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ABSTRACT 
 

 

 

 

This work will explore the use of different deep learning models to predict the future demand of 

a product, which can be highly useful for the operational management of a company. The 

development of aggregate production plans (APP), master production schedules (MPS), and 

material requirements planning (MRP) relies on the forecasted demand of the products included 

in these plans. Therefore, the more accurate the demand forecast used for these plans, the more 

efficient the planning and execution will be. The demand for a product can be treated as time 

series data. Time series data refers to data that is collected over time and arranged based on the 

moments they were recorded. Generally, this data is collected at regular intervals such as days, 

weeks, months, or years. Currently, there are various deep learning models that can work with 

this type of data and enable future predictions of the time series values. This work will utilize 

several deep learning models, including recurrent neural networks (RNN), LSTM networks, 

convolutional neural networks (CNN), and Transformers. The initial focus will be on working with 

unidimensional time series data. An example of such data is stock prices, which will be used in 

this work due to their easy accessibility and abundance of historical data. Once the models have 

been programmed and successfully trained, the prediction of multidimensional time series data 

will be conducted using the aforementioned models. The implementation of the deep learning 

models, their training, testing, and result analysis, will be carried out using Python and the 

PyTorch module. The obtained results will allow for the evaluation of each model's effectiveness 

and determination of which models are most suitable for predicting the future demand of a 

product. This can be of great value in the decision-making process for the operational 

management of a company. 
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1. Introduction 

 

1.1. Context and motivation 

 

In today's fast-paced and highly competitive business environment, companies are 

constantly seeking ways to gain a competitive advantage. Accurate demand forecasting is critical 

to the success of any company, as it enables them to optimize production and inventory levels, 

reduce costs, and improve customer satisfaction. 

Traditionally, companies have relied on statistical models to forecast demand, like ARMA 

or ARIMA. However, these models have limitations when dealing with complex and dynamic 

data, such as time series data. Deep learning models, on the other hand, are capable of 

processing large amounts of data and extracting patterns that can be used to make accurate 

predictions. 

The objective of this work is to explore the use of deep learning models for demand 

forecasting and to evaluate their effectiveness in predicting demand. The work will focus on time 

series data, which is a collection of observations made over time. 

Several deep learning models will be evaluated, including recurrent neural networks 

(RNNs), long short-term memory (LSTM) networks, convolutional neural networks (CNNs), and 

transformers. RNNs and LSTMs have been shown to be effective in processing time series data 

and making accurate predictions. On the other hand, CNNs and Transformers are typically used 

for other purposes, but can also be applied to time series data. 

To evaluate the effectiveness of these models, root mean square error (RMSE) will be 

the metric to be used. The models will be trained on historical data and tested on a holdout set 

to measure their predictive accuracy. This data would consist of stock prices, due to the large 

amount of available data of this type on the internet and the fact that these are also time series 

data. 

When evaluating this model, it has to be noted that stock prices are much more difficult 

to predict than some products demand. In fact, stock prices are theoretically impossible to 

predict. Therefore, this should be something to consider during the evaluation process of these 

models. 
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1.2. Objectives 

 

Several objectives will try to be accomplished with this work: 

• Assess the performance of different deep learning models that have been stated before 

and evaluate if some models that are not typically used for time series data like CNN or 

Transformer can improve the RNN or LSTM performance. 

• Assess the impact that the amount of information given to the deep learning models can 

have on the accuracy of predictions. This is related to using univariate inputs or 

multivariate inputs and finding which inputs can actually improve the model’s 

performance. 

• Explore the influence of various hyperparameters and network architectures on 

prediction accuracy of the models and techniques for best hyperparameter fitting. 

• Analyze performance of different models for several forecast horizons. 

• Find an accurate and reliable tool for demand forecasting, which can improve 

companies’ production planning and inventory management. When applied properly, 

deep learning models can help companies gain a competitive advantage by improving 

their ability to forecast demand and optimize their operations. 
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2. Theoretical framework 

 

2.1. Demand forecasting 

 

Demand forecasting is a key element in the process of companies’ decision making and 

planning. Demand forecasting can be understood as the process of estimating the quantity of a 

product or service that customers will require in a specific future period. Some of the traditional 

methods used for demand forecasting are: 

• Moving average: This method calculates the average demand in a given time period. The 

moving average can be simple or weighted, giving a higher weight to more relevant or 

recent data. Nevertheless, is difficult to capture complex data patterns or demand shifts 

using this method. 

• Exponential smoothing: This approach assigns decreasing exponential weights to past 

observations. It is based on the assumption that more recent observations have a 

greater influence on future predictions. However, exponential smoothing may not be 

suitable for data with nonlinear patterns or seasonality. 

• Regression analysis: This method uses independent variables, such as prices, 

promotions, or other relevant metrics, to predict demand. It is based on the linear 

relationship between the independent variables and the target variable. However, 

regression analysis may not capture nonlinear relationships or complex interaction 

effects. 

• Time Series Analysis: This method focuses on analyzing historical data to identify 

patterns, trends, and seasonality in demand. Time series models, such as autoregressive 

integrated moving average (ARIMA) or seasonal decomposition of time series (STL), are 

commonly employed for forecasting. These models capture the inherent time-

dependent structure in data and can be useful for short- to medium-term predictions. 

• Simulation and Scenario Analysis: Simulation-based approaches involve creating 

models that simulate different scenarios to estimate future demand. By adjusting 

various parameters and assumptions, organizations can assess the potential impact of 

different factors on demand and make informed decisions accordingly. 

• Machine Learning and Data Mining: Machine learning techniques, such as random 

forests, gradient boosting, or support vector machines, can be applied to demand 

forecasting. These algorithms can discover complex patterns and relationships in large 
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datasets, enabling more accurate predictions. Data mining techniques, such as 

association rule mining or clustering, can also be used to identify patterns and segment 

customers based on their purchasing behavior. 

• Neural Networks: Artificial neural networks, particularly deep learning models like 

recurrent neural networks (RNNs) and long short-term memory (LSTM) networks, have 

gained popularity in demand forecasting. These models can handle large volumes of data 

and capture complex relationships, making them suitable for analyzing non-linear 

patterns and long-term dependencies. These and other types of models will be the main 

focus in this work. 

 

2.2. Time series 

 

Time series are groups of data that are collected and recorded at regular intervals over time. 

In the context of demand forecasting, time series represent observations of the demand for a 

product or service over time. Having a good understanding of the characteristics and properties 

of time series is relevant to applying appropriate prediction techniques. Time series data usually 

have three main components: 

• Trend: It refers to the overall and persistent direction of the series' behavior in the long 

term. It can be upward, downward, or remain constant. The trend indicates the direction 

in which the demand is moving and can be useful in identifying long-term patterns. 

• Seasonality: This component is related to the regular and predictable fluctuations in 

demand that occur at specific time intervals, such as annual, monthly, or weekly. 

Seasonality indicates patterns that repeat in each period and can be helpful in adjusting 

predictions for recurring cycles. 

• Noise or random component: It represents random and non-systematic variations in the 

time series. These variations can be attributed to unpredictable factors or unexpected 

events that impact demand and do not follow a specific pattern. The noise component 

can make accurate demand prediction challenging. 

Time series also have certain properties and characteristics that need to be considered in 

their analysis process. These include: 

• Autocorrelation: Time series tend to exhibit autocorrelation, which means that values 

observed at close time points are correlated. Autocorrelation can be measured using the 
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autocorrelation function (ACF) and the partial autocorrelation function (PACF). 

Autocorrelation indicates the dependence of past values in predicting future values. 

• Non-stationarity: Time series can be stationary or non-stationary. A stationary time 

series is one in which statistical properties such as mean, and variance remain constant 

over time. However, many real-world time series are non-stationary and exhibit trends, 

seasonal variations, or changes in variance over time, this is the case of stock prices. 

• Structural change: Time series can experience structural changes, which are significant 

alterations in the series' behavior at specific points in time. These changes can be due to 

exceptional events, policy changes, or any other factor that has a notable impact on the 

time series. 

• Outliers: Outliers are unusual or extreme values that significantly deviate from the 

general pattern of the time series. These values can be due to measurement errors, 

unexpected events, or relevant but unusual information. In this project these values are 

not going to appear or have to be considered, because data has already been 

preprocessed before being uploaded to the internet. But when companies measure 

demand, data would not have been preprocessed, therefore this is an aspect that must 

be considered and assessed correctly. 

