate the transition from uncorrelated
disorder to periodic media by considering the transmission of waves
in a quasi-one-dimensional disordered waveguide. On a L-length
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segment of an otherwise homogeneous waveguide with unit width
(Fig. 1), local heterogeneities are created by changing the material
parameters on a set of randomly chosen sites of a regular grid (red
squares).

Namely, the wave equation reads

divðaðrÞrwÞ þ k2bðrÞw ¼ 0; (1)

with a ¼ b ¼ 1 in the background medium of wavenumber k and
a� 1; b� 1 in the scatterers. Small values of a and b are chosen so
that the scatterers behave as acoustically rigid obstacles (or as perfectly
conducting obstacles if w is a TM-polarized magnetic field traveling in
the waveguide), hence without resonant behavior. With the waveguide
supporting N propagating modes, the N�N transmission matrix T of
the disordered slab is computed and used to characterize the wave
transport (see Ref. 37 for details on the numerical computation).

The scatterers are located on the grid as follows: (i) a 2D SHU
distribution of Ns points on a Ls � Ls square area is first generated fol-
lowing the procedure proposed by Froufe-P�erez et al.28 (see below);
(ii) this distribution is then scaled to a L� L area, so as to keep con-
stant the characteristic length d ¼ L=

ffiffiffiffiffi
Ns
p

, that is, the typical distance
between the points; (iii) a subset of the point distribution that belongs
to a L� 1 rectangular area is extracted; and (iv) the distribution of the
nearest square sites on the grid is associated with the point distribu-
tion. Note that the mesh size is taken small enough (typically 10�2) to
ensure that this shifting of the points on the regular grid has no signifi-
cant effect on the SHU pattern properties.

The algorithm proposed in Ref. 28 starts from a random distribu-
tion of points frjg; j 2 ½1;Ns�, in a square box and uses a simulated
annealing relaxation scheme to find a pattern with a minimized struc-
ture factor in the reciprocal domain jqj < qc

SðqÞ ¼ 1
Ns

XNs

j¼1
eiq�rj

�����

�����

2

< e; (2)

with typically e ¼ 10�6. The degree of positional correlation of the
generated pattern can be encoded by the stealthiness v,

v ¼ MðqcÞ
2ðNs � 1Þ ; MðqcÞ ¼

1
2

pq2c
ð2p=LsÞ2

; (3)

which is the ratio of the number of constrained degrees of freedom,
MðqcÞ, over the total number of degrees of freedom, 2ðNs � 1Þ (upon
removing the translational degrees of freedom). The lower bound
v¼ 0 corresponds to an uncorrelated disordered distribution.
Figures 2(a)–2(c) show typical patterns of SHU point distributions at

low (v ¼ 0:20), mid (v ¼ 0:48), and higher (v ¼ 0:60) values of the
stealthiness, revealing a gradually increasing order. The SHU system
crystallizes into a square lattice when qc ¼ qB ¼ 2p=d, corresponding
to a maximum value of the stealthiness vmax ’ p=4 for large Ns. (Sets
of approximately 6000 points were generated for the following numer-
ical results.)

Figures 2(d)–2(f) show the corresponding structure factor SðqÞ
as estimated by the spatial Fourier transform of the L� 1 distribution
of scatterers aligned to the grid with L¼ 3. (It is, thus, made of approx-
imately 2000 scatterers.) For a low degree of correlation (v ¼ 0:20),
the constrained region jqj < qc clearly appears, and the surrounding
region displays a global isotropy. SHU structures remain isotropic up
to v ’ 0:5, while SðqÞ locally increases around jqj ¼ qB as a precursor
signature of the Bragg scattering characteristic of periodic media, see
Fig. 2(e). A second local increase near jqj ¼ 2qB is observed. Above
v ¼ 0:5, the structures are no longer isotropic, see Fig. 2(f), and a
discrete pattern, a characteristic of a crystalline structure, gradually
appears.

Let us place the generated disordered distributions of scatterers
in a waveguide, as shown in Fig. 1, and analyze how the disorder
correlation affects the transmission, depending on the frequency of the
incident wave. To do this, three frequencies are chosen as depicted in
Figs. 2(d)–2(f) by the pink, red, and dark red circumferences. Note
that these circumferences depict the frequencies in a reduced form
k=kB, with kB ¼ qB=2 ¼ p=d, as a consequence of the von Laue con-
dition for scattering39 (see, e.g., Ref. 40 for details). For v small enough,
the three chosen frequencies “lie” in the unconstrained region, see
Fig. 2(d), and thus, a classical diffusive transport is expected. For larger
values of v, the transport in a strongly correlated medium, and conse-
quently, the transition from disorder to order, is more sensitive to
the frequency, and in particular, to its relative value to the Bragg fre-
quency kB.

