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Abstract

In this paper, we introduce the spaces of vector-valued sequences containing multiplier
(weakly) statistically convergent series. The completeness of such spaces is studied as
well as some relations between unconditionally convergent and weakly unconditionally
Cauchy series of these spaces. We also obtain generalizations of some results regard-
ing uniform convergence of unconditionally convergent series through the concept of
statistical convergence. Finally, we provide a version of the Orlicz-Pettis theorem for
λ-multiplier convergent operator series by means of the statistical convergence.
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1. Introduction

By ω, we denote the space of all real or complex valued sequences. Any vector
subspace of ω is called a sequence space. We denote by l∞ and c0 the Banach spaces
of bounded and null sequences endowed with sup norm, respectively.

Let X be a real Banach space, X∗ is the dual space of X and
∑

k xk is a series in

X. A series
∑

k xk is called weakly unconditionally Cauchy (wuC) if
(∑n

k=1 xπk

)
n∈N

is weakly Cauchy for every permutation π of N; or equivalently,
∑

k xk is a wuC se-
ries if and only if

∑∞
k=1 |x∗(xk)| < ∞ for every x∗ ∈ X∗. A series

∑
k xk is called

unconditionally convergent (uc) if
∑∞

k=1 xπk is convergent for every permutation π of
N.

Many results have been obtained on the behaviour of a series of the form
∑∞

k=1 akxk,
where (ak)k∈N is a bounded sequence of real numbers. It is well known that (see
[6, 8, 11]):

(1) A series
∑

k xk is uc if and only if whenever (ak)k∈N ∈ l∞, the series
∑∞

k=1 akxk
is convergent.

(2) A series
∑

k xk is wuC if and only if whenever (ak)k∈N ∈ c0, the series
∑∞

k=1 akxk
is convergent.
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(3) If
∑

k xk is a wuC series, then for every (ak)k∈N ∈ l∞, the series
∑∞

k=1 akxk
is weak∗ convergent in X∗∗, that is, convergent with the topology σ(X∗∗, X∗),
where X∗∗ is the second dual of X.

In [9, 19], the spaces X(l∞) and X(c0), which are also denoted by BMC(X) and
CMC(X), respectively, are defined by

X(`∞) =

{
(xk)k∈N ∈ XN :

∞∑
k=1

akxk is convergent for every (ak)k∈N ∈ `∞

}
and

X(c0) =

{
(xk)k∈N ∈ XN :

∞∑
k=1

akxk is convergent for every (ak)k∈N ∈ c0

}
,

and it is proved that both spaces are real Banach spaces when endowed with the norm

‖(xk)k∈N‖ = sup

{∥∥∥∥∥
n∑
k=1

akxk

∥∥∥∥∥ : n ∈ N, |ak| ≤ 1, k = 1, 2, . . . , n

}
. (1.1)

In view of (1, 2) above, these spaces can be considered as the spaces of uc and wuC
series in X, respectively.

The Hahn-Schur Theorem is one of the most important results in Banach Space
Theory. For example, it is used in the original proof of the Orlicz-Pettis Theorem
(see [23]). For more information on this theorem, see [28]. In [27], Swartz proves
a version of this theorem regarding uniform convergence of uc series in linear metric
spaces as follows:

Theorem 1.1. Let X be a real Banach space and let (xn) be a sequence in X(`∞). If
for each (ak) ∈ `∞, limn→∞

∑∞
k=1 akx

n
k exists in X, then there exists x0 ∈ X(`∞) such

that limn→∞ ‖xn − x0‖ = 0 in X(`∞).

Later, in [1–4] the authors obtain generalizations of some results provided in [27]
as well as some extensions of Theorem 1.1 for wuC series, with the aid of some con-
vergence methods, such as usual convergence, regular matrix summability and almost
summability.

It is well known that statistical convergence is not equivalent to a matrix summa-
bility method (see [15]). So, it is a natural to wonder whether it is possible to obtain
uniform statistical convergence from any particular situation of pointwise statistical
convergence.

