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Abstract: Antisolvent quenching has shown to significantly enhance several perovskite films used in
solar cells; however, no studies have been conducted on its impact on MASnI3. Here, we investigated
the role that different antisolvents, i.e., diethyl ether, toluene, and chlorobenzene, have on the growth
of MASnI3 films. The crystallinity, morphology, topography, and optical properties of the obtained thin
films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photolumi-
nescence (PL) measurements, and UV–visible spectroscopy. The impact of the different antisolvent
treatments was evaluated based on the surface homogeneity as well as the structure of the MASnI3

thin films. In addition, thermal annealing was optimized to control the crystallization process. The
applied antisolvent was modified to better manage the supersaturation process. The obtained results
support the use of chlorobenzene and toluene to reduce pinholes and increase the grain size. Toluene
was found to further improve the morphology and stability of thin films, as it showed less degradation
after four weeks under dark with 60% humidity. Furthermore, we performed a simulation using
SCAPS-1D software to observe the effect of these antisolvents on the performance of MASnI3-based
solar cells. We also produced the device FTO/TiO2/MASnI3/Spiro-OMeTAD/Au, obtaining a re-
markable photoconversion efficiency (PCE) improvement of 5.11% when using the MASnI3 device
treated with chlorobenzene. A PCE improvement of 9.44% was obtained for the MASnI3 device
treated with toluene, which also showed better stability. Our results support antisolvent quenching as
a reproducible method to improve perovskite devices under ambient conditions.

Keywords: perovskite solar cell; MASnI3; antisolvent treatment; photoconversion efficiency; photo-
chemical stability

1. Introduction

Solar energy is considered a basis to obtain clean and abundant energy; therefore it
has become essential to take advantage of solar radiation as an energy source in the field of
photovoltaics [1]. Recently, organic and inorganic perovskites, especially those based on
methylammonium halides, have become attractive and promising research materials. Per-
ovskite solar cells (PSC) showing power conversion efficiencies higher than 23% have been
reported [2]. Perovskite materials also have remarkable optical and electronic properties,
as they allow light to be absorbed in a wide wavelength for a long time, charge carriers to
have a long diffusion length, and excitons to have small binding energy, which produces
electrons and holes [3–5]. Furthermore, for perovskite thin film fabrication, a variety of tech-
niques have been used, including one-step and two steps deposition [6], evaporation [7],
and thermal deposition [8]. One-step deposition carried out via spin coating demonstrated
an excellent capability to fabricate PSCs. Moreover, the PSCs showed homogeneous and
compact thin films when fabricated using the spin coating technique. It has been shown
that the morphology of perovskite thin films plays a vital role in device performance. Many
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methods and treatments have been introduced to optimize the product quality by improv-
ing the surface homogeneity and crystallinity of the films. To achieve a good crystallization
of thin films, several strategies are used, such as evaporation, cooling, heating, addition of
an antisolvent—also in combination—so to slow the solubility in a saturated solution. The
film surface’s supersaturation level and thermal annealing were investigated by adding
different antisolvents. Several physicochemical properties affect this process, resulting in
complex exchanges occurring simultaneously. Improving the performance of solar cells
requires a thorough understanding of the mechanisms involved and the proper use of
adequate antisolvent treatments [9,10].

A PSC with methylammonium lead iodide (MAPbI3) as an absorber has the highest
conversion efficiency, but lead (Pb) contained in the material may have dramatic health
consequences; therefore, it is highly appropriate and necessary to explore the possibility
of substituting tin (Sn) for lead in MAPbI3 and improve the efficiency and stability of
MASnI3-based solar cells. Investigations should start by analyzing the growth of the
absorber layer to achieve high crystallinity and optimal morphology, as these features are
essential for improving the optical properties of the absorber. Recently, the use of tin halide
perovskites as absorbers has been investigated. MASnI3-based solar cells are considered
good candidates for perovskite solar cells. It has been demonstrated that MASnI3 PSC
have a power conversion of 6.4% under one sun illumination with an open circuit voltage
of 0.88 V. However, their performance varies widely because of an uncontrollable doping
effect caused by the introduction of Sn4+ through the oxidation of Sn2+. Suppressing
Sn2+ oxidation is, therefore, an appropriate approach to improving and stabilizing the
device performance; this can be achieved by adding SnF2 or excess SnI2, Furthermore,
the fabrication process greatly affects the morphology of the perovskite layer. Since tin
perovskite crystallizes rapidly and is very soluble, fabrication methods are limited for tin
perovskite films [11–14].

