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Quasi-metric properties of the dual cone of an
asymmetric normed space. *

Carmen Alegre Gil

Abstract

We obtain some quasi-metric properties of the dual cone of an
asymmetric normed space. Thus, we prove that it is balanced, and
hence its topology is completely regular. We also prove that it is com-
plete in the sense of D. Doitchinov. These results generalize those ob-
tained in [18] because, in our study, the asymmetric normed space does
not necessarily satisfy the T1 axiom. Moreover, we provide a class of
asymmetric normed spaces whose dual cones are right K-sequentially
complete. Finally, we represent an arbitrary asymmetric normed space
as a function space by using the unit ball of its dual space.

1 Introduction and preliminaries

If (X, q) is an asymmetric normed space, its topological dual X∗, that is, the
set of all upper semi-continuous linear functionals on it is a cone and can
be regarded as an extended quasi-metric space. In Theorem 3 of [18] the
authors proved that if (X, q) is a T1 asymmetric normed space, the quasi-
metric space X∗ is balanced and D-complete (complete in the sense of D.
Doitchinov). Given that there are important classes of asymmetric normed
spaces that are not T1 (see e.g. [11], [15]), we consider extending these results
to any asymmetric normed space.

In the last decades, quasi-metric spaces and asymmetric normed spaces
have received considerable attention for their intrinsic interest and applica-
tions within and outside mathematics (see e.g. [3], [5], [8], [9], [14], [17] ).

*Mathematics Subject Classification (2000): 54A05, 54E35, 46A03. Key words: quasi-
metric, asymmetric norm, asymmetric normed linear space, cone, semicontinuous linear
map.
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That is why papers in this area continue to be published every year. The
topological dual of an asymmetric norm space is a powerful tool in non-
symmetric functional analysis, both from the theoretical and the applied
point of view (see e.g. [6], [12], [14]). In this paper we prove that the (quasi-
metric) dual cone X∗ of any asymmetric normed space is balanced and D-
complete. We also show that X∗ is not always right K-sequentially complete
and provide a class of asymmetric normed spaces with right K-sequentially
complete dual cones. Finally, we represent an arbitrary asymmetric normed
space as a function space by using the unit ball of its dual space.

We start this by recalling several concepts related to quasi-metrics and
asymmetric norms that we will need throughout the article. Our basic ref-
erences in relation to these topics are [8] and [16].

By a quasi-metric on a nonempty set X we mean a function d : X×X →
R+ such that for all x, y, z ∈ X : (i) d(x, y) = d(y, x) = 0 ⇔ x = y, and (ii)
d(x, y) ≤ d(x, z) + d(z, x).

We will also consider extended quasi-metrics. They satisfy the above two
axioms, except that we allow d(x, y) = +∞.

If d is a (n extended) quasi metric, the function d−1 defined on X×X by
d−1(x, y) = d(y, x) is a (n extended) quasi-metric on X called the conjugate
of d and ds defined on X × X by ds(x, y) = max{d(x, y), d(y, x)} is a (n
extended) metric on X

A (n extended) quasi-metric space is a pair (X, d) such that X is a
(nonempty) set X and d is a (n extended) quasi-metric on X.

Each (extended) quasi-metric d on X induces a T0 topology τd on X
which has as a base the family of the balls {Bd(x, r) : x ∈ X, r > 0}, where
Bd(x, r) = {y ∈ B : d(x, y) < r}.

If the quasi-metric satisfies that d(x, y) = 0⇔ x = y then (X, τd) is a T1
space.

A subset Y of a real linear space is a cone or semilinear space if for every
x, y ∈ Y and α ∈ R+, x + y ∈ Y and αx ∈ Y. Obviously, every real linear
space is a cone.

Let X be a cone. A function q : X → R+, is said to be an asymmetric
norm on X if for all x, y ∈ X and α ∈ R+,

(i) x = 0 if and only if −x ∈ X and q(x) = q(−x) = 0 ;

(ii) q(αx) = αq(x);

(iii) q(x+ y) ≤ q(x) + q(y).
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If we allow that q(x) = +∞, q is called an extended asymmetric norm.
If X is a real linear space and q is an asymmetric norm on X, the pair

(X, q) is called an asymmetric normed space.
If X is a cone and q is an asymmetric norm on X, the pair (X, q) is called

an asymmetric normed cone.
If q is an asymmetric norm on a real linear space X, then the function q−1

defined on X by q−1(x) = q(−x) is also an asymmetric norm on X, called the
conjugate of q. The function qs defined on X by qs(x) = max{q(x), q−1(x)}
is a norm on X.

