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ABSTRACT A low-profile circularly-polarized sequential rotation fed 4 × 4 array antenna working in the
Ka-band from 27.5 GHz to 31 GHz is presented. The particularity of the antenna lies in its single-layer
sequential rotation feed network implemented in a bed of nails using a combination of groove and ridge gap
waveguides. The basic radiating element is one slot loaded by a simple coffee-bean-shaped parasitic element
on top. Experimental results show an antenna matching below−10 dB in a 13.6% bandwidth and a measured
axial ratio below 1.3 dB in the desired band.

INDEX TERMS Array, circular polarization, gap waveguide, Ka-band, SATCOM, sequential rotation.

I. INTRODUCTION
Circular polarization (CP) purity in planar antennas
is a challenge often pursued because of its multiple
applications [1], [2]. In the particular context of the Ka-band,
it is especially desirable to have an antenna with good
polarization purity apart from other features, such as low
weight, low profile, and low cost. Specifically, for satellite
communications (SATCOM) on-the-move applications in
this band, the critical requirement is working with an axial
ratio (AR) below 1.25 dB in a frequency range from 27.5 GHz
to 31 GHz. Even more restrictive specifications go as far as
imposing 1 dB as a maximum threshold. At any rate, the ideal
antenna design would be one providing an AR reaching these
levels and satisfying the other requirements mentioned above,
while being scalable to potentially attain high gains. As can
be guessed, this is not an effortless challenge, and in the
past, numerous interesting approaches to achieve circularly
polarized antennas have been proposed in the literature.

For example, metallic waveguides using crossed [3],
[4], inclined [5], [6], Y-shaped [7], T-shaped [8], [9],
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FIGURE 1. Fabricated low-profile circularly-polarized sequential rotation
fed 4 × 4 array antenna.

ring-shaped [10] or L-shaped slots [11], [12] are some of
the options commonly used to achieve the 90◦ phase shift
between the two orthogonal polarizations. These solutions are
useful and widely used, but they tend to have low radiation
efficiency in printed antennas or narrow band in series-fed
metallic slotted-waveguides arrays.
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FIGURE 2. Different schematic views of the antenna: (a) Front perspective view with the parts exploded for better visualization; (b) exploded view
from below; (c) assembled antenna top view, (d) top view of the antenna with the cover hidden and highlighting the position of the slots.

An alternative that avoids this type of problem is
using all-metal polarizers on a slot [13], [14] since full-
metal corporate-fed components are commonly preferred for
SATCOM. Still, of course, they are also usually bulky and
heavy. While it is true that a certain lightness and low cost
can be achieved with the new plastic plating techniques, the
bulkiness is hardly avoidable [15].

Moving one step further, and with all these assets available,
sequential rotation feeding networks have also often been
studied to improve the AR bandwidth of circularly-polarized
array antennas. Many approaches to implement sequential
rotation feed networks have been proposed [16]–[20]. Inter-
estingly, and to some extent logically as stated in [20], there
are scarcely all-metal sequential rotation feeding networks
due to the complexity of the sequential rotation feedingmech-
anism, especially when employing hollow waveguides. Here,
a gap waveguide (GW) network is used to achieve a wideband
design with competitive characteristics.

The choice to use GW technology in this case is not
trifling due to several considerations. First of all, it must be
taken into account that the size of antennas in the millimeter-
wave band can complicate manufacturing and, above all,
assembly. Bed of nails, specific to GW, has proven to be
an effective alternative to conventional waveguides for con-
fining the field within the waveguides even in the presence
of air gaps between metal parts that ideally should be in
contact.

This has been widely reported and demonstrated in the past
on multiple antennas [21]–[23].

Thus, this antenna presents a coffee-bean-shaped radiating
element fed by a novel single-layer sequential rotation net-
work in a 2×2 unit cell using a horizontally polarized groove
gap waveguide (Figs. 1 and 2).

The technical details of this work are presented now as
follows. Section II provides all the design aspects that make
this antenna particular, from the sequential rotation feeding
network to the radiating element. Section III is devoted exclu-
sively to the experimental work and appropriately compared
and discussed against the simulations. Section IV ends with
the conclusions.

II. ANTENNA DESIGN
This section describes the most specific features of this
antenna in detail. The aperture is 50 × 50 mm2 and 18 mm
thick. While this is a prototype of small dimensions, the
corporate-feed network is perfectly scalable to achieve arrays
of higher gain. Here, the experimental breadboard is pre-
sented as a proof of concept. The ultimate goal is to use
an element with good, but not excellent, polarization purity
and then, thanks to a sequentially rotated feeding network,
improve the AR bandwidth in a low-profile antenna as much
as possible. Therefore, the critical elements in this antenna are
the circularly-polarized element and the novel single-layer
rotation feed network, which are detailed below.

