

Article On the Correlation between Banach Contraction Principle and Caristi's Fixed Point Theorem in *b*-Metric Spaces

Salvador Romaguera 匝

Instituto Universitario de Matemática Pura y Aplicada-IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain; sromague@mat.upv.es

Abstract: We solve a question posed by E. Karapinar, F. Khojasteh and Z.D. Mitrović in their paper "A Proposal for Revisiting Banach and Caristi Type Theorems in *b*-Metric Spaces". We also characterize the completeness of *b*-metric spaces with the help of a variant of the contractivity condition introduced by the authors in the aforementioned article.

Keywords: *b*-metric space; complete; fixed point; the Banach contraction principle; Caristi's fixed point theorem

1. Introduction

In order to investigate correlations between the Banach contraction principle and results of Caristi type in the realm of *b*-metric spaces, Karapinar, Khojasteh and Mitrović proved in [1] (Theorem 1) the following interesting result by using a new type of contractions.

Theorem 1 ([1]). Let \mathcal{T} be a self mapping of a complete b-metric space $(\mathcal{X}, \mathfrak{b}, s)$ such that there is a function $F : \mathcal{X} \to \mathbb{R}$ (the set of real numbers) satisfying the following two conditions:

(c1) *F* is bounded from below, i.e., there is an $a \in \mathbb{R}$ such that $\inf F(\mathcal{X}) > a$;

(c2) for every $u, v \in \mathcal{X}$:

```
\mathfrak{b}(u, \mathcal{T}u) > 0 \Rightarrow \mathfrak{b}(\mathcal{T}u, \mathcal{T}v) \leq (F(u) - F(\mathcal{T}u))\mathfrak{b}(u, v).
Then \mathcal{T} has a fixed point.
```

They also gave an example of a complete metric space where we can apply Theorem 1 above but not the Banach contraction principle, and raised the following question [1] (Remark 1): "It is natural to ask if the Banach contraction principle is a consequence of Theorem 1 (over metric spaces)".

In this note we solve that question in the negative. With the help of a variant of Theorem 1 we also obtain a characterization of complete *b*-metric spaces which should be compared with the classical result given by Hu in [2], that a necessary and sufficient condition for a metric space to be complete is that every Banach contraction on each of its closed subsets has a fixed point.

Let us recall that many authors have contributed to the development of a consistent theory of fixed point for *b*-metric spaces (the bibliographies of [1], and [3–5] contain a high account of references to this respect). In particular, the Banach contraction principle [6] admits, *mutatis mutandis*, a full extension to *b*-metric spaces [7] (Theorem 2.1) (see also [3,8,9]), and regarding the extension of Caristi's fixed point theorem [10] to *b*-metric spaces, significant contributions are given, among others, in [11] (Theorem 2.4), as well as in [3] (Corollary 12.1), [7] (Example 2.8) and [12] (Theorem 3.1).

2. Background

In this section we remind some definitions and properties which will be of help to the reader.

Citation: Romaguera, S. On the Correlation between Banach Contraction Principle and Caristi's Fixed Point Theorem in *b*-Metric Spaces. *Mathematics* **2022**, *10*, 136. https://doi.org/10.3390/ math10010136

Academic Editor: Salvatore Sessa

Received: 18 November 2021 Accepted: 1 January 2022 Published: 3 January 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). The set of non-negative real numbers and the set of natural numbers will be represented by \mathbb{R}^+ and \mathbb{N} , respectively.

The notion of a *b*-metric space has been considered by several authors under different names (see e.g., [13] and [3] (Chapter 12) for details). In our context we adapt that notion as given by Czerwik in [14].