Each asymmetric norm q on a real linear space X induces a quasi-metric
dq on X defined by dq(x, y) = q(y − x), for all x, y ∈ X. We refer to the
topology τdq as the topology induced by q.

If (X, q) is an asymmetric normed space, by Xs∗ is denoted the topological
dual space of the normed space (X, qs), i.e.,

Xs∗ = {f : (X, qs)→ (R, | ·|) : f is linear and continuous}

By (qs)∗ is denoted the dual norm on Xs∗, i.e.,

(qs)∗(f) = sup{|f(x)| : qs(x) ≤ 1}.

It is well known that (Xs∗, (qs)∗) is a Banach space.
If (X, q) is an asymmetric normed space, by X∗ is denoted the set

X∗ = {f : (X, q)→ (R, u) : f is linear and continuous}

where (R, u) is the asymmetric normed linear space given by u(x) = x+ =
x ∨ 0.

Note that f ∈ X∗ if and only if f is is a linear and upper semicontinuous
function from (X, q) into (R, |·|).

The set X∗ is not necessarily a linear space, but it is a convex cone of
Xs∗. In fact, in Corollary 3 of [6] the authors prove that X∗ is a linear space
if and only if (X, q) is isomorphic to its associated normed space.

X∗ is called the dual cone or dual space of (X, q).
The function

q∗(f) = sup{f(x)+ : q(x) ≤ 1} = sup{f(x) : q(x) ≤ 1}

define an asymmetric norm on the cone X∗. Note that if q∗(f) = 0 then
f = 0.
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If f ∈ Xs∗, then q∗(f) can be infinite, that is, q∗ is an extended asym-
metric norm on Xs∗.

More information about the dual space of an asymmetric normed space
can be found in [1], [8] and [12].

An important class of asymmetric normed spaces is one whose elements
are induced by normed lattices. Let us recall that a normed lattice (X, ‖·‖,≤)
is a real linear lattice (X,≤) equipped with a norm that satisfies that if
|x| ≤ |y| then ‖x‖ ≤ ‖y‖ for all x, y ∈ X, where |x| = x ∨ (−x). The set
{x ∈ X : x ≥ 0} is called the positive cone of X.

Our basic references for real normed lattices are [4] and [19].
It was shown in [11] that for any normed lattice (X, ‖ · ‖,≤), the function

q defined on X by q(x) = ‖x+‖, with x+ = x ∨ 0, is an asymmetric norm
on X and the norm qs is equivalent to the norm ‖ · ‖. In this case the
asymmetric norm q is called an asymmetric lattice norm and the pair (X, q)
is an asymmetric normed lattice. Note that in this case the topology on X
induced by dq is not T1 because if x > y then dq(x, y) = 0.

The class of asymmetric normed lattices is of the most interesting ones
from the point of view of the applications. Indeed, these spaces have proved
to be useful in computer science, mainly in the analysis of complexity of
algorithms (see, e.g. [13]). More recently, asymmetric normed lattices have
been used in the mathematical development of specific tools for visualization
of multi-objective optimization problems ([7]).

2 Quasi-metric properties of X∗

Considering the properties of q∗, the following result is immediate.

Proposition 1. Let (X, q) an asymmetric normed space. The function dq∗
defined on X∗ ×X∗ by

dq∗(f, g) =

{
q∗(g − f), if g − f ∈ X∗

+∞, if g − f /∈ X∗

is an extended T1 quasi-metric on X∗.

It is interesting to note that although (qs)∗(f) ≤ q∗(f), for all f ∈ Xs∗

(see Corollary 1 of [1]), the topological space (X∗, τdq∗ ) is not necessarily
metrizable. The following example shows this fact.
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Example 1. Let X = R and q(x) = x+, then f ∈ X∗ if and only if f(x) = ax
with a ∈ R+. Moreover q∗(f) = a. If f(x) = ax and g(x) = bx with a, b ∈ R+,
then

dq∗(f, g) =

{
b− a, if b ≥ a
+∞, if b < a

Therefore, τdq∗ is the Sorgenfrey topology which is not metrizable.

In [10] Doitchinov introduced the notion of balanced quasi-metric space
with the aim to give an appropriate theory of completion and proved that
every balanced quasi-metric space is Hausdorff and completely regular. In
[18] the authors proved that if (X, q) is a T1 asymmetric normed space, then
(X∗, dq∗) is an extended balanced quasi-metric space. We shall now prove
that this result remains true even if (X, q) is not T1.

