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Abstract: In this work, WO3 nanostructures were synthesized with different complexing agents
(0.05 M H2O2 and 0.1 M citric acid) and annealing conditions (400 ◦C, 500 ◦C and 600 ◦C) to ob-
tain optimal WO3 nanostructures to use them as a photoanode in the photoelectrochemical (PEC)
degradation of an endocrine disruptor chemical. These nanostructures were studied morpholog-
ically by a field emission scanning electron microscope. X-ray photoelectron spectroscopy was
performed to provide information of the electronic states of the nanostructures. The crystallinity of
the samples was observed by a confocal Raman laser microscope and X-ray diffraction. Furthermore,
photoelectrochemical measurements (photostability, photoelectrochemical impedance spectroscopy,
Mott–Schottky and water-splitting test) were also performed using a solar simulator with AM 1.5 con-
ditions at 100 mW·cm−2. Once the optimal nanostructure was obtained (citric acid 0.01 M at an
annealing temperature of 600 ◦C), the PEC degradation of methylparaben (CO 10 ppm) was carried
out. It was followed by ultra-high-performance liquid chromatography and mass spectrometry, which
allowed to obtain the concentration of the contaminant during degradation and the identification of
degradation intermediates. The optimized nanostructure was proved to be an efficient photocatalyst
since the degradation of methylparaben was performed in less than 4 h and the kinetic coefficient of
degradation was 0.02 min−1.

Keywords: photoelectrocatalysis; WO3 nanostructures; degradation; methylparaben; endocrine
disruptors

1. Introduction

Parabens are a group of chemicals widely employed as preservatives in pharmaceuti-
cals and personal care products [1]. Due to their estrogenic activity, parabens are known
as endocrine disruptor chemicals (EDC) [2]. Excessive use of these chemicals in consumer
products may lead to potential health risks [3,4]. Methylparaben (MP) is one of the most
characteristic and used parabens [5]. Consequently, MP was selected as the contaminant to
be studied for this research. MP presents a hydroxyl group linked to an aromatic ring in
para position, making the chemical more stable and thus, more difficult to degrade [6].

Wastewater treatment plants cannot effectively remove MP, as it has been detected in
the environment [7,8]. Hence, new techniques using hydroxyl radical generation, called
advanced oxidation processes (AOPs), are being studied [9–12]. For some years now, pho-
toelectroctalysis (PEC) has been indicated as a promising method for removing emerging
contaminants, such as EDC, from water [13–15]. The PEC technique combines electrolytic
and photocatalytic processes. It consists in the generation of electron–hole pairs (e−CB/h+VB)
on the surface of a semiconductor by means of the irradiation of the semiconductor with an
energy greater than its bandgap. Furthermore, an external low bias is set in order to delay
the recombination of e−CB/h+VB, enhancing the efficiency of the process [14].
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An appropriate semiconductor for use as a photoanode in the PEC technique must
have a proper bandgap, efficient e−CB/h+VB separation and transport, and good photoelectro-
catalytic properties and stability [16].

Tungsten trioxide (WO3) is raising attention for being used as a photoanode for PEC
due to its favorable features: (i) suitable value of bandgap that enables absorption of part
of the visible rays of the solar spectrum (≈2.6 eV, which corresponds to a wavelength
of ≈480 nm), (ii) stability in acidic electrolytes (iii) excellent electrical conductivity and
(iv) non-photoelectric corrosion [17–19]. Furthermore, previous studies from this group
have proved that WO3 nanostructures are effective for removing different pesticides from
water by PEC [16,18,20,21].

Anodization is a widely used method to form WO3 nanostructures, which enables
to vary the morphology and dimensions of the electrode by changing the anodization
conditions [19,22–26]. The addition of complexing agents to the electrolyte could be used
to dissolve the tungsten in order to obtain solutions which will act as precursors in the
formation of WO3 nanostructures. By tailoring the nanostructures, it is possible to improve
their PEC properties.

In previous work, the arrangement of WO3 nanostructures by the anodization of tung-
sten together with two different complexing agents, oxygen peroxide (H2O2) and citric acid,
has been studied [27,28]. Consequently, the first motivation of the present work is to compare
the best concentration of both complexing agents to select the optimal nanostructure.

Another important factor affecting the PEC properties of the nanostructures is the
temperature of the annealing treatment performed after their synthesis. It has been demon-
strated that heat treatment at high temperatures transforms the amorphous structure of the
WO3 into a crystalline one, changing also the morphology of the surface of the nanostruc-
tures [29]. In order to be used in PEC processes a crystalline structure of the nanostructures
is needed [30,31]. Consequently, an investigation of the temperature for the synthesis of
WO3 nanostructures with citric acid is also performed in this study in order to obtain
enhanced WO3 nanostructures and apply them as a photoanode for MP degradation.

To our knowledge, no PEC process using WO3 as a photoanode has been studied yet
in the literature for MP degradation. Furthermore, the WO3 nanostructures are synthe-
sized with a simple and non-expensive method. Hence, the objective of this study is to
synthesize enhanced WO3 nanostructures with a very high electroactive surface area by
the anodization method and test the excellent performance of the new WO3 nanostructure
for use as a photoanode for the degradation of MP by PEC. On one hand, two important
parameters in the synthesis of WO3 nanostructures are studied: the complexing agent and
the annealing temperature. On the other hand, a solution with MP is degraded by PEC
using the optimal WO3 nanostructure as a photoanode.

2. Materials and Methods
2.1. Materials

Tungsten (W) bars of 99.5% purity with a diameter of 8 mm were used as work-
ing electrodes. Methanosulfonic acid (CH4O3S), hydrogen peroxide (H2O2), citric acid
(C6H8O7) and sulphuric acid (H2SO4) were purchased from Sigma Aldrich. Furthermore,
methanol (CH3OH), acetic acid (CH3COOH) and methylparaben standard (C8H8O3) were
acquired, of high-performance liquid chromatography (HPLC) grade, from Sigma Aldrich
(Saint Louis, MO, USA). Ultrapure water (18.2 MΩ·cm, Type 1 Water) was used for the
preparation of all the solutions.