A *b*-metric space is a triple (\mathcal{X} , \mathfrak{b} , s), where \mathcal{X} is a set, s is a real number with $s \ge 1$, and $\mathfrak{b} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$ is a function satisfying, for every $u, v, w \in \mathcal{X}$, the following conditions:

(b1) $\mathfrak{b}(u, v) = 0$ if and only if u = v;

(b2) $\mathfrak{b}(u,v) = \mathfrak{b}(v,u)$;

(b3) $\mathfrak{b}(u, v) \leq s(\mathfrak{b}(u, w) + \mathfrak{b}(w, v)).$

If $(\mathcal{X}, \mathfrak{b}, s)$ is a *b*-metric space the function \mathfrak{b} is said to be a *b*-metric on \mathcal{X} . Of course, every metric space is a *b*-metric space where s = 1.

It is well-known (see e.g., [13,15,16]) that, as in the metric case, each *b*-metric \mathfrak{b} on a set \mathcal{X} induces a metrizable topology $\mathfrak{T}_{\mathfrak{b}}$ for which a subset \mathcal{A} of \mathcal{X} is declared open provided that for each $u \in \mathcal{A}$ there is an r > 0 such that $\mathcal{B}(u,r) \subseteq \mathcal{A}$, where $\mathcal{B}(u,r) = \{v \in \mathcal{X} : \mathfrak{b}(u,v) < r\}$.

An important consequence is that a sequence $(u_n)_{n \in \mathbb{N}}$ in a *b*-metric space $(\mathcal{X}, \mathfrak{b}, s)$ is $\mathfrak{T}_{\mathfrak{b}}$ -convergent to an $w \in \mathcal{X}$ if and only if $\lim_{n \in \mathbb{N}} \mathfrak{b}(w, u_n) = 0$.

In the sequel all topological properties corresponding to a *b*-metric space ($\mathcal{X}, \mathfrak{b}, s$) will refer to the topology $\mathfrak{T}_{\mathfrak{b}}$.

It is appropriate to point out that, unlike the metric case, the set $\mathcal{B}(u, r)$ is not necessarily $\mathfrak{T}_{\mathfrak{b}}$ -open (see [16] (Example on pages 4310–4311), [17] (Example 3.9)).

Moreover, it is well known that, contrarily to the classical metric case, there exist *b*-metrics that are not continuous functions (see e.g., [17] (Examples 3.9 and 3.10)).

Finally, we recall that the notions of Cauchy sequence and of complete *b*-metric space are defined exactly as the corresponding ones that for metric spaces.

3. Results and Examples

We begin this section giving an example that solves the question raised in [1] (Remark 1).

Example 1. Let $(\mathcal{X}, \mathfrak{b}, 1)$ be the metric space where $\mathcal{X} := \mathbb{R}^+$ and \mathfrak{b} is the metric on \mathcal{X} given by $\mathfrak{b}(u, u) = 0$ for all $u \in \mathcal{X}$, and $\mathfrak{b}(u, v) = \max\{u, v\}$ whenever $u \neq v$.

It is clear that $(\mathcal{X}, \mathfrak{b}, 1)$ is complete because the only non-eventually constant Cauchy sequences are those that converge to 0.

Let \mathcal{T} *be the self mapping of* \mathcal{X} *given by* $\mathcal{T}u = u/2$ *for all* $u \in \mathcal{X}$ *.*

Since $\mathfrak{b}(\mathcal{T}u, \mathcal{T}v) = \mathfrak{b}(u, v)/2$ for all $u, v \in \mathcal{X}$, all conditions of the Banach contraction principle are satisfied.

Next we show that, however, the condition (c2) of Theorem 1 is not fulfilled.

Indeed, let $F : \mathcal{X} \to \mathbb{R}$ be any bounded from below function.

Take $u_0 \in \mathcal{X} \setminus \{0\}$. Then $\mathfrak{b}(\mathcal{T}^n u_0, \mathcal{T}^{n+1} u_0) = 2^{-n} u_0 > 0$ for all $n \in \mathbb{N} \cup \{0\}$. Suppose that the condition (c2) holds. Thus, we have

$$2^{-(n+1)}u_{0} = \mathfrak{b}(\mathcal{T}^{n+1}u_{0}, \mathcal{T}^{n+2}u_{0})$$

