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Abstract—Modern-day graph workloads operate on huge graphs through pointer chasing which leads to high last-level cache (LLC)
miss rates and limited memory-level parallelism (MLP). Simultaneous Multi-Threading (SMT) effectively hides the memory access
latencies for multi-threaded graph workloads provided that sufficient threads are supported in hardware. Unfortunately, providing a
sufficiently large number of physical threads incurs an unjustifiably high hardware cost for commodity SMT processors which typically
implement only two physical hardware threads. Ideally, we would like to achieve aggressive-SMT performance when running graph
workloads on modest commodity processors.
In this paper, we propose Virtualized Multi-Threading (VMT), a low-overhead multi-threading paradigm for accelerating graph
workloads on commodity processors. Unlike prior multi-threading paradigms, VMT virtualizes both the physical hardware threads and
the architecture state: VMT maps a large number of logical software threads to a small number of physical hardware threads, while
maintaining the architecture state of the logical threads in the processor’s cache hierarchy. Implemented on top of a quad-core 2-way
SMT processor, VMT achieves an average speedup of 1.74× for a set of representative graph workloads, while incurring minimal
hardware cost (195 bytes per core to support up to 32 logical threads). VMT’s low hardware cost paves the way for implementation in
commodity processors.

Index Terms—Architecture, Multi-Threading, Virtualization, Graph Workloads.
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1 INTRODUCTION

Graph workloads have gained major interest from both
industry and academy, primarily due to the increasing
importance of social networks and other big data work-
loads [1], [2], [3], [4], [5], [6], [7], [8]. In addition, graph
algorithms have found their way to solve scientific problems
and to represent and understand unstructured data [9], [10],
[11], [12]. Intrinsic graph characteristics make graph algo-
rithms behave irregularly, which results in poor memory
locality. This results in poor performance when running
graph workloads on commodity superscalar processors.
However, there is abundant thread-level parallelism (TLP)
to be exploited in graph workloads. In this paper, we pro-
pose a novel and low-overhead multi-threading paradigm
to significantly speed up graph workloads on commodity
processors.

Multi-threading paradigms have been widely used to
improve processor performance by exploiting TLP. Early
computers deployed software multi-threading (or time-
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sharing) to hide I/O and storage (e.g., disk) latencies,
i.e., these latencies were large enough to be hidden by
software context switches. Unfortunately, software multi-
threading is unable to hide idle times in the processor due
to pipeline bubbles and cache/memory accesses. Hardware
multi-threading hides these idle times by doing useful work
from another thread while experiencing a latency-causing
event. Coarse-grain multi-threaded (switch-on-event) pro-
cessors [13], [14] execute one thread at a time to hide
long latencies (such as memory accesses). Fine-grain multi-
threaded processors [15] also execute one thread at a time
while context switching every cycle to hide even short la-
tencies. Simultaneous multi-threading (SMT) [16], the most
widely deployed paradigm, can execute instructions from
different threads in the same cycle to fully exploit the
available superscalar issue bandwidth and further improve
processor performance.

Unfortunately, all previous multi-threading paradigms
incur significant hardware overhead to maintain the ar-
chitecture state1 of the concurrently executing threads [17].
Increasing the number of supported threads is challenging
because the core needs to store the architecture state of all
the threads that can run simultaneously. And the largest part
of this state is in the register file, which must be accessible
to the pipeline and its execution resources. Accessing such
a bigger register file incurs a cost in complexity and can
easily affect the processor cycle time. Consequently, high

1. The architecture state considered in this work is defined in Sec-
tion 2.1.
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Fig. 2. Characterizing graph workloads in terms of (a) number of long-latency loads per 1K instructions, (b) MLP per thread, and (c) sensitivity to
the L1 D-cache size. Graph workloads feature a high number of long-latency loads and limited MLP, and almost no sensitivity to the L1 D-cache size.
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Fig. 1. Contrasting Virtualized Multi-Threading against SMT and Bal-
anced Multi-Threading (BMT). VMT virtualizes the physical threads and
the architecture state, whereas BMT only virtualizes the physical threads, and
SMT virtualizes neither the physical threads nor the architecture state.

degrees of multi-threading are only supported in premium
SMT processors for the high-end server markets, e.g., the
IBM POWER8 [18] and POWER9 support 8-way SMT. Com-
modity processors by Intel and AMD on the other hand
feature a much lower degree of SMT, e.g., typically two
SMT threads. The reason is the prohibitive hardware cost:
in particular, IBM’s POWER8 extends the register file with
a second level of so-called Software Architected Registers to
keep track of the entire architecture state when concurrently
executing eight threads.

Supporting high degrees of multi-threading exacerbates
the architecture state problem or requires modifications to
software. In particular, Balanced Multithreading (BMT) [19]
virtualizes the physical (hardware) threads. BMT requires a
dedicated hardware structure to store the architecture state
for all logical threads. This so-called ‘inactive’ register file
incurs significant hardware overhead: 20.75 KB storage for
32 logical threads on the x86 64 instruction-set architec-
ture; supporting recent vector extensions (e.g., AVX-512)
increases the hardware cost to 68.75 KB per core, which is
prohibitive for commodity processors. Informing loads [20]
and co-routines [21] are software solutions to support high
degrees of multi-threading; unfortunately, they require sig-
nificant modifications to the source code and complex com-
piler optimizations to minimize switching latency.

This paper proposes Virtualized Multi-Threading (VMT),
a novel hardware multi-threading paradigm that virtualizes
the architecture state by storing the architecture state of
swapped-out logical threads in the (conventional) cache
hierarchy, while requiring no changes to software. Because

no dedicated structures are needed to maintain architecture
state, VMT’s hardware overhead is limited to 195 bytes per
core while supporting up to 32 logical threads. Figure 1
illustrates how VMT virtualizes both the physical threads
and the architecture state (i.e., the registers), which allows
VMT to run a large number of threads without involving the
OS. In contrast to VMT, SMT does not virtualize the physical
threads, nor does it virtualize the architectural state, which
leads either to support a very small number of threads
or to incur a significant hardware cost. BMT virtualizes
the physical threads but not the architecture state, thus
requiring a (large) dedicated hardware structure to store the
architecture state for all logical threads.