2.2. WO3 Nanostructures Fabrication

In this work, the procedure followed to obtain the WO3 nanostructures was carried
out by W electrochemical anodization under hydrodynamic conditions. The method was
optimized by the authors in previous works [16,27,28].

First, before anodization, the W rod was conditioned. The W bar was polished using
silicon carbide (SiC) papers of different grades (220, 500 and 4000) in order to obtain a
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mirror-like surface. Thereafter, the surface was washed with distilled water, sonicated in
ethanol for 2 min and dried with air. Lastly, the sample was Teflon-coated to expose only a
circular area of 0.5 cm2 to the electrolyte.

For anodization, the polished W was used as a working electrode and a platinum foil
as the counter electrode. During anodization, 20 V were applied for 4 h. The electrolyte
was composed of 1.5 M methanosulfonic acid plus the complexing agent at 50 ◦C. The
tungsten bar was assembled on a rotating disk electrode, and it was rotated continuously
at a speed of 375 rpm. Two different complexing agents were used in order to find the
optimal WO3 nanostructure: 0.05 M H2O2 and 0.1 M citric acid. The concentration chosen
for each electrolyte was proved to be optimal in previous works [27,28].

After anodization, WO3 nanostructures were annealed at different temperatures
(400 ◦C, 500 ◦C and 600 ◦C) in a flowing air atmosphere for 4 h to examine the effect
of the annealing temperature on the nanostructure.

2.3. Nanostructures Characterization

The morphology of the samples was characterized by field emission scanning electron
microscope (FE-SEM). The equipment used was a Zeiss Ultra 55 Scanning Electron Mis-
croscope at an acceleration potential of 3 kV. Atomic force microscopy (AFM) in tapping
mode was used to analyze the surface topography of the samples. The equipment used
was a Bruker Multimode 8 (Bruker, Billerica, MA, USA). Furthermore, the crystallinity of
the samples was analyzed using a confocal Raman laser microscope (Witec alpha300 R
confocal Raman microscope, Ulm, Germany) with a neon laser of 488 nm with a power of
420 µW.

To further study, the best obtained samples were also characterized by X-ray diffraction
(XRD) using a Bruker D8AVANCE (Bruker, Billerica, MA, USA) diffractometer with a Cu
radiation operating at 40 kV from 5 ◦C to 80 ◦C and X-ray photoelectron spectroscopy
(XPS, K-ALPHA Thermo Scientific, Waltham, MA, USA). All XPS spectra were captured
by Al-K monochromatized radiation (1486.6 eV) at 3 mA × 12 kV. The whole energy
band was measured with scan pass energies of 200 eV and the specific elements at 50 eV.
The experimental backgrounds were approximated by a smart background function and
surface elemental composition was calculated from background subtracted peak areas.
XRD permitted to obtain more detail about the crystalline structure of the samples, and
XPS provided information about the electronic states of the nucleus and about the chemical
status of WO3 nanostructures.

Photoelectrochemical measurements under illuminated conditions were carried out
using an Autolab PGSTAT302N potentiostat (Metrohm, Herisau, Switzerland) and a solar
simulator (AM 1.5 conditions at 100 mW·cm−2). A three-electrode cell configuration was
used, consisting of an Ag/AgCl (3 M KCl) reference electrode, a platinum tip as a counter
electrode, and the WO3 nanostructures as a working electrode. The electrolyte used for all
the photoelectrochemical measurements was 0.1 M H2SO4, to ensure the photostability of
the electrode [32].

First, stability tests at 1 VAg/AgCl for 1 h were carried out for all the samples to
check their photostability to photocorrosion. After that, photoelectrochemical impedance
spectroscopy (PEIS) and Mott–Schottky tests were performed. On one hand, PEIS measure-
ments were carried out, applying 1 VAg/AgCl in the frequency range varied from 100 kHz to
10 mHz with a 10 mV of amplitude. On the other hand, Mott–Schottky measurements were
performed from 1 to 0.2 VAg/AgCl at a scan rate of 50 mV·s−1 and a frequency of 5 kHz
with an amplitude signal of 10 mV. For stability, PEIS and Mott–Schottky tests of the area
of the WO3 nanostructure exposed to the electrolyte was 0.5 cm2.

After that, water-splitting tests were performed with the best samples, and photocur-
rent densities against potential curves were obtained. A potential sweep was scanned from
0.2 VAg/AgCl to 1.0 VAg/AgC at a scan rate of 2 mV·s−1 by pulsed light irradiation, 60 s light
off and 20 s light on.
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2.4. PEC Degradation

PEC degradation tests were performed in a photoelectrochemical quartz reactor of
14 mL in volume composed of a three-electrode electrochemical cell with the same configu-
ration as the cell used for photoelectrohemical measurements (area of the anode = 0.5 cm2).
A potentiostat provided 1V Ag/AgCl bias potential and a 1000 W Xenon lamp was used
as a light source with an intensity of 100 mW/cm2. The distance from the lamp to the
photoanode was 30 cm.

The target solution to degrade was 10 ppm MP with 0.1M H2SO4 to assure acidic
conditions and stability of the nanostructure. The PEC degradation was performed at room
temperature, and the electrolyte was magnetically stirred. Samples were taken every hour
during 24 h.

The degradation process was followed by means of ultra high-performance liquid
chromatography and mass spectrometry (UHPLC-MS-Q-TOF). The equipment used was
an Agilent 1290 Infinity UHPLC equipment fitted with a C-18 analytical column (Agilent
ZORBAX Eclipse Plus C18, 50 mm × 2.1 mm, 1.8 µm particle size). The temperature of
the column was 30 ◦C, the flow rate used was 0.8 mL/min, and the injection volume was
2 µL. Mobile phases consisted of (A) water + 0.01% Acetic Acid (v/v) and (B) methanol.
The analysis started with 20% mobile phase B. Then, the solvent B increased linearly to 90%
in 25 min, was kept at 90% for 1 min, and the initial condition was restored in 0.5 min. The
re-equilibration time was 1.5 min. The total run time was less than thirty minutes.

