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Abstract: We solve a question posed by E. Karapinar, F. Khojasteh and Z.D. Mitrovi¢ in their paper “A
Proposal for Revisiting Banach and Caristi Type Theorems in b-Metric Spaces”. We also characterize
the completeness of b-metric spaces with the help of a variant of the contractivity condition introduced
by the authors in the aforementioned article.
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1. Introduction

In order to investigate correlations between the Banach contraction principle and results
of Caristi type in the realm of b-metric spaces, Karapinar, Khojasteh and Mitrovié¢ proved

check for in [1] (Theorem 1) the following interesting result by using a new type of contractions.
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Theorem 1 ([1]). Let T be a self mapping of a complete b-metric space (X, b,s) such that there is
a function F : X — R (the set of real numbers) satisfying the following two conditions:
(c1) F is bounded from below, i.e., there is an a € R such that inf F(X') > a;
(c2) for every u,v € X:
b(u, Tu) >0=6(Tu,Tv) < (F(u) —F(Tu))b(u,v).
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Then T has a fixed point.

They also gave an example of a complete metric space where we can apply Theorem 1
above but not the Banach contraction principle, and raised the following question [1]
(Remark 1): “It is natural to ask if the Banach contraction principle is a consequence of

Theorem 1 (over metric spaces)”.

In this note we solve that question in the negative. With the help of a variant of
Theorem 1 we also obtain a characterization of complete b-metric spaces which should
be compared with the classical result given by Hu in [2], that a necessary and sufficient
condition for a metric space to be complete is that every Banach contraction on each of its
closed subsets has a fixed point.

Let us recall that many authors have contributed to the development of a consistent
theory of fixed point for b-metric spaces (the bibliographies of [1], and [3-5] contain a high
account of references to this respect). In particular, the Banach contraction principle [6] ad-
mits, mutatis mutandis, a full extension to b-metric spaces [7] (Theorem 2.1) (see also [3,8,9]),
and regarding the extension of Caristi’s fixed point theorem [10] to b-metric spaces, sig-
nificant contributions are given, among others, in [11] (Theorem 2.4), as well as in [3]
(Corollary 12.1), [7] (Example 2.8) and [12] (Theorem 3.1).
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In this section we remind some definitions and properties which will be of help to
the reader.

Mathematics 2022, 10, 136. https:/ /doi.org/10.3390/math10010136 https://www.mdpi.com/journal /mathematics


https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7857-6139
https://doi.org/10.3390/math10010136
https://doi.org/10.3390/math10010136
https://doi.org/10.3390/math10010136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math10010136
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10010136?type=check_update&version=3

Mathematics 2022, 10, 136

20f7

The set of non-negative real numbers and the set of natural numbers will be repre-
sented by R* and N, respectively.

The notion of a b-metric space has been considered by several authors under different
names (see e.g., [13] and [3] (Chapter 12) for details). In our context we adapt that notion
as given by Czerwik in [14].

A b-metric space is a triple (X, b,s), where X is a set, s is a real number with s > 1, and
b: X x X = Rt isa function satisfying, for every u,v,w € &, the following conditions:

(b1) b(u,v) = 0if and only if u = v;

(b2) b(u,v) = b(v,u);

(b3) b(u,v) <s(b(u,w)+ b(w,v)).

If (X, b,s) is a b-metric space the function b is said to be a b-metric on X. Of course,
every metric space is a b-metric space where s = 1.

It is well-known (see e.g., [13,15,16]) that, as in the metric case, each b-metric b
on a set X induces a metrizable topology ¥, for which a subset A of X is declared
open provided that for each u € A there is an r > 0 such that B(u,r) C A, where
B(u,r)={v e X :b(u,v) <r}

An important consequence is that a sequence (1), in a b-metric space (X, b, s) is
Tp-convergent to an w € X if and only if lim,, b(w, u,) = 0.

In the sequel all topological properties corresponding to a b-metric space (X, b,s) will
refer to the topology Tp.

It is appropriate to point out that, unlike the metric case, the set B(1,r) is not neces-
sarily T,-open (see [16] (Example on pages 4310-4311), [17] (Example 3.9)).

Moreover, it is well known that, contrarily to the classical metric case, there exist
b-metrics that are not continuous functions (see e.g., [17] (Examples 3.9 and 3.10)).

