
����������
�������

Citation: Baquero-Arnal, P.; Jorge, J.;

Giménez, A.; Iranzo-Sánchez, J.;

Pérez, A.; Garcés Díaz-Munío, G.V.;

Silvestre-Cerdà, J.A.; Civera, J.;

Sanchis, A.; Juan, A. MLLP-VRAIN

Spanish ASR Systems for

the Albayzín-RTVE 2020

Speech-to-Text Challenge: Extension.

Appl. Sci. 2022, 12, 804. https://

doi.org/10.3390/app12020804

Academic Editor: Francesc Alías

Received: 29 November 2021

Accepted: 8 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

MLLP-VRAIN Spanish ASR Systems for the Albayzín-RTVE
2020 Speech-to-Text Challenge: Extension
Pau Baquero-Arnal * , Javier Jorge , Adrià Giménez , Javier Iranzo-Sánchez , Alejandro Pérez ,
Gonçal Vicent Garcés Díaz-Munío , Joan Albert Silvestre-Cerdà , Jorge Civera , Albert Sanchis
and Alfons Juan

Machine Learning and Language Processing (MLLP) Research Group, Valencian Research Institute for Artificial
Intelligence (VRAIN), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain;
jajorca@vrain.upv.es (J.J.); adgipas@vrain.upv.es (A.G.); jairsan@upv.es (J.I.-S.); alpegon2@vrain.upv.es (A.P.);
gogardia@vrain.upv.es (G.V.G.D.-M.); jsilvestre@dsic.upv.es (J.A.S.-C.); jorcisai@vrain.upv.es (J.C.);
josanna2@vrain.upv.es (A.S.); ajuan@dsic.upv.es (A.J.)
* Correspondence: pabaar@upv.es

Featured Application: This work has direct application in live automatic captioning of audiovi-
sual material, which is fundamental in accessibility.

Abstract: This paper describes the automatic speech recognition (ASR) systems built by the MLLP-
VRAIN research group of Universitat Politècnica de València for the Albayzín-RTVE 2020 Speech-
to-Text Challenge, and includes an extension of the work consisting of building and evaluating
equivalent systems under the closed data conditions from the 2018 challenge. The primary system
(p-streaming_1500ms_nlt) was a hybrid ASR system using streaming one-pass decoding with a context
window of 1.5 seconds. This system achieved 16.0% WER on the test-2020 set. We also submitted
three contrastive systems. From these, we highlight the system c2-streaming_600ms_t which, following
a similar configuration as the primary system with a smaller context window of 0.6 s, scored 16.9%
WER points on the same test set, with a measured empirical latency of 0.81 ± 0.09 s (mean ± stdev).
That is, we obtained state-of-the-art latencies for high-quality automatic live captioning with a small
WER degradation of 6% relative. As an extension, the equivalent closed-condition systems obtained
23.3% WER and 23.5% WER, respectively. When evaluated with an unconstrained language model,
we obtained 19.9% WER and 20.4% WER; i.e., not far behind the top-performing systems with only
5% of the full acoustic data and with the extra ability of being streaming-capable. Indeed, all of
these streaming systems could be put into production environments for automatic captioning of live
media streams.

Keywords: natural language processing; automatic speech recognition; streaming

1. Introduction

This paper describes the participation of the Machine Learning and Language Process-
ing (MLLP) research group from the Valencian Research Institute for Artificial Intelligence
(VRAIN), hosted at the Universitat Politècnica de València (UPV), in the Albayzín-RTVE
2020 Speech-to-Text (S2T) Challenge, with an extension focused on building equivalent
systems under the 2018 closed data conditions. The article is an extended version of the
original submission to the Challenge, presented in IberSPEECH 2020 [1].

Live audio and video streams such as TV broadcasts, conferences, lectures, as well as
general-public video streaming services (e.g., YouTube) over the Internet have increased
dramatically in recent years because of advances in networking with high speed connec-
tions and proper bandwidth. Additionally, due to the COVID-19 pandemic, video meet-
ing/conferencing platforms have experienced an exponential growth of usage, as public
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and private companies have leveraged remote working for their employees to comply with
the social distancing measures recommended by health authorities.

Automatic transcription and translation of such audio streams is a key feature in
a globalized and interconnected world, in order to reach wider audiences or to ensure
proper understanding between native and non-native speakers, depending on the use case.
Additionally, more and more countries are requiring by law that TV broadcasters provide
accessibility options to people with hearing disabilities, with the minimum amount of
content to be captioned increasing year by year [2,3].