The UHPLC system was coupled to a time-of flight mass spectrometer (MS-Q-TOF)
fitted with an electrospray interface operated in negative ionization mode. The MS spectra
were registered from 70 to 1200 m/z. The parameters of the MS-Q-TOF were the following:
capillary voltage 4000 V; nebulizer pressure 45 psi; drying gas flow rate 11 L/min; gas
temperature 355 ◦C; skimmer voltage 65 V; octopole rf 250 V; fragmentor voltage 90 V.
Finally, data acquisition was performed by Agilent MassHunter Qualitative Analysis
10.0 Software.

3. Results
3.1. FE-SEM

All samples were characterized morphologically by FE-SEM. Figure 1 shows dif-
ferent FE-SEM images of the WO3 nanostructures formed after the annealing treatment
carried out at various temperatures (400 ◦C, 500 ◦C and 600 ◦C) in both complexing
agents used during the synthesis. It can be observed that for all temperatures and com-
plexing agents, small-sized nanoparticles were obtained. Furthermore, Figure 1 shows
that for both complexing agents, as the temperature increases, the morphology of the
nanostructures formed is much more defined. At 400 ◦C, the nanostructures form a
spongy layer with nanostructures grouped in a mountain-shape and poorly defined, and
as the temperature increases, the nanostructures are more homogenous and in a defined
nanorod shape. Consequently, the annealing temperature had a significant effect on the
morphology of the WO3 nanostructures. According to a previous work from the research
group [33], the clear definition of the nanostructures at a higher temperature could be
associated with a higher degree of their dehydration. Concerning the complexing agent
used during the synthesis, the morphology obtained with both complexing agents was
quite similar. However, in the case of H2O2, the change of morphology with temperature
was more noticeable than in the citric acid nanostructures. Furthermore, comparing the
best annealing temperature of both complexing agents—Figure 1c,f—it can be seen that
“the mountains” formed by the nanostructures obtained with citric acid (f) were more
compact than those obtained with H2O2 and the nanorods formed were smaller in this
case. The similarity in morphology for both electrolytes is due to the fact that both act as
bidentate complexing agents and the same formation mechanism of nanostructures is
taking place [27,28,34–37].
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Figure 1. FE-SEM images of the WO3 nanostructures synthesized with different complexing agents
and different temperatures: (a) 400 ◦C—0.05 M H2O2 (b) 500 ◦C—0.05 M H2O2 (c) 600 ◦C—0.05 M
H2O2 (d) 400 ◦C—0.1 M citric acid (e) 500 ◦C—0.1 M citric acid and (f) 600 ◦C—0.1 M citric acid.

3.2. Raman

The Raman spectrum was used to assess the effect of the temperature of annealing and
complexing agent on the composition and crystal structure of the samples. Figure 2a shows
the Raman spectra for the samples synthesized with 0.05 M H2O2 and annealed at 400 ◦C,
500 ◦C and 600 ◦C, while Figure 2b shows the Raman spectra for the samples synthesized
with 0.1M citric acid at the same temperatures. The shape of the spectra is similar for both
complexing agents and the characteristic monoclinic WO3 peaks were appreciated in all
cases: 125 cm−1, 273 cm−1, 327 cm−1, 715 cm−1and 822 cm−1 [34,38–42]. Although the
characteristic peaks of crystalline WO3 were observed, some variations could be found
based on the annealing temperature. The main characteristic was that, as the annealing
temperature rose, the peaks had a higher intensity, indicating a higher crystallinity of the
samples annealed at 600 ◦C. Furthermore, there are two bands (pointed by the red arrow in
Figure 2) that are only seen in the 600 ◦C samples: 195 cm−1 and 434 cm−1. Those weak
bands are also associated with crystalline tungsten oxides [34,41]. Consequently, it can be
concluded that the annealing temperature is crucial, being that 600 ◦C is the optimal value
for obtaining WO3 nanostructures with high levels of crystallinity and dehydration.
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Figure 2. Raman spectra of the samples synthesized with (a) 0.05 M H2O2 and (b) 0.1 M citric acid
and annealed at different temperatures (400 ◦C, 500 ◦C and 600 ◦C).

3.3. Stability Test

For all the samples, stability tests were carried out to evaluate their photocurrent
resistance under illumination. These results are shown in Figure 3. For 0.05 M H2O2,
the sample annealed at 600 ◦C showed the highest photocurrent density (0.51 mA/cm2);
moreover, it behaved in a stable way. For the samples annealed at 400 ◦C and 500 ◦C, at
the beginning, the current decreased sharply, showing instability and then, they remained
constant but showed a very low current (0.15 and 0.20 mA/cm2, respectively). For the
samples synthesized with 0.1 M citric acid, the samples followed the same tendency as
those synthesized with 0.05 M H2O2, although only the sample annealed at 600 ◦C was
stable. The sample annealed at 600 ◦C had the highest photocurrent density (0.64 mA/cm2),
while the samples synthesized at 400 ◦C and 500 ◦C apart from being unstable, showed
lower values of photocurrent (0.20 and 0.10 mA/cm2, respectively). From these results, it
can be concluded that the annealing temperature is a determining feature for obtaining
nanostructures with optimal photo electrochemical properties, being that 600 ◦C is the best
temperature. Furthermore, from the higher values of photocurrent density, it can also be
concluded that in the WO3 nanostructures synthesized with citric acid in the electrolyte,
the holes generated are transferred faster between the electrolyte and the nanostructures,
and the e−/h+ pairs are kept separated for a longer time, enhancing the efficiency of
the process [43,44]. Consequently, nanostructures synthesized with 0.1 M citric acid and
annealed at 600 ◦C are optimal for use as photoelectrocatalysts.
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3.4. PEIS