The first idea of statistical convergence appeared, under the name of almost conver-
gence, in the first edition (Warsaw, 1935) of the monograph [33] by Zygmund. Since
1951, when Fast [14] (see also [24, 25]) introduced statistical convergence of number
sequences in terms of asymptotic density of subsets of N, several applications and
generalizations of this notion have been investigated (for references, see [10, 12]). For
instance, Maddox [21] and Kolk [17] considered the statistical convergence of sequences
taking values in a locally convex space or a normed space, respectively.

Now let us recall some notions about statistical convergence. Let A be a subset of
N. We denote by |A| the cardinality of A. For every n ∈ N, we denote A(n) := {k ∈



3

A : k ≤ n}. The density of A is defined by

δ(A) = lim
n→∞

1

n
|A(n)|,

in case this limit exists. A sequence (xk) in X is statistically convergent to x ∈ X, and
we write St− limk xk = x, if for every ε > 0

δ({k ∈ N : ‖xk − x‖ < ε}) = 1.

Also, a sequence (xk) in X is weakly statistically convergent to x ∈ X, and we write
wSt− limk xk = x, if for every ε > 0 and every f ∈ X∗

δ({k ∈ N : |f(xk)− f(x)| < ε}) = 1.

It is simple to observe that every convergent sequence is statistically convergent, and
every statistically convergent sequence is weakly statistically convergent.

The paper is organized as follows: in Section 2 we introduce the spaces of sta-
tistically and weakly statistically summable vector-valued sequences and show their
completeness. Also we prove some auxiliary results in order to state one of the main
results of the paper which consists of the existence of uniform statistical convergence
from pointwise statistical convergence. In Section 3 after recalling some preliminary
results we provide a new version of Orlicz-Pettis Theorem for λ-multiplier convergent
operator series by means of the statistical convergence.

2. Vector-valued spaces of multiplier statistical convergent series

Within the following lines we will consider real Banach spaces unless we explicitly
say otherwise. The concept of statistical convergence of a series can be given through
the sequences of its partial sums (see [13, 30]):

Definition 2.1. Let X be a real normed space. We will say that the series
∑

k xk
is statistically convergent to x0 if St − limn

∑n
k=1 xk = x0. We will denote it by

St−
∑

k xk = x0.

Next, we will introduce the space of statistically summable vector-valued se-
quences.

Definition 2.2. Let S be a subspace of l∞ such that c0 ⊆ S. We define the space

X(S, St) =

{
(xk)k∈N ∈ XN : St−

∞∑
k=1

akxk exists for every (ak)k∈N ∈ S

}
endowed with the norm given in (1.1).

Remark 2.3. If X is a real Banach space and S is a subspace of `∞ containing c0, then
one can observe (see also Proposition 2.7 and Remark 2.8) that

X(l∞) ⊆ X(S, St) ⊆ X(c0).

Our first result shows the completeness of the space X(S, St).

Theorem 2.4. Let X be a real Banach space and let S be a subspace of `∞ containing
c0. The space X(S, St) is complete when endowed with the norm given in (1.1).
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Proof. Considering Remark 2.3, it is sufficient prove that X(S, St) is closed in X(c0).
Consider a sequence (xn)n∈N ⊆ X(S, St) converging to some x0 ∈ X(c0), that is,

‖xn − x0‖ → 0 as n→∞.

We will show that x0 ∈ X(S, St). Fix a = (ak)k∈N ∈ S\{0}. There exists (xm)m∈N ⊂ X
such that

St− lim
n

n∑
k=1

akx
m
k = xm (2.1)

for each m ∈ N. Let us see that (xm)m∈N is a Cauchy sequence in X. Since (xn)n∈N is
a Cauchy sequence in X(c0), there exists m0 ∈ N such that for ε > 0 and p, q ≥ m0

‖xp − xq‖ ≤ ε

3‖a‖
. (2.2)