Finally, we recall that the notions of Cauchy sequence and of complete b-metric space
are defined exactly as the corresponding ones that for metric spaces.

3. Results and Examples
We begin this section giving an example that solves the question raised in [1] (Remark 1).

Example 1. Let (X, b,1) be the metric space where X := R™ and b is the metric on X given by
b(u,u) =0forallu € X, and b(u,v) = max{u, v} whenever u # v.

It is clear that (X, b,1) is complete because the only non-eventually constant Cauchy sequences
are those that converge to 0.

Let T be the self mapping of X given by Tu = u/2 forallu € X.

Since b(Tu, Tv) = b(u,v)/2 for all u,v € X, all conditions of the Banach contraction
principle are satisfied.

Next we show that, however, the condition (c2) of Theorem 1 is not fulfilled.

Indeed, let F : X — R be any bounded from below function.

Take ug € X\{0}. Then b(T " ug, T" lug) = 2 "ug > 0 forall n € NU {0}. Suppose that
the condition (c2) holds. Thus, we have

27(n+1)u0 _ b(Tn+1uO/ 7—n+2u0)
S (F(T”uo) — F(T”Huo))b(T”uo, T”+1u0)
= (F(T"ug) — F(T" ug))2 " uy,

and, hence,
F(T"ug) > 271 + F(T" uy),

forall n € NU {0}. Therefore,

+ F('T’n—i—lLlo)

F(ug) > % + F(Tug) > % L R(TPug) > >

2 2
n+1

Vv

+inf F(X),
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forall n € NU {0}, a contradiction.

Remark 1. Since we are working in the more general context of b-metric spaces, it would be
interesting to give an example of a Banach contraction on a non-metric complete b-metric space
that does not satisfy condition (c2) of Theorem 1. For it, we proceed to modify Example 1 in the
following fashion: Fix p € N\{1}. Let X:=R* and b, : X x X —R™" defined by b, (1, u) =0
forall u € X, and b,(u,v) = (max{u,v})? whenever u # v. Then (X, by, 2P~ 1) is a non-
metric complete b-metric space (see e.g., [18] (Example 2.2) or [3] (Example 12.2)). Let T be the
self mapping of X given in Example 1. Then, it fulfills the conditions of the Banach contraction
principle for b-metric spaces ([7] (Theorem 2.1)) with constant of contraction 2~F. Analogously to
Example 1 we can check that it does not satisfy condition (c2) for any bounded from below function
F : X — R because, otherwise, for any ug € X\{0} we should F(ug) > 27F(n+1) +inf F(X)
forall n € NU {0}, a contradiction.

In the sequel, a self mapping 7 of a b-metric space (X, b, s) such that there is a function
F : X — R for which conditions (c1) and (c2) are satisfied will said to be a correlation
contraction (on (X, b,s)).

We wonder if Theorem 1 allows us to obtain a characterization of complete b-metric
spaces in the style of Hu’s characterization of metric completeness mentioned in Section 1.
In this direction, the next is an example of a non-complete metric space such that every
correlation contraction on any of its (non necessarily closed) subsets has a fixed point.

Example 2. Let b be the metric on N defined by b(n,n) = 0 foralln € N, and b(n,m) =
max{1/n,1/m} whenever n # m.

Then (N, b,1) is not complete because (n),c is a non-convergent Cauchy sequence.

Now let T be a correlation contraction on a (non-empty) subset A of (N, b,1). Then, there is a
function F : A — R for which conditions (c1) and (c2) are satisfied.

Suppose that T has no fixed points. Then |A| > 2, and b(n, Tn) > 0 foralln € A.

Choose an mq € A. Since T has no fixed points we get T"mqy # T"my, foralln € NU {0}.

Hence, by condition (c2),

6(T" mg, Tmo) < (F(T"mg) — F(T™" mg))6(T™mo, mo)

foralln € NU{0}.
Since 1/Tmg < b(T" mg, Tmg), and b(T"mg, mg) < 1, we deduce that

1 n+1 n
foralln € NU{0}.
Therefore,
F(mg) > —— +F(Tmg) > —=— + F(T?mo)
0= Tmyg 0/ = Tmy 0
n n .
> > Trig + F(T"mgy) > Trio +inf F(A),

forall n € N, which yields a contradiction.

Motivated by the preceding example, in Definition 1 below we present a modifica-
tion of the notion of a correlation contraction from which a characterization of b-metric
completeness will be obtained via a fixed point result.