• Persistence: Persistence refers to the memory of the time series. A highly persistent time 

series exhibits a strong dependence on past values, indicating that previous observations 

have a significant impact on future observations. On the other hand, a low persistence 

time series shows a weaker dependence on past values. 

 

2.3. Recurrent Neural Networks (RNN) 
 

Recurrent Neural Networks (RNNs) are a type of machine learning model widely used in 

time series analysis. Unlike conventional neural networks, RNNs have recursive connections that 

allow them to process sequential data and capture long-term dependencies. 

In an RNN, neurons not only receive inputs from the current step but also receive 

information from the previous step. This enables them to maintain an internal memory or hidden 

state that can influence the current output and is shared across all time steps. This ability to 

capture temporal dependencies makes them particularly suitable for modeling and predicting 

time series. 
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A common architecture of RNN is the Feedback Recurrent Network, where outputs from 

previous steps are fed back to neurons in the next step. However, traditional RNNs can suffer 

from difficulties in capturing long-term dependencies due to the vanishing or exploding gradient 

problem. 

In the picture below we can see the structure of an RNN. It can be noted that hidden 

states from previous time steps are connected to the next time step, providing memory 

properties to the neural network.  

 

 

Figure 1. Illustration of RNN internal structure. Source: (VENKATACHALAM, 2019) 

 

To overcome the vanishing or exploding gradient problem, more advanced variants of 

RNN have been developed, such as Long Short-Term Memory (LSTM) networks and Gated 

Recurrent Units (GRU). These variants introduce gating mechanisms that control the flow of 

information and help maintain a balance between short-term memory and long-term memory. 

LSTM networks use memory cells and gates to control the writing, reading, and 

forgetting of information in memory. This allows them to capture patterns of long-term 

dependency and avoid the vanishing gradient problem. On the other hand, GRU networks also 

use gates to control the flow of information but with a simpler structure than LSTM networks. 

In the following image, the difference between a simple RNN network and LSTM or GRU 

architecture can be noted. The number of gates and different activation functions in these new 

networks is much higher compared to RNNs. 
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Figure 2. RNN LSTM and GRU internal structure illustration. Source: (Dancker, 2022) 

 

When training an RNN for demand prediction in time series, input data is presented 

sequentially at each time step, and the network learns to generate a prediction for the next step. 

The training process involves adjusting the weights of the network's connections using 

optimization algorithms such as gradient descent. 

RNNs have proven to be effective in demand prediction in time series due to their ability 

to model complex patterns over time. However, their performance can be affected by the choice 

of hyperparameters, the quantity and quality of the training data, and the proper selection of 

the network architecture. 

 

2.4. Convolutional Neural Networks (CNN) 
 

Convolutional Neural Networks (CNNs) are another type of deep learning model widely 

used in the analysis and processing of sequential data, including time series. Although CNNs are 

primarily known for their applicability in image processing, they have also been shown to be 

effective in time series prediction and analysis. 

Unlike RNNs, CNNs rely on convolution operations to extract relevant features from input 

data. These convolution operations involve applying filters or kernels across the data, capturing 

local patterns, and generating feature maps. The resulting feature maps are passed through 

pooling layers to reduce dimensionality and preserve the most important features. 

In the context of time series, CNNs treat the data as an additional dimension, often 

referred to as a channel dimension. Each time step in the time series is represented as a value in 

this channel dimension, allowing convolution operations to capture sequential patterns at 

different scales. 
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CNNs are especially useful for detecting local patterns and invariant features in time 

series. For example, in the case of financial data, CNNs can recognize upward or downward 

patterns in prices within a specific interval. Additionally, pooling layers enable dimensionality 

reduction and extraction of key features without losing important information. 

Like RNNs, training a CNN for demand prediction in time series involves adjusting the 

weights of the network's connections using optimization algorithms. The choice of CNN 

architecture, including the number and size of filters, as well as the configuration of pooling 

layers, is an important factor in achieving optimal performance. The choices to be made and 

hyperparameters that need to be fitted can be much larger than for RNNs, because CNNs can be 

more versatile when it comes to the number of layers and neurons in each layer. 

It is important to note that CNNs are particularly useful when the patterns of interest in 

time series are local and repeat over time. However, they may struggle to capture long-term 

dependencies and more complex sequential relationships. Therefore, the choice of the 

appropriate model will depend on the nature of the data and the patterns being sought. 

 

2.5. Transformer 
 

The Transformer is a machine learning model architecture that has revolutionized the 

field of natural language processing and has also proven to be highly effective in time series 

analysis and prediction. Unlike RNNs and CNNs, the Transformer is based on a completely 

different approach called attention. 

The key concept of the Transformer is attention, which allows the network to focus on 

specific parts of the input sequence that are relevant for performing computations. Attention is 

based on the idea of assigning weights to different parts of the sequence based on their 

relevance to the task at hand. This allows for capturing long-term relationships and modeling 

dependencies between distant elements in the sequence. 

The Transformer consists of a stack of attention layers, known as attention blocks. Each 

attention block consists of multiple attention heads, which calculate attention weights in parallel 

and learn higher-quality representations. In addition to the attention layers, the Transformer also 

includes feed-forward layers, which help capture non-linear relationships in the data. 

In the image below the structure of the transformer can be seen in a more visual way: 
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Figure 3. Transformer structure. Source:  (Vaswani, et al., 2017) 

 

One of the main advantages of the Transformer is its ability to process entire sequences 

of data in parallel, making it highly efficient and suitable for tasks involving long time series. 

Furthermore, the Transformer can capture long-term dependency relationships without 

suffering from the vanishing or exploding gradient problem that can affect RNNs. 

In the context of demand prediction in time series, the Transformer can learn complex 

patterns and capture long-term dependencies among the input data. It can model non-linear 

relationships and capture interactions between different components of the time series. 

Although the Transformer has proven to be a powerful architecture for time series 

analysis and prediction, its success largely depends on the quantity and quality of the available 

training data. Training the Transformer involves adjusting the weights of the network's 

connections using optimization techniques such as gradient descent. Additionally, the use of 

techniques such as regularization and hyperparameter tuning is important for achieving optimal 

model performance. 
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3. Methodology 

 

3.1. Problem definition 

 

The problem we are trying to solve is achieving the best possible accuracy (or achieving 

the lowest possible loss) for future predictions of time series data, using historical data related 

in some way with the predictions we are trying to get. 

To be able to measure which predictions might be closer to the ground truth of the data, 

we would need to define a certain error metric. This one will be the mean square error (MSE). 

The formula of the MSE is the following: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

Where: 

-n=Number of predictions or observations 

-y=Actual value of the data point (ground truth) 

-ŷ=Forecast 

Moreover, the forecast horizon or possible horizons must be defined. These will be one, 

five, ten, fifteen and twenty days. Each of these horizons will be predicted and compared 

between different prediction models. 

Lastly, we must establish which inputs will be used for the models. These will always be 

the same for each prediction model, to make fair comparisons between these. Input time series 

data can be divided into two groups: univariate and multivariate time series. Univariate time 

series data are a type of data that consists of only one variable recorded at each time step. In 

this problem case, this data will be the closing price value of the stock that is going to be 

predicted. On the other hand, for multivariate time series data, several variables (at least more 

than one) are recorded at each time step. For demand forecasting these could be the demand 

of various products, their prices or other aspects that could have an impact in the forecasted 

product demand. For these project other stocks that may be related to the stock that is going to 

be predicted will also be considered as inputs, thus obtaining a multivariate input for the models. 
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3.2. Data selection 
 

The ideal case would be using product demand and some more data that might have 

some correlation with this. But usually, companies do not give open access to their products’ 

demand, therefore more accessible and similar time series data have to be considered for this 

project. The data that will be used are stock prices, specifically Apple stock closing values. This 

data has been recorded daily and there is a large amount of historical data accessible on the 

internet. It was decided to use data from day 1/3/2017 to 3/1/2023, which gives 1550 data 

points. It is well known that deep learning models need high amounts of data to be trained and 

be able to generalize for data that may be different to the training data. It was considered that 

the amount of data used was enough to train these models. The historical data used can be seen 

in the following graph: 

 

Figure 4. Historical Apple stock daily closing values. 