Fixed p, q ≥ m0. From (2.1), we can choose n ∈ N such that∥∥∥∥∥xp −
n∑
k=1

akx
p
k

∥∥∥∥∥ < ε

3
and

∥∥∥∥∥xq −
n∑
k=1

akx
q
k

∥∥∥∥∥ < ε

3
. (2.3)

Therefore, by (2.2) and (2.3) we have that

‖xp − xq‖ ≤

∥∥∥∥∥xp −
n∑
k=1

akx
p
k

∥∥∥∥∥+

∥∥∥∥∥xq −
n∑
k=1

akx
q
k

∥∥∥∥∥+

∥∥∥∥∥
n∑
k=1

ak (xpk − x
q
k)

∥∥∥∥∥
<

ε

3
+
ε

3
+ ‖a‖‖xp − xq‖

= ε.

Thus (xm)m∈N is a Cauchy sequence in X and hence, by completeness of X, there exists
x0 ∈ X such that limm xm = x0. Now, let ε > 0, and we fix m ∈ N such that

‖xm − x0‖ ≤ ε

3‖a‖
and ‖xm − x0‖ ≤

ε

3
.

Also, by (2.1) there is an A ⊂ N with δ(A) = 1 such that∥∥∥∥∥
n∑
k=1

akx
m
k − xm

∥∥∥∥∥ < ε

3

for every n ∈ A. Consequently,∥∥∥∥∥
n∑
k=1

akx
0
k − x0

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
k=1

ak
(
x0k − xmk

)∥∥∥∥∥+

∥∥∥∥∥
n∑
k=1

akx
m
k − xm

∥∥∥∥∥+ ‖xm − x0‖

<
ε

3
+
ε

3
+
ε

3
= ε

for each n ∈ A, and hence we have that x0 ∈ X(S, St). �

In a natural way we can consider the space of weakly statistically summable vector-
valued sequences, which takes us to the concept of weak statistical convergence of a
series.
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Definition 2.5. Let X be a real normed space. We will say that the series
∑

k xk
is weakly statistically convergent to x0 if St − limn

∑n
k=1 x

∗(xk) = x∗(x0) for every
x∗ ∈ X∗. We will denote it by wSt−

∑
k xk = x0.

Definition 2.6. Let S be a subspace of l∞ such that c0 ⊆ S. We define the space

Xw(S, St) =

{
(xk)k∈N ∈ XN : wSt−

∞∑
k=1

akxk exists for every (ak)k∈N ∈ S

}
endowed with the norm given (1.1).

Before stating and proving the completeness of this space, we will give a charac-
terization of the wuC series, which is given in terms of statistical convergence, and a
remark.

Proposition 2.7. Let X be a Banach space and
∑

k xk be a series in X. If wSt −∑
k akxk is convergent for every (ak) ∈ c0, then

∑
k xk is a wuC series.

Proof. Let us suppose that
∑

k xk is not a wuC series. There exists x∗ ∈ X∗ such that∑
k

|x∗(xk)| = +∞. (2.4)

Inductively, we will construct a sequence (ak)k∈N in c0 such that
∑

k akx
∗(xk) = +∞

and akx
∗(xk) ≥ 0 for every k ∈ N, therefore by hypothesis and [30, Proposition 1], we

will obtain a contradiction with (2.4). Let ν > 1 and i0 = 0. There exists an increasing
sequence (in) such that

in∑
k=in−1+1

|x∗(xk)| > ν2nν .

On the other hand, we define the following sequence:

ak =

{
1
νnν
, if x∗(xk) ≥ 0,

− 1
νnν
, if x∗(xk) < 0

for k = in−1 + 1, in−1 + 2, . . . , in. After an easy calculation, we obtain that

akx
∗(xk) ≥ 0 for every k and

∑
k

akx
∗(xk) = +∞.

This completes the proof. �

Remark 2.8. We claim that the inclusion X(l∞) ⊆ X(S, St) ⊆ Xw(S, St) ⊆ X(c0) is
provided. Indeed, it is sufficient to show Xw(S, St) ⊆ X(c0). If we take x = (xk) ∈
Xw(S, St) then wSt−

∑
k akxk is convergent for every a = (ak) ∈ S. Also, since c0 ⊂ S,

we have that wSt −
∑

k akxk is convergent for every (ak) ∈ c0. By using Proposition
2.7, we obtain that

∑
k xk is wuC series. This means that x = (xk) ∈ X(c0).