In addition to stability test, photoelectrochemical impedance spectroscopy (PEIS) tests
under illuminated conditions were carried out in all the synthesized samples in order to
further analyze their photoelectrochemical characteristics. Nyquist diagrams and Bode
plots (Figure 4) were obtained from PEIS tests. Finally, Mott–Schottky (MS) analyses were
also performed (Figure 5) to obtain the defects density of a sample. PEIS test allowed
to study the influence of the temperature of annealing and the complexing agent on the
mechanism of photocurrent generation and the photoelectrochemical events occurring in
the WO3 nanostructures.
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The semicircle shown in the Nyquist diagram (Figure 4a,b) for the study of illuminated
nanostructured semiconductors is associated with charge-transfer processes of the electron–
hole pairs [45,46]. The hole transfer allows the medium to oxidize by forming species, such
as hydroxyl radicals or oxidized organic matter. Thus, as the semicircle decreases, the
photoelectrochemical response of the nanostructures improves [45,47]. From Figure 4a,b, it
can be seen that in all cases, the circle decreases with increasing temperature. Although
only a semicircle is visible at first sight in the Nyquist plots, at high frequencies there is a
smaller semicircle. For the nanostructures synthesized with H2O2, the semicircle is similar
for annealing temperatures of 400 ◦C and 500 ◦C, while it decreases drastically at 600 ◦C,
indicating better photoelectrochemical properties. For the samples synthesized with citric
acid, the semicircle was similar when the annealing was performed at 500 ◦C and 600 ◦C,
and it was much higher at 400 ◦C. In this case, the photoelectrochemical response was
better at 600 ◦C, which was confirmed with the morphological variations seen in the FESEM
analysis (see Figure 1). Therefore, charge-transfer processes under illuminated conditions
were favored at an annealing temperature of 600◦ for both complexing agents.

From Bode phase diagrams (Figure 4c,d), for both complexing agents, H2O2 and citric
acid, a wide peak was appreciated in all the annealing conditions, which is likely to be an
indicator of the superposition of the two individual peaks [48]. The results are very similar
in all cases, although for both complexing agents, it can be appreciated that the phase
angle was lower for 600 ◦C, indicating more resistance, thus, better photoelectrochemical
properties [45].

To quantitatively analyze the PEIS results, the electric circuit shown in Figure 4e is
employed. The circuit is composed of one resistance (Rs) and two R-CPE time constants.
The RS is linked to the electrolyte resistance, the first time constant (R1-CPE1) to the
resistance to the recombination of the electron–hole pairs and the second (R2-CPE2) to
the resistance from WO3 to the electrolyte [45–47,49,50]. In this circuit, constant phase
elements (CPE) are implemented as substitutes for capacitors to simulate the non-ideality
of electrochemical capacitances.

The results of all the samples are shown in Table S1 (see Supplementary Material).
Results from H2O2 electrolyte are obtained from [48]. From Table S1, it can be noticed
that in all samples, R1 was always lower than R2, as it was predicted since R1 was not
appreciated in Figure 4. Furthermore, R2 decreased with increasing temperature, regardless
of the complexing agent used. Comparing the complexing agent, the value of R for the citric
acid was always lower than for H2O2, indicating higher separation performance of photo-
generated e−CB/h+VB pairs and also a faster charge transfer of holes from the nanostructure
to the electrolyte.

Afterwards, MS analyses were also conducted in order to gather more information
about the semiconducting properties of the WO3 nanostructures. Figure 5 shows that from
all samples, MS plots have a linear region with a positive slope, which is a characteristic of
n-type semiconductors [28]. Furthermore, this region is related to the presence of donor



Nanomaterials 2022, 12, 4286 9 of 20

species, such as oxygen vacancies, in the crystalline structure of WO3 [48]. This slope is
inversely proportional to the number of defects in the samples. Consequently, the lower
the slope, the higher the defect number and therefore, the better the photoelectrocatalytic
properties of the sample [31,51,52]. From Figure 5, it can be seen that, for both complexing
agents, the slope is lower as the annealing temperature increases.

Finally, through the positive slope of MS plots (Figure 5), the density of donors (ND)
and the flat band potential (EFB) of the samples were obtained (Table S2). Following the
tendency of the slopes, ND increased as the annealing temperature increased. From 400 ◦C
to 500 ◦C, the ND slightly increased, and from 500 ◦C to 600 ◦C, it raised sharply. Moreover,
in all cases, ND was always higher for citric acid than for H2O2. A high number of defects
resulted in higher mobility of the electron–hole pairs in the nanostructure, improving the
photoelectrochemical performance of the anode. Regarding the EFB values, they were all
around 0.3 V (vs. Ag/AgCl) without seeing an influence of the complexing agent or the
annealing temperature used. This value of around 0.30 V was expected, as it is characteristic
for WO3 nanostructures according to the values found in the literature [53].

From all the results shown above, it can be concluded that while the heating tem-
perature is a key factor for obtaining optimal nanostructures to use as photoanodes, both
complexing agents used in this study had similar effects. Furthermore, it was demon-
strated that the optimal annealing temperature is 600 ◦C. Consequently, for the following
characterization of the samples, only samples annealed at 600 ◦C were studied.

3.5. XRD

XRD characterization of the samples annealed at 600 ◦C was carried out to study the
influence of the electrolyte on the crystallinity of the WO3 nanostructures. Figure S1 (see
Supplementary Material) shows the XRD pattern of WO3 nanostructures, where all peaks
(002), (020), (200), (112), (022), (220), and (221) can be associated to the monoclinic WO3
phase. For both electrolytes, the sharper peaks were (002), (020) and (220), indicating that
both synthesized nanostructures belong to the monoclinic phase of WO3 [21,54–58].