To this end, we first recall that a partial order on a set X is a reflexive, antisymmetric,
and transitive binary relation on X'. If < is a partial order on X, for each u € X we denote
by u 1 theset {v € X : u < v}.
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On the other hand, given a b-metric space (X, b,s) we shall denote by acc((X, %))
the set of all accumulation points of the metrizable topological space (X,%}). Hence
acc((X,Zyp)) consists of all points w € X’ for which there is a sequence of distinct points in
X that Tp-converges to w.

Definition 1. Let (X, b,s) be a b-metric space. We say that a self mapping T of X is a =<-
correlation contraction (on (X, b,s)) if there is a partial order < on X such that the following
conditions hold:

(c3) T is non-decreasing, i.e., u <v=Tu < Tovforallu,v € X;

(c4) there is ug € X such that uy < Tug;

(c5) there is a bounded from below function F : X — R such that for every u € X and
v € (ut)Uacc((X,%p)),

b(u, Tu) >0=b6(Tu,Tv) < (F(u) —F(Tu))b(u,v).

Remark 2. The existence of <-correlation contractions on a given b-metric space (X,b,s) is
always guaranteed. Indeed, let i be the identity mapping on X, and <p the discrete partial order on
X, ie,u =p v << u=uv.ltisobvious that conditions (c3)—(c5) are fulfilled for any bounded from
below function F : X — R (in particular, (c5) directly follows from the fact that b(u,iu) = 0 for
allu € X).

Furthermore, it follows from Theorem 1 that every correlation contraction T on a complete
b-metric space (X, b,s) is a <p-correlation contraction on it: It suffices to observe that conditions
(c3) and (c5) are trivially satisfied and, for (c4), notice that every fixed point w of T obviously
verifies w <p Tw.

We now establish the following variant of Theorem 1.

Theorem 2. Let (X, b,s) be a complete b-metric space. Then, every <-correlation contraction on
it has a fixed point.

Proof. Let 7 be a <-correlation contraction on (X, b,s). Then, there is a partial order
=< on X and a bounded from below function F : X — R for which conditions (c3)—(c5)
are fulfilled.

Let uy € X be such that ug < Tug. Therefore, by (c3), T"ug = T"*lug for all
n e NU{0}.

If T"ug = T"lug for some n, T"ug is a fixed point of 7.

So, we assume that T"ug # T"*lug for all n € NU {0}. Thus b(7T"ug, 7" ug) > 0
for all n € NU {0}, and we can apply condition (c5), which implies that

o(T" o, T" 2ug) < (F(T"uo) — F(T"*10))b(Tuo, T" 1),

foralln € NU{0}.

Thus F(T" ug) < F(T"up) for alln € NU {0}, so (F(T"up),cn is a strictly decreas-
ing sequence in R. Hence it converges to the real number inf, 7" (1) (recall that F is
bounded from below), and consequently it is a Cauchy sequence in R.

Now, by repeating the argument given by the authors in their proof of Theorem 1 ([1],
lines 12-22 of page 2 and line 1 of page 3), we deduce that (7"ug),cn is a Cauchy sequence
in (X, b, s). Therefore, there exists w € X such that (7"up),cn Tp-converges to w. Thus
w € acc((X,%p)), and again we can apply (c5) to deduce that

b(7T" M ug, Tw) < (F(T"ug) — F(T" ug)) b (T up, w),

foralln € NU{0}.
Since (F(7"ug)nen is a Cauchy sequence in R and lim,, b(7 "1, w) = 0, we conclude
that lim,, b(T”+1uo, Tw) =0,s0w = Tw. This completes the proof. [
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We turn our attention to the relationship between Theorems 1 and 2. In connection
with this, and as we have point out above, in Example 1 of [1], the authors presented an
instance of a complete metric space where we can apply Theorem 1 but not the Banach
contraction principle. By the second part of Remark 2, we also can apply Theorem 2 to
every correlation contraction in [1] (Example 1). The following is an example where we
can apply Theorem 2 but not Theorem 1.

Example 3. Let (X,b,1) be the complete metric space where X := N U {0} and b is the metric
on X given by b(u,u) = 0 forallu € X, 6(0,n) = b(n,0) = 1/n forall n € N, and
b(n,m) = max{1/n,1/m} whenever n,m € N with n # m.

Clearly acc((X,%p)) = {0}.