Now, we give the completeness of the space Xw(S, St).

Theorem 2.9. Let X be a real Banach space and S be a subspace of `∞ containing c0.
The space Xw(S, St) is complete when endowed with the norm given in (1.1).
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Proof. We will prove that Xw(S, St) is closed in X(c0). Let (xn)n∈N be a sequence in
Xw(S, St) and consider x0 ∈ X(c0) such that ‖xn− x0‖ → 0 as n→∞. We will prove
that x0 ∈ Xw(S, St). Fix a = (ak)k∈N ∈ S \ {0}. For each m ∈ N, there exists xm ∈ X
such that

wSt− lim
n

n∑
k=1

akx
m
k = xm.

We will first prove that (xm)m∈N is a Cauchy sequence in X. Take any ε > 0. An
m0 ∈ N can be found so that if p, q ≥ m0, then we have that ‖xp − xq‖ ≤ ε

3‖a‖ . We

fix p, q ≥ m0 and consider a functional x∗ ∈ SX∗ such that ‖xp − xq‖ = |x∗(xp − xq)|.
There exists n ∈ N such that∣∣∣∣∣x∗(xp)−

n∑
k=1

akx
∗(xpk)

∣∣∣∣∣ < ε

3
and

∣∣∣∣∣x∗(xq)−
n∑
k=1

akx
∗(xqk)

∣∣∣∣∣ < ε

3
.

It follows that

‖xp − xq‖ ≤

∣∣∣∣∣x∗(xp)−
n∑
k=1

akx
∗(xpk)

∣∣∣∣∣+

∣∣∣∣∣x∗(xq)−
n∑
k=1

akx
∗(xqk)

∣∣∣∣∣+

∣∣∣∣∣
n∑
k=1

akx
∗ (xpk − x

q
k)

∣∣∣∣∣
<

ε

3
+
ε

3
+ ‖a‖‖xp − xq‖

= ε.

Since X is complete, there exists x0 ∈ X such that limm xm = x0. Now, we will prove
that wSt − limn

∑n
k=1 akx

0
k = x0. If ε > 0 and x∗ ∈ X∗, then we can fix m ∈ N such

that

‖xm − x0‖ ≤ ε

3‖a‖‖x∗‖
and ‖xm − x0‖ ≤

ε

3‖x∗‖
.

On the other hand, since wSt − limn

∑n
k=1 akx

m
k = xm, there exists an A ⊂ N with

δ(A) = 1 such that ∣∣∣∣∣
n∑
k=1

akx
∗(xmk )− x∗(xm)

∣∣∣∣∣ < ε

3

for every n ∈ A. Therefore,∣∣∣∣∣
n∑
k=1

akx
∗(x0k)− x∗(x0)

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
k=1

akx
∗ (x0k − xmk )

∣∣∣∣∣
+

∣∣∣∣∣
n∑
k=1

akx
∗(xmk )− x∗(xm)

∣∣∣∣∣+ |x∗(xm)− x∗(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε

for each n ∈ A. This means that x0 ∈ Xw(S, St). �
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Lemma 2.10. Let X be a real Banach space and c0 ⊆ S ⊆ l∞. If x = (xk)k∈N ∈
X(S, St), then the linear mapping

Tx : S → X

a → Tx(a) = St−
∞∑
k=1

akxk

is continuous and ‖Tx‖ = ‖x‖.