Virtualizing the architecture state in the cache hierarchy
only really makes sense if it does not compromise the
workload’s memory behavior. We find this to be the case
for graph workloads. Graph workloads align unfavorably
with superscalar out-of-order processors: they suffer from
high last-level cache (LLC) miss rates and limited memory-
level parallelism (MLP) because of pointer chasing through
huge graph structures, see Figures 2a and 2b, respectively.
(Section 3 provides details about our experimental setup.)
At the same time, there is abundant TLP to be exploited in
graph workloads [22]. While these characteristics are well-
known, we make the new observation that graph workloads
are insensitive to L1 D-cache performance, see Figure 2c:
reducing the L1 D-cache size from 32 KB to 1 KB does not
degrade performance.2 In other words, graph workloads do
not benefit from a processor’s L1 D-cache.

We exploit this key observation in the VMT proposal
by virtualizing the architecture state in the processor’s
cache hierarchy. We find that VMT fits the characteristics
of graph workloads particularly well, i.e., virtualizing the
logical threads’ architecture state in the cache hierarchy does
not significantly interfere with the graph workload itself
because of its inherently poor cache locality. Experimental
results show that VMT significantly improves graph work-
load performance. For a quad-core 2-way SMT processor
resembling a current commodity processor, VMT with 16
logical threads per core improves performance by 1.74×
on average (and up to 3.17×) for a set of representative
graph workloads including graph500 [23] and the GAP
benchmark suite [7].
In summary, this paper makes the following contributions:

• We propose virtualized multi-threading (VMT), a novel
multi-threading paradigm to support high degrees of

2. Eliminating the L1 D-cache leads to a 16% average performance
degradation because of stack accesses.



3

Fetch Decode Rename

ROB

Dispatch Write-back Commit

Issue queue

Execute

LSU Data CacheLogic to save 
and restore 

architecture state

Register File

Thread scheduler

LLC tag response

Fetch from 
new thread

Flush

Fig. 3. VMT architecture overview. A commodity core architecture needs to be extended with a thread scheduler and a small dedicated unit containing logic
to insert load and store instructions to save and restore the logical threads’ architecture state.

multi-threading (up to 32 threads) in a commodity core
at minimal hardware cost (195 bytes) by virtualizing the
architecture state in the processor’s cache hierarchy.

• We demonstrate that graph workloads fit VMT’s ar-
chitecture particularly well with average performance
improvements by 1.74×, and up to 3.17×. Saving
the architecture state in the cache hierarchy does not
significantly affect the graph workloads’ overall cache
performance.

• We demonstrate that VMT’s performance benefit comes
from increased MLP. We further comprehensively eval-
uate VMT’s mechanism, its performance overheads,
and its robustness across input graphs. Finally, we
demonstrate VMT’s ability to speed up other parallel
workloads, and we compare against a state-of-the-art
indirect memory access prefetcher for graph workloads.

2 VIRTUALIZED MULTI-THREADING

Figure 3 provides an overview of the virtualized multi-
threading (VMT) architecture. The figure shows the different
stages and some of the main structures of the pipeline of
a commodity core. VMT requires few extensions: a thread
scheduler to orchestrate thread swapping plus logic to save
and restore the architecture state of the logical threads.
When a thread triggers an LLC miss, the thread scheduler
initiates thread swapping: it flushes the long-latency load
and subsequent instructions, saves the thread’s architecture
state, restores the architecture state of the incoming thread,
and starts fetching instructions for this thread. VMT is
particularly appealing for commodity processors with either
single-threaded or SMT cores with limited degree of multi-
threading, e.g., two-way SMT. VMT is enabled only when
the workload benefits.

2.1 Virtualizing Architecture State

VMT’s key feature is to save the architecture state of the
logical threads in the processor’s cache hierarchy, making
the hardware cost to virtualize architecture state ‘virtually’
free. This is in sharp contrast to BMT [19] which requires
a dedicated hardware structure. The architecture state per
logical thread in current x86 64 architectures consists of 35
registers in total: 16 64-bits general-purpose registers, 16
256-bit floating-point/vector registers, and 3 64-bit special-
purpose registers (i.e., program counter, flags register, and
FPU status register). This amounts to 20.75 KB assuming
32 logical threads. For the recent AVX-512 extension, the

number of floating-point/vector registers increases to 32 of
512 bits each. Overall, at most 2.15 KB is required to store the
architectural state per thread.3 Assuming 32 logical threads,
this amounts to a total of 68.75 KB architecture state per
core.

Note that we do not need to save all registers upon
each thread swap, i.e., we only save registers that have
been written since the last thread swap — this reduces
the amount of cache space occupied and reduces the time
overhead of the thread swap. Moreover, storing architecture
state in the cache hierarchy works synergistically with graph
workloads.

2.2 Thread Swapping
Quickly swapping threads after a long-latency memory
request is key to achieve high performance. To this end,
we extend current commodity (SMT) cores with a switch-
on-event mechanism to swap out a thread that experiences
a long-latency load instruction and swap in a thread whose
memory request has already been completed. Implementing
the thread swap operation in hardware without the inter-
vention of the operating system (OS) enables fast migration
of threads, thereby hiding most of the memory access la-
tency.

Figure 4 illustrates how thread swapping affects reorder
buffer (ROB) state. VMT exploits a key characteristic of
graph workloads and seeks to initiate the thread swap as
early as possible upon an LLC miss of the outgoing thread.
The reason is that there is little MLP to be exploited within
a single thread of execution. Starting the thread swap as
early as possible advances the execution of the incoming
thread and allows it to get to the next memory request faster,
improving MLP.

VMT identifies a long-latency load miss by receiving
an early miss reply upon an LLC tag lookup, which is
propagated from the LLC to the core. This is illustrated in
Figure 4a. The core reacts by flushing the load miss and all
younger instructions in the ROB, while not canceling the in-
flight memory request. This action can be carried out using
the hardware that commodity cores implement to deal with
misspeculated loads or mispredicted branches. In particular,
the core rebuilds the Register Alias Table (RAT) as is done

3. This assumes that the logical threads of the same process share
the extended thread state, which includes control registers (CRs) and
Model-Specific Registers (MSRs). If needed, (part of) this extended
thread state could be replicated per logical thread, and could be saved
and restored by the thread swap routine.
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continues dispatching and executing instructions from the incoming thread.

for mispredicted branches [24]. (See Section 3 for further
details.)