 

The data was downloaded from Yahoo finance website, and there was no need of using 

preprocessing tools, because there were no anomalies or missing values. The file obtained from 

the website is a csv file with the date and opening, high, low, closing, adjusted close and volume 

values for each day recorded. When using multivariate data, other stocks data will be used. These 

will also be obtained from the same source and the same amount and timeframe of the data will 

be used. Some other stocks that will be used are: Microsoft, Amazon, Google, Intel, Nvdia and 

TSM (Taiwan Semiconductor Manufacturing). These stocks were selected because they might 

have a certain correlation with the fluctuations and future values of Apple stock. This procedure 

can be analogously applied to product demand forecasting. The challenge is to find other 
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external recorded factors or products that may impact the forecasted product demand. By doing 

this the models have more useful input information and may be able to find patterns in data that 

could give better demand forecasts. 

 

3.3. Implementation of deep learning models 
 

All deep learning models in this project will be implemented using the Python 

programming language, with a specific focus on utilizing the PyTorch library for model 

implementation. PyTorch provides a flexible and efficient interface for building and training 

neural networks. It is based on the Python programming language. One of the key features of 

PyTorch is its focus on building models using dynamic computational graphs, which means that 

the computation graph is built as the code is executed. This allows for greater flexibility in 

building models and makes debugging and customization easier. 

All the models that are going to be used in this work can be implemented using the nn 

module from pytorch. The nn (neural networks) module of PyTorch is a fundamental part of the 

library that provides a wide range of classes and functions for building and training neural 

networks. This module is one of the main tools used in PyTorch for constructing deep learning 

models. 

The nn module in PyTorch is based on the concept of a "computational graph" and offers 

an intuitive and flexible interface for defining and training neural networks. It includes 

predefined layers that help building the models, classes that make the models definition much 

easier, loss functions and optimizers and automatic differentiation, which computes gradients 

efficiently, allowing for easy backpropagation, which is essential for training neural networks. 

Next, the implementation of the previously stated models, using Pytorch, will be discussed. 

RNN 

The main body of the RNN is the class RNN, which inherits from nn.Module class. To 

define the RNN the nn.RNN class is used. The parameters given to this class are the input size, 

hidden size of each layer, the number of layers and whether the batch size is the first dimension 

of the input tensor, which is true in this case.  

The input size is always going to be one, because each data point, which is a historical 

value of the time series, has a dimension of one. After passing the input tensor, which includes 
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all the batches of input sequences, to the RNN, this gives an output which has the dimension of 

the hidden size, therefore, a linear layer needs to be applied to this output to obtain the desired 

output sequence. 

When implementing LSTM and GRU, the only change that needs to be made is the 

nn.RNN class, which has to be now “nn.LSTM” or “nn.GRU”. These classes have the same input 

parameters and give the same type of output, therefore the forward function and parameters of 

the RNN do not need to be changed. 

The code of these models can be seen in the appendix section 1.1, 1.2 and 1.3. 

 

CNN 

Three different CNN models were built and tested, but this work will present and focus on 

the one that gave the best results. The implementation of CNN has much more “degrees of 

freedom” when it comes to layers and hyperparameters to choose compared with RNNs. The 

code of the CNN class can be seen in the appendix, section 1.4. Every layer used in this model is 

a one-dimensional layer (1d) due to the input data dimensions. Moreover, every convolutional 

layer has a padding and stride value of 1. These are the layers of the CNN model and the order 

in which these are applied: 

1. Convolutional layer: With number of input channels equal to the input size, which is one, 

32 output channels and a kernel size of 3. 

2. Batch normalization: With 32 input channels. 

3. ReLU activation function. 

4. Max Pool layer: With kernel size of 2. 

5. Convolutional layer: With 32 input channels, 64 output channels and kernel size of 3. 

6. Batch normalization: With 64 input channels. 

7. Second ReLU activation function. 

8. Max Pool layer: With kernel size of 2. 

9. Linear layer: Wich reduces the channels number to 100. 

10. Third ReLU activation function. 

11. Linear layer: Which connects 100 neurons to the desired size of the output sequence.  
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Transformer 

 For the Transformer, only the encoder part was used. Some models for image 

classification also only use the encoder part of the Transformer. The implementation of the 

model can be seen in section 1.5 of the appendix. 

 In the process of building the transformer two classes were used, one was the 

PositionalEncoder class and the other which is the main class of the model was 

TransformerModel, both classes inherited from nn module. 

 Unlike recurrent neural networks (RNNs) or convolutional neural networks (CNNs) that 

inherently capture sequential information through their architectures, Transformers process 

input sequences in parallel, making them more efficient for long-range dependencies. However, 

this parallelism also makes it difficult for Transformers to explicitly encode the positional 

information of tokens within the sequence. The positional encoder addresses this issue by 

providing a way to represent the position or order of each token in the input sequence. It assigns 

unique positional embeddings to each token, which are added to the token embeddings before 

feeding them into the Transformer model. The most used positional encoder in Transformers is 

the sine and cosine functions-based positional encoding, which has the following formula: 

 

 Where pos is the position and i is the dimension. 

 With the positional encoding class defined, the Transformer class could be built. Using 

this class, the following layers and transformations are applied to the inputs, following this order: 

1. Input embedding: A linear layer connects the inputs with the number of neurons 

corresponding to the dimension of the model specified. 

2. Positional encoding: The positional encoder class previously mentioned is applied to the 

embedded inputs. 

3. Encoder layers: The output of the positional encoder is the input of the encoder layers. 

These layers incorporate the multi-head attention mechanism, feedforward, and 

normalization layers.  

4. Fully connected layer: Lastly, a linear layer connects the encoder layer’s output, which 

has the specified dimension of the model with the desired output sequence length. 
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3.4. Model training and evaluation 
 

To be able to perform the training and evaluation of the models, the first step is to 

normalize the historical data. Normalizing data is crucial when using deep learning models for 

several reasons. It improves convergence, makes the model more stable and robust to variations 

in the input, can lead to more efficient computation while training and helps the model learn 

generalizable patterns that can be transferred to unseen examples. There are various 

normalization methods which are better for specific data types or requirements of the models. 

The method that is going to be used in this work is the min-max scaling, specifically the data will 

be scaled between 0 and 1. Min-max scaling can be applied using the following formula: 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 

Here: 

-value: original value of the data. 

-min: Minimum value in the dataset considered. 

-max: Maximum value in the dataset considered. 

 

Then, historic data is divided into sequences of input data and the expected output 

predictions that the model should give. The code to do this is in the appendix, section 2.1. To 

give a visual example of the input and output data, this would be the structure of the two first 

batches of data used for an input sequence length of 15 and an output length of 5:  

           

         

Figure 5. Example of two first batches of input and output data used. 

 

 

 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

Input sequences

x16 x17 x18 x19 x20

Output sequences

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21
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Then these batches of data must be divided into training and testing or evaluation data. 

It was decided to use 70% of the data to train the model and the other 30% to test it.  

After this, the models can be trained and evaluated. To do these, two functions, one for 

training and another one for evaluating the model, were used. These two functions are inside a 

loop, which is run for the number of epochs specified, the code can be seen in appendix 2.4. 

The training function (appendix section 2.2.) is used to build a model that finds patterns 

in data and adjusts its weights or parameters, in order to minimize the MSE between predictions 

and the real value of those predictions (also called ground truth). This can be done using the loss 

function that calculates the MSE and the optimizer, which in this case was the Adam optimization 

algorithm. As can be seen, after obtaining the loss between predictions and real values at each 

epoch, the backward function is called to obtain the gradients and then the optimization 

algorithm is run.  

The evaluation function (appendix section 2.3.) uses the trained model to make 

predictions and calculates the MSE error of these predictions, which is the metric used to 

compare models’ performances. 
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4. Results 
 

 In the following sections of this work, the results obtained for different models using 

univariate inputs and multivariate inputs will be presented. It is to be noted that all the mean 

square errors (MSE) presented were calculated with normalized data between 0 and 1. 

Therefore, when transforming the data back to the original values, if the MSE is calculated, it will 

be much higher than the one obtained with normalized data. 

 

4.1. Evaluation of models with univariate time series data 
 

4.1.1. RNN 
 

First the objective was to get predictions for only the next value of the input sequence. 