Proof. Consider a = (ak) ∈ S and let (Tx(a))n denote the sequence of the partial sums
of the series St−

∑∞
k=1 akxk. Since x = (xk)k∈N ∈ X(S, St),

‖(Tx(a))n‖ =

∥∥∥∥∥St−
n∑
k=1

akxk

∥∥∥∥∥ ≤ ‖a‖‖x‖,
and hence we have that ‖Tx(a)‖ ≤ ‖a‖‖x‖. This shows that Tx is continuous and
‖Tx‖ ≤ ‖x‖. In order to show that ‖Tx‖ = ‖x‖, we fix an arbitrary ε > 0 and choose
n ∈ N and a ∈ c00 with ‖a‖ ≤ 1 such that ‖x‖ − ‖

∑n
k=1 akxk‖ < ε. Then

‖x‖ ≥ ‖Tx(a)‖ ≥

∥∥∥∥∥
n∑
k=1

akxk

∥∥∥∥∥ > ‖x‖ − ε.
The arbitrariness of ε forces the equality ‖Tx‖ = ‖x‖. �

Remark 2.11. In Lemma 2.10, if we replace the assumption x = (xk)k∈N ∈ X(S, St)
by x = (xk)k∈N ∈ Xw(S, St), then the linear mapping

Tx : S → X

a → Tx(a) = wSt−
∞∑
k=1

akxk

is also continuous with ‖Tx‖ = ‖x‖.

It is now time to provide our main result in this study: the existence of uniform
statistical convergence from pointwise statistical convergence. Observe that this is also
a generalization of Theorem 1.1 in terms of statistical convergence method. Before
stating and proving this result, we will need some concepts (see [3]).

Definition 2.12. Let X be a real Banach space and M be a vector subspace of
X∗∗. The space X is called an M -Grothendieck space if every σ(X∗, X)-convergent
sequence in X∗ is also σ(X∗,M)-convergent. If M = X∗∗, then the space X is called
a Grothendieck space.

Recall that if F is a set of functions of a given set X into a topological space,
then σ(X,F ) stands for the initial topology on X induced by F , that is, the coarsest
topology that makes all functions in F continuous. If G ⊆ F , then it is clear that
σ(X,G) is coarser than σ(X,F ). Notice that, under the settings of Definition 2.12,
if M ⊆ X, then X is trivially M -Grothendieck. On the other hand, if X is an M -
Grothendieck space and (x∗n)n∈N ⊆ X∗ is w∗-convergent to some x∗ ∈ X∗, then we know
that (x∗n)n∈N is σ(X∗,M)-convergent, but it is not necessarily σ(X∗,M)-convergent to



8

x∗. The following lemma provides a sufficient condition to assure that if (x∗n)n∈N ⊆ X∗

is w∗-convergent to some x∗ ∈ X∗, then (x∗n)n∈N is σ(X∗,M)-convergent to x∗.

Lemma 2.13. Let X be a real Banach space and M be a vector subspace of X∗∗

containing X. Suppose that X is M-Grothendieck. If (x∗n)n∈N ⊆ X∗ is w∗-convergent
to some x∗ ∈ X∗, then (x∗n)n∈N is σ(X∗,M)-convergent to x∗.

Proof. Since X is M -Grothendieck, there exists y∗ ∈ X∗ such that (x∗n)n∈N is σ(X∗,M)-
convergent to y∗. All we need to show is that x∗ = y∗. Fix an arbitrary x ∈ X. Since
X ⊆ M ⊆ X∗∗ and (x∗n)n∈N is w∗-convergent to x∗ ∈ X∗ and σ(X∗,M)-convergent to
y∗, we have that (x∗n(x))n∈N is both convergent to x∗(x) and y∗(x). As a consequence,
x∗(x) = y∗(x). The arbitrariness of x ∈ X shows that x∗ = y∗. �

Remark 2.14. Let S be a vector subspace of `∞ so that c0 ⊆ S. We can (isometrically)
identify `∞ with a subspace of S∗∗. Indeed, consider the map

`∞ → S∗∗

a 7→ ha : S∗ → R
g → ha(g) =

∑∞
k=1 akg(ek),

(2.5)

where (ek) is the standard basis of c0. Notice that, for every p ∈ N,

p∑
k=1

∣∣akg(ek)
∣∣ ≤ ‖a‖∞ p∑

k=1

∣∣g(ek)
∣∣ = ‖a‖∞

p∑
k=1

g
(
εke

k
)

= ‖a‖∞g

(
p∑

k=1

εke
k

)
≤ ‖a‖∞‖g‖,

where

εk :=

{
+1 g(ek) ≥ 0,
−1 g(ek) < 0.