Recall that an extended quasi-metric space (X, d) is balanced if for each
pair of sequences (xn)n, (yn)n in X such that lim

n,m→∞
d(ym, xn) = 0, and for

each x, y ∈ X and r, s > 0 satisfying d(x, xn) ≤ r and d(yn, y) ≤ s for all
n ∈ N, it follows that d(x, y) ≤ r + s.

The following result is crucial in our study.

Lemma 1. (Proposition 4 of [12] and Corollary 1 of [1]) Let (X, q) be an
asymmetric normed space. Then,

(a) X∗ = {f ∈ Xs∗ : q∗(f) < +∞}

(b) (qs)∗(f) ≤ q∗(f) for all f ∈ Xs∗

(c) f ∈ X∗ if and only if there exists M > 0 such that f(x) ≤ Mq(x) for
all x ∈ X

(d) f(x) ≤ q∗(f)q(x) for all f ∈ X∗ and for all x ∈ X.

Theorem 1. Let (X, q) an asymmetric normed space. Then (X∗, dq∗) is a
balanced extended T1 quasi-metric space.

Proof. Let f, g ∈ X∗, (fn)n and (gn)n be two sequences in X∗ and r, s > 0
such that

lim
n,m→∞

dq∗(gm, fn) = 0, dq∗(f, fn) ≤ r and dq∗(gm, g) ≤ s,
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for all n,m ∈ N. Then

lim
n,m→∞

q∗(fn − gm) = 0, q∗(fn − f) ≤ r and q∗(g − gm) ≤ s,

for all n,m ∈ N. Thus, fn − f ∈ X∗, g − gm ∈ X∗, for all n,m ∈ N and
given ε > 0 there exits n0 ∈ N such that q∗(fn − gm) < ε for all n,m ≥ n0,
consequently, fn − gm ∈ X∗ for all n,m ≥ n0.

Let n,m ≥ n0. Then

gm(x)− fn(x) = fn(−x)− gm(−x) ≤ q∗(fn − gm)q(−x) < εq(−x)

Therefore,

g(x)− f(x) = g(x)− gm(x) + gm(x)− fn(x) + fn(x)− f(x) ≤

q∗(g − gm)q(x) + q∗(fn − gm)q(−x) + q∗(fn − f)q(x) <

εq(−x) + (r + s)q(x).

Then, g(x)− f(x) ≤ (r + s)q(x), for all x ∈ X and so q∗(g − f) ≤ r + s,
i.e., dq∗(f, g) ≤ r + s.

Corollary 1. Let (X, q) an asymmetric normed space. Then (X∗, dq∗) is
Hausdorff and completely regular.

There exist several different notions of Cauchy sequence and quasi-metric
completeness in the literature (see e.g.[8]). Here we will consider the following
ones.

A (n extended) quasi-metric space (X, d) is called bicomplete if (X, ds) is
a complete (extended) metric space.

A sequence (xn)n in a (n extended) quasi-metric (X, d) is said to be right
(left) K−Cauchy if for each ε > 0 there exists n0 ∈ N such that d(xn, xm) ≤ ε
whenever n0 ≤ m ≤ n (n0 ≤ n ≤ m).

A (n extended) quasi-metric space (X, d) is right (left ) K−sequentially
complete if every right (left) K-Cauchy sequence (xn)n in (X, d) converges
with respect to the topology τd, i.e., there exists z ∈ X such that d(z, xn)→
0.

As we have already mentioned, Doitchinov developed in [10] a satisfactory
theory of completion for quasi-metric spaces. To this end he introduced a
notion of Cauchy sequence, called D-Cauchy sequence in modern terminology.
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A sequence (xn)n∈N in a (n extended) quasi-metric (X, d) is said to be D-
Cauchy if there exists a sequence (yn)n in X such that lim

n,m→∞
d(ym, xn) = 0.

A (n extended) quasi-metric space (X, d) is called D-complete if every
D-Cauchy sequence (xn)n in (X, d) converges with respect to the topology
τd, i.e., there exists z ∈ X such that d(z, xn)→ 0.

The following result is directly obtained as a corollary of Theorem 1 of
[12].

Theorem 2. Let (X, q) an asymmetric normed space. Then (X∗, dq∗) is
bicomplete.

Theorem 3. Let (X, q) an asymmetric normed space. Then (X∗, dq∗) is
D-complete.

Proof. Let (fn)n be a D-Cauchy sequence in (X∗, dq∗). Then, there exists a
sequence (gn)n in X∗ such that

0 = lim
n,m→∞

dq∗(gm, fn) = lim
n,m→∞

q∗(fn − gm).