Some TV broadcasters and other live streaming services are using manual transcrip-
tion from scratch of live audio or video streams, as an initial solution to comply with
the current legislations and to satisfy user expectations. However, this is a hard task for
professional transcribers who, under stressful conditions, are prone to produce captioning
errors. Besides, it is difficult to scale up such a service as, in these organizations, the amount
of human resources devoted to this particular task might be scarce.

Due to these reasons, the need and demand for high-quality real-time streaming
Automatic Speech Recognition (ASR) has increased drastically in the last years. Automatic
live audio stream subtitling enables professional transcribers to correct live transcripts
provided by these ASR systems, when they are not fit for broadcast as they are. In this way,
they can dramatically expedite their productivity and significantly reduce the probability of
producing transcription errors. However, the application of state-of-the-art ASR technology
to video streaming is a highly complex and challenging task due to real-time and low-
latency recognition constraints.

The MLLP-VRAIN research group has focused its research efforts in the past two
years on streaming ASR. This work aims to describe our latest developments in this area,
showing how advanced ASR technology can be successfully applied under streaming
conditions, by providing high-quality transcriptions and state-of-the-art system latencies
on real-life tasks such as the RTVE (Radiotelevisión Española) database.

Current state-of-the-art ASR systems are based on the hybrid approach, combining
Hidden Markov Models (HMM) with deep neural networks (DNN) [4] for both acoustic
and language models (AM and LM). For acoustic modelling, deep Bidirectional Long-Short
Term Memory (BLSTM) networks have shown to be a robust architecture achieving a good
performance in an ample range of ASR tasks [5–8]. As for language modelling, Transformer-
based architectures have achieved very promising results [9,10], though Long-Short Term
Memory (LSTM) recurrent neural networks (RNN) are still in broad use [11]. Apart from
hybrid systems, end-to-end systems have received great attention in recent years, including
a number of proposals for low-latency streaming decoding [12–14]. However, despite their
simplicity and promising prospects, it is still unclear whether or not they will soon surpass
state-of-the-art hybrid systems combining independent models trained from vast amounts
of data. In this work, we focus on the hybrid approach. One-pass decoding is a recent
development within this approach, where a neural LM is used directly during search [15,16],
instead of the conventional rescoring of lattices or n-best hypotheses in a two-pass decoding
approach [17–19]. In [20], we have recently extended this architecture for real-time one-pass
decoding to include BLSTM AMs with a time sliding window. This window is also used
for on-the-fly acoustic feature normalization, thus enabling full streaming ASR hybrid
recognition with neural AM and LMs. More recently, this architecture has been refined
to include streaming-adapted Transformer LMs besides, or even replacing, LSTM-RNN
LMs [21].

Our participation in the Albayzín-RTVE 2020 S2T Challenge consisted of the submis-
sion of a primary, performance-focused streaming ASR system, plus three contrastive
systems: two latency-focused streaming ASR systems, and one conventional off-line
ASR system. These systems capitalized on the full streaming ASR hybrid recognition
approach described above, and were built using our in-house transLectures-UPV ASR
toolkit (TLK) [22]. In contrast, most other participants used the readily-available Kaldi
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toolkit for DNN-HMM ASR systems [23–26] with occasional end-to-end systems as con-
trastive submissions.

The rest of the paper is structured as follows. First, Section 2 briefly describes the
Albayzín-RTVE 2020 S2T Challenge and the RTVE databases provided by the organizers.
Next, Section 3 provides a detailed description of our participant ASR systems. Section 4
presents a report of equivalent ASR systems under the 2018 closed data conditions. Finally,
Section 5 gives a summary of the work plus some concluding remarks.

2. Challenge Description and Databases

The Albayzín-RTVE 2020 Speech-To-Text Challenge consists of automatically tran-
scribing different types of TV shows from the Spanish public TV station RTVE, and the as-
sessment of ASR system performance in terms of Word Error Rate (WER) by comparing
those automatic transcriptions with correct reference transcriptions [27].

The MLLP-VRAIN previously participated in the 2018 edition of the challenge [28],
in a joint collaboration with the Human Language Technology and Pattern Recognition
(HLTPR) research group of RWTH Aachen University. The evaluation was carried out on
the RTVE2018 database [29], which includes 575 hours of audio from 15 different TV shows
broadcast between 2015 and 2018. This database is allocated into four sets: train, dev1,
dev2 and test (test-2018). Our systems won in both the open-condition and closed-condition
tracks [30], scoring 16.5% and 22.0% WER points respectively in the test-2018 set.