The first frequency, k ¼ 0:6kB (pink circumference), is chosen
below the Bragg frequency, such that, for v large enough (namely,
above v ¼ 0:62vmax ’ 0:3), this frequency lies in the constrained
region, and the medium is then expected to be transparent. This is
indeed what is observed when plotting the Landauer conductance
g ¼ TrðTT†Þ from Ref. 41 as a function of the stealthiness, see
Fig. 3(a), where T represents the transmission matrix of the system.

The conductance is first relatively small (hgi=N ’ 0:3, here aver-
aged over 100 realizations of the scatterer distribution), as typically
observed in the diffusive transport, and reaches a high plateau for
larger values of v. Note that the conductance does not reach its maxi-
mum value, hgi=N ¼ 1, although transparency is expected. This is
due to the alignment of the point pattern on the regular grid (see
above), the consequence of which is a structure factor that is not per-
fectly zero in the constrained region, hence a non-perfect transmission.
Between these two limits (diffusive and transparent), the transition is
abrupt. Note that a scale of this transition width with v can be deduced
from the initial point pattern. Indeed, consider an integrated structure
factor

Fðq; vÞ ¼
X

jqj¼q
Sðq; vÞ; (4)

the inverse of which is expected to be low in regions of strong scatter-
ing and large in the regions of weak scattering, as is the transmission.
Figure 4(a) shows that F�1ðq; vÞ displays the same abrupt transition

FIG. 1. Schematic representation of the scattering of a wave impinging on a ran-
dom distribution of scatterers in a quasi-one-dimensional waveguide. For the sake
of simplicity and computational efficiency, the scatterers (red squares) are located
on a regular grid, and a full wave numerical solution37 gives the scattering matrix of
the L-length disordered slab.
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for k < kB (analogously, q < qB) and compares well with the
conductance.

For a weakly correlated disorder, a characteristic property of the
diffusive transport is that the TEV follows the bimodal distribution

PðsÞ ¼ N‘
Lþ ‘

1

s
ffiffiffiffiffiffiffiffiffiffiffi
1� s
p ; (5)

with ‘ being the transport mean free path, as shown in Fig. 3(b), or,
equivalently, in Fig. 3(c), with the TEV as follows:

sn ¼
1

cosh2ðn=�nÞ
; (6)

with �n adjusted to meet
PN

n¼1 cosh
�2ðn=�nÞ ¼ hgi.6,11,42 Above the

threshold value v ’ 0:3—an example is given in Figs. 3(b) and 3(c)
for v ¼ 0:4—the TEV distribution no longer follows the bimodal
distribution, and no closed eigenchannel is observed, resulting in the
strongly increased transparency of the medium. Figure 3(d) shows the
distributions of TEV, sn, as functions of the index n and stealthiness v:
the abrupt transition from the diffusive to the transparent regime
clearly appears.

Close to the Bragg frequency kB (red circumference in Fig. 2),
the effect of increasing the disorder correlation on the transmission
significantly differs from that observed at lower frequencies. Figure
3(e) shows the evolution of the averaged conductance with the
stealthiness. While the medium still behaves as a diffusive medium
for low values of v, with the conductance following Ohm’s law
hgi=N ¼ ‘=ðLþ ‘Þ,43 the Bragg scattering, a consequence of the

progressive crystallization of the medium, makes the averaged trans-
mission to decrease near v ’ 0:5. Above v ’ 0:6, the anisotropy of
the hyperuniform medium makes the transmission strongly depen-
dent on the incident field direction, or, in our case, on the realization
of the randomly generated slab in the waveguide: the medium can be
either strongly reflecting or almost transparent. This relates to the
structure factor shown in Fig. 2(f). Near jqj ¼ qB (red circumfer-
ence), the structure factor may be close to zero or have larger values
(Bragg peaks), depending on the orientation of the wavevector.
When averaging over the angles, the integrated structure factor
Fðq ’ qB; vÞ decreases with increasing v in the crystalline regime
[v > 0:6, see Fig. 4(b)]. This decrease can be associated with the
increase in the average conductance in Fig. 3(e). Remarkably, a
bimodal distribution of the TEV is still observed when varying the
stealthiness, see Figs. 3(f)–3(h). Regardless of the disorder correla-
tions, the eigenchannels are predominantly closed or open.