3.6. AFM

The topography and the average roughness values (Ra) of the samples were obtained
by atomic force microscopy (AFM). From Figure S2, it can be observed that both nanostruc-
tures presented a similar topography, manifesting a porous organization with clusters of
grains of the order of nanometers. Furthermore, it can be seen that the sample synthesized
with citric acid has a higher value of roughness than that one synthesized with H2O2, which
could be beneficial for the adsorption of organic compounds [16]. Therefore, with AFM
results, it can be affirmed that the roughness of the sample synthesized with citric acid is
higher than that one synthesized with H2O2. Consequently, the porosity of the samples
obtained with citric acid is also higher, indicating a larger surface area.

3.7. XPS

X-ray photoelectron spectroscopy (XPS) analysis was performed on the two samples
annealed at 600 ◦C to provide insight into the chemical state of the samples. The XPS
technique analyzes the electronic states of the nucleus and of the valence band of the WO3
samples in order to realize a qualitative and quantitative comparison of all the elements
present in the nanostructures. The only elements found in both samples were tungsten
and oxygen.

The majority element detected in both samples in the XPS spectrum was tungsten.
Figure 6a,b shows the XPS spectra of the peak W4f, which is associated with tungsten,
for the samples anodized with (a) H2O2 and (b) citric acid. Figure 6a,b reveals the two
characteristic peaks of tungsten, W4f7/2, and W4f5/2, with binding energies of 35.4 eV and
37.5 eV, respectively. Furthermore, the deconvolution of the first peak (W4f7/2) was carried
out in order to associate the convoluted peaks with different states of tungsten. For both
samples, three peaks linked with tungsten were detected. The first one, Scan A, appeared
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at 34.5 eV. This peak was linked to vacancies or defects in the samples and, particularly,
with the photoelectrons generated by the W atoms close to the oxygen vacancies that
have oxidation states less than +6 (WO3-x) [21,59]. The second one, Scan B, appeared at
35.4 eV. This peak corresponds to the generation of photoelectrons emitted by W atoms
with oxidation state +6, i.e., when stoichiometric tungsten oxide is present [60]. The third
one, Scan C, appeared at 36.4 eV. This peak, as Scan A, is also associated with defects in
the nanostructures; specifically, this peak is attached to local variations in the energy of the
vacuum level caused by superficial defects [59]. Figure 6a was obtained from the studies
of [21].
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Comparing both complexing agents, although they are very similar, some differences
in Scan can be appreciated. Scan A for H2O2 is slightly higher than that for citric acid,
meaning that nanostructures synthesized with H2O2 had more surface defects than those
with citric acid. However, in this case, more surface defects do not correspond with better
electrochemical properties since all results in the electrochemical tests were always better
for citric acid than for H2O2. This is confirmed with the oxygen peak.

The other element found in the samples by the XPS analysis was oxygen. Figure 6c,d
shows the XPS spectra of the peak O1s, which is associated with oxygen, for the samples
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synthesized with (a) H2O2 and (b) citric acid. Figure 6c,d reveal the characteristics peak of
oxygen, O1s, with a binding energy of 529.8 eV and its deconvolution into three different
peaks. The first peak (Scan A) has a binding energy of 530 eV and corresponds to the
oxygen atoms O2

− in the lattice. The second peak (Scan B) has a binding energy of 531.5 eV
and is associated with the defects of the nanostructure. In particular, it is associated with
hydroxyl radicals (−OH) that exist on the surface. The last peak (C), which appears at
532.9 eV, is also associated with the defects, but in this case, particularly to the species
adsorbed and oxygen vacancies [61–63]. The peaks are very similar for both complexing
agents, although Scan B and C are higher for citric acid. As these peaks are associated
with the defects of the nanostructure, the higher the peaks, the more numerous the surface
defects and the more numerous the oxygen vacancies. The results of the oxygen peaks
are more consistent with the electrochemical tests than the tungsten peaks, being that the
sample with citric acid is the one with more surface defects and, consequently, better photo
electrochemical properties.

3.8. Water Splitting Tests

The influence of the complexing agent used in the nanostructure synthesis on the
photoelectrochemical (PEC) behavior of the nanostructures was also tested. Figure 7 shows
the photocurrent density vs. potential curves, from where it can be seen that the sample
anodized with citric acid presented higher photoresponse than that anodized with H2O2.
This improvement (21% higher) of the PEC performance of WO3 nanorods synthesized with
citric acid could be associated with the morphology of the nanostructures. As observed in
the FESEM images (Figure 1c,f), the morphology of both samples annealed at 600 ◦C was
well-defined, and the nanorods covered the whole surface of the sample, obtaining in both
cases good response to the incident light and high photocurrent response. However, as
the “mountains” obtained with the acid citric anodization (Figure 1f) were constituted by
smaller nanorods and were more homogeneous than those with H2O2 (Figure 1c), the su-
perficial area exposed was higher, consequently increasing the photocurrent density under
illumination. This improvement can also be attributed to the better transport of electrons
toward the metallic contact derived from the compact morphology of the nanostructure
obtained with citric acid [28]. These results are also consistent with the results obtained
with the Mott–Schottky test (Figure 3) and the ND obtained in Table S2, as the ND obtained
for citric acid was higher than for H2O2 samples, indicating a higher number of defects,
higher mobility of electron–hole pairs and consequently, better photocurrent response of
the nanostructure with citric acid.
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It can be noticed from Figure 7 that for both cases, as the applied potential increased,
the current density increased linearly. This indicates that the potential drop within the space
charge layer is directly dependent on the bias potential, and consequently, the thickness of
the layer and the strength of the electric field too [27,64].

3.9. Photoelectrocatalytic Degradation of Methylparaben

From the photoelectrocatalytic analysis of the samples, it can be concluded that the
optimal sample to be used as a photoanode is the WO3 nanostructure synthesized with
0.1 M citric acid and annealed at 600 ◦C. Once the optimal nanostructure was determined,
the photoelectrochemical degradation of the endocrine disruptor methylparaben was
carried out. The degradation was performed over 24 h, being that 10 ppm was the initial
concentration of the contaminant and samples were taken every hour. The samples were
analyzed by UHPLC-Q-TOF/MS.