Input sequences of length 30 were used. Using the following hyperparameters we 

obtained the predictions: 

• Hidden size: 51 

• Layers: 1 

• Epochs: 100 

• Learning rate: 0.009 

 

Figure 6. Comparison of RNN predictions and real values. 
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The loss for the test data was 0.0004. 

But predicting only the next value may not be useful in a lot of cases. Typically, 

predictions of 5, 10 or even 20 values in the future will be needed. An analysis of the RNN was 

made for those cases. The RNN was trained with different lengths of input sequences and 

different output sizes, in order to see its performance in each case. As before the MSE was used 

to compare the results obtained. In the following table it can be seen the MSE for the test data: 

 
Output size 

Sequence 

length 

3 5 8 10 15 20 

20 0.0012 0.0014 0.00167 0.0012 0.00317 0.00326 

30 0.00138 0.00144 0.00175 0.00259 0.00282 0.00337 

40 0.00113 0.00139 0.00158 0.00193 0.00277 0.00326 

50 0.00113 0.00151 0.00168 0.00214 0.00278 0.00345 

60 0.00107 0.0016 0.00179 0.00203 0.00285 0.00345 

Table 1 . Test data predictions MSE for different input and output lengths using RNN. 

The RNN parameters used to obtain these results were: 

-Epochs: 100 

-Hidden size: 40 

-Hidden layers: 1 

-Learning rate: 0.01 

-Input features (size): 1 

The length of the data used was 1550. 

It can be observed that for most of the output sizes used, using a sequence length of 40, 

led to a lower MSE (except for output size of 10). When using an output size of 1, the length 

sequence that gave the lowest MSE was 30. 

Analyzing the MSE for the sequence length of 40 and for the different output sizes: 
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Figure 7. MSE for test data for an input sequence of length 40 and different output sequence length.  

 

As expected, the MSE goes up when the output size is larger.  

Now instead of using a simple RNN model to predict, an LSTM will be used. This model 

has long-short term memory, which allows it to use past data more efficiently when the input 

sequences used are very long.  

For an output size of 1, a simple RNN and an LSTM were trained with: 100 epochs, hidden 

size of 40, 1 hidden layer, 0.01 learning rate and input sequences of length 40. In the following 

table we can see the MSE results obtained for the last epoch model: 

 Train data Test data 

Simple RNN 0.000128 0.000627 

LSTM 0.000158 0.000571 

Table 2. Comparison of MSE for training and testing data for simple RNN and LSTM model. 
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In this graph the actual data vs the predictions made by the simple RNN can be seen: 

 

Figure 8. RNN predictions compared with ground truth. 

 

Whereas in this graph the predictions were made using the LSTM model: 

 

Figure 9. LSTM predictions compared with ground truth. 
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It can be noted that the LSTM predictions are smoother and more accurate in the high 

peaks of the data series. 

But LSTMs make the difference when the input sequences are very long, to see this larger 

input length sequences will be tried. If a sequence length of 250 is used, the simple RNN gives a 

test loss of 0.00858, whereas the LSTM gives a 0.000726 loss. 

The improvement from using a LSTM when the amount of historical data is much larger 

is noticeable. If 3319 data points are used (instead of 1550) the difference between the simple 

RNN and LSTM is more notorious. The test loss in the last epoch using the simple RNN is 0.00902, 

however, for the LSTM is 0.00112. 

In this graph the predictions for the simple RNN can be seen: 

 

Figure 10. RNN prediction compared with ground truth using more data points. 

 

And these are the predictions for the LSTM: 

 

Figure 11. LSTM prediction compared with ground truth using more data points. 
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When the next 5 values of the input sequence are trying to be predicted, the LSTM has 

a greater loss for the test data: 

-LSTM loss: 0.0031 

-Simple RNN loss: 0.0012 

This could be happening because the hyperparameters of the LSTM are not optimized 

for this case. Therefore, an analysis of different hyperparameters would be made for the LSTM, 

using an output size of 1, and we will suppose that the best parameters and hyperparameters 

for an output size of 1 would be also the best for greater output sizes. The length of the historical 

data used to do the analysis was 1550, and the test data length was 456. The results can be seen 

in the following table: 

 

Sequence lenght Hidden 

size 

Layers Learning rate Epochs Training loss Test loss 

20 32 1 0.01 100 0.000199 0.00314 

30 32 1 0.01 100 0.000198 0.00164 

40 32 1 0.01 100 0.000164 0.00108 

50 32 1 0.01 100 0.000172 0.0014 

40 32 1 0.01 50 0.000294 0.000879 

50 32 1 0.01 70 0.000252 0.00063 

50 25 1 0.01 70 0.000191 0.00134 

50 40 1 0.01 70 0.00024 0.00174 

50 50 1 0.01 70 0.000178 0.000668 

50 50 1 0.01 100 0.000168 0.000857 

50 60 1 0.01 50 0.00023 0.000604 

50 60 1 0.01 100 0.000161 0.000771 

30 40 1 0.01 100 0.000195 0.000609 

30 40 2 0.01 100 0.000275 0.00729 

50 50 2 0.01 100 0.000299 0.00783 

Table 3. Training and test loss obtained with LSTM for different combinations of hyperparameters. 
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After seeing these results, the decision was to use a hidden size of 40, 1 layer, 0.01 

learning rate and 100 epochs. 

Now, using these parameters, the same procedure used for RNN was followed, which 

was obtaining the MSE loss for the test data, using different input sequence and output lengths. 

The results obtained can be seen in the table below: 

 

 
Output size 

Sequence 

length 

3 5 8 10 15 20 

20 0.00351 0.0022 0.00342 0.00526 0.00544 0.00633 

30 0.00197 0.0037 0.00381 0.00374 0.00536 0.00577 

40 0.00173 0.00487 0.00466 0.00576 0.00596 0.00671 

50 0.0039 0.00308 0.00378 0.00574 0.0061 0.00689 

60 0.00172 0.00352 0.00491 0.00504 0.00451 0.00672 

Table 4. Test data predictions MSE for different input and output lengths using LSTM. 

It can be observed that the sequence length that seems to give the lowest loss for the 

output sizes used is 30. Nevertheless, the MSE values for the LSTM are higher than the ones for 

the RNN. When the output size increases, this difference is even greater. 

In conclusion, the LSTM works better when predicting the next value of the sequence and when 

the input sequences are large. But, when trying to predict more values in the future time horizon, 

the RNN makes more accurate predictions. 
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4.1.2. CNN 
 

For prediction of the next value in the sequence, three different CNN architectures were 

built, trained, and tested. 

For all three CNNs input sequence lengths of 15, 20, 30, 40, 50, 75 and 100 were used 

and the train loss and test loss were collected in a table. 

The first one (CNN1) was formed by the following layers, applied in the following order: 

• One-dimension convolutional layer with 1 input channel, 16 output channels, a kernel 

size of 3 and 0 padding.  

• A ReLU activation function. 

• Another one-dimension convolutional layer with 16 input channels, 32 output channels, 

a kernel size of 3 and 0 padding. 

• A second ReLu activation function. 

• Lastly, a fully contected layer that connects the outputs to one value (which is the output 

size). 

The results obtained using this CNN architecture can be seen in this table: 

 

Seq 

length 

MSE train 

loss 

MSE test 

loss 

15 0.000373 0.00172 

20 0.000473 0.00239 

30 0.000298 0.00143 

40 0.000432 0.00294 

50 0.000236 0.00122 

75 0.000322 0.00384 

100 0.000218 0.00438 

Table 5. Train and test MSE for different input sequence length using CNN1. 

The learning rate used was 0.001 and the number of epochs was 500 for every sequence 

length. 
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The second CNN (CNN2) was the following: 

• A one-dimension convolutional layer with 1 input channel, 16 output channels, a kernel 

size of 3 and padding of 1. 

• A one-dimension batch normalization layer of dimension 16. 

• A ReLU activation function. 

• A max pool layer of kernel size 2 and stride 2. 

• A second one-dimension convolutional layer with 16 input channels, 32 output channels, 

a kernel size of 3 and padding of 1. 

• A one-dimension batch normalization layer of dimension 32. 

• A second ReLU activation function. 

• Another max pool layer of kernel size 2 and stride 2. 

• Finally, a fully contected layer that connects the outputs to one value. 