This shows that |ha(g)| ≤ ‖a‖∞‖g‖, hence ‖ha‖ ≤ ‖a‖∞. In fact, ‖ha‖ = ‖a‖∞, since,
for every ε > 0, there exists kε ∈ N such that ‖a‖∞ − ε < |akε| ≤ ‖a‖∞, thus

‖a‖∞ − ε < |akε| = |ha(g)| ≤ ‖ha‖ ≤ ‖a‖∞,
where g ∈ S∗ is a Hahn-Banach extension to S of

ekε : c0 → R
x 7→ xkε .

As a consequence of Remark 2.14, for every subspace c0 ⊆ S ⊆ `∞, it makes sense
to consider whether S is an `∞-Grothendieck space.

Lemma 2.15. Let c0 ⊆ S ⊆ `∞. Let a ∈ S Then:

(1) If
∑∞

k=1 ake
k is σ(S, S∗)-convergent to a, then ha(g) = g(a) for all g ∈ S∗.

(2) If a ∈ c0, then ha(g) = g(a) for all g ∈ S∗.
(3) If S is an `∞-Grothendieck space, then every w∗-convergent sequence (gn)n∈N ⊆

S∗ to 0 satisfies that

lim
n→∞

∞∑
k=1

akgn(ek) = 0

for every a = (ak)k∈N ∈ `∞.

Proof.
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(1) Fix an arbitrary g ∈ S∗. Then
(∑l

k=1 ake
k
)
l∈N

is σ(S, S∗)-convergent to a,

so
(
g
(∑l

k=1 ake
k
))

l∈N
is convergent to g(a), that is,

(∑l
k=1 akg

(
ek
))

l∈N
con-

verges to g(a). However,
(∑l

k=1 akg
(
ek
))

l∈N
converges to ha(g).

(2) Simply notice that
∑∞

k=1 ake
k converges to a in the sup norm.

(3) By hypothesis, S is an `∞-Grothendieck space, therefore there exists g ∈ S∗ such
that ha(gn) → ha(g) as n → ∞ for every a = (ak)k∈N ∈ `∞. We have to show
that ha(g) = 0 for all a = (ak)k∈N ∈ `∞. Fix an arbitrary a = (ak)k∈N ∈ `∞.

Fix also an arbitrary K ∈ N. Notice that aK :=
∑K

k=1 ake
k ∈ c00 ⊆ c0 ⊆ S.

Therefore, gn

(∑K
k=1 ake

k
)
→ 0 as n → ∞ because (gn)n∈N is w∗-convergent

to 0. On the other hand, haK (gn) → haK (g) as n → ∞. However, haK (gn) =

gn

(∑K
k=1 ake

k
)

for every n ∈ N. This implies that haK (g) = 0. Finally, it only

suffices to realize that haK (g)→ ha(g) as K →∞.

�

Lemma 2.15 indicates that, if
∑∞

k=1 ake
k is σ(S, S∗)-convergent to a for all a ∈ S,

then `∞ contains S in the identification (2.5), hence the hypothesis of Lemma 2.13 are
satisfied.

Theorem 2.16. Let X be a real Banach space and (xn)n∈N a sequence in X(`∞).
Assume that the following conditions are satisfied:

(i) S is an `∞-Grothendieck space such that c0 ⊆ S ⊆ l∞.
(ii) limn→∞ St−

∑∞
i=1 aix

n
i exists for each a = (ai) ∈ S.

Then, there exists x0 ∈ X(`∞) such that limn ‖xn − x0‖ = 0 in X(`∞).