$$\leq (F(\mathcal{T}^{n}u_{0}) - F(\mathcal{T}^{n+1}u_{0}))\mathfrak{b}(\mathcal{T}^{n}u_{0}, \mathcal{T}^{n+1}u_{0})$$

$$= (F(\mathcal{T}^{n}u_{0}) - F(\mathcal{T}^{n+1}u_{0}))2^{-n}u_{0},$$

and, hence,

$$F(\mathcal{T}^{n}u_{0}) \geq 2^{-1} + F(\mathcal{T}^{n+1}u_{0}),$$

for all $n \in \mathbb{N} \cup \{0\}$. Therefore,

$$F(u_0) \geq \frac{1}{2} + F(\mathcal{T}u_0) \geq \frac{1}{2} + \frac{1}{2} + F(\mathcal{T}^2 u_0) \geq \dots \geq \frac{n+1}{2} + F(\mathcal{T}^{n+1} u_0)$$

$$\geq \frac{n+1}{2} + \inf F(\mathcal{X}),$$

for all $n \in \mathbb{N} \cup \{0\}$, a contradiction.

Remark 1. Since we are working in the more general context of b-metric spaces, it would be interesting to give an example of a Banach contraction on a non-metric complete b-metric space that does not satisfy condition (c2) of Theorem 1. For it, we proceed to modify Example 1 in the following fashion: Fix $p \in \mathbb{N} \setminus \{1\}$. Let $\mathcal{X} := \mathbb{R}^+$ and $\mathfrak{b}_p : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$ defined by $\mathfrak{b}_p(u, u) = 0$ for all $u \in \mathcal{X}$, and $\mathfrak{b}_p(u, v) = (\max\{u, v\})^p$ whenever $u \neq v$. Then $(\mathcal{X}, \mathfrak{b}_p, 2^{p-1})$ is a nonmetric complete b-metric space (see e.g., [18] (Example 2.2) or [3] (Example 12.2)). Let \mathcal{T} be the self mapping of \mathcal{X} given in Example 1. Then, it fulfills the conditions of the Banach contraction principle for b-metric spaces ([7] (Theorem 2.1)) with constant of contraction 2^{-p} . Analogously to Example 1 we can check that it does not satisfy condition (c2) for any bounded from below function $F : \mathcal{X} \to \mathbb{R}$ because, otherwise, for any $u_0 \in \mathcal{X} \setminus \{0\}$ we should $F(u_0) \ge 2^{-p}(n+1) + \inf F(\mathcal{X})$ for all $n \in \mathbb{N} \cup \{0\}$, a contradiction.

In the sequel, a self mapping \mathcal{T} of a *b*-metric space $(\mathcal{X}, \mathfrak{b}, s)$ such that there is a function $F : \mathcal{X} \to \mathbb{R}$ for which conditions (c1) and (c2) are satisfied will said to be a correlation contraction (on $(\mathcal{X}, \mathfrak{b}, s)$).

We wonder if Theorem 1 allows us to obtain a characterization of complete *b*-metric spaces in the style of Hu's characterization of metric completeness mentioned in Section 1. In this direction, the next is an example of a non-complete metric space such that every correlation contraction on any of its (non necessarily closed) subsets has a fixed point.

Example 2. Let \mathfrak{b} be the metric on \mathbb{N} defined by $\mathfrak{b}(n,n) = 0$ for all $n \in \mathbb{N}$, and $\mathfrak{b}(n,m) = \max\{1/n, 1/m\}$ whenever $n \neq m$.

Then $(\mathbb{N}, \mathfrak{b}, 1)$ *is not complete because* $(n)_{n \in \mathbb{N}}$ *is a non-convergent Cauchy sequence.*

Now let \mathcal{T} be a correlation contraction on a (non-empty) subset \mathcal{A} of $(\mathbb{N}, \mathfrak{b}, 1)$. Then, there is a function $F : \mathcal{A} \to \mathbb{R}$ for which conditions (c1) and (c2) are satisfied.