The results obtained using this CNN architecture can be seen in this table: 

 

Seq 

length 

MSE train 

loss 

MSE test 

loss 

15 0.000183 0.00368 

20 0.000184 0.000732 

30 0.000334 0.0015 

40 0.000207 0.001 

50 0.000218 0.00144 

75 0.000244 0.00193 

100 0.000212 0.00113 

Table 6. Train and test MSE for different input sequence length using CNN2. 

The learning rate used was 0.001 and the number of epochs was 500 for every sequence 

length. 
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The last CNN built (CNN3), has already been escribed in section 3.3. of this project.  

The results obtained using this CNN architecture can be seen in this table: 

 

Seq 

length 

epochs Kernel Padding MSE 

train loss 

MSE test 

loss 

15 200 3 1 0.000149 0.000725 

20 500 3 1 0.00009 0.000488 

30 400 3 1 0.000076 0.000428 

40 450 5 2 0.000134 0.000784 

50 500 5 2 7.76E-05 0.000853 

75 500 5 2 0.000091 0.00112 

100 500 5 2 0.000093 0.00219 

Table 7. Train and test MSE for different input sequence length using CNN3. 

In this case, for some input sequence lengths, the number of epochs needed to find a 

good MSE loss was less than 500, moreover with more epochs than the ones used, overfitting 

would begin to occur. Also, it can be noted that when the kernel size was changed to 5, the 

padding was increased to 2, this is to guarantee that the shape of the convolutional layers output 

was the same as the shape of input (the formula used to guarantee this is (kernel size-1)/2). The 

learning rate used was 0.001 for all length sequences. 

Looking at the table, the MSE test loss indicates that the third CNN architecture (CNN3) 

was the one that obtained better results. The sequence length and parameters that led to the 

lowest MSE were: 

-Sequence length=30 

-Epochs=400 

-Kernel=3 (in both convolutional layers) 

-Padding=1 (in both convolutional layers) 
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Therefore, we will use these parameters to view next results obtained. 

The MSE train and test loss for each epoch can be seen in the following graph: 

 

Figure 12. CNN3 test vs training loss at each epoch. 

During the first 30 or 40 epochs, the training loss goes down, not in a smooth way, and 

after epoch 70 the test and training loss become similar, both going down slowly after each 

epoch. 

In the next graph the CNN outputs for the test data can be seen: 

 

Figure 13. CNN predictions of next time step compared with ground truth. 
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 When predicting for more than one time step into the future, only the third CNN 

architecture (CNN3) was used. In the table below the test MSE values for different input and 

output lengths can be seen: 

 
Output size 

Sequence 
length 

3 5 10 15 20 epochs 

15 0.00133 0.00285 0.00448 0.00514 0.00712 350 

20 0.0009 0.00223 0.00226 0.00388 0.00588 150 

30 0.00152 0.00239 0.00538 0.00631 0.00781 250 

40 0.00167 0.00332 0.00461 0.00452 0.00763 250 

50 0.00159 0.00256 0.0039 0.00448 0.00499 300 

60 0.00157 0.00256 0.00477 0.00577 0.00631 150 

Table 8. Test predictions MSE for different input and output lengths using CNN3 model. 

 The learning rate used for all these different combinations of input and output lengths 

was 0.001. 

 

4.1.3. Transformer 

 

The next step was using Transformer to see if the error in the predictions could be 

improved. 

A lot of different hyperparameters were tried for predicting the next value of the input 

sequence, these different parameters can be seen in section 3 of the appendix. One combination 

of these hyperparameters was selected and used for predicting longer sequences of data. As in 

previous architectures, different input lengths were used and the mse loss for different output 

lengths was obtained, the results can be seen in the following table: 
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Output size 

Sequence 

length 

5 10 15 20 

10 0.00295 

(300e) 

0.00473 

(100e) 

0.00594 

(90e) 

0.00861 

(100e) 

15 0.00342(370e) 0.00509 

(90e) 

0.00579 

(100e) 

0.0082 (100e) 

20 0.00325(300e) 0.00542 

(100e) 

0.00739 

(150e) 

0.00851 (90e) 

30 0.00316 (300 

e) 

0.00656 

(250e) 

0.00808 

(100e) 

0.00887(100e) 

40 0.00426(400e) 0.00787 

(150e) 

0.0092 

(100e) 

0.0118 (100e) 

50 0.00436 

(350e) 

0.00819 

(250e) 

0.00879 

(110e) 

0.0114(100e) 

Table 9. Test data MSE for different combinations of input and output lengths using Transformer model. 

For an output size of 1, the comparison of predictions and ground truth can be seen in 

the following graph: 

 

 

Figure 14. Transformer predictions of next time step compared with ground truth. 
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4.2. Evaluation of models with multivariate time series data 
 

 Until now, only historical data has been used as input for the models. But if more 

information is given to the model, which in this case could be providing information about other 

stocks related to the one that is being predicted, maybe improvement in the predictions could 

be seen. 

To do this the RNN, which was the model that gave more consistent and accurate results, 

was the first tested, using different stocks that may be correlated with apple will be the input 

data, like Microsoft, Google, Intel, and others.  

The mse for the test data changes when using different combinations of these input data 

can be seen in the following table: 

 

APPL MSFT AMZN GOOGL INTL NVDA TSM seq_len test MSE 

x x x x x x x 30 0.000337 

x x x x x x 
 

30 0.000351 

x x x x x 
  

30 0.000231 

x x x x 
   

30 0.000236 

x x x 
    

30 0.000237 

x x 
     

30 0.000227 

x 
      

30 0.000966 

x x 
 

x x 
 

x 30 0.000265 

x x 
     

50 0.000224 

Table 10. RNN model MSE for the test data for different combinations of input data and an output length of five. 

It can be noted that there is a noticeable decrease in mse, from 0.0097 using just apple 

historical data, to 0.0002 when we add Microsoft data to the inputs. These values were obtained 

when predicting the 5 next values into the future.  
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Nevertheless, when we see some of the predictions, seems that the RNN cannot predict 

the trend and predictions are not very accurate: 

  

Figure 15. RNN predictions of next five data points using mutlivariate inputs 

  

Besides using information about different stocks, other types of information were also 

tested. The file that contains the historical data of the stock that is being predicted also contains 

the opening, highest, lowest and volume of the stock at each day. Without being sure, it could 

be assumed that giving this information as input to the models could provide better predictions. 

Therefore, this was tried, and the results can be seen in the following table: 

 

Open Low High Volume Sequence 
length 

test MSE 

x x x x 50 0.001078  
x x x 50 0.001042  
x x 

 
30 0.00106    

x 30 0.001056 

x 
   

50 0.001159 

Table 11. RNN MSE for test data when using other characteristics of the time series besides from the closing price. 

The table below presents the MSE values obtained for the test data, using the marked 

inputs and the specified sequence length. This sequence length was the one that gave the best 

results in each particular case. It is to be noted that the MSE obtained using only the closing 

values of the stock was 0.001087. 
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Lastly, another approach to the problem was taken. This time the original input data 

series would be decomposed into trend, seasonality and residual part, and this three time series 

data would be given to the RNN as inputs. In the graphs below the decomposition of the original 

time series data can be seen: 

 

 

              Figure 16. Decomposition of original time series into trend, seasonality and residual part. 

 

 Only 5 predictions into the future were made using this new approach, and the error 

obtained was 0.0042, whereas the error obtained without decomposing the data and for an 

output size of 5 was 0.00144, therefore no improvement was obtained, in fact, the predictions 

were worse than before. In the graphs below some of the predictions can be seen: 

 

 

 

 

 

 

 

Figure 17. RNN predictions of next five data points using decomposed time series as multivariate input data (1). 
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Even though the error may be higher, seems that by doing the decomposition, the trend 

of the predictions is more similar to the trend of the actual data. To compare, this are some of 

the predictions of the RNN without decomposing the input data, much more predictions were 

analyzed in order to determine that the trend of the predictions is more similar to the actual 

data trend: 

 

 

 

  

 

 

 

 

After testing the RNN with multivariate data, the same was done using the CNN model 

(CNN3). In this case only the first approach was used, assuming that it would give the best results, 

as it did with the RNN model. In the following table the MSE for the test data can be seen for the 

CNN: 

 

APPL MSFT AMZN GOOGL INTL NVDA TSM sequence 

lenght 

test 

MSE 

x x x x x x x 30 0.0041 

x x x x x x 
 

30 0.0071 

x x x x x 
  

20 0.0096 

x x x x 
   

20 0.0051 

x x x 
    

30 0.0043 

x x 
     

20 0.00057 

x 
      

20 0.00223 

Table 12. CNN3 model MSE for the test data for different combinations of input data and an output length of five. 