Therefore, given ε > 0 there exits n0 such that q∗(fn − gm) < ε, for all
n,m ≥ n0. Thus, since

(qs)∗(gm − fn) = (qs)∗(fn − gm) ≤ q∗(fn − gm) < ε,

we have that

(qs)∗(fn − fm) ≤ (qs)∗(fn − gm) + qs∗(gm − fm) < 2ε.

Hence, (fn)n is a Cauchy sequence in the Banach space (Xs∗, qs∗). Then,
there exists f ∈ Xs∗ such that lim

n→∞
qs∗(fn − f) = 0. Moreover,

(qs)∗(gn − f) ≤ (qs)∗(gn − fm) + qs∗(fm − f),

therefore lim
n→∞

qs∗(gn − f) = 0.

Now we show that lim
n→∞

q∗(fn−f) = 0. Let ε > 0, then fn(x)−gm(x) < ε,

for all n,m ≥ n0 and for all x ∈ X such that q(x) ≤ 1. Since lim
m→∞

gm(x) =

f(x), we have that , fn(x) < f(x) + ε for all n ≥ n0 and for all x ∈ X such
that q(x) ≤ 1. Consequently, q∗(fn − f) < ε.
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Finally, we prove that f ∈ X∗. Since fn(x)− gm(x) < ε, for all n,m ≥ n0

and for all x ∈ X such that q(x) ≤ 1, and lim
n→∞

fn(x) = f(x), we have that

f(x)−ε < gm(x), for all m ≥ n0. Hence, q∗(f−gm) < ε, and then f−gm ∈ X∗
for all m ≥ n0. Therefore, since f = (f−gm)+gm and X∗ is a cone, it follows
that f ∈ X∗.

The following is an example of an asymmetric normed space (X, q) such
that (X∗, dq∗) is not right K− sequentially complete.

Example 2. In R2 we consider the asymmetric norm q given by

q(x, y) =
−y +

√
4x2 + y2

2
.

Next, we show that (R2)∗ = {(a, b) ∈ R2 : b < 0} ∪ {(0, 0)}.
In [2] it is proved that (R2)∗ ⊆ {(a, b) ∈ R2 : b < 0}∪{(0, 0)}. Let us now

prove the other inclusion.
Let (a, b) ∈ R2, b < 0 and let f(x, y) = ax + by. If q(x, y) ≤ 1 then

y ≥ x2 − 1 so that

f(x, y) = ax+ |b|(−y) ≤ ax+ |b|(−x2 + 1) = −|b|x2 + ax+ |b|.

As the parabola y = −|b|x2 + ax + |b| has its maximum at x = a
2|b| we have

that

f(x, y) ≤ a2 + 4|b|2

4|b|
,

Therefore, f ∈ X∗ and q∗(f) = q∗(a, b) ≤ a2+4|b|2
4|b| .

In (R2)∗ we consider the sequence {(1,−1/n)}. This sequence is right-K-
Cauchy because if n ≥ m then

q∗((1,− 1

m
)− (1,− 1

n
)) = q∗(0,

−n+m

nm
) ≤ n−m

nm
.

Furthermore, since q∗((1,−1/n) − (1, 0)) → 0, the sequence {(1,−1/n)}
converges to (1, 0) /∈ X∗. Therefore (X∗, dq∗) is not right-K- sequentially
complete.

Theorem 4. Let (X, q) an asymmetric normed space such that X∗ is closed
in (Xs∗, (qs)∗). Then (X∗, dq∗) is right K− sequentially complete.
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Proof. Let (fn)n be a right-K-Cauchy sequence in (X∗, dq∗). Then, given
ε > 0 there is n0 ∈ N such that q∗(fm − fn) < ε, for all n ≥ m ≥ n0.
Since (qs)∗(fm − fn) ≤ q∗(fm − fn) < ε, we have that (fn)n is a Cauchy
sequence in the Banach space (Xs∗, (qs)∗), then there exists f ∈ Xs∗ such
that lim

n→∞
(qs)∗(fn − f) = 0. In addition, f ∈ X∗ because X∗ is closed in

(Xs∗, (qs)∗).
Finally, we prove that lim

m→∞
q∗(fm − f) = 0. Let ε > 0, and let x ∈ X

such that q(x) ≤ 1. Then there exists n0 ∈ N such that fm(x)−fm+k(x) < ε,
for all m ≥ n0 and for all k ≥ 0. Since lim

k→∞
fm+k(x) = f(x), we have that

fm(x) < f(x) + ε for all m ≥ n0 and for all x ∈ X such that q(x) ≤ 1.
Therefore, q∗(fm − f) < ε.