In this work, MASnI3 films were treated with different antisolvents to see how they
affected the supersaturation of the solvent. We report that complex interactions between the
solvent and the antisolvent are related to the film’s physicochemical properties; therefore,
choosing the antisolvent type is critical to improve the perovskite film’s morphology and,
in turn, boost the PSC performance. The antisolvent effects manifested in the variation
of morphology, structure, and composition of the thin films. Toluene (TOL), chloroben-
zene (CBZ), and diethyl ether (ET) were the antisolvents used in this investigation. The
obtained MASnI3 samples were further analyzed by other characterization techniques
such as XRD, SEM, and optical and PL analyses. Additionally, we produced the device
FTO/TiO2/MASnI3/Spiro-OMeTAD/Au, which demonstrated an amazing PCE.

2. Experimental Procedure
2.1. Materials

Tin (II) iodide (SnI2) was purchased from Alfa Aesar, Haverhill, MA, USA, methy-
lammonium iodide (MAI) with the formula CH6NI was purchased from Tokyo Chemical
Industry, Oxford, UK. N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)
were purchased from Sigma Aldrich, Madrid, Spain, and used for manufacturing the
optoelectronic devices. The volume of DMF used was 1ml, while that of DMOS was 95 µL.
Diethyl ether anhydrous (ET), chlorobenzene (CBZ), and toluene (Tol) were used as antisol-
vents, were all purchased from Sigma Aldrich Madrid Spain, and were used as received.
Fluorine tin oxide-coated glass (FTO) was used as a substrate with Sheet Resistance of
6–9 Ω/square and Roughness of 34.8 nm.

2.2. Film Preparation

The FTO substrates were washed for 15 min in soap, ethanol, acetone, and isopropanol.
Compressed air was used to dry the FTO glass. Afterward, the FTO substrates were put in
a UV–ozone cleaner for 15 min to eliminate contaminations and wetness on the surface.
The FTO substrates were then placed under an inert atmosphere of argon, together with
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MASnI3 samples until characterization could be undertaken. For the elaboration of the
films, a 1 M solution of MASnI3 was prepared by dissolving equimolar ratios of MAI and
SnI2 in 1 mL of DMF and 95 µL DMSO at 60 ◦C for 2 h. When the solution was ready,
50 µL of MASnI3 solution was statically spin-coated at 2000 rpm for 20 s, and 100 µL of
one of the antisolvents was applied after a certain time from the initiation of the spin
program, referred to as the optimized dripping time of 12 s. Then, MASnI3 samples were
annealed for 5 min at 50 ◦C, and their surface became black. This initial color change was
due to the growth of the perovskite structure; MA requires relatively little energy to begin
intercalating between SnI2. To avoid thermal shocks, the samples were heated slowly to
100 ◦C and held there for 5 min, removing any remaining solvent. The samples became dark
during this stage of annealing, indicating that the perovskite phase had completely formed.
Afterwards, the prepared solution of MASnI3 was spin-coated onto the FTO substrate at
2000 rpm for 20 s. Different antisolvents were dripped onto the MASnI3 thin films, and
subsequently, the as-prepared MASnI3 samples were annealed in a vacuum for 20 min at
250 ◦C. The deposition and annealing processes were carried out in a glove box where all
samples were stored until characterization; they were termed fresh samples.