Figure 18. RNN predictions of next five data points using decomposed time series as multivariate input data (2). 
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The parameters and hyperparameters used for each of the different input scenarios were 

ones that gave the lowest MSE for the test data when using univariate input data. These were: 

 -Learning rate: 0.001. 

 -Epochs: 150. 

 Even though when using Apple and Microsoft the error was significantly reduced, like 

when using RNN, the predictions do not seem to follow the trend of the actual data. These are 

some of the predictions: 

 

 

 

 

 

 

 

 

 

Figure 20. CNN predictions of next five data points using multivariate input data (2). 

  

 

 

 

Figure 19. CNN predictions of next five data points using multivariate input data (1). 
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Lastly, the same was done for the Transformer model, obtaining the following results: 

APPL MSFT AMZN GOOGL INTL NVDA TSM test MSE 

x x x x x x x 0.0011 

x x x x x x 
 

0.00087 

x x x x x 
  

0.0021 

x x x x 
   

0.0012 

x x x 
    

0.0011 

x x 
     

0.0004 

x 
      

0.0029 

Table 13. Transformer model MSE for the test data for different combinations of input data and an output length of 
five. 

An input sequence length of 10, and 250 epochs were used for each of the different input 

combinations presented in the table above. 

As for the previously analyzed models, the lowest mse is obtained when combining apple 

and Microsoft input data. Even though the error is low, the predictions do not seem to follow 

the real trend of the actual data, which also was the issue with CNN and RNN. These are some 

of the predictions obtained: 

  

  

Figure 21. Transformer predictions of next five data points using multivariate input data. 
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5. Interpretation of results 
 

When the prediction made is only for the next value and univariate input data is used, 

CNN and RNN have a similar performance. In the next table we can see the test MSE loss for 

the RNN, LSTM, CNN and Transformer that worked the best for the data used: 

Model Test MSE loss 

Simple RNN 0.000627 

LSTM 0.000571 

CNN 0.000428 

Transformer 0.00072 

Table 14. MSE loss comparison for analyzed models when using univariate input data and predicting the next value 
of the sequence. 

The MSE values are very similar, but the lowest is the one obtained by the CNN and the 

worst one is obtained by the Transformer. 

Nevertheless, when trying to predict more values in the future, results change. The 

following table presents the MSE loss for the test data for different output sizes. Each model 

was tested with different input sequences length, but to be able to compare results, the 

minimum loss obtained for each output size, considering every input sequence length tried, 

will be the value used in this table: 

 
Output size 

Model 3 5 10 15 20 

Simple RNN 0.00107 0.00139 0.0012 0.00277 0.00326 

LSTM 0.00172 0.0022 0.00374 0.00451 0.00577 

CNN 0.0009 0.00223 0.00226 0.00388 0.00499 

Transformer - 0.00295 0.00473 0.00579 0.0082 

Table 15. MSE loss comparison for analyzed models and different output lengths. 

It can be noticed that the RNN was the one that obtained lower MSE for every output 

size tested, but for the output size of 3. 
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As mentioned before, when it comes to training time of the models, CNN is the fastest 

(at least for the architecture made), RNN is also fast but not as much as CNN. LSTM is slower 

than RNN and CNN, but faster than Transformer. The Transformer model implemented was the 

slowest, and GPU needed to be used to have a reasonable training time.  

It is to be said that even though CNN was faster during the training, more epochs were 

needed to obtain a good mse error, therefore, it took nearly the same time to train the RNN and 

the CNN, because less epochs were needed for the RNN training. 

 When using multivariate input data, in some cases the predictions were more accurate 

and in other cases not. This illustrates the fact that one of the main challenges when using 

multivariate input data is finding the data that will improve the accuracy of the models. This is 

not an obvious task, and some trial and error would be involved in this process. 

 As described in section 4.2, at first, three different approaches were used for obtaining 

the multivariate input data. The first was using other stocks closing daily values, the stocks 

chosen were thought to be correlated to the apple stock, which is the one being predicted. The 

second was using open, high, low and volume values besides just using the closing value of the 

stock, and the third was decomposing the original time series into trend, seasonality and residual 

part and using these time series as inputs for the model. 

A summary of the obtained results can be seen in the following table: 

Approach Test MSE 

Correlated data 0.000224 

More information about stock predicted 0.001042 

Decomposed data 0.0042 

Table 16. RNN MSE for test data when using different multivariate input approaches. 

 These results were obtained when predicting the next 5 data points of the input 

sequence. These results were obtained using the RNN model, which was decided to be tested 

first, because it had a better performance than the other models.  

 After seeing that using correlated data led to a better performance, it was assumed that 

this would also happen with the CNN and Transformer model, and this was the only approach 

taken for using multivariate input data. 
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 The CNN model obtained results much worse than the RNN except for the combination 

of apple and Microsoft input data, which was the same that led to a lower MSE when using the 

RNN. In the case of CNN, the difference between the MSE for other combinations of data and 

the Apple and Microsoft data was much larger than for the RNN case. 

 Something similar happened for the Transformer model. In this case difference between 

other combinations MSE and Apple-Microsoft combination was smaller than for the RNN, but 

larger than for the CNN. 

 To compare the best results obtained for each model when using multivariate input data, 

the following table was made: 

Model Lowest test MSE 

RNN 0.00022 

CNN 0.00057 

Transformer 0.0004 

Table 17. Models lowest MSE for test data when using multivariate input data and predicting five next values of the 
input sequence. 

 As mentioned earlier, these MSE were obtained using Apple and Microsoft closing prices 

as inputs for predicting the next five closing prices of Apple stock. When using univariate input 

data, the RNN performed the best compared to CNN and Transformer. 
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6. Conclusions 
 

Deep learning applied to demand forecasting is a very useful tool that allows to take 

advantage of patterns in data that are difficult to see for humans. Some deep learning models 

that can be used for this purpose are: RNN, LSTM, GRU, CNN and Transformers. The most used 

ones for prediction of time series data, like the demand of a product, are RNN, LSTM and GRU. 

This independent study tries to give an understanding of each of these models and 

analysis of which cases they perform the best. RNN seemed to be the best option for the 

forecasting problem that was trying to be solved. Both when using univariate input data, which 

were the historical closing prices of the stock that was being predicted and when using 

multivariate input data, which were other stocks correlated to the one being predicted and this 

last one itself, RNN gave better results. Nevertheless, results obtained with CNN and Transformer, 

which were very similar, were not that far from the ones obtained with the RNN. 

The fact that the data that was trying to be predicted was stock prices made the 

forecasting problem really challenging, because this type of data is very difficult to predict, and 

a lot of factors must be taken into consideration to have a good forecast. This was noticeable 

when the use of more market information, besides the historical data of the stock that was being 

predicted, led to a much better performance, and a decrease in the prediction error. But even 

using this strategy, the forecasts did not seem to be similar or at least have the same trend as 

the actual values that should have been obtained or “ground truth”. This illustrates the fact that 

forecasting stock prices is a very challenging task.  

The principle of using more information to make forecasts can also be applied to product 

demand forecasts. The challenge is to figure out which input information could be more useful 

for the model. 