For the 2020 edition of the challenge, a single open-condition track was proposed,
and system evaluations have been carried out over the test (test-2020) set from the RTVE2020
database, which includes 78.4 speech hours at a sampling rate of 16 kHz from 15 different
TV shows broadcast between 2018 and 2019 [31].

3. MLLP-VRAIN Systems

In this section, we describe the hybrid ASR systems developed by the MLLP-VRAIN
that participated in the Albayzín-RTVE 2020 S2T Challenge.

3.1. Acoustic Modelling

Our acoustic models (AM) were trained using 205 filtered speech hours from the
RTVE2018 train set (187 h) and our internally split dev1-train set (18 h), as in [28], plus about
3.7 K hours of other resources crawled from the Internet in 2016 and earlier. Table 1
summarises all training datasets along with their total duration (in hours). From this
data, first, we extracted 16-dimensional MFCC features plus first and second deriva-
tives (48-dimensional feature vectors) every 10 ms to train a context-dependent feed-
forward DNN-HMM with three left-to-right tied states using the transLectures-UPV toolkit
(TLK) [22]. The state-tying schema followed a phonetic decision tree approach [32] that pro-
duced 10 K tied states. Then, feed-forward models were used to bootstrap a BLSTM-HMM
AM, trained with 85-dimensional filterbank features, following the procedure described
in [7]. The BLSTM network was trained using both TLK and TensorFlow [33], and had
8 bidirectional hidden layers with 512 LSTM cells per layer and direction. As in [7], we per-
formed chunking during training by considering a context to perform back-propagation
through time to a window size of 50 frames. Additionally, SpecAugmentation was applied
by means of time and frequency distortions [34].
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Table 1. Transcribed Spanish speech resources for AM training.

Resource Duration (h)

Internal: entertainment 2932
Internal: educational 406

Internal: user-generated content 202
Internal: parliamentary data 158

Voxforge [35] 21

RTVE2018: train 187
RTVE2018: dev1-train 18

TOTAL 3924

3.2. Language Modelling

Regarding language modelling, we trained count-based (n-gram) and neural-based
(LSTM, Transformer) language models (LMs) to perform one-pass decoding with differ-
ent linear combinations of them [16], using the text data sources and corpora described
in Table 2.

On the one hand, we trained 4-gram LMs using SRILM [36] with all text resources
plus the Google-counts v2 corpus [37], accounting for 102G running words. The vocabulary
size was limited to 254 K words, with an OOV ratio of 0.6% computed over our internal
development set.

On the other hand, regarding neural LMs, we considered the LSTM and Transformer
architectures. In both cases, LMs were trained using a 1-gigaword subset randomly ex-
tracted from all available text resources, except Google-counts. Their vocabulary was
defined as the intersection between the n-gram vocabulary (254 K words) and that derived
from the aforementioned training subset. We did this to avoid having zero probabilities
for words that are present in the system vocabulary but not in the training subset. This is
taken into account when computing perplexities by renormalizing the unknown-word
score accordingly.

Specific training details for each neural LM architecture are as follows. Firstly, LSTM
LMs were trained using the CUED-RNNLM toolkit [38]. The Noise Contrastive Estimation
(NCE) criterion [39] was used to speed up model training, and the normalization constant
learned from training was used during decoding [40]. Based on the lowest perplexity
observed on our internal development set, a model with a 256-unit embedding layer and
two hidden LSTM layers of 2048 units was selected. Secondly, Transformer LMs (TLMs)
were trained using a customized version of the FairSeq toolkit [41], with the following
configuration minimizing perplexity in our internal development set: 24-layer network
with 768 units per layer, 4096-unit feed-forward neural network, 12 attention heads, and
an embedding of 768 dimensions. These models were trained until convergence with
batches limited to 512 tokens. Parameters were updated every 32 batches. During inference,
Variance Regularization was applied to speed up the computation of TLM scores [21].

Table 2. Statistics of Spanish text resources for LM training. S = Sentences, RW = Running words,
V = Vocabulary. Units are in thousands (K).