Suppose that \mathcal{T} has no fixed points. Then $|\mathcal{A}| \ge 2$, and $\mathfrak{b}(n, \mathcal{T}n) > 0$ for all $n \in \mathcal{A}$. Choose an $m_0 \in \mathcal{A}$. Since \mathcal{T} has no fixed points we get $\mathcal{T}^n m_0 \neq \mathcal{T}^{n+1} m_0$, for all $n \in \mathbb{N} \cup \{0\}$. Hence, by condition (c2),

$$\mathfrak{b}(\mathcal{T}^{n+1}m_0,\mathcal{T}m_0) \le (F(\mathcal{T}^nm_0) - F(\mathcal{T}^{n+1}m_0))\mathfrak{b}(\mathcal{T}^nm_0,m_0)$$

for all $n \in \mathbb{N} \cup \{0\}$.

Since $1/\mathcal{T}m_0 \leq \mathfrak{b}(\mathcal{T}^{n+1}m_0, \mathcal{T}m_0)$, and $\mathfrak{b}(\mathcal{T}^nm_0, m_0) \leq 1$, we deduce that

$$\frac{1}{\mathcal{T}m_0} + F(\mathcal{T}^{n+1}m_0) \le F(\mathcal{T}^n m_0),$$

for all $n \in \mathbb{N} \cup \{0\}$. Therefore,

$$F(m_0) \geq \frac{1}{\mathcal{T}m_0} + F(\mathcal{T}m_0) \geq \frac{2}{\mathcal{T}m_0} + F(\mathcal{T}^2m_0)$$

$$\geq \dots \geq \frac{n}{\mathcal{T}m_0} + F(\mathcal{T}^nm_0) \geq \frac{n}{\mathcal{T}m_0} + \inf F(\mathcal{A}),$$

for all $n \in \mathbb{N}$, which yields a contradiction.

Motivated by the preceding example, in Definition 1 below we present a modification of the notion of a correlation contraction from which a characterization of *b*-metric completeness will be obtained via a fixed point result.

To this end, we first recall that a partial order on a set \mathcal{X} is a reflexive, antisymmetric, and transitive binary relation on \mathcal{X} . If \leq is a partial order on \mathcal{X} , for each $u \in \mathcal{X}$ we denote by $u \uparrow$ the set { $v \in \mathcal{X} : u \leq v$ }.

On the other hand, given a *b*-metric space $(\mathcal{X}, \mathfrak{b}, s)$ we shall denote by $acc((\mathcal{X}, \mathfrak{T}_{\mathfrak{b}}))$ the set of all accumulation points of the metrizable topological space $(\mathcal{X}, \mathfrak{T}_{\mathfrak{b}})$. Hence $acc((\mathcal{X}, \mathfrak{T}_{\mathfrak{b}}))$ consists of all points $w \in \mathcal{X}$ for which there is a sequence of distinct points in \mathcal{X} that $\mathfrak{T}_{\mathfrak{b}}$ -converges to w.

Definition 1. Let $(\mathcal{X}, \mathfrak{b}, s)$ be a b-metric space. We say that a self mapping \mathcal{T} of \mathcal{X} is a \leq -correlation contraction (on $(\mathcal{X}, \mathfrak{b}, s)$) if there is a partial order \leq on \mathcal{X} such that the following conditions hold:

(c3) \mathcal{T} is non-decreasing, i.e., $u \leq v \Rightarrow \mathcal{T}u \leq \mathcal{T}v$ for all $u, v \in \mathcal{X}$;

(c4) there is $u_0 \in \mathcal{X}$ such that $u_0 \preceq \mathcal{T}u_0$;

(c5) there is a bounded from below function $F : \mathcal{X} \to \mathbb{R}$ such that for every $u \in \mathcal{X}$ and $v \in (u \uparrow) \cup acc((\mathcal{X}, \mathfrak{T}_{\mathfrak{b}}))$,

 $\mathfrak{b}(u,\mathcal{T}u)>0\Rightarrow\mathfrak{b}(\mathcal{T}u,\mathcal{T}v)\leq (F(u)-F(\mathcal{T}u))\mathfrak{b}(u,v).$