A. COFFEE-BEAN RADIATING ELEMENT
The high purity of flat panel antennas has hardly been
approached in the past, as also recently pointed out by other
authors [1]. There are different methods to address the prob-
lem, as seen in the introductory part. Our proposal is an
element as simple as possible, both in terms of design and
fabrication. Such element resembles a coffee bean from a
top view and is capable to transform the linear polarization
radiated by a slot into circular polarization in a simple and
intuitive way.

In [24], the basic idea of this simple structurewas presented
for the first time. By combining the radiation of a conven-
tional rectangular slot and this coffee-bean-shaped parasitic
element, a circularly polarized wave is generated, reaching
an AR below 3 dB from 27.5 GHz to 31 GHz. This particular
band was specifically chosen because it is the one regulated
for transmission in SATCOM on-the-move applications in
Ka-band. However, that work did not delve into an exper-
imental validation of the element. While this was a good
starting point, sometimes a 3 dB threshold is insufficient for
specific applications, and even better circular polarization
purity, with an AR below 1.5 dB, must be achieved. This
challenge will be faced in the next section, where thanks to
sequential rotation techniques, further improvement in AR is
reached.
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TABLE 1. Featured dimensions of the prototype.

TABLE 2. Comparison with other sequential feed antennas.

The principle of operation of the polarizing element is to
use a combination of slot and dipoles. The basic geometry,
shown in Fig. 3a, consists of a metallic circle from which
a central strip is removed. A vertically and a horizontally
removed strips are shown for illustrative purposes. Note that
in the final design, the eliminated central strip is rotated 45◦

with respect to the lower horizontal slot. Then, if the element
is illuminated with the strip vertically, it behaves like an array
of two parallel dipoles.When the strip is horizontal, it acts as a
slot. The behavior of the tangential electric field andmagnetic
energy density are shown in each case in Figs. 3b and 3c,
respectively. By varying the inclination angle, a hybrid slot
and dipole performance can been achieved, and it is well
known that an orthogonal dipole and slot can produce good
circular polarization purity.

The simplicity of this element relies on a few tuning details.
In the end, the concept consists of two semicircles placed just
above the slot. Core parameters for good purity are the radius
of the semicircles, their angle of rotation, and the distance
between them, all indicated in Fig. 4.

B. SEQUENTIAL ROTATION FEEDING NETWORK
Our starting point is the coffee-bean element in [24], which
exhibited a simulated 3-dB axial ratio from 27.5 GHz
to 31 GHz. However, this is not enough for SATCOM appli-
cations, where AR values as low as 1.5 dB are often required.
As it is well-known, the sequential rotation technique sig-
nificantly improves AR in those antennas where it is imple-
mented. Herewe describe the sequential rotation arrangement
on the coffee-bean element.

Ultimately, the manufactured and measured antenna has
4 × 4 radiating elements, but we choose to describe the unit
cell composed of 2× 2 elements for a more precise explana-
tion. A descriptive scheme of this 2 × 2 cell is presented in
Fig. 5a. Notice that the network is embedded in a bed of nails,
but this subplot has been made transparent for a clearer view
of the network. The input port of the sub-array is excited by
a ridge gap waveguide (RGW) then connected to a horizon-
tally polarized groove gap waveguide (GGW). This type of
combination was first presented in [23] and later employed
as a functional alternative solution for compact single-layer
antenna arrays [27], [28]. Then, the rest of the network is

FIGURE 3. Description of the behavior of the fields at two positions of
the coffee-bean-shaped radiating element. (a) Basic cell with the central
strip of the circle perpendicular to the slot (Case 1) and parallel to it
(Case 2); (b) and (c) show the tangential electric field and magnetic
energy density, respectively.

exclusively composed of GGWs feeding each square cav-
ity conveniently. The side dimension of these square cross-
section cavities is 4.8 mm, which is approximately λ/2 at the
upper frequency of the working band (31 GHz). Note that
the four cavities that make up the 2 × 2 subarray are fed
from different sides and with the appropriate phase to achieve
the desired sequential rotation feeding. In this regard, all the
parameters involving the input port (Fig. 5b), the groove gap
waveguide, and the ridge gap waveguide are embedded in the
bed of nails (Fig.5c) are indicated in Table 2.
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FIGURE 4. (a) Coffe-bean-shaped radiating element dimensions. (b) Top
view of the 2 × 2 subarray and side view schematic of the lid, including
the slots and the radiators.

It may seem a priori that it becomes a complex and
unwieldy network, but this is not entirely so. This approach
has been used countless times in planar technology [29],
[30]. The difficulty in transferring the idea from the planar
world to hollow waveguide structures has been in achieving
such a compact design to have the elements close enough
(i.e., within one wavelength). The key point is to use the
narrow-face waveguide to make the network much more
compact. The cost of using E-plane power dividers is that
the height of the lower structure is higher than if they were
H-plane waveguides. However, it is a price worth paying to
have all the elements close together in a single layer. Also,
note that the total height of the antenna, including the coffee-
bean parasitic element, is 1.8 cm only.