Corpus S (K) RW (K) V (K)

OpenSubtitles [42] 212,635 1,146,861 1576
UFAL [43] 92,873 910,728 2179

Wikipedia [44] 32,686 586,068 3373
UN [45] 11,196 343,594 381

News Crawl [46] 7532 198,545 648
Internal:

entertainment 4799 59,235 307

eldiario.es [47] 1665 47,542 247
El Periódico [48] 2677 46,637 291
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Table 2. Cont.

Corpus S (K) RW (K) V (K)

Common Crawl [49] 1719 41,792 486
Internal:

parliamentary data 1361 35,170 126

News
Commentary [46] 207 5448 83

Internal: educational 87 1526 35

TOTAL 369,434 3,423,146 5785

Google-counts v2 [37] - 97,447,282 3693

3.3. Decoding Strategy

Our hybrid ASR systems follow a real-time one-pass decoding by means of a History
Conditioned Search (HCS) strategy, as described in [16]. HCS groups hypotheses by
their LM history, with each group representing all state hypotheses sharing a common
history. In this way, word histories only need to be considered when handling word
labels, and thus can be ignored during dynamic programming at intra-word state level [50].
This approach allows us to benefit from the direct usage of additional LMs during decoding
while satisfying real-time constraints. This decoding strategy introduces two additional
and relevant parameters to control the trade-off between Real-Time Factor (RTF) and WER:
LM history recombination, and LM histogram pruning. The static look-ahead table, needed
by the decoder to use pre-computed look-ahead LM scores, is generated from a pruned
version of the n-gram LM.

For streaming ASR, as the full sequence (context) is not available during decoding,
BLSTM AMs are queried with a sliding, overlapping context window of limited size
over the input sequence, averaging outputs of all windows for each frame to obtain
the corresponding acoustic score [20]. The size of the context window (in frames or
seconds) is set in decoding, and defines the theoretical latency of the system. This limitation
of the context prevents us from performing a Full Sequence Normalization, which is
typically applied under the off-line setting. Instead, we applied the Weighted Moving
Average (WMA) technique, which uses the content of the current context window to
update normalization statistics on-the-fly [51]. This technique is applied over a batch Bj of
frames as

B̂j = Bj − µ̂j (1)

where

µ̂j =
f j−1 + ∑b+w

t=1 Bj,t

nj−1 + b + w
(2)

being f j−1 the accumulated values of previous frames until batch Bj−1, Bj,t the t-th frame
in batch Bj, nj−1 the number of frames until batch Bj−1, and b and w the batch and win-
dow sizes, respectively. f j and nj are accumulated values that are updated by weighting
the contribution of previous batches with an adjustable parameter α:

f j = α · f j−1 +
b

∑
t=1

Bj,t (3)

nj = α · nj−1 + b (4)

Finally, as Transformer LMs have the inherent capacity of attending to potentially
infinite word sequences, history is limited to a given maximum number of words, in order
to meet the strict computational time constraints imposed by the streaming scenario [21].
By applying all these modifications, our decoder acquires the capacity to deliver live
transcriptions for incoming audio streams of potentially infinite length, with latencies
lower-bounded by the context window size.
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3.4. Experiments and Results

To carry out and evaluate our system development, we used the dev and test sets
from the RTVE2018 database. For the experiments, we devoted our internally split dev1-dev
set [28] for development purposes, whilst dev2 and test-2018 were used to test ASR perfor-
mance. Finally, test-2020 was the blind test used by the organisation to rank the participant
systems. Table 3 provides basic statistics of these sets.

Table 3. Basic statistics of RTVE development and tests sets, including our internally split dev1-dev
set: total duration (in hours), number of files, average duration of samples in seconds plus-minus
standard deviation (dµ ± σ), and running words (RW) in thousands (K).

Set Duration (h) Files dµ ± σ RW (K)

dev1-dev 11.9 10 4267 ± 1549 120
dev2 15.2 12 4564 ± 1557 149

test-2018 39.3 59 2395 ± 1673 377
test-2020 78.4 87 2314 ± 1576 519

First, we studied the perplexity (PPL) on the dev1-dev set of all possible linear combi-
nations for the three types of LMs considered in this work. Table 4 shows the PPLs of these
interpolations, along with the optimum LM weights that minimized PPL in the dev1-dev set.
The Transformer LM provides significantly lower perplexities in all cases and, accordingly,
takes very high weight values when combined with other LMs. Indeed, the TLM in isola-
tion already delivers a strong perplexity baseline value of 63.3, while the maximum PPL
improvement is just 6% relative when all three LMs are combined.