Before the degradation, six standards of methylparaben from 0.5 to 10 ppm were
analyzed to obtain a calibration curve, which will be used to calculate the concentration of
the samples at different degradation times. Figure S3 shows the extracted ion chromatogram
(EIC) of the standards for the m/z value 151.040, which corresponds to methylparaben [65].
Furthermore, Figure S3 also reveals the area of each standard and the retention time of the
studied contaminant (5.5 min). Thus, with the area and the concentration of each standard,
the calibration line was obtained, which is shown in the inset of Figure S3. The equation of
the calibration line is the following (Equation (1)), which has an R2 value of 0.9944:

Area (counts) = 5800018.09 × concentration (ppm) (1)

After obtaining the calibration line, a PEC degradation of MP (Co = 10 ppm) was
performed for 24 h. Figure 8a shows the UHPLC-Q-TOF/MS TIC chromatograms of the
samples taken every hour. In Figure 8a, it can be observed that three different peaks are
clearly differentiated. The first peak, obtained at a retention time of 5.5 min, corresponds
to MP. It can be observed that this peak decreases with time and practically disappears at
4 h, meaning that it is 100% degraded. This is confirmed by Figure 8b, which shows the
EIC of the degradation samples for the m/z value associated to MP. On the other hand,
both the second and third peaks, obtained at 9.2 and 12 min, correspond to intermediate
degradation products of MP.

First, the peak corresponding to methylparaben was analyzed. By obtaining the areas
of each concentration and using the calibration line, the concentration of methylparaben as
a function of time could be obtained (Table 1). From Table 1, it can be seen that, in only 4 h
of degradation, the methylparaben was already 100% eliminated.

Table 1. Concentration (ppm) and degradation (%) of MP during the degradation.

Time (h) Area (Counts) Concentration (ppm) Degradation (%)

0 55,747,948 10.00 0.00%

1 36,171,413 6.24 37.64%

2 10,440,169 1.80 81.59%

3 3,693,070 0.64 93.44%

4 328,399 0.06 99.42%

5 88,928 0.02 99.84%

6 65,237 0.01 99.88%

8 0 0.00 100.00%

24 0 0.00 100.00%
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Once the concentration of each sample was calculated, the order of the degradation
kinetics of the pollutant was determined, which is related to the velocity at which the
contaminant is degraded. In this case, it can be approximated to pseudo-first order degra-
dation kinetics, as there are two reactants present in the degradation process (MP and OH−

radicals) and the hydroxyl radicals remain approximately constant throughout the process.
In Figure S4 (see Supplementary Material), it is represented the logarithm of the quotient
between the concentration at each time and initial concentration versus time. The graph
shown in Figure S4 presents a decreasing trend, indicating the effective PEC degradation
of the contaminant; consequently, it can be affirmed that MP degradation follows a pseudo-
first order reaction kinetics. The equation of the kinetics obtained is shown in Equation (2),
where time is expressed in minutes and therefore, the kinetic coefficient has units of min−1:

ln
C
Co

= −0.023 × t + 0.631 (2)

Consequently, the kinetic coefficient of degradation of MP with WO3 nanostructures
is 0.023 min−1. As in recent years several researchers have focused on the removal of
endocrine disruptor chemicals; specifically for MP, in Table S4, there is a comparison of
our results with those reported to date in the literature. Comparing our parameters with
those obtained with other AOPs found in the literature, it can be affirmed that the WO3
nanostructures obtained in this study are very efficient for MP removal.

As mentioned previously, from the TIC chromatogram in Figure 8a, different peaks
associated with methylparaben degradation intermediates were observed. Therefore,
thanks to the chromatogram and the literature, several degradation intermediates could
be identified.

The m/z values found in the TIC chromatogram, apart from the m/z value associated
to MP, were the following: 185.0013, 220.9616 and 136.8914. On the one hand, the first
two values were obtained directly from the peaks associated with the TIC chromatogram
in Figure 5. The value 185.0013 corresponds to the peak appearing at a retention time
of 9.2 min and the value 220.96 corresponds to the peak at 12 min. On the other hand,
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the value of 136.894 was obtained from the literature [66]. Figure 9 shows the exact ion
chromatogram (EIC) of the different intermediates of degradation found. Figure 9a shows
the EIC of the m/z 185.0013; this value is associated with the compound tetra hydroxy
benzoic acid [5]. Figure 9b shows the EIC of the third peak observed in the TIC, with
a retention time of 12 min, and m/z value of 220.9589, which belongs to the compound
diethyl phthalate [5]. Finally, Figure 9c shows the EIC of 136.8914, which was obtained from
the literature [66], and it is associated with the chemical compound 4-hydroxybenzoic acid.

Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 20 
 

 

Once the concentration of each sample was calculated, the order of the degradation 
kinetics of the pollutant was determined, which is related to the velocity at which the 
contaminant is degraded. In this case, it can be approximated to pseudo-first order deg-
radation kinetics, as there are two reactants present in the degradation process (MP and 
OH− radicals) and the hydroxyl radicals remain approximately constant throughout the 
process. In Figure S4 (see Supplementary Material), it is represented the logarithm of the 
quotient between the concentration at each time and initial concentration versus time. The 
graph shown in Figure S4 presents a decreasing trend, indicating the effective PEC deg-
radation of the contaminant; consequently, it can be affirmed that MP degradation follows 
a pseudo-first order reaction kinetics. The equation of the kinetics obtained is shown in 
Equation (2), where time is expressed in minutes and therefore, the kinetic coefficient has 
units of min1:  ln 𝐶𝐶 =  −0.023 × 𝑡 + 0.631 (2)

Consequently, the kinetic coefficient of degradation of MP with WO3 nanostructures 
is 0.023 min−1. As in recent years several researchers have focused on the removal of en-
docrine disruptor chemicals; specifically for MP, in Table S4, there is a comparison of our 
results with those reported to date in the literature. Comparing our parameters with those 
obtained with other AOPs found in the literature, it can be affirmed that the WO3 

nanostructures obtained in this study are very efficient for MP removal. 
As mentioned previously, from the TIC chromatogram in Figure 8a, different peaks 

associated with methylparaben degradation intermediates were observed. Therefore, 
thanks to the chromatogram and the literature, several degradation intermediates could 
be identified.  