The crystal structure analysis of perovskite thin films was performed using an XRD
RIGAKU Ultima IV diffractometer with Cu kα radiation (λ= 1.5418 Å). Surface morphology
was investigated through SEM at different magnifications within the Zeiss Auriga Compact,
with an applied voltage of 1.5 kV. The film’s topography was characterized using a cross
section. The absorption was measured in a UV–visible wavelength range from 300 to
850 nm with an Ocean Optics HR4000 spectrophotometer, and PL was performed using
a He–Cd laser driven by a semiconductor laser with a wavelength of λ= 405 nm.

2.3. Device Preparation: Gold/Spiro OMeTAD/MASnI3/Compact–TiO2/FTO/Glass

The MASnI3 devices were made onto FTO-coated substrates. Here are the steps
involved in the entire process:

(1) The substrates were cut obtaining samples with a size of 2.5 × 2.5 cm2.
(2) Zinc powder was sprinkled over the area of the FTO substrate that we wished to etch

in a customized holder. This step involved partially etching the FTO substrates where
the zinc powder was sprayed with concentrated HCl (2 M).

(3) An ultrasound bath was used to wash the etched substrates with 2% Hellmanex
solution for 15 min; then, the substrates were dipped in deionized water. A UV–ozone
cleaner was used to treat the etched substrates for 15 min after washing with ethanol,
acetone, and isopropanol using the same method and air-drying.

(4) Spray pyrolysis was used to deposit the first TiO2 electron blocking layer. TiO2 was
deposited using titanium diisopropoxide bis (acetylacetonate) diluted in ethanol with
oxygen as the carrier gas, by spin coating and heating at 500 ◦C for 30 min.

(5) Then, the as-prepared solution of MASnI3 was spin-coated at 2000 rpm for 20 s and
annealed at 100 ◦C for 5 min on FTO/TiO2.

(6) Afterwards, 50 µL of the Spiro-OMetad solution was deposited by spin coating at
4000 rpm for 30 s on top of MASnI3/TIO2/FTO. The solution was prepared with
28.8 µL of 4-tert-butylpyridine and 17.5 µL of a stock solution of 520 mg mL−1 of
lithium bis-(tri-fluoromethylsulfonyl) imide in acetonitrile and by dissolving 72.3 mg
of (2,2′ 7,7′-tetrakis(N,N’-di-p-methoxyphenylamine)-9,9′-spirobifluorene) in 1 mL of
chlorobenzene.

(7) At the end of the elaboration process of the solar device, a thin layer of gold contact
was thermally evaporated on the top of the device.

(8) In order to determine the J–V characteristic curve of the as-deposited photovoltaic
devices, we used the Abet Solar simulator with a 1.5 AM filter. A mask was used to
define a 0.1 cm2 active area for the devices.
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2.4. Experiment Structure

The samples were prepared, and with Tol, ET, and CBZ were used as antisolvents. The
dripping time for all samples was 10 s; 100 µL of each of the different antisolvents was
applied. The samples were characterized by XRD, UV–vis spectroscopy, PL, and FESEM.
At the end of the experiment, XRD and SEM images were used to determine the stability.
During the process of antisolvent selection, all samples were kept in the laboratory for the
degradation study at 23 ◦C and a relative humidity of 60% for 4 weeks. Daily temperature
measurements revealed only small fluctuations of 2 ◦C. Due to heavy precipitation outside,
the relative humidity decreased to 53% for a few days during the experiment. All samples
were exposed to the same conditions, allowing for a fair comparison between them. To
manufacture the Spiro-OMeTAD/MASnI3/TiO2/FTO device, the TiO2 film was prepared
outside the glovebox after the perovskite layer and spiro-OMeTAD were deposited inside
the glovebox; then, the gold layer was thermally evaporated on the top of the device.