Table 4. Perplexity (PPL) and interpolation weights, computed over the dev1-dev set, of all possible
linear combinations of n-gram (ng), LSTM (ls) and Transformer (tf) LMs.

LM Comb. PPL Weights (%)

ng 179.5 -
ls 98.4 -
tf 63.3 -

ng + ls 93.2 15 + 85
ng + tf 61.6 6 + 94
ls + tf 60.7 13 + 87

ng + ls + tf 59.5 5 + 10 + 85

Second, we tuned decoding parameters to provide a good WER-RTF tradeoff on dev1-
dev, with the hard constraint of RTF < 1 to ensure real-time processing of the input. From
these hyperparameters, we highlight, due to their relevance, a LM history recombination of
12, LM histogram pruning of 20, and TLM history limited to 40 words.

At this point, we defined our participant off-line hybrid ASR system identified as
c3-offline (contrastive system no. 3), consisting of a fast pre-recognition + Voice Activity
Detection (VAD) step to detect speech/non-speech segments as in [28], followed by real-
time one-pass decoding with our BLSTM-HMM AM, using a Full Sequence Normalization
scheme and a linear combination of the three types of LMs: n-gram, LSTM and Transformer.
This system scored 12.3 and 17.1 WER points on test-2018 and test-2020, respectively.

Next, as our focus was to develop the best-performing streaming-capable hybrid
ASR system for this competition, we explored streaming-related decoding parameters to
optimize WER on dev1-dev, using the BLSTM-HMM AM and a linear combination of all
three LMs. From this exploration, a context window size of 1.5 s and α = 0.95 was chosen for
the WMA normalization technique. This configuration was used for our primary system,
labelled p-streaming_1500ms_nlt, that showed WER rates of 11.6 and 16.0 on test-2018 and
test-2020, respectively. It is important to note that this system does not integrate any VAD
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module. Instead, this task is left for the decoder to carry out via the implicit non-speech
model of the BLSTM-HMM AM.

A small change in the configuration of the primary system, consisting in the removal
of the LSTM LM from the linear interpolation, led to the contrastive system no. 1, identified
as c1-streaming_1500ms_nt. The motivation behind this change is that the computation
of LSTM LM scores is quite computationally expensive, and its contribution to PPL is
negligible with respect to the n-gram LM + TLM combination (3% relative improvement).
We thus increased system latency stability while experiencing nearly no degradation in
terms of WER: 11.6 and 16.1 points on test-2018 and test-2020, respectively.

Both streaming ASR systems, p-streaming_1500ms_nlt and c1-streaming_1500ms_nt,
share the same theoretical latency of 1.5 s due to the context window size. As stated in
Section 3.3, this parameter can be adjusted at decoding time. This allows us to configure
the decoder for lower latency responses or better transcription quality. Hence, our final
goal for the challenge was to find a proper system configuration providing state-of-the-art,
stable latencies with minimal WER degradation. Figure 1 illustrates the evolution of WER
on dev1-dev as a function of the context window size, limited to one second at maximum.
As we focused on gauging AM performance, we used the n-gram LM in isolation for
efficiency reasons. In light of the results, we chose a window size of 0.6 s, as it brings a
good balance between transcription quality and theoretical latency.

16.0

18.0

20.0

22.0

24.0

26.0

28.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

closed
open

WER(%)

window(s)

Figure 1. WER as a function of context window size (in seconds) for the streaming setup, computed
over the dev1-dev set. This figure includes both the setup in this section (dashed line) and the setup
for the closed-condition system described in Section 4 (solid line).