Remark 2. The existence of \leq -correlation contractions on a given b-metric space $(\mathcal{X}, \mathfrak{b}, s)$ is always guaranteed. Indeed, let i be the identity mapping on \mathcal{X} , and \leq_D the discrete partial order on \mathcal{X} , i.e., $u \leq_D v \Leftrightarrow u = v$. It is obvious that conditions (c3)–(c5) are fulfilled for any bounded from below function $F : \mathcal{X} \to \mathbb{R}$ (in particular, (c5) directly follows from the fact that $\mathfrak{b}(u, iu) = 0$ for all $u \in \mathcal{X}$).

Furthermore, it follows from Theorem 1 that every correlation contraction \mathcal{T} on a complete *b*-metric space $(\mathcal{X}, \mathfrak{b}, s)$ is a \leq_D -correlation contraction on it: It suffices to observe that conditions (c3) and (c5) are trivially satisfied and, for (c4), notice that every fixed point w of \mathcal{T} obviously verifies $w \leq_D \mathcal{T} w$.

We now establish the following variant of Theorem 1.

Theorem 2. Let $(\mathcal{X}, \mathfrak{b}, s)$ be a complete b-metric space. Then, every \leq -correlation contraction on *it has a fixed point.*

Proof. Let \mathcal{T} be a \leq -correlation contraction on $(\mathcal{X}, \mathfrak{b}, s)$. Then, there is a partial order \leq on \mathcal{X} and a bounded from below function $F : \mathcal{X} \to \mathbb{R}$ for which conditions (c3)–(c5) are fulfilled.

Let $u_0 \in \mathcal{X}$ be such that $u_0 \preceq \mathcal{T}u_0$. Therefore, by (c3), $\mathcal{T}^n u_0 \preceq \mathcal{T}^{n+1}u_0$ for all $n \in \mathbb{N} \cup \{0\}$.

If $\mathcal{T}^n u_0 = \mathcal{T}^{n+1} u_0$ for some *n*, $\mathcal{T}^n u_0$ is a fixed point of \mathcal{T} .

So, we assume that $\mathcal{T}^n u_0 \neq \mathcal{T}^{n+1} u_0$ for all $n \in \mathbb{N} \cup \{0\}$. Thus $\mathfrak{b}(\mathcal{T}^n u_0, \mathcal{T}^{n+1} u_0) > 0$ for all $n \in \mathbb{N} \cup \{0\}$, and we can apply condition (c5), which implies that

$$\mathfrak{b}(\mathcal{T}^{n+1}u_0,\mathcal{T}^{n+2}u_0) \le (F(\mathcal{T}^n u_0) - F(\mathcal{T}^{n+1}u_0))\mathfrak{b}(\mathcal{T}^n u_0,\mathcal{T}^{n+1}u_0).$$

for all $n \in \mathbb{N} \cup \{0\}$.

Thus $F(\mathcal{T}^{n+1}u_0) < F(\mathcal{T}^n u_0)$ for all $n \in \mathbb{N} \cup \{0\}$, so $(F(\mathcal{T}^n u_0)_{n \in \mathbb{N}})$ is a strictly decreasing sequence in \mathbb{R} . Hence it converges to the real number $\inf_n \mathcal{T}^n(u_0)$ (recall that F is bounded from below), and consequently it is a Cauchy sequence in \mathbb{R} .

Now, by repeating the argument given by the authors in their proof of Theorem 1 ([1], lines 12–22 of page 2 and line 1 of page 3), we deduce that $(\mathcal{T}^n u_0)_{n \in \mathbb{N}}$ is a Cauchy sequence in $(\mathcal{X}, \mathfrak{b}, s)$. Therefore, there exists $w \in \mathcal{X}$ such that $(\mathcal{T}^n u_0)_{n \in \mathbb{N}} \mathfrak{T}_{\mathfrak{b}}$ -converges to w. Thus $w \in acc((\mathcal{X}, \mathfrak{T}_{\mathfrak{b}}))$, and again we can apply (c5) to deduce that

$$\mathfrak{b}(\mathcal{T}^{n+1}u_0,\mathcal{T}w) \leq (F(\mathcal{T}^n u_0) - F(\mathcal{T}^{n+1}u_0))\mathfrak{b}(\mathcal{T}^n u_0,w),$$

for all $n \in \mathbb{N} \cup \{0\}$.