3. Results and Discussion

The influence of the antisolvent on the films’ phase structure and microstructure was
studied by XRD. Figure 1 shows the X-ray diffraction patterns of the MASnI3 films treated
with different antisolvents. The diffraction peaks that appeared at 14◦, 28◦, 31◦, 38◦, and
31◦ correspond to the (110), (220), (222), (224), and (314) peaks, respectively. These results
are in good agreement with previous findings [15,16]; the FTO peaks are identified by the
star symbol, The XRD results of the prepared MASnI3 films indicated good crystallinity.
The intensity of the characteristic (110) peak increased enormously when toluene was used
as an antisolvent compared to chlorobenzene and diethyl ether. The intensity decrement
can be attributed to the excessive solubility of methylammonium iodide (MAI).
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Lattice Parameters

The lattice parameters were calculated using Equations (l) and (2) with two different
theta diffraction angles:

1
d2 =

+k2

a2 +
l2

c2 (1)

ηλ = dhkl sin(θ) (2)

where a, b, c are the lattice parameters, h, k, l are Miller indices, dhkl is the interplanar
distance, and k is the wavelength (0.154 nm).

The obtained lattice parameters of the main (110) peak were a = b = 8 Å, c = 11.9 Å,
corresponding to the tetragonal structure.
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Lattice Strain and Dislocation Density.
The lattice strain (E) indicates a thin film’s crystal deformation calculated from Equation (3).

The results obtained between 340 nm and 400 nm are summarized in Table 1.

β cos(θ) =
kλ

D
+ 4E sin(θ) (3)

where β is the FWHM value, k is the dielectric constant, with the value k = 0.9, λ is the
X-ray wavelength (λ is 0.1540 nm), θ is the Bragg diffraction angle, and D is the crystallite
size (nm). Equation (4) below shows the estimated grain size dislocation density:

γ =
1

D2 (4)

Table 1. Parameters of XRD spectra of MASnI3 films treated with toluene, chlorobenzene, and
diethyl ether.

Sample ID Grain Size (nm) Dislocation Density (nm−1) Lattice Strain (E)

MASnI3-ET 340 1.05 × 10−5 0.38
MASnI3-CBZ 360 0.90 × 10−5 0.39
MASnI3-Tol 400 0.62 × 10−5 0.37

Table 1 shows that the three samples had different grain sizes, from 300 nm to 400 nm,
when MASnI3 was treated with different antisolvents. The larger grain size of 400 nm
was obtained with toluene. The lower effective lattice around 0.37 is explained by less
deficiencies and distortions of the grains.

Figure 2 shows SEM images of MASnI3 treated with different antisolvents. The antisol-
vent quenching techniques presented here improved the crystalline quality of MASnI3 thin
films and extended their lifetime. The antisolvent, in our case a perovskite solution, could
not dissolve its components. Local regions of supersaturation are created when an antisol-
vent is applied, accelerating heterogeneous nucleation. High-quality films are obtained by
optimizing the nucleation rate and the crystal growth rate. Generally, the antisolvent con-
centrations are kept high, on the basis of the solubility curve, and under the metastable limit
on the seeding zone. These concentrations allow the growth of existing nuclei, or “seeds”,
without creating new ones. The surface morphology of MASnI3 was examined with SEM.
It was found that with diethyl ether, crystals poorly formed. Even chlorobenzene did not
change significantly the morphology of the film. However, toluene significantly altered
the films’ morphology, leading to the largest crystal size. These observations indicated
that the morphology of MASnI3 changed in relation to the type of antisolvent [17,18]. The
addition of antisolvent also produced fine needles that agglomerated easily. This proved
that supersaturation plays a vital role in a crystallization system and influences the crystals’
size, shape, and degree of accumulation [19,20]. The remaining solvent is removed under
250 ◦C during the annealing treatment. The conversion of precursors in the perovskite
phase was almost perfect in all samples, but the goal was to affect the surface.