The last step to set up our latency-focused streaming system was to measure WER and
empirical latencies as a function of different pruning parameters and LM combinations.
In our experiments, latency is measured as the time elapsed between the instant at which
an acoustic frame is generated, and the instant at which it is fully processed by the decoder.
Latency figures are provided at the dataset level, computed as the average of the latencies
observed at the frame level on the whole dataset. Figure 2 shows WER vs mean empirical
latency figures, computed over dev1-dev, with different pruning parameter values, and com-
paring the LM combinations including the Transformer LM. These measurements were
made on an Intel i7-3820 CPU @ 3.60GHz, with 64GB of RAM and a GeForce RTX 2080 Ti
GPU. On the one hand, we can see how combinations involving LSTM LMs are systemat-
ically shifted rightwards with respect to other combinations. This means that the LSTM
LM has a clear negative impact on system latency, with little to no effect on system quality.
This evidence corroborates our decision to remove the LSTM LM to define our contrastive
system c1-streaming_1500ms_nt. On the other hand, the TLM alone generally provides
a good baseline that is slightly improved in terms of WER if we include the other LMs.
However, this comes at the cost of increasing latency. Hence, we selected the Transformer
LM in isolation for our final latency-focused streaming system. This system was our con-
trastive system no. 2, identified as c2-streaming_600ms_t. Its empirical latency on dev1-dev
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was 0.81 ± 0.09 s (mean ± stdev), and its performance was 12.3 and 16.9 WER points on
test-2018 and test-2020, respectively. This is, with just a very small relative WER degradation
of 6% with respect to the primary system, we got state-of-the-art (mean = 0.81 s) and very
stable (stdev = 0.09 s) empirical latencies. This system has a baseline consumption (when
idle) of 9 GB RAM and 3.5 GB GPU memory (on a single GPU), adding 256 MB RAM and
one CPU thread per decoding (audio stream). For instance, decoding four simultaneous
audio streams in a single machine would use four CPU threads, 10 GB RAM and 3.5 GB
GPU memory.

14.5

15.0

15.5

16.0

16.5

0.75 0.80 0.85 0.90 0.95 1.00

TLM
ng+TLM
ls+TLM

ng+ls+TLM

WER(%)

Latency(s)

Figure 2. WER versus mean empirical latency (in seconds) on dev1-dev, measured with different
pruning parameters for the search, and considering only interpolation schemes including TLM.
An acoustic window size of 0.6s was used in all cases (plotted points).

Table 5 summarises the results obtained for all four participant ASR systems on
the dev2, test-2018 and test-2020 sets, and also includes the results obtained with our 2018
open-condition system for comparison. On the one hand, surprisingly, the offline system
is surpassed by the three streaming ones on test-2020, by up to 1.1 absolute WER points
(6% relative). We believe that this is caused, first, by the Gaussian mixture HMM-based VAD
module producing false negatives (speech segments labelled as non-speech). As the non-
speech model was trained with music and noise audio segments, and given the inherent
limitations of Gaussian Mixture models, it is likely to misclassify speech passages with loud
background music and noise (often present in TV programmes) as non-speech. Second,
the Full Sequence Normalization technique might not be appropriate for some types
of TV shows, as local acoustic condition changes become diluted in the full-sequence
normalization, leading to somewhat inaccurate acoustic scores that can degrade system
performance at that point. On the other hand, it is remarkable that our primary 2020 system
significantly outperforms the 2018 winning system by 28% relative WER points on both
dev2 and test-2018 (25% in the case of our latency-focused system c2-streaming_600ms_t),
and also works under strict streaming conditions.

Table 5. WER of the participant systems, including our open-condition system submitted to the 2018
challenge, computed over the dev2, test-2018 and test-2020 sets. In bold, the result from our primary
submission in the contest main test set test-2020.

System dev2 test-2018 test-2020

p-streaming_1500ms_nlt 11.2 11.6 16.0
c1-streaming_1500ms_nt - 11.6 16.1

c2-streaming_600ms_t 12.0 12.3 16.9
c3-offline - 12.0 17.1

2018 open-cond. winner [28] 15.6 16.5 -

All these streaming ASR systems can be easily put into production environments using
our custom gRPC-based server-client infrastructure ( https://mllp.upv.es/git-pub/jjorge/
MLLP_Streaming_API, accessed on 7 January 2022). Indeed, ASR systems comparable to
c2-streaming_600ms_t and c1-streaming_1500ms_nt are already in production at our MLLP

https://mllp.upv.es/git-pub/jjorge/MLLP_Streaming_API
https://mllp.upv.es/git-pub/jjorge/MLLP_Streaming_API
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Transcription and Translation Platform (https://ttp.mllp.upv.es/, accessed on 7 January
2022) for streaming and off-line processing, respectively. Both can be freely tested using
our public APIs, accessible via the MLLP Platform.

4. Closed-Condition Systems

For better comparison with results from the 2018 challenge, experiments similar to
those reported above were carried out using only the data available for the 2018 challenge
under closed data conditions. These experiments and the results obtained are reported
in this section.