Since $(F(\mathcal{T}^n u_0)_{n \in \mathbb{N}})$ is a Cauchy sequence in \mathbb{R} and $\lim_n \mathfrak{b}(\mathcal{T}^n u_0, w) = 0$, we conclude that $\lim_n \mathfrak{b}(\mathcal{T}^{n+1}u_0, \mathcal{T}w) = 0$, so $w = \mathcal{T}w$. This completes the proof. \Box

We turn our attention to the relationship between Theorems 1 and 2. In connection with this, and as we have point out above, in Example 1 of [1], the authors presented an instance of a complete metric space where we can apply Theorem 1 but not the Banach contraction principle. By the second part of Remark 2, we also can apply Theorem 2 to every correlation contraction in [1] (Example 1). The following is an example where we can apply Theorem 2 but not Theorem 1.

Example 3. Let $(\mathcal{X}, \mathfrak{b}, 1)$ be the complete metric space where $\mathcal{X} := \mathbb{N} \cup \{0\}$ and \mathfrak{b} is the metric on \mathcal{X} given by $\mathfrak{b}(u, u) = 0$ for all $u \in \mathcal{X}, \mathfrak{b}(0, n) = \mathfrak{b}(n, 0) = 1/n$ for all $n \in \mathbb{N}$, and $\mathfrak{b}(n, m) = \max\{1/n, 1/m\}$ whenever $n, m \in \mathbb{N}$ with $n \neq m$.

Clearly $acc((\mathcal{X}, \mathfrak{T}_{\mathfrak{b}})) = \{0\}.$

Let \mathcal{T} be the self mapping of \mathcal{X} defined by $\mathcal{T}0 = 0$ and $\mathcal{T}n = n(n+1)$ for all $n \in \mathbb{N}$, and let \leq be the usual order on \mathcal{X} . Then $\mathcal{T}u \leq \mathcal{T}v$ whenever $u \leq v$, and $u \leq \mathcal{T}u$ for all $u, v \in \mathcal{X}$, so conditions (c3) and (c4) hold.

Now take $F : \mathcal{X} \to \mathbb{R}$ defined by F(0) = 0 and F(n) = 1/n for all $n \in \mathbb{N}$. We have $\inf F(\mathcal{X}) = 0$. Furthermore, for each $u, v \in \mathcal{X}$, with $u \neq v$, such that $\mathfrak{b}(u, \mathcal{T}u) > 0$ and $v \in (u \uparrow) \cup acc((\mathcal{X}, \mathfrak{T}_{\mathfrak{b}}))$, we get

$$\mathfrak{b}(\mathcal{T}u,\mathcal{T}v) = \frac{1}{\mathcal{T}u} = \frac{1}{u(u+1)} = \left(\frac{1}{u} - \frac{1}{u(u+1)}\right)\frac{1}{u}$$
$$= (F(u) - F(\mathcal{T}u))\mathfrak{b}(u,v).$$

We have shown that T *is a* \leq *-correlation contraction on* (X, \mathfrak{b} , 1)*.*

However \mathcal{T} is not a correlation contraction on $(\mathcal{X}, \mathfrak{b}, 1)$: Otherwise, its restriction to \mathbb{N} would also be a correlation contraction on $(\mathbb{N}, \mathfrak{b}, 1)$ and, by Example 2 it would have, at least, a fixed point belonging to \mathbb{N} .

We finish the paper with our promised characterization of *b*-metric completeness and with two observations related to it.

The following lemma, that provides a full *b*-metric generalization of the corresponding result for metric spaces, will be useful in the proof of the 'only if' part of our characterization.