In the last case considered (dark red circumferences in Fig. 2),
when the frequency is higher than the Bragg frequency, the wavevector
always lies in the unconstrained region. A consequence is that the
value of the conductance remains roughly that in a fully diffusive
medium, until the transition from disordered to crystalline, that is,
around v ’ 0:5, see Fig. 3(i). Then, the same averaging induced effect
as discussed above leads to an increase in the transmission with the
stealthiness in crystallized SHU media. Note that, above q ¼ qB and
for large v, the evolution of the structure factor no longer follows that
of the conductance above k ¼ kB, see Fig. 4(c). Figure 2(f) might
explain this: the Fourier transform, performed over a finite L� 1 spa-
tial domain with finite size scatterers, displays secondary maxima

FIG. 2. (a)–(c) Typical configurations of two-dimensional SHU point patterns for increasing values of the stealthiness (v ¼ 0:2, 0.48, and 0.6), obtained as detailed in Ref. 28.
(d)–(f) Corresponding structure factor SðqÞ, as estimated by the spatial Fourier transform of a pattern having the dimensions ðL; 1Þ of the slab in Fig. 1 with L¼ 3. (It is, thus,
made of approximately 2000 scatterers.) On each plot, the pink, red, and dark red circumferences represent the chosen observation frequencies, k=kB ¼ 0:6, 1.08, and 1.28,
see Fig. 3.
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FIG. 3. Transmission through a slab of scatterers with correlated disorder at a frequency below the Bragg frequency kB [first row, (a)–(d)], at kB [second row, (e)–(h)], and
above kB [third row, (i)–(l)]. First (left) column: conductance, averaged over 100 realizations, as a function of the stealthiness v. Second column: TEV distribution PðsÞ (normal-
ized) for selected values of v, shown as dashed blue lines in the first column plots. The black solid line shows the theoretical bimodal distribution 5. Third column: TEV s2n for
the same values of v, ordered by decreasing values, with comparison to the bimodal relation 6. Fourth column: TEV s2n, as a function of the stealthiness v and index n.

FIG. 4. Averaged conductance, as shown in Fig. 3(a), 3(e), and 3(i), compared with the inverse of the integrated structure factor Fðq ¼ aqB; vÞ, with (a) a ¼ 0:6, (b)
a ¼ 1:08, and (c) a ¼ 1:27; 1:28; 1:29.
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whereas the Fourier transform of an infinite periodic distribution of
points, ideally giving the structure factor, would appear pointwise.
Consequently, the integrated structure factor, taken as an indicator of
the scattering by the medium, possibly overestimates this scattering.

Note, finally, that a bimodal distribution of the TEV is still
observed when k > kB, regardless of the stealthiness. Thus, although
the bimodal distribution is usually known as a characteristic of the dif-
fusive transport in a fully disordered medium, it seems that, consider-
ing SHUmedia, fulfilling a bimodal law is the rule, and breaking it, the
exception.

Figures 5(a) and 5(b) show two snapshots for k < kB of the
acoustic field through two SHU distributions with v ¼ 0:10 and
v ¼ 0:48, respectively. As discussed before in Figs. 3 and 4, the ran-
dom scattering for the SHU distribution with v ¼ 0:10 at the k < kB
makes the material almost opaque, as the conductance and, as a conse-
quence, the transmission is very low. However, for the SHU distribu-
tion with v ¼ 0:48 at the k < kB, the material is transparent before
the transition from diffusive to transparent media.

We have analyzed the continuous transition from the diffusive
transport through an uncorrelated disorder to the transparency or
Bragg scattering in an ordered, periodic, medium. This transition is
achieved by using stealthy hyperuniform distributions of rigid scatter-
ers in a waveguide, with a controlled and adjustable stealthiness. A first
remarkable observation is, at sufficiently low frequency—namely,
below the Bragg frequency—an abrupt transition from diffusive to
transparent is observed. A threshold value of the stealthiness, fre-
quency dependent, separates media that are mostly opaque for the
incident wave, as illustrated in Fig. 5(a), from media that are almost
transparent, see Fig. 5(b). The mechanism and typical scale of this
sharp transition, although not fully explained with the present work,
can be related to the structure factor of the spatial distribution of the
scatterer locations. The results shown here can be used for the material
design as elements to control both the diffusivity and the transparency
of the material. It is also noticeable that the bimodal distribution of the
transmission eigenvalues appears as a general property of the propaga-
tion through the SHU medium and not solely as a characteristic of the
diffusive transport.
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