Proof. It suffices to prove that (xn)n∈N is a Cauchy sequence in X(`∞). If not, there
exist ε > 0 and an increasing sequence (nk)k∈N of naturals such that ‖yk‖ > ε for every
k ∈ N, where yk = xnk − xnk+1 . For every k ∈ N, we can choose x∗k ∈ SX∗ such that

∞∑
i=1

|x∗k(yki )| > ε. (2.6)

On the other hand, from Lemma 2.10 we can define the following continuous linear
mapping:

Tyk : S → X

a → Tyk(a) = St−
∞∑
i=1

aiy
k
i .

Observe that limk→∞ Tyk(a) = 0 for every a = (ai) ∈ S. Indeed, fix an arbitrary a =

(ai) ∈ S. Note that (St−
∑∞

i=1 aix
nk
i )

k∈N and
(
St−

∑∞
i=1 aix

nk+1

i

)
k∈N are subsequences

of (St−
∑∞

i=1 aix
n
i )n∈N. Since the limit of (St−

∑∞
i=1 aix

n
i )n∈N exists in X by (ii), we
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conclude that

lim
k→∞

Tyk(a) = lim
k→∞

St−
∞∑
i=1

aiy
k
i

= lim
k→∞

St−
∞∑
i=1

aix
nk
i − lim

k→∞
St−

∞∑
i=1

aix
nk+1

i

= 0.

Therefore, the sequence (x∗k ◦Tyk)k is weak∗ convergent to zero in S∗. From (i) together
with Remark 2.14 and (3) in Lemma 2.15, we obtain that

lim
k→∞

∞∑
i=1

ai(x
∗
k ◦ Tyk)(ei) = lim

k→∞

∞∑
i=1

aix
∗
k(y

k
i ) = 0

for every a = (ai)i∈N ∈ `∞. Hence, the sequence {(x∗k(yki ))i∈N}k∈N is weakly con-
vergent to zero in `1. Since the space `1 enjoys the Schur property, the sequence
{(x∗k(yki ))i∈N}k∈N is norm convergent to zero in `1, which contradicts (2.6). �

If we now consider weakly statistical convergence instead of statistical convergence
in the above theorem, we obtain the following result:

Corollary 2.17. Let X be a real Banach space. Suppose that S is a subspace of `∞
containing c0 that is an `∞-Grothendieck space. If (xn)n∈N is a sequence in X(`∞) such
that

lim
n→∞

wSt−
∞∑
i=1

aix
n
i

exists for each a = (ai) ∈ S, then there exists x0 ∈ X(`∞) such that limn ‖xn−x0‖ = 0
in X(`∞).

3. A version of Orlicz-Pettis Theorem for statistical convergence

The classical Orlicz-Pettis Theorem concerning subseries convergence in the weak
and norm topologies of a normed linear space has proven to be a very useful result with
applications to many situations in measure and integration theory and the geometric
theory of B-spaces [6, 11]. Several versions of the Orlicz-Pettis Theorem have been
established for multiplier convergent operator series [7, 18,26,28,29,31,32].

Before stating and proving the main result in this final section, we need to introduce
and recall several concepts on which we will strongly rely. A sequence space is a vector
subspace λ ⊆ RN endowed with a vector topology finer than the product topology. By
an increasing sequence of intervals we mean a sequence (Im) where, for every m ∈ N,
Im := (km−1, km]∩N with km ∈ N and k0 := 0. If x ∈ λ and I is an interval of naturals,
then χIx stands for the sequence whose kth-term is

(χIx)k :=

{
xk if k ∈ I,
0 if k /∈ I.

Now, we consider a gliding hump property [28] on a sequence space λ. This
property warranties that a series

∑
k Tk which is λ-multiplier statistically convergent for
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the weak topology of Y is λ-multiplier statistically convergent for the strong topology
of Y , where (Tk) ⊆ L(X, Y ) for X, Y Banach spaces.

Definition 3.1. Let λ be a sequence space. We say that λ has the infinite gliding
hump property (∞-GHP) if whenever x ∈ λ and (Im) is an increasing sequence of
intervals, there exists a strictly increasing sequence {pm} of naturals with tpm > 0,
tpm →∞, such that every subsequence of {pm} has a further subsequence {qm} in such
a way the coordinatewise sum of the series

∑
m tqmχIqmx ∈ λ.