Next, the core starts executing hardware-injected store
instructions to save the architecture state of the outgoing
thread in the L1 cache, see Figure 4b. The store instructions
are renamed as ordinary instructions and the issue logic
solves their dependencies with the instructions producing
the register values they are saving. Meanwhile, the instruc-
tions that are older than the long-latency load that triggered
the thread swap are allowed to execute and drain the
pipeline as during normal operation.

Once the store instructions are dispatched into the ROB
and store queues, the core starts retrieving the architectural
state of the incoming thread, see Figure 4c. These hardware-
injected load instructions are renamed and may possibly
issue before the store instructions of the outgoing thread,
reducing the overhead introduced by a thread swap.

Finally, after dispatching all restore instructions, the core
starts dispatching instructions from the incoming thread, see
Figure 4d. The execution of these instructions may overlap
with the thread restore instructions and even with the save
instructions of the outgoing thread. In other words, VMT
does not need to have the entire architecture state of a
thread restored before restarting execution. As the restore
instructions get executed, ready instructions can be issued
(out-of-order).

Note that when a thread swap is initiated along a mispre-
dicted path, the thread swap is canceled (i.e., in-flight save
and restore instructions are flushed) and the thread state is
rolled back to the correct state after the mispredicted branch.
We find that this scenario is rare and has a negligible impact
on VMT performance.

2.3 Hardware Support
VMT requires a small microprogrammed routine to insert
save and restore instructions in the pipeline, a mechanism
for early miss notification from the LLC, a reserved memory
space (RMS), and a thread scheduler that includes (i) a
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Fig. 5. VMT thread scheduler. VMT requires a Control Register, Thread
Queue, RMS Index, and Written/Dirty Bit Masks.

control register, (ii) a RMS index, (iii) written and dirty
register masks, and (iv) the VMT thread queue, see Figure 5.

VMT Control Register. VMT’s operation is controlled
through a special-purpose 16-bit control register. The reg-
ister is broken down into three fields. The first field consists
of a single Enable bit and is used to indicate whether
VMT execution is enabled for the current process. As we
will discuss, applications can initiate VMT execution upon
request if deemed beneficial. The second field, Thread-Count,
denotes the number of logical threads VMT should virtual-
ize. By default, VMT virtualizes 16 logical threads per core.
However, a user or system operator, for example through
profiling-based analysis, may suggest a different number
of threads to virtualize; the Thread-Count field provides a
mechanism to do so. A 5-bit field is enough to virtualize up
to 32 threads. The last field, Logical-to-Physical Thread Map
(L2P-Map), keeps track of which logical thread is mapped
to which physical thread. For VMT implemented on top of
a single-threaded core, the L2P-Map indicates which logical
thread is currently mapped to the physical thread; all other
logical threads are swapped out. When implemented on
top of a two-way SMT core, two logical threads can be
mapped to the two physical threads available. The L2P-Map
is required to support context switching, as we will discuss
in Section 2.4. Assuming two physical threads and up to 32
logical threads, 10 bits is enough for the L2P-Map.

Reserved Memory Space. To save the architectural state of
swapped-out threads in the processor’s memory hierarchy,
we need to save its architectural registers in a dedicated
memory region. We reserve a small portion of the proces-
sor’s physical address space that cannot be accessed by the
OS and is otherwise unused, which we call the Reserved
Memory Space (RMS). Saving the architecture state in the
RMS instead of the OS’s memory structure for context
switches allows VMT to perform thread swaps in hardware,
without any intervention by the OS. The architecture state
of a thread in x86 64 is at most 2.15 KB as mentioned
before. For simplicity, we reserve 1 MB of the address
space (for example, in the highest address range), which
is large enough to hold up to 256 threads (conservatively)
assuming 4 KB of architecture state per thread. Each thread
is assigned a 4 KB chunk in the RMS. The architecture state
of each thread starts aligned to a 4KB address (no cache
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block contains architecture state of different threads) and is 
private. Therefore, it should not be evicted by other cores. 
For each logical thread, we keep track of the 8-bit chunk 
index in the so-called RMS Index.

Microprogrammed Routine and Register Masks. To vir-
tualize the architectural state of the logical threads, the 
hardware needs to insert instructions to save and restore the 
architectural state of the threads involved in a thread swap. 
This functionality is provided by a small microprogrammed 
routine (off the critical path) that iterates over the architec-
tural registers and generates load and store instructions to 
save and restore the architecture state to the RMS. These 
instructions are directly inserted in the pipeline after the 
decode stage.

To reduce thread swap overhead, VMT minimizes reg-
ister saves and restores, as in [19]. When saving the archi-
tecture state of an outgoing thread, the microcode checks a 
dirty bit per architecture register which identifies whether 
the architectural register has been modified during the last 
execution epoch of the logical thread. Registers that are not 
dirty do not need to be saved. VMT keeps a Dirty Bit Mask 
per physical thread. The core sets the corresponding bit 
when a thread writes a register and the entire mask gets 
cleared when a thread is swapped out. A mask of written 
bits per logical thread is used to determine the architectural 
registers that a logical thread has ever written. A thread 
needs to restore a register if it has ever written the register or 
the outgoing thread wrote the register during its last epoch 
(i.e., it is dirty). The Written Bit Mask is updated when a 
thread is swapped out doing a logical OR operation between 
the thread Dirty Bit Mask and Written Bit Mask, and is 
cleared when VMT mode is initiated.

Because the save and restore operations operate on phys-
ical addresses, they bypass the TLB. Bypassing the TLB is 
done using a multiplexer that selects between the memory 
address provided by the instruction (for VMT save and 
restore instructions) versus the translated address provided 
by the TLB (for conventional load and store instructions).

Thread Queue. VMT thread scheduling requires a circular 
queue, the Thread Queue (TQ), to keep track of the concur-
rently executing logical threads. Each TQ entry contains a 
logical thread identifier plus a  ready bit that identifies if  the 
memory request that triggered the thread swap has already 
completed. A thread swap is started by a logical thread that 
is being executed and triggers a memory request. Once the 
architecture state of this thread is saved, the logical thread 
is added at the TQ tail.

While the store instructions in charge of saving the 
architecture state of the outgoing thread are dispatched, an 
incoming thread is selected. The thread at the TQ head is 
selected for execution if its ready bit is set (i.e., its memory 
request has completed). Otherwise, it is moved to the TQ 
tail. We find that this situation is infrequent and has negligi-
ble impact on performance. If the number of logical threads 
is low, the thread will be re-selected soon; if, on the other 
hand, the number of logical threads is high, the probability 
that its memory request is still pending is low.