Let T be the self mapping of X defined by TO = 0and Tn =n(n+1) foralln € N, and
let < be the usual order on X. Then Tu < Tv whenever u < v,andu < Tuforallu,v € X, so
conditions (c3) and (c4) hold.

Now take F : X — R defined by F(0) = 0and F(n) = 1/n for all n € N. We have
inf F(X) = 0. Furthermore, for each u,v € X, with u # v, such that b(u, Tu) > 0 and
v e (ut)Uacc((X,%Ty)), we get

1 1 1 1 1
T = =y = ()

= (F(u)—F(Tu))b(u,0).

We have shown that T is a <-correlation contraction on (X,b,1).

However T is not a correlation contraction on (X, b,1): Otherwise, its restriction to N would
also be a correlation contraction on (N, b,1) and, by Example 2 it would have, at least, a fixed point
belonging to N.

We finish the paper with our promised characterization of b-metric completeness and
with two observations related to it.

The following lemma, that provides a full b-metric generalization of the corresponding
result for metric spaces, will be useful in the proof of the ‘only if’ part of our characterization.

Lemma 1. If C is a closed subset of a complete b-metric space (X, b,s), then (C,b |¢,s) is also a
complete b-metric space.

Proof. Let (x,),cn be a Cauchy sequencein (C,b |¢,s). Then (x,),cn is a Cauchy sequence
in (X, b,s). Therefore there exists x € X such that (x,),cn Tp-converges to x. Since C is
closed we get that x € C. Hence (C, b |¢,s) is complete. []

Theorem 3. A b-metric space is complete if and only if every <-correlation contraction on any of
its closed subsets has a fixed point.

Proof. Let C be a closed subset of a complete b-metric space (X, b,s) and let 7 be a <-
correlation contraction on C endowed with the restriction of b. By Lemma 1, (C, b |¢,s) is
complete. We deduce from Theorem 2 that 7 has a fixed point (in C).

For the converse, suppose that (X, b, s) is a non-complete b-metric space for which
every =-correlation contraction on any of its closed subsets has a fixed point. Then, there
exists a non-convergent Cauchy sequence (i, ),y in (X, b,s), with u, # u,, whenever
n # m.

From standard arguments we can find a sequence (j(1)),cn in N such that the follow-
ing properties are fulfilled:

(P1)j(1) >1,j(n+1) >max{n+1,j(n)} foralln € N;
and

(P2) for each n € N, b(u(), ug) < 2=+ Dp(u,, uy ) whenever k > j(n) and m # n.
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Put C = {u, : n € N} and define a self mapping 7 on C by Tu, = u;(,) foralln € N.
Of course 7 has no fixed points because j(n) > n and thus u, # u;,) for all neN.

Finally, we going to check that 7 is a <-correlation contraction on the closed subset C
of (X,b,s).

Let < be the partial order on C defined by

Uy Uy & n < m.

Condition (c3) is clearly verified: Indeed, if u;, =< u,; we deduce that n < m, so
j(n) < j(m) and consequently Tuy = wj(y = tj() = T thm.

Moreover u, < Tu, for all n € N because, by (P1), n < j(n). so condition (c4) is
also fulfilled.

Letnow F : C — R defined by F(u,) =2"" foralln € N. Thus inf F(C) = 0.

Pick u, € C. Then b(uy,, Tu,) > 0. For each u,, € C\{u,} such that u,, € u, 1, we
have n < m, and hence, j(n) < j(m), by (P1). Then, from (P2) we deduce that

b(Ttn, Tttm) = b, jimy) < 27" TV0(1t, 1)
(27" =277 b ()
= (F(u ) F(Tun))b(un, ).

IN

Hence, condition (c5) is also satisfied (note that acc((C, Ty |¢)) is the empty set).
We conclude that (X, b,s) is complete. [

Remark 3. Although the function F constructed in the proof of Theorem 3 satisfies F(uy,) > 0 for
all n € N, we could have selected it to fulfill F(u,) < 0 for all n € N. For instance, by defining
F(up,) =2""—1foralln € N.

Remark 4. The metric space (N,b,1) constructed in Example 2 is not complete. Hence, by
Theorem 3, it has closed subsets endowed with <-correlation contractions that are free of fixed
points. In fact, the restriction to N of the <-correlation contraction T constructed in Example 3
provides an instance of this situation.
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