Some interesting future lines of this project could be applying these models to real 

product demand data, to see if the RNN model would still be the best one and if the models are 

able to capture patterns and trends in the data better than they did with the data used during 

this project. In this case as the product demand would be real, considerations about reasonable 

forecasting horizons and the impact on the accuracy these could have when planning production 

into the future would be an interesting and necessary task to perform. Moreover, taking into 

account other products’ demand that may be related to the demand of the forecasted product 

would be something to analyze, because as it did in this project, it could improve the accuracy 
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of the forecasts. Lastly other factors like discounts, seasonality, or external economic factors 

could be given as inputs to the models, in order to study if these reduce the error in the forecasts. 
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Appendix 
 

1. Models Implementation  
 

1.1. RNN 
 

class RNN(nn.Module): 

    def __init__(self, input_size, hidden_size, num_layers, output_size): 

        super().__init__() 

        self.hidden_size=hidden_size 

        self.num_layers=num_layers 

        self.rnn=nn.RNN(input_size, hidden_size, num_layers, batch_first=True) 

        self.linear=nn.Linear(hidden_size, output_size) 

         

    def forward(self, x): 

        rnn_out,_=self.rnn(x) 

        output=self.linear(rnn_out[:,-1,:])  

        return output 

 

1.2. LSTM 
 

class LSTM(nn.Module): 

    def __init__(self, input_size, hidden_size, num_layers, output_size): 

        super().__init__() 

        self.hidden_size=hidden_size 

        self.num_layers=num_layers 

        self.rnn=nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) 

        self.linear=nn.Linear(hidden_size, output_size) 

         

    def forward(self, x): 

        rnn_out,_=self.rnn(x)  

        output=self.linear(rnn_out[:,-1,:])  
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        return output 

 

1.3. GRU 
 

class GRU(nn.Module): 

    def __init__(self, input_size, hidden_size, num_layers, output_size): 

        super().__init__() 

        self.hidden_size=hidden_size 

        self.num_layers=num_layers 

        self.rnn=nn.GRU(input_size, hidden_size, num_layers, batch_first=True) 

        self.linear=nn.Linear(hidden_size, output_size) 

         

    def forward(self, x): 

        rnn_out,_=self.rnn(x)  

        output=self.linear(rnn_out[:,-1,:])  

        return output 

 

1.4. CNN 
 

class CNN(nn.Module): 

    def __init__(self, input_size, output_size): 

        super().__init__() 

        self.conv1=nn.Conv1d(in_channels=input_size,out_channels=32,kernel_size=3, padding=1) 

        self.bn1=nn.BatchNorm1d(32) 

        self.relu1=nn.ReLU() 

        self.pool1=nn.MaxPool1d(kernel_size=2) 

        self.conv2=nn.Conv1d(in_channels=32,out_channels=64,kernel_size=3, padding=1) 

        self.bn2=nn.BatchNorm1d(64) 

        self.relu2=nn.ReLU() 

        self.pool2=nn.MaxPool1d(kernel_size=2) 

        self.fc1=nn.Linear(320,100) 

        self.relu3=nn.ReLU() 



Designing demand forecasting models using deep learning 

47 
 

        self.fc2=nn.Linear(100, output_size) 

     

    def forward(self, x): 

        x=self.bn1(self.conv1(x)) 

        x=self.relu1(x) 

        x=self.pool1(x) 

        x=self.bn2(self.conv2(x)) 

        x=self.relu2(x) 

        x=self.pool2(x) 

        x=x.view(x.size(0),-1)  

        x=self.fc1(x) 

        x=self.relu3(x) 

        x=self.fc2(x) 

        return x 

 

1.5. Transformer 
 

class PositionalEncoder(nn.Module): 

    def __init__(self, d_model, max_seq_len): 

        super().__init__() 

        self.d_model=d_model 

        self.pos_encoding=self.get_positional_encoding(max_seq_len, d_model).to(device) 

         

    def get_positional_encoding(self, max_seq_len, d_model): 

        pos_encoding=torch.zeros(max_seq_len, d_model) 

        pos = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1) 

        div_term = torch.exp(torch.arange(0, d_model, 2).float()*(-math.log(10000.0)/d_model)) 

        pos_encoding[:, 0::2]=torch.sin(pos*div_term) 

        pos_encoding[:, 1::2]=torch.cos(pos*div_term) 

        return pos_encoding.unsqueeze(0) 

         



Designing demand forecasting models using deep learning 

48 
 

    def forward(self, x): 

        x=x*math.sqrt(self.d_model) 

        x=x+self.pos_encoding[:, :x.size(1), :] 

        return x 

 

class TransformerModel(nn.Module): #Only using encoder for the moment 

    def __init__(self, input_size, seq_len, d_model, nhead, num_layers, output_size): 

        super().__init__() 

        self.d_model=d_model 

        self.input_emb=nn.Linear(input_size, d_model) 

        self.pos_encoder=PositionalEncoder(d_model, seq_len)    

        encoder_layers=nn.TransformerEncoderLayer(d_model, nhead, batch_first=True)  

#Enconder layer 

        self.transformer_encoder=nn.TransformerEncoder(encoder_layers, num_layers, 

norm=None) #Stack a number of "num_layers" identical layers 

        self.fc=nn.Linear(d_model, output_size) #Linear mapping  

         

    def forward(self, x): 

        e=self.input_emb(x) 

        e=self.pos_encoder(e) 

        x=self.transformer_encoder(e) 

        output=self.fc(x) 

        return output[:, -1, :] 
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2. Model training and evaluation 
 

2.1. Create input and real output batches of data 
 

def create_seq(seq_length, data, output_size): 

    x=[] 

    y=[] 

    for i in range(len(data)-seq_length-output_size): 

        x.append(data[i:i+seq_length]) 

        y.append(data[i+seq_length:i+seq_length+output_size]) 

    x=np.array(x) 

    y=np.array(y) 

    return x, y 

 

2.2. Model training function 
 

def train(model, inputs, real_output, optimizer, criterion): 

    model.train() 

    optimizer.zero_grad() 

    outputs=model(inputs) 

    loss=criterion(outputs.squeeze(), real_output) 

    keep_loss=loss.item() 

    loss.backward() 

    optimizer.step() 

    return keep_loss 

 

2.3. Model evaluation function  
 

def predict(model, test_inputs_ev, y_test_ev, criterion): 

    model.eval() 

    with torch.no_grad(): 

        predictions=model(test_inputs_ev) 
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        loss=criterion(predictions.squeeze(), y_test_ev) 

        loss=loss.item() 

    return loss, predictions 

 

2.4. Training and testing loop 
 

for epoch in range(num_epochs): 

    loss=train(model, inputs, real_output, optimizer, criterion) 

    train_loss.append(loss) 

    if epoch%10==0 or epoch==num_epochs-1: 

        print("Epoch ",epoch)  

        print("Training Loss: ", loss) 

    #Predictions 

    loss, predictions=predict(model, test_inputs_ev, y_test_ev, criterion) 

    test_loss.append(loss) 

    if epoch%10==0 or epoch==num_epochs-1: 

        print("Test loss: ", loss) 

3. Transformer hyperparameter evaluation 
 

Input sequence 
length 

d_model # heads layers learning 
rate 

epochs Train MSE Test 
MSE 

10 32 1 1 0.0001 500 0.00011 0.00398 

10 32 2 1 0.0001 500 0.000104 0.00082 

10 32 4 1 0.0001 500 0.000107 0.00272 

10 32 8 1 0.0001 500 0.000101 0.00199 

10 32 1 2 0.0001 500 0.000109 0.00136 

10 32 2 2 0.0001 500 0.0001 0.00237 

10 32 4 2 0.0001 500 0.000146 0.00274 

10 32 8 2 0.0001 500 0.0001112 0.00137 

10 64 1 1 0.0001 500 0.0001 0.00311 

10 64 2 1 0.0001 500 0.000102 0.00148 

10 64 8 1 0.0001 500 0.000099 0.00216 

10 64 1 2 0.0001 500 0.000101 0.00151 

10 64 4 2 0.0001 500 0.0000997 0.00109 

10 64 8 2 0.0001 500 0.000103 0.00158 

10 64 1 4 0.0001 500 0.000101 0.00072 

10 64 2 4 0.0001 500 0.000106 0.00085 
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10 64 8 4 0.0001 500 0.0001 0.00156 