Note that the thread selection logic is out of the pro-
cessor’s critical path and does not need to select the next 
thread in a single cycle as the outgoing thread requires

several cycles to insert all of its save instructions. Once this
operation is completed, the incoming thread starts inserting
instructions in the pipeline to restore its architecture state.

Hardware Cost. We assume 32 logical threads and 2 phys-
ical threads per core. The VMT control register requires 2
bytes of storage, as mentioned before. The TQ incurs 24
bytes of storage as it keeps track of up to 32 logical thread
IDs and a ready bit per thread in a circular queue. The
RMS Index requires 32 bytes of storage: one byte per logical
thread. We need a 32-bit Written Bit Mask for each of the
32 logical threads, and we need a 32-bit Dirty Bit Mask
for the 2 physical threads.4 The microcode state machine
for generating the save and restore instructions requires a
counter to iterate over the architectural registers (6 bits). Put
together, implementing VMT in a 2-way SMT core requires
195 bytes of storage.

2.4 Operating System Support

An application requests VMT support from the OS, e.g.,
when the application reaches a parallel section. To grant
VMT support, the OS sets the Enable bit in the VMT
control register of the core. If the application requests a
particular number of logical threads to be virtualized, the
Thread-Count field is set accordingly in the control register.
Otherwise, the default number of logical threads per core is
assumed (i.e., 16). A RMS Index is set for the logical threads.
Finally, the hardware initializes the TQ with the logical
thread IDs and the ready bits are set. The Written/Dirty
Bit Masks are cleared. Once this is done, VMT is operational
and the OS returns to the application, which now spawns
as many threads as the underlying machine exposes logical
threads.

During VMT operation, logical threads are swapped
in and out without intervention of the OS. The L2P-Map
keeps track of the current logical-to-physical thread map-
ping. From the OS’ perspective, all the application threads
mapped onto the core are running simultaneously as logical
threads, even though only a limited number of threads are
intermittently executing as physical threads. VMT works
with any thread scheduling policy but VMT performance
is maximized when multiple threads from the same appli-
cation are co-scheduled to maximize the exploitable MLP
across threads. Thus, we assume gang scheduling, which
co-schedules threads from the same process on the same
core. Any event that interrupts the execution of one thread
(e.g., a page fault) will context-switch all threads on that
core; the threads are re-scheduled onto the core again once
the exception or interrupt returns.

The application disables VMT, e.g., once the parallel
section terminates, by clearing the Enable bit in the VMT
control register. Once VMT is disabled, the core only exposes
the physical threads to the OS.

Context Switching. The VMT control register, the TQ, the
RMS Index registers as well as the Written/Dirty Bit Masks
are stored as part of the process control block (PCB) upon a
context switch. To support context switching under VMT,
the OS makes a distinction between the logical threads

4. We need the masks for the 32 general-purpose registers only; the 3
special-purpose registers are always saved and restored.
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that are swapped-in versus the ones that are swapped-
out. The OS does not need to save the architecture state 
of the swapped-out threads, because the architecture state 
of those threads has already been saved in their respec-
tive RMS chunks. On the other hand, for the swapped-in 
threads, the OS needs to save their architecture state using 
the conventional context switch routine. When the OS re-
schedules the gang onto the core, the OS re-installs the 
VMT control register, the TQ, the RMS Index registers, and 
the Written/Dirty Bit Masks. This re-enables VMT (i.e., the 
enable bit is set), re-sets the number of logical threads (i.e., 
through the Thread-Count field), a nd r e-stores t he latest 
logical-to-physical thread mapping (i.e., through the L2P-
Map).

Security Concerns. Security vulnerabilities are mitigated 
with two actions. First, VMT operates at the hardware level 
and only VMT save and restore instructions are allowed 
to access the RMS which cannot be accessed by the OS 
nor application software. Second, the OS manages the RMS 
indices and, in case multiple applications co-run on different 
cores in a multicore processor, the OS would need to assign a 
different RMS base address to each application that requests 
VMT execution to ensure that co-running applications can-
not read or write each other’s chunk in the RMS. When an 
application completes its VMT execution, the threads’ state 
in the cache hierarchy is flushed by the hardware. Only then 
can the OS assign a RMS region to another application.

VMT does not increase vulnerability to recent microar-
chitectural side channel attacks such as Meltdown [25] and 
Spectre [26] because it does not increase the amount of 
speculative work performed. Moreover, hardware counter-
measures are applicable to VMT-enabled processors. Other 
attacks exploit lazy saving and restoring of floating-point 
architectural registers during a context switch to obtain their 
values [27]. VMT does not increase the vulnerability to these 
attacks either since it performs lazy saving and restoring 
of registers only when swapping threads within a given 
application.

2.5 Setting the Number of VMT Threads

VMT performance scalability with logical thread count is 
limited by at least three factors: (i) by the amount of thread-
level parallelism in the application (i.e., the application 
by itself should scale well with thread count); (ii) by the 
application’s memory intensity, or in other words, by how 
quickly threads can get to the next LLC miss and thus swap 
threads; and (iii) by how fast VMT can swap threads, which 
depends on the number of dirty registers that need to be 
saved and the number of written registers that need to be 
restored. All three factors depend on the workload and its 
interaction with the underlying architecture. VMT perfor-
mance benefits saturate with increasing logical thread count 
when there is always a swapped-out thread with its memory 
request completed (and thus ready to be swapped in again) 
when a currently running thread triggers a memory request. 
Increasing the number of logical threads beyond this point 
does not further improve performance. On the contrary, 
performance may even degrade if, for example, saving and 
restoring the architectural state of all threads affects cache

TABLE 1
Simulated multicore processor configuration.

Cores and frequency 4 cores at 3.66 GHz
SMT threads 1 versus 2
Issue queue / ROB 97 / 224 entries
Load / store queue 72 / 66 entries
Processor width dispatch: 4; issue: 6; commit: 4
Pipeline depth 8 (front-end)
Register file 168 64-bit int, 168 128-bit fp
Branch predictor hybrid bimodal, gshare, loop
L1 I-cache 32 KB, 4-way, 2 cyc
L1 D-cache 32 KB, 8-way, 4 cyc, tag lookup: 1 cyc
Private L2 cache 256 KB, 8-way, 8 cyc, tag lookup: 3 cyc
Shared LLC 8 MB, 16-way, 30 cyc, tag lookup: 10 cyc
LLC prefetcher stride prefetching, 16 streams per core
L1 TLBs DTLB: 64-entry, 4-way ITLB: 128-entry, 4-way
L2 TLB shared TLB: 512-entry, 4-way
MSHR 60 entries
Memory DDR4, 51.2 GB/s, 45 ns

performance, or if the amount TLP is limited because of
synchronization overheads.