The m/z values found in the TIC chromatogram, apart from the m/z value associated 
to MP, were the following: 185.0013, 220.9616 and 136.8914. On the one hand, the first two 
values were obtained directly from the peaks associated with the TIC chromatogram in 
Figure 5. The value 185.0013 corresponds to the peak appearing at a retention time of 9.2 
min and the value 220.96 corresponds to the peak at 12 min. On the other hand, the value 
of 136.894 was obtained from the literature [66]. Figure 9 shows the exact ion chromato-
gram (EIC) of the different intermediates of degradation found. Figure 9a shows the EIC 
of the m/z 185.0013; this value is associated with the compound tetra hydroxy benzoic 
acid [5]. Figure 9b shows the EIC of the third peak observed in the TIC, with a retention 
time of 12 min, and m/z value of 220.9589, which belongs to the compound diethyl 
phthalate [5]. Finally, Figure 9c shows the EIC of 136.8914, which was obtained from the 
literature [66], and it is associated with the chemical compound 4-hydroxybenzoic acid. 

 
(a) 

Nanomaterials 2022, 12, x FOR PEER REVIEW 15 of 20 
 

 

 
(b) 

 
(c) 

Figure 9. EIC of the different intermediates found in the PEC degradation of methylparaben: (a) m/z 
185.0013 (b) m/z 220.9589 (c) 136.8914. 

After carrying out this study, it could be stated that three reaction intermediates ap-
peared: [A] tetra hydroxybenzoic acid, [B] diethyl phthalate and [C] 4-hydroxybenzoic 
acid. 

Figure S5 shows the trend in concentration of each of these intermediates. Interme-
diates [A] and [B] appear when the degradation of MP starts, as they could be detected in 
the 1 h sample. Intermediate [A] reached its maximum concentration in the 2 h sample 
and then decreased until it was 100% eliminated at 6 h of degradation. Intermediate [B] 
followed the same tendency as intermediate [A]; it reached its maximum concentration in 
the 3 h sample and then decreased until it was 100% eliminated at 8 h of degradation. In 
contrast, compound [C] appeared in the 4 h degradation sample for the first time. Conse-
quently, it was formed during the 3 and 4 h of degradation. Furthermore, it increased its 
concentration until it achieved its maximum at 24 h of degradation. Considering that in-
termediate [C] appears only after 3 h of degradation, it could be a product of one of the 
other two intermediates ([A] or [B]). Consequently, the two routes of degradation con-
verged in compound [C], which is the final product of degradation.  

After studying the concentration of each intermediate of degradation, the degrada-
tion pathway for MP is proposed in Figure 10. In this pathway two degradation routes are 
proposed: (A) attack of the hydroxyl radical on methylparaben by hydroxylation of the 
aromatic ring and hydrolysis of the ester to carboxylic acid, and (B) formation of diethyl 
phthalate by various reaction mechanisms, such as dehydroxylation and the addition of 
alkyl groups to methylparaben. Furthermore, both intermediates can be transformed into 
4-hydroxybenzoic. From [A] to [C], dehydroxylation takes place, and from [B] to [C], 

Figure 9. EIC of the different intermediates found in the PEC degradation of methylparaben: (a) m/z
185.0013 (b) m/z 220.9589 (c) 136.8914.



Nanomaterials 2022, 12, 4286 15 of 20

After carrying out this study, it could be stated that three reaction intermediates ap-
peared: [A] tetra hydroxybenzoic acid, [B] diethyl phthalate and [C] 4-hydroxybenzoic acid.

Figure S5 shows the trend in concentration of each of these intermediates. Intermedi-
ates [A] and [B] appear when the degradation of MP starts, as they could be detected in the
1 h sample. Intermediate [A] reached its maximum concentration in the 2 h sample and then
decreased until it was 100% eliminated at 6 h of degradation. Intermediate [B] followed
the same tendency as intermediate [A]; it reached its maximum concentration in the 3 h
sample and then decreased until it was 100% eliminated at 8 h of degradation. In contrast,
compound [C] appeared in the 4 h degradation sample for the first time. Consequently, it
was formed during the 3 and 4 h of degradation. Furthermore, it increased its concentration
until it achieved its maximum at 24 h of degradation. Considering that intermediate [C]
appears only after 3 h of degradation, it could be a product of one of the other two interme-
diates ([A] or [B]). Consequently, the two routes of degradation converged in compound
[C], which is the final product of degradation.

After studying the concentration of each intermediate of degradation, the degradation
pathway for MP is proposed in Figure 10. In this pathway two degradation routes are
proposed: (A) attack of the hydroxyl radical on methylparaben by hydroxylation of the
aromatic ring and hydrolysis of the ester to carboxylic acid, and (B) formation of diethyl
phthalate by various reaction mechanisms, such as dehydroxylation and the addition of
alkyl groups to methylparaben. Furthermore, both intermediates can be transformed into
4-hydroxybenzoic. From [A] to [C], dehydroxylation takes place, and from [B] to [C],
hydroxylation of the ring, double hydrolysis of the ester and a successive decarboxylation
of the ester.

Nanomaterials 2022, 12, x FOR PEER REVIEW 16 of 20 
 

 

hydroxylation of the ring, double hydrolysis of the ester and a successive decarboxylation 
of the ester. 

Table 2 shows the characteristics of the different intermediates found in the PEC deg-
radation of methylparaben.  