10 128 1 1 0.0001 500 0.000099 0.00179 

10 128 4 1 0.0001 500 0.000097 0.00101 

10 128 1 2 0.0001 500 0.000099 0.00105 

10 128 4 2 0.0001 500 0.000105 0.00119 

10 128 1 4 0.0001 500 0.0000986 0.00133 

10 128 2 4 0.0001 500 0.000103 0.00101 

10 128 8 4 0.0001 500 0.0000995 0.0021 

10 256 1 1 0.0001 500 0.000099 0.00137 

10 256 2 1 0.0001 500 0.000102 0.00257 

10 256 4 1 0.0001 500 0.0000975 0.00103 

10 256 1 2 0.0001 500 0.000101 0.00133 

10 256 2 2 0.0001 500 0.000102 0.00109 

10 256 8 2 0.0001 500 0.000098 0.0016 

10 256 1 4 0.0001 400 0.000102 0.0009 

10 256 4 4 0.0001 400 0.000106 0.00137 

10 256 8 4 0.0001 400 0.000114 0.00099 

10 512 1 1 0.0001 500 0.000105 0.00182 

10 512 2 1 0.0001 500 0.0000989 0.0012 

10 512 1 2 0.0001 500 0.000124 0.00126 

10 512 4 2 0.0001 400 0.0000994 0.00091 

10 512 1 4 0.0001 500 0.000119 0.00181 

10 512 2 4 0.0001 500 0.000105 0.00239 

10 512 8 4 0.0001 500 0.000149 0.00131 

15 64 1 4 0.0001 500 0.00012 0.00165 

15 64 2 4 0.0001 400 0.00011 0.00087 

15 256 1 4 0.0001 500 0.0000988 0.00139 

15 256 8 4 0.0001 500 0.000115 0.00087 

20 64 1 4 0.0001 500 0.000103 0.00116 

20 64 2 4 0.0001 500 0.000103 0.00187 

20 256 1 4 0.0001 500 0.0001 0.00089 

20 256 8 4 0.0001 500 0.0000994 0.00189 

30 64 1 4 0.0001 500 0.000101 0.00179 

30 64 2 4 0.0001 500 0.000106 0.00122 

30 128 1 4 0.0001 200 0.000123 0.00096 

30 256 1 4 0.0001 500 0.000102 0.00145 

30 256 8 4 0.0001 500 0.0000996 0.00165 

40 64 1 4 0.0001 500 0.000101 0.00176 

40 64 2 4 0.0001 500 0.000102 0.00168 

40 128 1 4 0.0001 500 0.000102 0.00225 

40 128 2 4 0.0001 500 0.000102 0.00121 

50 64 1 4 0.0001 500 0.000103 0.00201 

50 64 2 4 0.0001 500 0.000101 0.00182 

50 128 1 4 0.0001 500 0.000103 0.00138 

50 128 2 4 0.0001 500 0.000103 0.00122 
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3. Input data processing 
 

3.1. Univariate input data 
 

#Load data 

data = pd.read_csv('…') 

data=data.dropna() #eliminate missing or null values 

prices = data['Close'].values 

#Show data 

print(len(prices)) 

plt.plot(prices) 

plt.show() 

#Normalize data 

min_price=np.min(prices) 

max_price=np.max(prices) 

prices=(prices-min_price)/(max_price-min_price) 

#Create batches of data 

def create_seq(seq_length, data, output_size): 

    x=[] 

    y=[] 

    for i in range(len(data)-seq_length-output_size): 

        x.append(data[i:i+seq_length]) 

        y.append(data[i+seq_length:i+seq_length+output_size]) 

    x=np.array(x) 

    y=np.array(y) 

    return x, y 

seq_length=20 

output_size=5 

x1,y=create_seq(seq_length, prices, output_size) 

#Divide data into training and test 

train_size=int(len(x)*0.7) 

x_train=x[:train_size] 
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y_train=y[:train_size] 

x_test=x[train_size:] 

y_test=y[train_size:] 

 

3.2. Multivariate input data 
 

appl = pd.read_csv('…/AAPL2.csv') 

appl=appl.dropna() #eliminate missing or null values 

appl= appl['Close'].values 

 

msft=pd.read_csv('… /MSFT.csv') 

msft=msft.dropna() 

msft=msft['Close'].values 

 

amzn=pd.read_csv('…/AMZN.csv') 

amzn=amzn.dropna() 

amzn=amzn['Close'].values 

 

googl=pd.read_csv('…/GOOGL.csv') 

googl=googl.dropna() 

googl=googl['Close'].values 

 

intc=pd.read_csv('…/INTC.csv') 

intc=intc.dropna() 

intc=intc['Close'].values 

 

nvda=pd.read_csv('…/NVDA.csv') 

nvda=nvda.dropna() 

nvda=nvda['Close'].values 

 

tsm=pd.read_csv('…/TSM.csv') 
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tsm=googl.dropna() 

tsm=googl['Close'].values 

 

#Show data 

print(len(appl)) 

plt.plot(appl) 

plt.title("APPLE") 

plt.show() 

 

print(len(msft)) 

plt.plot(msft) 

plt.title("MICROSOFT") 

plt.show() 

 

plt.plot(amzn) 

plt.title("AMAZON") 

plt.show() 

 

plt.plot(googl) 

plt.title("GOOGLE") 

plt.show() 

 

plt.plot(intc) 

plt.title("INTEL") 

plt.show() 

 

plt.plot(nvda) 

plt.title("NVDIA") 

plt.show() 

 

plt.plot(tsm) 
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plt.title("TAIWAN SEMICONDUCTOR") 

plt.show() 

#Normalize data 

min=[] 

max=[] 

min.append(np.min(appl)) 

max.append(np.max(appl)) 

min.append(np.min(msft)) 

max.append(np.max(msft)) 

min.append(np.min(amzn)) 

max.append(np.max(amzn)) 

min.append(np.min(googl)) 

max.append(np.max(googl)) 

min.append(np.min(intc)) 

max.append(np.max(intc)) 

min.append(np.min(nvda)) 

max.append(np.max(nvda)) 

min.append(np.min(tsm)) 

max.append(np.max(tsm)) 

 

min_price=np.min(min) 

max_price=np.max(max) 

 

appl=(appl-min_price)/(max_price-min_price) 

msft=(msft-min_price)/(max_price-min_price) 

amzn=(amzn-min_price)/(max_price-min_price) 

googl=(googl-min_price)/(max_price-min_price) 

intc=(intc-min_price)/(max_price-min_price) 

nvda=(nvda-min_price)/(max_price-min_price) 

tsm=(tsm-min_price)/(max_price-min_price) 

#Create batches of data 
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def create_seq(seq_length, data, output_size): 

    x=[] 

    y=[] 

    for i in range(len(data)-seq_length-output_size): 

        x.append(data[i:i+seq_length]) 

        y.append(data[i+seq_length:i+seq_length+output_size]) 

    x=np.array(x) 

    y=np.array(y) 

    return x, y 

seq_length=20 

output_size=5 

x1,y=create_seq(seq_length, appl, output_size) 

x2,_=create_seq(seq_length,msft, output_size) 

x3,_=create_seq(seq_length, amzn, output_size) 

x4,_=create_seq(seq_length, googl, output_size) 

x5,_=create_seq(seq_length, intc, output_size) 

x6,_=create_seq(seq_length, nvda, output_size) 

x7,_=create_seq(seq_length, tsm, output_size) 

x=np.stack([x1, x2, x3, x4, x5, x6, x7], axis=-1) 

#Divide data into training and test 

train_size=int(len(x)*0.7) 

x_train=x[:train_size] 

y_train=y[:train_size] 

x_test=x[train_size:] 

y_test=y[train_size:] 
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4. Plots 
 

4.1. Training vs test loss 
 

#Plot train and test loss 

 

plt.plot(range(len(train_loss)), train_loss, label="Training loss") 

plt.plot(range(len(test_loss)), test_loss, label="Test loss") 

plt.xlabel("Epochs") 

plt.ylabel("Loss") 

plt.title("Training vs test loss") 

plt.legend() 

plt.show() 

 

4.2. Predictions for output size of 1 or next time step 
 

plt.plot(range(len(y_test)), y_test, label="Actual data") 

plt.plot(range(len(predictions)), predictions, label="Predicted data") 

plt.xlabel("Time") 

plt.ylabel("Value") 

plt.title("Transformer prediction") 

plt.legend() 

plt.show() 

 

4.3. Predictions for output sizes greater than 1 
 

#Plot results for first 50 sequences 

for i in range (50): 

    print("Sequence ",i+1) 

    plt.plot(range(len(y_test[i,:])), y_test[i,:], label="Actual values") 

    plt.plot(range(len(predictions[i,:])), predictions[i,:], label="Predicted values") 

    plt.xlabel("Time") 
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    plt.ylabel("Value") 

    plt.title("Transformer predictions") 

    plt.legend() 

    plt.show() 
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