For the graph workloads and the processor architecture
considered in this work, we find that 16 logical threads
per core is optimal on average, as we will quantify in the
evaluation section. We therefore employ 16 VMT threads per
core by default. However, we provide hardware support for
up to 32 VMT threads per core, as some workloads benefit
from enabling more than 16 VMT threads per core. VMT
provides support to set the number of VMT threads per core
on a per-application basis. A profile-driven VMT approach
could be used to determine the optimum number of VMT
threads for each workload: VMT performance is evaluated
as a function of VMT thread count using a training input,
based on which the optimum VMT thread count is deter-
mined. For a previously unseen production input, the VMT
thread count is then set to this optimum VMT thread count.
Note that profiling incurs a one-time cost and is paid off
across multiple runs of the same application.

3 EXPERIMENTAL SETUP

We evaluate VMT using the most accurate cycle-level core
model in Sniper [28] — a parallel, fast and hardware-
validated multicore simulator — which was extended to
faithfully model a state-of-the-art multi-core SMT processor.
We consider two baseline quad-core processor configura-
tions with single-threaded and 2-way SMT cores (i.e., one
and two physical threads per core), respectively. A total
number of 128 and 256 threads are enabled on the chip,
respectively, assuming VMT with 32 logical threads per
physical thread, as opposed to 4 and 8 threads in the
baseline configurations. We expect that VMT provides sig-
nificant performance benefit for processors with several tens
of cores since there is abundant TLP to be exploited in graph
workloads [22] and memory bandwidth would only be sat-
urated if there are lots of independent, overlapping memory
accesses, which is not the case for graph workloads because
of dependent misses. The simulated processor configuration
is summarized in Table 1. Our baseline core configuration
closely resembles a commodity processor like Intel’s Skylake
microarchitecture [29] with a three-level cache hierarchy and
a stride-based LLC hardware prefetcher with 16 streams per
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(b) 4-core 2-way SMT processor
Fig. 6. Speedup through VMT with up to 32 logical threads per core for a single-threaded baseline core (a) and a 2-way SMT baseline core (b).
VMT yields substantial performance benefits over a conventional commodity processor.

core. Given that graph workload performance is dominated
by irregular memory accesses with limited temporal and
spatial locality, VMT performance is insensitive to cache
size and replacement policy. We faithfully model VMT. The
VMT thread scheduler is notified of an LLC miss 17 cycles
after the load was issued by the core: this includes 14 cycles
of cumulative tag lookups in the L1, L2 and LLC, plus 3
additional cycles to account for the time it takes for the
core to be notified of the LLC miss through a dedicated
channel.5 We also account for the time the core requires
to rebuild the RAT once it flushes the LLC-missing load
and all younger instructions: the core restores the last valid
checkpoint and traverses the ROB to update the RAT ac-
cordingly. We assume that a checkpoint is available at the
youngest branch from which the core traverses the ROB
updating the RAT at a pace of 4 instructions per cycle
until reaching the youngest instruction in the ROB. This
assumes a RAM-based RAT [30]; a CAM-based RAT [31]
would incur even lower latency overhead since the RAT
could be checkpointed on every load instruction. Our simu-
lation experiments report that rebuilding the RAT takes 1.8
cycles on average (and at most 2.9 cycles, for graph500).
The fact that the LLC-missing load is frequently the oldest
instruction in the ROB when the miss is detected greatly
contributes to the low RAT recovery latency.

It is worth noting that since all logical threads mapped
to the same core share the same virtual address space, the
entries in the data and instruction TLBs do not need to be
flushed upon a thread swap. Similarly, the branch predictor
tables are also shared — we observe minimal impact on
branch prediction accuracy when sharing the branch pre-
dictor across threads for most of the benchmarks.6

We consider graph500 v2.1.4 [23] and the six appli-
cations from the GAP benchmark suite [7]: Betweenness
Centrality (bc), Breadth-First Search (bfs), Connected Com-
ponents (cc), PageRank (pr), Single-Source Shortest Path

5. An alternative implement would be to notify the core via a
message sent across the NoC. In any case, we find that VMT is rather
insensitive to the LLC notification latency. VMT’s performance benefit
is only marginally affected by an increased LLC notification latency:
1.74× improvement (for 3-cycle latency) versus 1.70× improvement
(for 10-cycle latency).

6. Branch misprediction rate decreases from 6.7% to 3.5% for cc
and increases from 5.5% to 5.8% for sssp; the other benchmarks are
unaffected.

(sssp) and Triangle Count (tc). We skip the initialization
of the graphs as well as the preprocessing steps. We run
each workload twice: we use the first execution to warm
up the caches, and we simulate and report timing for
the second execution. As input, we use graphs generated
with the built-in graph generator with size 21 (except for
tc). These graphs are formed by 221 vertices following
the Kronecker distribution, complying with the graph500
specifications. The overall number of instructions simulated
in detail ranges from 200 million for bfs to 2.7 billion for
pr. tc is less memory-intensive than the other workloads
and its instruction count grows much faster with graph size.
To keep simulation time reasonable, we simulate tc with
graphs of size 19, which results in 24.5 billion instructions.
Section 4.4 analyzes VMT performance when running real-
world graphs.

4 EVALUATION

4.1 Overall Performance
Figure 6 reports performance normalized to the baseline
commodity quad-core processor with single-threaded (Fig-
ure 6a) and 2-way SMT (Figure 6b) cores, respectively, for
different configurations of the proposed VMT architecture:
(a) single-threaded cores enhanced with VMT support and
2 to 32 logical threads per core, and (b) SMT cores enhanced
with VMT and 4 to 32 logical threads per core. Thread swap
overhead is accounted for in the results. VMT provides
significant performance benefits. Focusing on the 2-way
SMT configuration first, VMT improves performance by
3.17× for graph500, 2.86× for bc, 1.72× for cc, and 1.53×
for pr. The highest performance is typically achieved for 16
logical threads. With this large number of threads, the num-
ber of cycles the core has all threads stalled waiting for the
memory requests to be completed is limited. Consequently,
increasing the number of logical threads beyond 16 provides
only marginal performance benefits. For some workloads,
performance even degrades, for the reasons alluded to be-
fore. VMT also provides a significant performance boost for
the single-threaded cores, improving performance by 2.68×
for graph500, 2.52× for bc, 1.56× for pr, and 1.55× for
cc.