Lemma 1. *If* C *is a closed subset of a complete b-metric space* (X, b, s)*, then* $(C, b |_{C}, s)$ *is also a complete b-metric space.*

Proof. Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in $(\mathcal{C}, \mathfrak{b} |_{\mathcal{C}}, s)$. Then $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in $(\mathcal{X}, \mathfrak{b}, s)$. Therefore there exists $x \in \mathcal{X}$ such that $(x_n)_{n \in \mathbb{N}} \mathfrak{T}_{\mathfrak{b}}$ -converges to x. Since \mathcal{C} is closed we get that $x \in \mathcal{C}$. Hence $(\mathcal{C}, \mathfrak{b} |_{\mathcal{C}}, s)$ is complete. \Box

Theorem 3. *A* b-metric space is complete if and only if every \leq -correlation contraction on any of its closed subsets has a fixed point.

Proof. Let C be a closed subset of a complete *b*-metric space $(\mathcal{X}, \mathfrak{b}, s)$ and let \mathcal{T} be a \leq -correlation contraction on C endowed with the restriction of \mathfrak{b} . By Lemma 1, $(C, \mathfrak{b} \mid_{C}, s)$ is complete. We deduce from Theorem 2 that \mathcal{T} has a fixed point (in C).

For the converse, suppose that $(\mathcal{X}, \mathfrak{b}, s)$ is a non-complete *b*-metric space for which every \leq -correlation contraction on any of its closed subsets has a fixed point. Then, there exists a non-convergent Cauchy sequence $(u_n)_{n \in \mathbb{N}}$ in $(\mathcal{X}, \mathfrak{b}, s)$, with $u_n \neq u_m$ whenever $n \neq m$.

From standard arguments we can find a sequence $(j(n))_{n \in \mathbb{N}}$ in \mathbb{N} such that the following properties are fulfilled:

(P1) j(1) > 1, $j(n+1) > \max\{n+1, j(n)\}$ for all $n \in \mathbb{N}$; and

(P2) for each $n \in \mathbb{N}$, $\mathfrak{b}(u_{i(n)}, u_k) < 2^{-(n+1)}b(u_n, u_m)$ whenever $k \ge j(n)$ and $m \ne n$.

Put $C = \{u_n : n \in \mathbb{N}\}$ and define a self mapping T on C by $Tu_n = u_{j(n)}$ for all $n \in \mathbb{N}$. Of course T has no fixed points because j(n) > n and thus $u_n \neq u_{j(n)}$ for all $n \in \mathbb{N}$.

Finally, we going to check that \mathcal{T} is a \leq -correlation contraction on the closed subset \mathcal{C} of $(\mathcal{X}, \mathfrak{b}, s)$.

Let \leq be the partial order on C defined by

 $u_n \preceq u_m \Leftrightarrow n \leq m.$

Condition (c3) is clearly verified: Indeed, if $u_n \leq u_m$ we deduce that $n \leq m$, so $j(n) \leq j(m)$ and consequently $\mathcal{T}u_n = u_{j(n)} \leq u_{j(m)} = \mathcal{T}u_m$.

Moreover $u_n \preceq T u_n$ for all $n \in \mathbb{N}$ because, by (P1), n < j(n). so condition (c4) is also fulfilled.

Let now $F : C \to \mathbb{R}$ defined by $F(u_n) = 2^{-n}$ for all $n \in \mathbb{N}$. Thus inf F(C) = 0.

Pick $u_n \in C$. Then $\mathfrak{b}(u_n, \mathcal{T}u_n) > 0$. For each $u_m \in C \setminus \{u_n\}$ such that $u_m \in u_n \uparrow$, we have n < m, and hence, j(n) < j(m), by (P1). Then, from (P2) we deduce that

$$b(\mathcal{T}u_n, \mathcal{T}u_m) = b(u_{j(n)}, u_{j(m)}) < 2^{-(n+1)}b(u_n, u_m)$$

$$\leq (2^{-n} - 2^{-j(n)})b(u_n, u_m)$$

$$= (F(u_n) - F(\mathcal{T}u_n))b(u_n, u_m).$$

Hence, condition (c5) is also satisfied (note that $acc((\mathcal{C}, \mathfrak{T}_{\mathfrak{b}} |_{\mathcal{C}}))$ is the empty set). We conclude that $(\mathcal{X}, \mathfrak{b}, s)$ is complete. \Box