 
Figure 10. Degradation route of methylparaben and intermediates found. (A) Tetrahydroxy ben-
zoic acid, (B) diethyl phthalate and (C) 4-hydorxybenzoic acid.  

Table 2. Characteristics of the intermediates of degradation of methylparaben. 

Compound Identification Compound Molecular Formula Retention Time (min) m/z Value 
A Tetrahydroxy benzoic acid C7H6O6 9.2 185.0013 
B Diethyl phthalate C12H14O4 11 220.9586 
C 4-Hydroxibenzoic acid C7H6O3 0.9 136.8914 

Finally, as after 24 h of degradation, the only compound detected was 4-hydroxyben-
zoic acid, different standards of 4-hydroxybenzoic acid were analyzed at the UHPLC/MS 
in order to obtain a calibration line and to be able to quantify the concentration of this 
compound during the degradation. Figure S6 shows the calibration line obtained with the 
standards, and from the EIC of the compound shown in Figure 9c, the concentration of 4-
hydroxybenzoic acid at each time of degradation could be obtained, shown in Table S3. 
From this data, it could be affirmed that methylparaben was degraded in 4 h, and the final 
product of the degradation was 4-hydroxybenzoic acid at a concentration of 2.60 ppm.  

From all these results, it can be concluded that the WO3 photoanode, obtained using 
citric acid as a complexing agent and annealed at 600 °C is an excellent photoelectrocata-
lyst, as it is possible to degrade methylparaben in less than 4 h.  

4. Conclusions 
The aim of this work was to study the effect of the complexing agent and the anneal-

ing temperature in the synthesis of WO3 nanostructure in order to use them as a pho-
toanode for the PEC degradation of an endocrine disruptor chemical, methylparaben.  

All results showed that the annealing temperature is a crucial factor for obtaining 
enhanced nanostructures of WO3 (high crystallinity, high superficial area and less 

Figure 10. Degradation route of methylparaben and intermediates found. (A) Tetrahydroxy benzoic
acid, (B) diethyl phthalate and (C) 4-hydorxybenzoic acid.

Table 2 shows the characteristics of the different intermediates found in the PEC
degradation of methylparaben.

Finally, as after 24 h of degradation, the only compound detected was 4-hydroxybenzoic
acid, different standards of 4-hydroxybenzoic acid were analyzed at the UHPLC/MS in
order to obtain a calibration line and to be able to quantify the concentration of this com-
pound during the degradation. Figure S6 shows the calibration line obtained with the
standards, and from the EIC of the compound shown in Figure 9c, the concentration of
4-hydroxybenzoic acid at each time of degradation could be obtained, shown in Table S3.
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From this data, it could be affirmed that methylparaben was degraded in 4 h, and the final
product of the degradation was 4-hydroxybenzoic acid at a concentration of 2.60 ppm.

Table 2. Characteristics of the intermediates of degradation of methylparaben.

Compound
Identification Compound Molecular Formula Retention Time (min) m/z Value

A Tetrahydroxy benzoic acid C7H6O6 9.2 185.0013

B Diethyl phthalate C12H14O4 11 220.9586

C 4-Hydroxibenzoic acid C7H6O3 0.9 136.8914

From all these results, it can be concluded that the WO3 photoanode, obtained using
citric acid as a complexing agent and annealed at 600 ◦C is an excellent photoelectrocatalyst,
as it is possible to degrade methylparaben in less than 4 h.

4. Conclusions

The aim of this work was to study the effect of the complexing agent and the annealing
temperature in the synthesis of WO3 nanostructure in order to use them as a photoanode
for the PEC degradation of an endocrine disruptor chemical, methylparaben.

All results showed that the annealing temperature is a crucial factor for obtaining
enhanced nanostructures of WO3 (high crystallinity, high superficial area and less resistance
to charge transfer), with 600 ◦C being the optimal temperature. While the heating tempera-
ture is a key factor for obtaining WO3 nanostructures with favorable photoelectrochemical
properties, the complexing agent is not that determinant. However, a further study of the
complexing agent was carried out, and from the water-splitting test, it was clearly seen
that nanostructures synthesized with citric acid had better photoelectrochemical properties
than those with H2O2.

On the other hand, the PEC degradation of MP was carried out with the optimal WO3
nanostructure, synthesized with 0.1 M citric acid and annealed at 600 ◦C, and it was shown
that the contaminant could be 100% degraded in less than 4 h, which demonstrates the
outstanding properties of WO3 nanostructures as a photoanode for the PEC degradation
of MP. Furthermore, with the use of UHPLC-MS-Q-TOF a degradation pathway for the
contaminant could also be proposed, and three intermediates of degradation were found.

With these results, it can be affirmed that WO3 nanostructures synthesized with 0.1 M
citric acid and annealed at 600 ◦C present an excellent behavior to degrade this type of
endocrine disruptor.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12234286/s1, Table S1: Resistance values of the WO3 samples
with different electrolyte and annealing temperatures; Table S2: Density of donors (ND) and flat band
potential (EFB) of the different samples; Figure S1: XRD plots of the samples anodized with 0.05 M
H2O2 and 0.1M citric acid at 600 ◦C; Figure S2. Three-dimensional AFM images and roughness value
(Ra) of the nanostructures annealed at 600 ◦C and synthesized with different electrolytes: (a) H2O2
0.05 M and (b) citric acid 0.1 M; Figure S3: EIC at the m/z value 151.0400 of the standards of MP and
inset of the calibration line; Figure S4: Degradation kinetics of MP; Figure S5: Concentration of all the
intermediates in different times during the MP degradation: (a) intermediate A, (b) intermediate B,
(c) intermediate C. Figure S6: Standards of the 4-hydroxybenzoic acid (m/z = 136.8914). Table S4:
Concentration (ppm) of 4-hydroxybenzoic acid during the degradation of MP. Ref [67–73] are cited in
the supplementary materials.
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