We observe somewhat different behavior for tc com-
pared to the other graph workloads, for two reasons: (1)
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Fig. 7. Quantifying MLP benefits under VMT. Increased MLP strongly correlates with VMT’s performance benefits.

tc is less memory-intensive, and (2) it is highly imbalanced
as the first thread receives a much higher load [8]. VMT
does not improve performance for the single-threaded core
because VMT essentially serializes the execution of various
logical threads without improving MLP (as we show next).
The performance improvement observed for the 2-way SMT
core is a result of overlapping the execution of multiple
lightly loaded threads with the heavy-loaded thread.

Memory-Level Parallelism. We find that memory-level par-
allelism (MLP) is the key contributor to improved perfor-
mance, see Figure 7 which reports MLP for the different
processor configurations: improvements in MLP strongly
correlate with the VMT performance gains. MLP improves
with an increasing number of logical threads, and for most
benchmarks, MLP tends to saturate around 8 or 16 logical
threads. The degree of MLP exposed through VMT is a
result of the workload’s memory intensity, thread swap
frequency, and thread swap overhead (i.e., number of save
and restore instructions). graph500 and bc reach the high-
est MLP and performance gains because of their relatively
high thread swap frequency and few save and restore in-
structions per thread swap, as we will quantify in the next
section. The other workloads swap threads at a lower pace
and the MLP improvement over 8 logical threads is limited.
Increasing the number of logical threads further does not
improve MLP because the core is unable to swap logical
threads quickly enough to expose more parallel memory
requests. tc is the least memory-intensive benchmark of the
workloads considered in this study, see Figure 2a, hence the
amount of extracted MLP is limited.

VMT Default Configuration. As noted before, the optimum
logical thread count varies across benchmarks, however,
we find that, on average, optimum VMT performance is
achieved for 16 logical threads for both the single-threaded
and SMT cores. This configuration leads to an average
speedup of 1.52× (and up to 2.68×) for VMT on top of the
baseline 4-core processor with single-threaded cores, and
1.74× (and up to 3.17×) for VMT on top of the baseline
4-core processor with 2-way SMT cores. In the remainder
of this paper, we report VMT results assuming 16 logical
threads and 2 physical threads per core, unless stated other-
wise.
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Fig. 8. Average number of instructions between VMT thread swaps and
average number of save and restore instructions involved in a VMT
thread swap. A smaller number of instructions between thread swaps allows
for triggering them faster. A smaller number of save and restore instructions
reduces the swapping overhead.

4.2 Saving and Restoring Architecture State
We now quantify VMT’s thread swap operation, i.e., thread
swap frequency, the number of save and restore instructions
per thread swap, and the hit rate of the restore instructions
in the cache hierarchy.

Thread Swap Frequency. A high thread swap frequency
is needed to engage VMT: the smaller the number of in-
structions between thread swaps, the higher the opportunity
to expose MLP. Figure 8a quantifies the number of instruc-
tions between two thread swaps which is a function of the
workload’s memory intensity. The number of instructions
between thread swaps varies from 74 (graph500) to 150
instructions (bfs) on average; tc is the outlier with 3,514
instructions between thread swaps because of its relatively
low memory intensity.

Number of Save and Restore Instructions. It is important
that the overhead per thread swap is as small as possible. A
first-order metric for thread swap overhead is the number
of save and restore instructions per thread swap, see Fig-
ure 8b. The number of save instructions is smaller than the
number of restore instructions because the save instructions
only need to store the dirty architecture registers that were
written in the last execution epoch; the restore instructions
need to load all the architecture registers that the thread has
ever written.

Hit Rate for Restore Instructions. It is critical that the
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restore instructions find the architecture state as close to
the core as possible, and preferably in the L1 data cache.
Figure 9 reports the levels in the memory hierarchy at which
the restore instructions hit when running the sssp bench-
mark. (sssp is the benchmark with the highest number
of restore instructions missing in L1.) These results show
that VMT most often restores the architectural state of the
threads from the L1 cache. The fact that graph workloads
present poor memory locality and the high pace at which
threads are swapped in and out allows for a high L1 hit
rate when restoring architecture state. Even for sssp, the
hit rate in L1 only reduces notably for 32 logical threads, in
which case the L1 hit rate of the restore instructions reduces
to 85%; this increases thread swapping latency which in
turn dampens VMT’s performance benefits. Note that the
architectural state never gets evicted to main memory and
very infrequently to the LLC.

4.3 VMT Performance Analysis

It is instructive to analyze VMT’s performance contributors
and its maximum potential. Figure 10 evaluates four VMT
variants: (i) VMT without any register masks; (ii) VMT with
the dirty register masks (but no written register mask), (iii)
VM with both the dirty and written register masks (i.e., the
proposed VMT solution), and (iv) an idealized version of
VMT with an unrealistically large register file to hold the
architectural state for all logical threads. The latter does not
trigger any overhead for saving architecture state.

VMT without register masks outperforms the baseline 2-
way SMT processor by 1.56×. Enabling the dirty register
mask increases performance to 1.68×. Enabling both the
dirty and the written register masks increases performance
by 1.74×. The idealized VMT yields a 2.00× speedup. We
conclude that the register masks are an important compo-
nent to reduce VMT overhead. We also find that the gap
with an idealized version of VMT is considerable.
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Fig. 12. Normalized performance for VMT compared to our baseline.
VMT offers significant performance improvements across workloads and input
graphs.

We further find that the impact of storing a thread’s ar-
chitecture state in the cache hierarchy on cache performance
is limited, see Figure 11 which quantifies the impact of VMT
on L1 data miss rate: the L1 D-cache miss rate is not signifi-
cantly affected.7 We thus conclude that VMT’s performance
overhead is mainly caused by the time required to save and
restore a thread’s architecture state.