The following lemma will be used in the proof of Orlicz-Pettis theorem and it can
be found in [5]. Before that, we need the following definition.

Definition 3.2. Let F ⊆ P(N). We say that:

• F is a natural family if φ0(N) ⊆ F ⊆ P(N), where φ0(N) denotes the family of
finite subsets of N.
• F has the (M)-property if for each sequence (Ai)i in φ0(N) there exists E ∈ F

and K ⊂ N infinite such that
⋃
i∈K Ai ⊆ E ⊆

⋃
i∈NAi.

Lemma 3.3. Let F be a natural family with the (M) property and let (xij)i,j∈N be a
matrix in a Banach space X. Suppose

(i) St− limi xij = xj for each j ∈ N.
(ii) For each B ∈ F \ φ0(N), {St−

∑
j∈B xij}i is a Cauchy sequence.

Then (xij)i,j is strongly uniformly statistically convergent to zero. In particular,

St− lim
i

(St− lim
j
xij) = St− lim

j
(St− lim

i
xij) = 0 and St− lim

i
xii = 0.

We have finally gathered all the necessary tools to prove our version of Orlicz-Pettis
Theorem for statistical convergence.

Theorem 3.4. Let λ be a sequence space having the ∞-GHP, {Tk} ⊂ L(X, Y ) for
X, Y Banach spaces, and F ⊆ P(N) a natural family with the (M)-property. If the
series

∑
k∈B Tk is λ-multiplier statistically convergent with respect to weak topology of

Y for B ∈ F \ φ0(N), then the series
∑

k Tk is λ−multiplier statistically convergent
with respect to strong topology of Y .

Proof. Let
∑

k∈B Tk be λ-multiplier statistically convergent with respect to weak topol-
ogy of Y for B ∈ F \ φ0(N). Take ε > 0. If

∑
k Tk is not λ-multiplier statistically

convergent for the strong topology of Y , there exists x ∈ λ, a bounded sequence
(y∗n) ⊂ Y ∗ and an increasing sequence of intervals {In} such that∣∣∣∣∣St−∑

k∈In

y∗n(Tkxk)

∣∣∣∣∣ > ε (3.1)

for all n ∈ N. Since λ has the ∞-GHP, there exists a subsequence {pn} and tpn > 0,
tpn → ∞ such that every subsequence of {pn} has a further subsequence {qn} such
that

∑
n tqnχIqnx ∈ λ. Now, we consider the matrix H defined by

H = [hij] =

 ∑
m∈Ipj

y∗pi
tpi

(Tm(tpjxm))

 .
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We will show the matrix H satisfies the conditions of Lemma 3.3, and hence we will
obtain a contradiction with (3.1). Indeed:

(i) The columns of H are statistically convergent to zero because (y∗i ) is bounded
and tpi →∞.

(ii) Since λ has the∞-GHP, there is a further subsequence {qj} such that
∑

j tqjχIqjx ∈
λ.

By hypothesis, there exists a sequence y such that

wSt−
∑
j∈B

∑
m∈Iqj

Tm(tqjxm) = y

for B ∈ F \ φ0(N) and hence, from the definition of the matrix H, we obtain

St− lim
i

∑
j∈B

hiqj = St− lim
i

∑
j∈B

∑
m∈Iqj

y∗pi
tpi

(Tm(tqjxm)) = 0.

Consequently, the diagonal of H is statistically convergent to zero, and this completes
the proof. �

It follows immediately from Theorem 3.4:

Corollary 3.5. If λ is a sequence space having the ∞-GHP and {Tk} ⊂ L(X, Y ) for
X, Y Banach spaces, then the following assumptions are equivalent:

(i) The series
∑

k Tk is λ-multiplier convergent.
(ii) The series

∑
k Tkxk is statistically convergent for every sequence {xk} ∈ λ.

(iii) The series
∑

k Tkxk is weakly statistically convergent for every sequence {xk} ∈
λ.
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