Remark 3. Although the function F constructed in the proof of Theorem 3 satisfies $F(u_n) > 0$ for all $n \in \mathbb{N}$, we could have selected it to fulfill $F(u_n) < 0$ for all $n \in \mathbb{N}$. For instance, by defining $F(u_n) = 2^{-n} - 1$ for all $n \in \mathbb{N}$.

Remark 4. The metric space $(\mathbb{N}, \mathfrak{b}, 1)$ constructed in Example 2 is not complete. Hence, by Theorem 3, it has closed subsets endowed with \leq -correlation contractions that are free of fixed points. In fact, the restriction to \mathbb{N} of the \leq -correlation contraction \mathcal{T} constructed in Example 3 provides an instance of this situation.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks the reviewers for several comments, remarks and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Karapinar, E.; Khojasteh, F.; Mitrović, Z.D. A proposal for revisiting Banach and Caristi type theorems in *b*-metric spaces. *Mathematics* **2019**, *7*, 308. [CrossRef]
- 2. Hu, T.K. On a fixed point theorem for metric spaces. Am. Math. Mon. 1967, 74, 436–437. [CrossRef]
- 3. Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014.
- 4. Alolaiyan, H.; Ali, B.; Abbas, M. Chacracterization of a *b*-metric space completeness via the existence of a fixed point of Cirić-Suzuki type quasi-contractive multivalued operators and applications. *An. St. Univ. Ovidius Constanta* **2019**, *27*, 5–33.
- Afshari, K.; Aydi, H.; Karapınar, E. On generalized α-ψ-Geraghty contractions on *b*-metric spaces. *Georgian Math. J.* 2020, 27, 9–21.
 [CrossRef]
- 6. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fund. Math.* **1922**, *3*, 133–181. [CrossRef]
- 7. Dung, N.V.; Hang, V.T.L. On relaxations of contraction constants and Caristi's theorem in *b*-metric spaces. *J. Fixed Point Theory Appl.* **2016**, *18*, 267–284. [CrossRef]
- 8. Czerwik, S. Contraction mappings in *b*-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
- Kajántó, S.; Lukács, A. A note on the paper "Contraction mappings in *b*-metric spaces" by Czerwik. *Acta Univ. Sapientiae Math.* 2018, 10, 85–89. [CrossRef]

- 10. Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. *Trans. Am. Math. Soc.* **1976**, 215, 241–251. [CrossRef]
- 11. Bota, M.; Molnár, A.; Varga, C. On Ekeland's variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21-28.
- 12. Miculescu, R.; Mihail, A. Caristi-Kirk Type and Boyd and Wong–Browder-Matkowski-Rus type fixed point results in *b*-metric spaces. *Filomat* **2017**, *31*, 4331–4340 [CrossRef]
- 13. Cobzaş, S.; Czerwik, S. The completion of generalized *b*-metric spaces and fixed points. *Fixed Point Theory* **2020**, *21*, 133–150. [CrossRef]
- 14. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263–276.
- 15. Macías, R.A.; Segovia, C. Lipschitz functions on spaces of homogeneous type. Adv. Math. 1979, 33, 257–270. [CrossRef]
- 16. Paluszyński, M.; Stempak, K. On quasi-metric and metric spaces. Proc. Am. Math. Soc. 2009, 137, 4307–4312. [CrossRef]
- 17. An, T.V.; Tuyen, L.Q.; Dung, N.V. Stone-type theorem on *b* -metric spaces and applications. *Topol. Appl.* **2015**, *185–186*, 50–64. [CrossRef]
- 18. Xia, Q. The geodesic problem in quasimetric spaces. J. Geom. Anal. 2009, 19, 452–479. [CrossRef]