4.4 Input-Graph Sensitivity

We now evaluate VMT performance across input graphs.
We evaluate different real-world graphs taking the profile-
driven VMT approach. Based on a profiling phase, i.e.,
performance evaluation carried out using the Kronecker-
based graph, we set the optimum number of threads for
each workload as follows: 32 threads for graph500, 16
threads for bc, bfs, cc, and pr, and 8 threads for sssp.8

Figure 12 reports VMT performance normalized to the
baseline processor across the evaluated input graphs. This
includes five real-world graphs [32]: Google, Skitter,
Stackoverflow, US-roads and Wikipedia.

The key conclusion is that VMT provides significant
performance benefits across the broader set of input graphs,
even though the achieved benefits vary across input graphs
(and workloads). The highest performance improvement
(1.79×) is reported for the Stackoverflow graph. The
Google and Skitter graphs result in smaller working
sets, which in turn results in lower LLC MPKIs and con-
sequently somewhat lower VMT speedups. On average,
across all the real-world graphs, the performance benefit of
VMT compared to the baseline SMT architecture amounts to
1.41×.

7. We note that the graph workloads experience an L1 I-cache miss
rate of less than 1%. In addition, we find that VMT affects TLB perfor-
mance only marginally. Not shown here because of space constraints.

8. tc is not evaluated here since it requires undirected graphs
whereas the real-world graphs evaluated are directed.
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VMT improves performance for parallel applications other than graph work-
loads. The performance improvements depend on the workload’s TLP, memory
intensity, and exploitable MLP within and across threads.

4.5 Other Parallel Workloads
As extensively argued, VMT fits the characteristics of graph
workloads particularly well. However, VMT can also sig-
nificantly improve performance for other memory-intensive
parallel workloads. The achieved benefits depend on a
workload’s memory-intensity, its TLP, and its MLP. We
evaluate VMT for two workloads that perform indirect
memory accesses: Conjugate Gradient (CG) from the NAS
Parallel Suite, which performs irregular memory accesses
on a large, sparse, and unstructured matrix; and Hash
Join (HJ) [33], a kernel that mimics database systems and
performs irregular memory accesses through different hash
tables. In addition, we also consider a set of Rodinia v3.1
benchmarks with an LLC MPKI above 1. Figure 13 reports
normalized performance for VMT compared to the baseline
processor; benchmarks are sorted from highest to lowest
LLC MPKI. We report high speedups through VMT for the
two irregular workloads: 1.80× for CG and 1.78× for HJ.
Regarding the Rodinia benchmarks, VMT outperforms SMT
by up to 1.34× (bfs); speedup is more moderate for the
other, less memory-intensive, benchmarks.

4.6 Comparison to BMT
In addition to VMT being substantially more hardware-
efficient than BMT, as extensively argued before, there are
three other differences in the underlying mechanisms that
impact performance. (1) BMT waits for a fixed number of
cycles before triggering a thread swap: the LLC hit latency
plus some additional cycles to account for cache contention.
(2) BMT waits until the LLC-missing load is the oldest
instruction in the reorder buffer (ROB) to trigger the thread
swap while VMT triggers the thread swap as soon as the
miss notification is received. (3) BMT incurs a 10-cycle access
latency to access the inactive register file (IRF).9

In our implementation of BMT we trigger a thread swap
if a load does not complete its execution in 60 cycles (53
average LLC hit latency plus 7 additional cycles to account
for cache contention) and the load is the oldest instruction in
the ROB. In contrast, VMT triggers a thread swap as soon as
an LLC tag miss is detected (i.e., 14 cycles L1/L2/LLC tag
lookup plus 3 cycles to notify the core). This is motivated
by the observation that there is limited per-thread MLP for

9. We assume the same access latency as in the BMT proposal even
though we consider a larger number of logical threads (12 in the
original BMT proposal versus up to 32 in our evaluation) and a bigger
architectural state per thread (496 bytes in the original BMT proposal
versus 664 bytes in our evaluation), which results in a 3.6× bigger
IRF. The 10-cycle access latency is motivated in the BMT paper by its
distance from the core being similar to a 2MB L2 cache.
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Fig. 14. Normalized performance for VMT, BMT with 10- and 4-cycle IRF
access latency, and IMP compared to our baseline. VMT outperforms
the original BMT proposal by 22% on average while incurring much less
hardware overhead (21 KB per core for BMT versus 195 bytes for VMT).
VMT outperforms IMP by 49%: IMP’s indirect pattern detection approach is
less effective for aggressive out-of-order cores.

graph workloads. In addition, we compare against BMT
with a 10-cycle IRF access latency and BMT with a more
aggressive IRF access latency of 4 cycles.

Figure 14 compares VMT against BMT with 10- and 4-
cycle IRF access latency. VMT achieves higher performance
than BMT. On average, VMT outperforms BMT, assuming
a latency of 10 and 4 cycles to the IRF, by 22% and 19%,
respectively. These results show that for graph workloads it
is important to switch threads early, i.e., there is more MLP
to be exploited across threads than within a thread.

4.7 Comparison to IMP

The Indirect Memory Prefetcher (IMP) [2] is a state-of-the-
art hardware prefetcher for graph workloads and indirect
memory accesses in the general form of A[B[i]], where ar-
rays A and B refer to the data and index arrays, respectively.
The index array (B[i]) is typically stored consecutively in
memory and accessed sequentially. Accesses to the data
array (A[B[i]), however, depend on the value of B[i], and
tend to touch non-consecutive memory locations. The IMP
approach is to first detect a streaming pattern to the index
array and then identify an indirect pattern. IMP therefore
relies on a mechanism that needs to first observe an access
to the index array (B[i]), then an access to the data array
(A[B[i]]), before the next element in the index array (B[i+1])
is accessed. While this condition is always met for in-order
cores, which is the baseline configuration assumed in the
IMP work, we observe that speculation in aggressive out-
of-order cores frequently disturbs this access pattern (even
when index array accesses hit in the L1), which complicates
identifying indirect memory access patterns (and gaining
confidence on the detected ones).

Figure 14 compares the performance benefits achieved
by VMT against IMP. IMP improves performance compared
to our baseline (which includes a stride prefetcher) by 16%
but falls far from the performance benefit provided by VMT
(1.74×). The highest benefit is achieved for bfs and pr
for which IMP improves performance by 31% and 28%,
respectively.

5 RELATED WORK

Multi-Threading Paradigms. Most of the body of research
in hardware multi-threading relates to the three main
paradigms: coarse-grain, fine-grain and simultaneous multi-
threading. The fundamental innovation by VMT compared
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to prior work is that it virtualizes the logical threads’ archi-
tecture state.