4.1. Acoustic Modelling

As in [28], acoustic models were trained using only the train and dev1-train sets
(see Table 1); that is, 205 hours in total, accounting only for 5.2% of the 3924 h used
for our open challenge submissions. They were preprocessed as described in Section 3,
using MFCC features, HMMs with state tying, BLSTMs, and SpecAugmentation.

4.2. Language Modelling

For language modelling, we followed the same approach as in the previous section
and trained both n-gram and neural LMs to perform one-pass decoding with linear combi-
nations of them. We used significantly fewer text data to comply with the closed condition
constraint. Specifically, we used the same data as in [28], comprising 5.2 M sentences
(representing 1.4% of the full data) and 96 M running words (2.2%) with a vocabulary
size of 132 K (2.3%), obtaining an OOV ratio less than 0.6% computed over our internal
development sets and test2018, and less than 0.8% over test2020.

For the n-gram LMs, we used a single model making use of the fraction of the data
that was available, in contrast to our submissions to the open challenge where we used
an interpolation of several n-gram LMs trained on different subsets. As for the neural
models, we decided against the use of LSTM LMs, and thus only Transformer LMs were
considered. This decision was based on the empirical results reported in Section 3.4,
where we also decided to remove the LSTM LM to define our contrastive system c1-
streaming_1500ms_nt. Apart from this decision, both the neural architecture and training
methodology were kept the same.

4.3. Experiments and Results

An empirical study similar to that described in Section 3 was carried out using the de-
velopment and test sets in Table 3. The first step was to compare n-gram and Transformer
LMs, as well as their combination, in terms of perplexity on the dev1-dev set. Table 6
shows the results obtained, including the optimal interpolation weights we found for
their combination.

Table 6. Perplexity (PPL) and interpolation weights, computed over the dev1-dev set, of the n-gram
(ng) and Transformer (tf) LMs and their combination when trained with restricted data.

LM Comb. PPL Weights (%)

ng 164 -
tf 103 -

ng + tf 84 70 + 30

As a second step, we studied the effect of the theoretical acoustic latency on system
performance. Figure 1 shows the WER as a function of the AM context window size, for
window sizes under one second, and using the simpler n-gram LM in isolation. For com-
parison, the performance of the open-condition system is also shown. From the results in
Figure 1, and in agreement with the open-condition experimentation of Section 3, an acous-
tic window size of 0.6 s was selected for further experiments under the streaming setup
aimed at measuring real latencies.

https://ttp.mllp.upv.es/


Appl. Sci. 2022, 12, 804 10 of 14

For the final streaming and latency tests, the WER was plotted against empirical
latencies with different pruning parameters and LM combinations. All measurements were
made on the same hardware we used to assess the open condition systems (Section 3).
Figure 3 shows the WER as a function of the mean empirical latency computed over dev1-
dev. For comparison, the corresponding results for the open-condition systems are also
included. In contrast to the open-condition results, a significant improvement is achieved
by combining the n-gram and Transformer LMs, instead of just using the Transformer LM
alone. Therefore, for comparative purposes, the systems using interpolated n-gram and
Transformer LMs are considered our final closed-condition systems.

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

0.75 0.80 0.85 0.90 0.95 1.00

TLM(closed)
ng+TLM(closed)

TLM(open)
ng+TLM(open)

WER(%)

Latency(s)

Figure 3. WER as a function of system latency (in seconds) for the closed-condition systems (solid
line), computed over the dev1-dev set by trying different values for the search (pruning) parameters.
An acoustic window size of 0.6s was used in all cases (plotted points). For comparison, relevant
results for the open-condition systems are also shown (dashed line).

Table 7 contains a summary of the most relevant results obtained with our systems,
both under open and closed data conditions. For the closed-condition systems, results for
data-unrestricted LMs are also included to check how far we can go without expanding
the acoustic data, better reflecting a usual scenario where text data is relatively much easier
to obtain than audio with transcriptions. For comparison, Table 7 includes the figures for
the 2018 contest winners and results achieved by other contestants in the 2020 challenge.

Table 7. WER of our main (open) submissions and our closed-condition systems described in this
section, including for comparison the winning open- and closed-condition systems of the 2018
challenge, computed over the dev2, test-2018 and test-2020 sets. Highlited in bold, the most relevant
results to compare open and closed conditions in the main test set test-2020.