All samples displayed a time-dependent PL spectrum under illumination and a high
energy peak, as shown in Figure 3. Furthermore, storing a sample in dark conditions would
“reset” the spectrum. Other authors made similar observations, and the “Hoke Effect” was
also observed [21]. Figure 3 shows the characteristic PL peak of the three MASnI3 samples
treated with different antisolvents, i.e., toluene, chlorobenzene, and diethyl ether, applied
in the wavelength range from 750 to 800 nm [22]. The PL peak of the MASnI3 sample
treated with toluene showed a higher intensity than that of the MASnI3 sample treated with
diethyl ether or chlorobenzene. The MASnI3 sample treated with toluene also showed an
optimal bandgap around 1.58 eV, calculated from the PL spectrum; the band gap calculated
from the UV–visible spectrum was 1.6 eV, and the Stokes shift of MASnI3 treated with
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toluene showed a low value (Table 2). This can be related to phase transitions commonly
found for halide perovskite [23–25].
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4. Degradation Study

Oxygen and humidity significantly impact the stability of perovskite solar cells. Once
the film is exposed to extreme environmental conditions, its degradation is due to the
reduction to SnI2, MAI, and HI [26–29].

The stability of MASnI3 films was examined after four weeks from the treatment with
the three antisolvents. To investigate the degree of degradation of the MASnI3 films, both
fresh and four-week-old MASnI3 samples were analyzed by XRD and SEM; the MASnI3
aged samples were kept under 60% humidity in a dark environment.

The XRD patterns for the four-week-old MASnI3 films treated with chlorobenzene
and toluene antisolvents showed a slightly reduced intensity of the characteristic peaks
(110) and (220) when compared to those of MASnI3 films treated with diethyl ether, which
displayed a dramatic increase in the intensity of these peaks (Figure 4a–c). In this regard,
chlorobenzene and toluene as antisolvents enhanced the stability of the MASnI3 films more
than diethyl ether. The SEM images also supported this finding (Figure 4d–f). The surface
morphology changes are observed in the SEM images of aged MASnI3 films with new
grain boundaries and new defects. Therefore, the degradation process differs between the
antisolvent-treated films.
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Figure 4. Degradation study of MASnI3 films treated with different antisolvents. (a) XRD pattern of
fresh and four-week-old MASnI3 films treated with toluene, (b) XRD pattern of fresh and four-week-
old MASnI3 films treated with diethyl ether, (c) XRD pattern of fresh and aged MASnI3 films treated
with chlorobenzene, (d) SEM image of an aged MASnI3 film treated with toluene, (e) SEM image of
a four-week-old MASnI3 film treated with diethyl ether (f) SEM image of a four-week-old MASnI3

film treated with chlorobenzene.

5. Device Performance

We observed that the film thickness varied when different antisolvents were used,
and similarly, the bandgap varied when MASnI3 was used. PSCs are more sensitive to
variation in thickness related to the bandgap of their absorbing layers. As part of the
simulations, we modeled the proposed solar cell in order to further analyze the impact of
different antisolvents on its performance. In “Gold/Spiro-OMeTAD/MASnI3/Compact-
TiO2/FTO/Glass”, MASnI3 was used as an absorber, Spiro-OmeTAD as a hole transport
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layer (HTL), Compact-TiO2 (C-TiO2) as an electron transfer layer (ETL), without taking into
consideration mesoporous-TiO2 in the simulation model, and FTO was used as a substrate.

Supplementary Table S1 and Table 3 provide a list of the simulation parameters used
in SCAPS-1D software. Table 1 shows our experimental calculations, which we used in
Table 2. The work function for back and front contact was used as default in SCAPS-1D.
The proposed solar cell structure used in SCAPS-1D was arranged as shown in Figure 5.
The layers of the cell are depicted in Figure 5.

Table 3. Bandgap variation for MASnI3 calculated from the UV–visible spectra, using diethyl ether,
toluene, and chlorobenzene.

Sample Thickness (nm) Band Gap-UV (eV)

MASnI3-ET 200 1.63
MASnI3-TOL 210 1.60
MASnI3-CBZ 210 1.62
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Figure 5. Schematic of a MASnI3-based solar cell structure.