Corollary 2. Let (X, ‖ · ‖,≤) a normed lattice and let q(x) = ‖x+‖. Then
(X∗, dq∗) is right K− sequentially complete.

Proof. It is well known that the topological dual of a normed lattice is a
Banach normed lattice under its dual norm ( ‖f‖∗ = sup{|f(x)| : ‖x‖ ≤ 1})
and the induced order (f ≤ g if and only if f(x) ≤ g(x) for all x ≥ 0). Since
qs is equivalent to the norm ‖ · ‖, the topological dual of (X, ‖ · ‖) is Xs∗ and
(qs)∗ is equivalent to ‖ · ‖∗.

In Corollary 3 of [1] it is proven that X∗ is the positive cone of the
lattice normed Xs∗. Since the positive cone of a normed lattice is closed (
5.2 Proposition of [19]), we have that X∗ is closed in (Xs∗, (qs)∗). Therefore,
(X∗, dq∗) is right K− sequentially complete.

3 The unit ball of X∗

Let (X, q) be an asymmetric normed space and let Bq∗ = Bdq∗(0, 1), i.e.,

Bq∗ = {f ∈ X∗ : dq∗(0, f) ≤ 1} = {f ∈ X∗ : q∗(f) ≤ 1}

The set Bq∗ is called the unit ball of X∗.
Let B(qs)∗ the unit ball of the normed space (Xs∗, (qs)∗), i.e.,

B(qs)∗ = {f ∈ Xs∗ : (qs)∗(f) ≤ 1}

Since (qs)∗(f) ≤ q∗(f) for all f ∈ Xs∗, we have that Bq∗ ⊂ B(qs)∗ ∩ X∗.
The following example illustrates that this inclusion may be strict.
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Example 3. Let X = {(xn) ∈ l1 : 2x1 + x2 = 0} and let q((xn)) =
∞∑
n=1

x+n .

q is an asymmetric norm on X since q is the restriction to X of the asym-
metric lattice norm of l1.

Let f : X → R given by f((xn)) = 3x1

2
. Since

f((xn)) =
3x1
2
≤ 3x+1

2
≤ 3

2
q((xn)),

we have that f ∈ X∗ and q∗(f) = 3
2
. Therefore, f /∈ Bq∗.

Now, if (xn) ∈ X and qs((xn)) ≤ 1, then x+1 +(−2x1)
+ ≤ 1 and (−x1)+ +

(2x1)
+ ≤ 1. Therefore, 3(x+1 + (−x1)+) ≤ 2 and so | x1 |≤ 2

3
. So that

(qs)∗(f) ≤ 1 and then f ∈ B(qs)∗ ∩X∗.

Proposition 2. Let (X, ‖ · ‖,≤) be a normed lattice and let q(x) = ‖x+‖ for
all x ∈ X. Then Bq∗ = B(qs)∗ ∩X∗.

Proof. Suppose f ∈ B(qs)∗ ∩X∗. Since X∗ is the positive cone of the lattice
normed Xs∗ (Corollary 3 of [1] ), we have that

f(x) ≤ f(x+) ≤ (qs)∗(f)‖x+‖ = (qs)∗(f)q(x).

Hence, q∗(f) ≤ (qs)∗(f) ≤ 1.

We conclude this section representing an arbitrary asymmetric normed
space as a function space. To this end, we recall that if K is a compact
subset of a topological space, then (C(K), ‖f‖∞) is a Banach lattice, where
C(K) = {f : K → R : f is continuos} and ‖f‖∞ = sup{|f(x)| : x ∈ K}.
If we consider the asymmetric lattice norm q∞(f) = ‖f+‖∞, since qs∞ is
equivalent to ‖ · ‖∞, it follows that (C(K), q∞) is a biBanach space.

Theorem 5. Let (X, q) be an asymmetric normed linear space. (X, q) is
isometric to a linear subspace of the biBanach space (C(Bq∗), q∞).

Proof. By Theorem 4 of [12], Bq∗ is compact in (X∗, w(Xs∗, X)|X∗), being
w(Xs∗, X) the weak topology on Xs∗ induced by X. Then (C(Bq∗), q∞) is a
biBanach space. Let i : X → C(Bq∗) given by i(x)(f) = f(x), with x ∈ X
and f ∈ Bq∗ . It is obvious that i(x) is w(Xs∗, X)-continuous for all x ∈ X.
Furthermore, by Theorem 2 of [12], we have that

q∞(i(x)) = sup{(i(x)(f))+ : f ∈ Bq∗} = sup{f(x)+ : f ∈ Bq∗} = q(x).
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