System Duration (h) dev2 test-2018 test-2020

open-p-streaming_1500ms_nlt 3924 11.2 11.6 16.0
open-c2-streaming_600ms_t 3924 12.0 12.3 16.9

closed-streaming_600ms_nt2018 205 15.0 15.3 23.5
+ open ng 15.6 15.9 23.2

+ open ng+tf 13.3 13.7 20.4

closed-streaming_1500ms_nt2018 205 14.7 15.3 23.1
+ open ng 15.3 15.8 22.9

+ open ng+tf 13.0 13.7 19.9

2018 open-cond. winner [28] 3800 15.6 16.5 -
2018 closed-cond. winner [28] 205 20.0 22.0 -

2020 Vicomtech [23] 743 n/p n/p 19.3
2020 BRNO [24] 780 12.8 13.3 23.2

2020 Sigma-UPM [25] 615 n/p n/p 27.7
2020 Biometric Vox System [26] 1000 17.8 22.0 30.3
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From the results in test-2020, we can observe that, while there is a wide margin between
the open- and closed-condition systems, we can still obtain a performant streaming ASR
system when using only around 5% of the acoustic data and 2% of the text data. Moreover,
the WER reduction entailed by moving from an acoustic latency of 1.5 to 0.6 s in the open-
condition system is largely gone in the closed-condition systems: it is almost negligible
on test-2018 and just 0.5 WER on test-2020. Furthermore, lifting the text data restriction,
the closed-streaming_1500ms_nt2018 system is able to shed over 3 WER points, from 23.1 to
19.9 WER, that is, about a 15% relative improvement and not far behind the top-performing
systems submitted by other participants under open conditions. Regarding this change
from the closed-condition LM to the unrestricted LM, both in the 1500 ms and the 600 ms
window sizes, most of the improvement is due to the substitution rate: from 10.7 to 7.3
in the 1500 ms case, and from 10.9 to 7.4 in the 600 ms case. This accounts mostly for the
unrestricted LM retrieving the correct word due to its expanded lexicon—the OOV rate
fell from 0.8 to 0.6, as previously mentioned—or due to better tuned LM probabilities.
Some examples of correctly recognized words that were errors in the closed-condition LM
are “desacreditarme”, “dosificador” or “hermeneuta”.

5. Conclusions

In this work, we have first described our four ASR systems that participated in the
Albayzín-RTVE 2020 Speech-to-Text Challenge. The primary one, a streaming-enabled
performance-focused hybrid ASR system (p-streaming_1500ms_nlt) provided a good score
of 16.0 WER points on the test-2020 set, and a remarkable 28% relative WER improvement
over the 2018 winning ASR system on test-2018, with a theoretical latency of 1.5 s. Nearly
the same performance was delivered by our first contrastive system (c1-streaming_1500ms_nt):
16.1 WER points on test-2020, at a significantly lower computational cost. In pursuit of low,
state-of-the-art system latencies, our second contrastive system (c2-streaming_600ms_t) pro-
vided a groundbreaking WER-latency balance, with a solid performance of 16.9 WER points
on test-2020 at an empirical latency of 0.81 ± 0.09 s (mean ± stdev). Finally, our fourth ASR
system was a contrastive off-line ASR system with VAD (c3-offline) providing the highest,
yet still competitive, WER score of 17.1 points, attributable to an improvable VAD module
and to the limitations of Full Sequence Normalization when dealing with local acoustic
condition changes.

Apart from the four ASR systems participating in the 2020 (open) challenge, two addi-
tional streaming systems have been described which, for better comparison with results
from the 2018 challenge, were trained under the 2018 closed data conditions (about 5%
and 2%, respectively, of the speech and text data we used in 2020). The first, latency-
focused system (closed-streaming_600ms_nt2018) achieves 23.5 WER points on test-2020,
while the second, performance-focused system (closed-streaming_1500ms_nt2018) reduces
this figure to 23.1 WER points. Moreover, when using these systems with unconstrained
language models (i.e., trained with all the text data used in 2020), these figures are further
reduced to 20.4 (at 600 ms latency) and 19.9 (at 1500 ms latency). It is worth noting that these
WER figures have been achieved under streaming conditions using only 205 h of RTVE2018
speech training data, thus not including any post-2018 RTVE speech data, and accounting
for only 5% of the training data used in the 2020 open challenge. Nevertheless, these WER
figures are not far behind those of the second-best 2020 open-condition system (19.3) and
they are significantly ahead of those reported by other participants.
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G billion (109)
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