The SCAPS-1D software version 3.3.10 was run under 1000 W/m2 illumination and at
ambient temperature (300 K). The series resistance and shunt resistance were kept negligible
and infinite, respectively, which are ideal values that experimentally do not exist up to
these limits. The bandgap and thickness of MASnI3 are shown in Table 3.

Figure 6a,b illustrate the J–V and P–V curves for MASnI3, respectively, and demonstrate
how the different antisolvents affected the results. Toluene had a positive impact on the device;
the P–V angles delivered the highest power when using toluene as an antisolvent.

Diethyl ether antisolvent-based MASnI3 produced Voc of 0.94 V, Jsc of 12.49 mA/cm2,
FF of 84.29%, and Eta of 9.93% during the simulation of solar cells. We notice that diethyl
ether is less effective because, chlorobenzene Voc, Jsc, FF, and Eta were registered as 0.88 V,
14.02 mA/cm2, 83.72%, and 10.42%, respectively, which was good in comparison to when
ET was used as antisolvent as shown in Table 4.
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Table 4. Experimental Characteristics Parameters MASnI3-based solar cell.

Solar Cell Model
Voc Jsc FF Eta

V mA/cm2 % %

Spiro-OMeTAD/MASnI3: ET/TiO2/FTO 0.94 12.49 84.29 9.93
Spiro-OMeTAD/MASnI3: TOL/TiO2/FTO 0.90 13.69 84.01 10.44
Spiro-OMeTAD/MASnI3: CBZ/TiO2/FTO 0.88 14.02 83.72 10.42

In summary, Toluene is the most profitable antisolvent because it gave excellent results
compared to the other two antisolvents. With Toluene treatment for MASnI3 films, we
record Voc, Jsc, FF, and Eta as 0.90 V, 13.69 mA/cm2, 84.01%, and 10.44%, respectively.

Here, in Figure 7, we compare the characteristic parameters of MASnI3 solar cells
based on different antisolvents used in the solution. We can observe that toluene would
be the optimal antisolvent for preparing the MASnI3 absorber layer as it gives us the best
results of the characteristic parameters for the solar device.
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6. Manufacture of the Spiro-OMeTAD/MASnI3/C-TiO2/FTO Device

We report the XRD analysis for the Spiro-OMeTAD film with characteristic peaks at
(110), (220), and (400) (Figure 8a). These results are in agreement with previous studies [30].
When calculating the experimental bandgap after absorbance characterization, we obtained
3.0 eV, which is the optimal bandgap, also previously reported [31]. For compact TiO2, the
XRD spectrum showed characteristic peaks at (101), (004), (200,) and (211) (Figure 8c). We
found the same characteristic peaks when comparing these XRD spectrum with those in
the literature [32]. The absorption analysis for TiO2 revealed an experimental bandgap of
3.6 eV (Figure 8d).
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represents “3.5 × 1012”, same applies to other E notations in the figure.

Figure 9 shows SEM images of both the Spiro-OMeTAD and the TiO2 layers. The SEM
image of the TiO2 films showed a smooth and homogenous surface. The Spiro-OmeTAD
film showed a regular surface with no holes.

The device Spiro-OMeTAD/MASnI3/C-TiO2/FTO was fabricated. The thickness of
TiO2 was approximately 200 nm, that of the MASnI3 film was between 300 and 400 nm,
and that of the Spiro-OMeTAD layer was around 100 nm. The gold layer had a thickness of
around 50 nm.

The results of four planar devices named Sx (x = (1, 2, 3, 4)) containing four separated
pixels are presented. Each showed high efficiency, resulting in 30 solar cells manufactured
simultaneously under similar conditions. Pixel number S x_1 refers to the first pixel in cell
Sx. The cells were concealed in a metal aperture with an area of 0.1cm2.