Coarse-Grain Multi-Threading (CGMT) processors [13],
[14] switch logical threads upon miss events, e.g., a long-
latency memory access, e.g., Intel Montecito and Sun Rock. 
Fine-Grain Multi-Threading (FGMT) processors switch be-
tween logical threads on a per-cycle basis, e.g., Cray Thread-
Storm [15]. Simultaneous Multi-Threading (SMT) [16] is the 
only multi-threading paradigm that allows a core to issue 
instructions from different threads in the same cycle. SMT 
is implemented in many commodity and server processors 
manufactured by Intel [29], AMD, and IBM [18].

Finally, Balanced Multi-Threading (BMT) [19] virtual-
izes physical threads which exacerbates the problem of 
maintaining the architecture state for all logical threads. In 
follow-on work, Brown et al. [34] propose to share BMT’s 
inactive register file across cores, allowing threads to swiftly 
migrate across cores.

Memory-Backed Register File. Prior work has devised so-
lutions to overcome the constraints imposed by the limited 
register file, p articularly f or m ulti-threading architectures. 
Soundararajan et al. [35], Nuth et al. [36], Kogge et al. [37], 
Oehmke et al. [38] and Li et al. [39] present hardware 
mechanisms to virtualize the logical registers by treating the 
physical register file as a cache of the much larger memory-
mapped logical register space. These proposals require a 
deep redesign of the rename stage and/or register file, 
which opposes to our goal of requiring minimal hardware 
modifications o n t op o f a  c ommodity p rocessor. Moreover, 
this prior work does not describe how virtualizing the 
architecture state enables a novel multi-threading paradigm 
that fits graph workloads well.

Tackling the same problem in a different scenario, 
Huguet et al. [40] propose a combination of architectural 
and compilation support to reduce the register saves and re-
stores across function calls. Similar support could be added 
to VMT to reduce register saves and restores involved in a 
thread swap.

Improving Graph Workload Performance. A selection of 
prior work proposed hardware and software techniques to 
improve graph workload performance. Yu et al. [2] devise 
the indirect memory prefetcher (IMP), which is able to 
prefetch specific i rregular patterns but relies on an indirect 
memory pattern detection mechanism that turns out to be 
less effective on aggressive out-of-order cores compared 
to in-order cores. We have shown that VMT outperforms 
IMP by a significant m argin. K iriansky e l a l. [ 3] extend 
the compiler to transform annotated loops with indirect 
memory references into batches of sequential DRAM ac-
cesses. Ainsworth et al. [4] propose an event-triggered 
programmable prefetcher that generates prefetches from 
annotated source code. Mukkara et al. [41] propose HATS, a 
hardware-accelerated traversal scheduler to improve graphs 
locality without expensive preprocessing. HATS requires 
changes in the graph processing framework and its perfor-
mance benefits a re r elated w ith t he c ommunity structure 
of the graphs. Finally, Faldu et al. [42] propose GRASP, 
domain-specific L LC m anagement f or g raph w orkloads to 
protect hot vertices against cache thrashing. GRASP requires 
graphs to be reordered to induce spatial locality; further, the

set of hot vertices it can protect is limited by the LLC size.
VMT can be applied to unmodified graphs.

Accelerators have also been proposed for graph work-
loads. Ahn et al. [5] propose a programmable processing-
in-memory accelerator to provide memory-capacity-propor-
tional performance in large-scale graph processing. Ozdal
et al. [6] propose a customizable architecture optimized for
different access patterns and graph workloads. Ahn et al. [5]
and Zhuo et al. [43] propose Processing-In-Memory (PIM)
architectures to maximize and optimize memory bandwidth
usage.
Software Techniques to Improve MLP. Software techniques
require modifications to source code or binaries, unlike
VMT. Horowitz et al. [20] propose a new class of mem-
ory operations, called ‘informing memory operations’, to
let software know if a memory reference suffers a cache
miss. They briefly discuss how this mechanism allows for
implementing a software-based approach in which a miss
handler switches threads upon cache misses. More recent
software approaches focus on improving MLP in pointer-
chasing codes. In particular, Chen et al. [44] hide the cache
miss latency associated with join operations in memory-
sized hash tables by overlapping misses with computation.
Kocberber et al. [45] propose asynchronous memory access
chaining (AMAC) for exploiting inter-lookup parallelism to
hide the memory access latency in in-memory databases.
Psaropoulos et al. [21] propose coroutines to interleave
among different instruction streams upon cache misses. The
compiler encodes the different stages of a lookup within the
coroutine and separates them with suspension/resumption
points on potentially LLC-missing loads marked by the
user. Unlike VMT, coroutines require rewriting the code and
cannot be used in existing binaries. Nevertheless, comparing
VMT against this software approach could be an interesting
avenue for future work.

6 CONCLUSION

Graph workloads highly benefit from thread-level paral-
lelism as different threads can issue independent mem-
ory requests, exposing MLP and improving performance.
Multi-threading architectures are therefore an excellent fit
for emerging graph workloads. Unfortunately, all existing
multi-threading designs require dedicated hardware struc-
tures for storing the architecture state of all logical threads.
This leads to an unjustifiably high hardware cost for com-
modity processors.

This paper proposes Virtualized Multi-Threading, a novel
hardware multi-threading paradigm for commodity SMT
processors to accelerate graph workloads at minimal hard-
ware cost. VMT virtualizes an SMT’s physical thread context
among a large number of logical threads that are swapped
in and out upon long-latency memory requests. VMT’s key
innovation is to virtualize the logical threads’ architecture
state by saving the architecture state in the processor’s cache
hierarchy, to minimize hardware cost. We further find that
graph workloads are insensitive to L1 D-cache performance,
in addition to having TLP, high LLC miss rate and low MLP,
hence they are a particularly good fit for VMT. Our experi-
mental results report that VMT achieves an average speedup
of 1.74× (and up to 3.17×) for a set of representative graph
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workloads, while incurring a minimal hardware cost of 195 
bytes per core and limited additional logic.

The overall conclusion is that VMT is a promising 
paradigm to dramatically speed up graph workload per-
formance. Its extremely low hardware cost paves the way 
for adoption in current commodity processors. At the meta 
level, this work demonstrates a promising direction to in-
novate general-purpose processors through small hardware 
modifications w ith s ubstantial p erformance improvements 
for important and emerging classes of workloads.
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