Lastly, the improvement provided by using this feeding
network is demonstrated in Fig. 6. This graph shows the AR
obtained by a 2 × 2 array with all elements in phase with a
blue line. The network is then replaced by the one proposed in
this work. Note that the radiating element must also be rotated
90◦ sequentially according to the network as shown above in
Figs. 2c and 4b. Thus, while the uniformly fed array provides
an AR of less than 3 dB in a 4 GHz bandwidth, thanks to
sequential rotation, the ARflattens to below 1 dB for the same
frequency range.

III. EXPERIMENTAL RESULTS
An experimental measurement campaign carried out on the
manufactured prototype (Fig. 7) is now presented. Fig. 8

FIGURE 5. Antenna schematics. (a) Top view of the sequential rotation
network embedded in the bed of nails. (b) Top and side views of the
prototype. Main dimensions of the input port are indicated.
(c) Dimensions of the groove gap waveguide and ridge gap waveguide
used in the feeding network.

FIGURE 6. Simulated AR comparing a 2 × 2 CP array antenna either
uniformly or sequentially rotation fed. The area below 1.25 dB is
indicated with green shading and the area between 1.25 dB and 3 dB is
marked with blue shading.

shows the radiation patterns over the entire bandwidth of
interest, i.e., from 27.5 GHz to 31 GHz, in 500 MHz steps,
in total eight different frequencies. For better clarity of the
plots, they are separated into four subfloats showing the two
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FIGURE 7. Different views of the fabricated antenna. (a) Top view with the pieces slipped for better visualization, (b) side view of the assembled
prototype, and (c) antenna under measurement in the anechoic chamber.

FIGURE 8. Normalized copolar measured radiation patterns for several frequencies: (a) XZ-plane and (b) YZ-plane; and crosspolar: (c) XZ-plane and
(d) YZ-plane.

FIGURE 9. Measured and simulated axial ratio of the proposed antenna.
Threshold of 1.25 dB is highlighted in yellow.

FIGURE 10. Measured and simulated reflection coefficient of the
proposed antenna.

co-polar (RHCP) and cross-polar (LHCP) patterns in the two
principal antenna cuts (XZ and YZ planes). Good stability

FIGURE 11. Measured antenna gain and antenna efficiency.

of all the patterns is clearly appreciated, even though they
seem to be more stable in the center of the band. Only slight
deterioration appears in the lower part of the band of the
XZ plane. Regardless, it can be seen that the ratio between
the co-polar and the cross-polar components in the broadside
direction is always higher than 20 dB, which indicates a good
CP purity. Fig. 9 shows the comparison between themeasured
and the simulated AR. While the simulated axial ratio did not
exceed 1 dB, the measurement does not exceed 1.3 dB, thus
validating the excellent performance of combining the coffee
bean-shaped radiating element and the sequential rotation
feed. As for the rest of the essential features of the antenna,
the reflection coefficient obtained is also shown and com-
pared with the simulated one in Fig. 10.
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An average measured gain of 18 dBi has been obtained
with a good average antenna efficiency of 80%, relatively
constant throughout the band. Fig. 11 shows the measured
values in equispaced frequencies along the band of interest.
A maximum peak gain of 19.24 dBi is observed at 29 GHz.
For the sake of framing these results, a comparative table
including recent works on sequentially fed antennas is finally
provided in Table 2. It is worth highlighting the good AR
bandwidth below 1.5 dB for the proposed low profile and
practically all-metal antenna.

Finally, it is appropriate to discuss why the reflection coef-
ficient and AR do not fully agree between simulation and
measurement. While a firm assertion is difficult, some plau-
sible conjectures can be guessed. For example, the usual pos-
sible manufacturing deviations and a slightly visible warping
of the dielectric sheet could be highlighted. The RO4003C
sheet on which the copper coffee-bean parasitic elements
are located is 0.5 mm thick, suspended 1 mm above the
radiating slots and only supported by the four corner poles.
A better approach for larger antennas might be to stick this
dielectric layer on a near-air permittivity foam to avoid this
slight warping of the layer. At any rate, it has been proven
that this fact has not been an obstacle to obtain an excellent
polarization purity and S11 below −10 dB along the whole
3.5 GHz bandwidth.

IV. CONCLUSION
An antenna with a measured axial ratio below 1.3 dB
from 27.5 GHz to 31 GHz, typically a critical require-
ment in SATCOM on-the-move, is presented. This Ka-band
4 × 4 circularly polarized antenna array consists of three
pieces. The thickest piece contains a sequential rotation distri-
bution network to excite the cavities, all embedded in a bed
of nails. This piece is coupled to an array of slots. Finally,
the CP performance is improved by using a coffee-bean-
shaped element. While this element already provides CP by
itself, using the rotational feed significantly improves the
CP purity. Taking advantage of this feature, it is possible to
extend the AR bandwidth with respect to the 1.25 dB upper
bound typically required in highly-demanding applications in
the Ka-band.
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