A solar simulator was used to measure the device efficiencies and curves within 24 h
from the thermal evaporation of gold on the surface to obtain a back electrode. The S1
device showed a PCE average of 9.44% in the case of toluene treatment, under 1 Sun
AM 1.5 illumination using the forward scan mode, with a scale setting of −0.2 V to short
circuit 1.2 V, a sampling rate of 10 mV/s; we did not notice any hysteresis. The average
performance parameters are listed in Table 5.
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Table 5. Average performance of the Spiro-OMeTAD/MASnI3/C-TiO2/FTO devices.

Device. ID
Size η FF Voc Jsc

[cm2] [%] [%] [V] [mA/cm2]

S1-TOL 0.1 9.44 38.09 0.69 32.01
S2-TOL 0.1 8.31 37.07 0.60 29.21
S3-CBZ 0.1 5.11 34.59 0.52 25.60
S4-CBZ 0.1 4.26 33.62 0.51 24.25

We then fabricated Gold/Spiro-OMeTAD/MASnI3/Compact-TiO2/FTO/Glass de-
vices with MASnI3 films treated with toluene or chlorobenzene as antisolvents. We did not
fabricate devices using MASnI3 films treated with diethyl ether because this antisolvent
showed worse stability and morphology.

Figure 10 illustrates the photovoltaic performance of MASnI3. The J–V curves showed
that the prepared PSC realized a remarkable PCE improvement of 5.11% when using
MASnI3–chlorobenzene, an open-circuit voltage (Voc) of 521.8 mV, a short-circuit current
(Jsc) of 25.6 mA cm−2, and a fill factor (FF) of 34.59%. PCE improvement was of 9.44% after
treatment with toluene, using Voc of 694.6 mV, Jsc of 32.1 mA cm−2, and an FF of 38.09%,
which was significantly higher than that measured for the MASnI3–chlorobenzene-based
solar cell. It is possible that the use of toluene increased the quality and stability of the film
by increasing the carrier concentration and decreasing the electron–hole recombination,
thus enhancing the photoconversion efficiency from 5.11% to 9.44%. A high value observed
for Jsc is normally due to the exciting electrons generated following light absorption; the
higher the light absorption, the higher the electron excitation, and as a resultant, JSC will
be high too [33,34]. Some results were not easy to reproduce because of the low-cost
techniques used for the manufacture of the devices and because of variable temperature
and humidity conditions in addition [35,36], some interface defects were noticed. Despite
this, the results were generally quite reproducible with small differences. The obtained
results might contribute to the production and commercialization of stable and efficient
photovoltaic devices.
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7. Conclusions

In this work, MASnI3 thin films were successfully prepared by the one-step spin
coating technique. The effect of different antisolvents, i.e., diethyl ether, chlorobenzene, and
toluene, on films’ properties was investigated using XRD, SEM, PL, and optical analyses.

The XRD analysis revealed that all samples had an extraordinary (110) peak intensity
after treatment of the MASnI3 film. The XRD results showed that toluene led to superior
crystallinity, reflected by the intensity of the (110) peak. This result was supported by SEM
results, that showed that toluene led to increased grain size. Furthermore, the sample
obtained with toluene treatment showed the highest absorbance. Our results suggest
that using toluene to carry out the antisolvent quenching step in a one-step spin coating
will lead to superior perovskite films and higher efficiencies of related devices. Using
SCAPS-1D software, we also determined the effect of the three different antisolvents,
i.e., diethyl ether, chlorobenzene, and toluene, on solar cell performance, obtaining the
efficiencies of 9.93, 10.42, and 10.44%, respectively. We therefore conclude that toluene is the
optimal antisolvent for the MASnI3 absorber layer. Additionally, we produced the device
FTO/TiO2/MASnI3/Spiro-OMeTAD/Au, which showed a remarkable PCE of 9.11% when
using a MASnI3 film treated with toluene.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12172901/s1, Table S1: Simulation Parameters of MASnI3-
based solar cell.
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