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Abstract: Peristaltic pumping is used in membrane applications where high and sterile sealing is 
required. However, control is difficult due to the pulsating pump characteristics and the time-var-
ying properties of the system. In this work, three artificial intelligence control strategies (artificial 
neural networks (ANN), fuzzy logic expert systems, and fuzzy-integrated local models) were used 
to regulate transmembrane pressure and crossflow velocity in a microfiltration system under high 
fouling conditions. A pilot plant was used to obtain the necessary data to identify the AI models 
and to test the controllers. Humic acid was employed as a foulant, and cleaning-in-place with NaOH 
was used to restore the membrane state. Several starting operating points were studied and setpoint 
changes were performed to study the plant dynamics under different control strategies. The results 
showed that the control approaches were able to control the membrane system, but significant dif-
ferences in the dynamics were observed. The ANN control was able to achieve the specifications 
but showed poor dynamics. Expert control was fast but showed problems in different working ar-
eas. Local models required less data than ANN, achieving high accuracy and robustness. Therefore, 
the technique to be used will depend on the available information and the application dynamics 
requirements. 

Keywords: low-pressure driven process; peristaltic pump; microfiltration; intelligent control;  
artificial intelligence; modelling; fouling; humic acid 
 

1. Introduction 
Peristaltic pumping is used in membrane processes, such as microfiltration (MF) or 

ultrafiltration (UF), when high sealing without contact of the solutions with the lubricat-
ing fluids or friction elements is required. Typical applications of this configuration are in 
food processing industry separations, membrane bioreactors, membrane medical appli-
cations, and laboratory experimentation. 

The use of peristaltic pumps in membrane bioreactor systems also has the advantage 
of diminishing the effect of tearing stress. For example, anaerobic sludge membrane reac-
tors using peristaltic pumping for pressure application and recirculation have been used 
to treat municipal or industrial waters [1,2]. This kind of pumping allows special mem-
brane applications such as the use of fluidized glass beads to improve membrane perfor-
mance [3]. 
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In medical systems using membranes, mainly in artificial kidneys or microdialysis 
sensors, pumps must not introduce harmful agents and must maintain sterility. Peristaltic 
pumps can meet this requirement with suitable flow rate characteristics [4]. However, 
problems related to the formation of particles may occur. These particles may be caused 
by wear of the tube due to spallation [5] or degradation of the solution. An example of the 
latter situation is the formation of protein particles caused by the effect of the tube tearing 
on proteins adsorbed on the tube walls [6]. 

The combination of peristaltic pumps and membranes is also widely used on a labor-
atory scale. For example, multi-channel peristaltic pumps can perform many membrane 
experiments at the same time [7] or experiments in which two peristaltic pumps work in 
opposite directions [8]. 

1.1. Modelling of Peristaltically Pumped Low-Pressure Driven Membrane Systems 
The development of control systems to meet permeate flow specifications is essential 

for the proper functioning of the above-mentioned applications. 
Most control systems are, in some way, model based. Therefore, the existence of a 

computational model deduced from the physical behavior of the system can facilitate con-
trol development. However, modeling and control of peristaltically pumped MF or UF 
membrane systems can be more challenging than other membrane configurations. 

The behavior and performance of peristaltic pumps can be approximately modeled 
by lumped models based on physical considerations [9] or by using computational fluid 
dynamics [10]. Disturbance models can also be used for control purposes [11]. However, 
let us suppose that more accurate time-varying models are needed for control. In that case, 
the models could be improved by taking into account changes in feed properties and me-
chanical characteristics of the tubing material. 

Membrane modelling must describe the permeate flux and component rejection and 
its evolution over time. In MF, retention depends on particle size and pore size distribu-
tion. The flow through the pores can be described by Poiseuille’s law. In UF, modelling of 
solute and solvent transport is based on hydrodynamic equations describing hindered 
diffusion and convection [12]. For most processes, fouling adds additional resistance to 
flow. Moreover, the effect of fouling involves longer time dynamics than that those caused 
by feed or operational variations. To describe the different fouling mechanisms (pore 
blocking or gel layer formation), empirical models such as those developed by Hermia 
can be used [13]. Other modelling difficulties are the different fouling potential of the so-
lutions [14], the important effect of spacer design on fouling [15], and the fact that the 
membrane performance does not fully recover after the cleaning procedures. For both 
processes (MF and UF), the situation can be more complex in the case of a non-constant 
flow [16], as in the case of the pulsating flow produced by a peristaltic pump. 

1.2. Intelligent Control Approaches for Low-Pressure Membrane Systems 
In conclusion, accurate modeling of peristaltically pumped low-pressure driven 

membrane systems is challenging due to the changes in system performance over time. In 
general, models derived from first principles with sufficient accuracy are very complex. 
Therefore, classical control techniques cannot be applied directly. On the other hand, 
those models simple enough to apply well-known control techniques cannot describe the 
long-term behavior of the system. This fact led the authors to consider the use of artificial 
intelligence (AI) and system identification methods as the most appropriate approach. 

Most attempts to control peristaltically pumped membrane systems have come from 
the field of hemodialysis, where accurate control of fluid delivery is especially critical [17] 
[18]. In this application, the use of hierarchical adaptive and supervisory control has al-
lowed adjusting the pump inputs to patient monitoring data [19]. 

In other fields where MF or UF have been applied, the modeling and control focus 
on the interaction of the membrane and the pump, but on the membrane performance. 
Niu et al. have recently carried out a critical review on the use of different AI methods in 
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fouling prediction [20]. They found that the most modeled features were transmembrane 
pressure, flux dynamics, and flux decline by fouling. They divided the AI techniques into 
single and hybrid algorithms. They indicated that the most employed single algorithm 
was artificial neural networks (ANN), but others such as fuzzy logic, genetic program-
ming, or support vector machines were also used. Hybrid algorithms were usually built 
by combining these techniques with a search algorithm. Jawad et al. conducted a review 
that found that permeate flux is the most modeled feature in the different MF or UF ap-
plications. The same study showed that the most used model input is transmembrane 
pressure (TMP), and that the composition-related parameters were also used as input in 
the different works [21]. Recently, machine learning has been used to model the dynamics 
of filtration and backwashing of UF by a back propagation ANN [22]. Ultrafiltration of 
protein solutions has been effectively modeled using ANN for a tubular crossflow mem-
brane [23]. This work used as inputs: operational time, pH, and ionic strength; and as 
outputs: filtrate flow and protein transmission. The authors compared the performance of 
ANN with that of the Hermia models [24] and obtained similar performance results for 
the fitted experiments, but better ANN extrapolation capability for experiments not in-
cluded in the fitting process. Other AI-based modelling tools, such as fuzzy logic, have 
proven to be an alternative to ANN modelling [25]. 

1.3. Selection of Study Case for Comparison of Control Approaches 
Given the promising results found in the literature on AI methods applied to low-

pressure driven processes, this work aimed to compare the performance of a set of AI 
modeling techniques for controlling peristaltically pumped membrane processes sub-
jected to strong fouling. The specific process case studied used a ceramic MF membrane 
with a pore size close to the maximum UF pore size range. The operating conditions of 
the MF system to be controlled were average crossflow velocity and average transmem-
brane pressure. Forced membrane fouling was expected to produce permeability variabil-
ity due to both reversible and irreversible fouling. 

The chosen techniques cannot only provide an accurate system description but can 
also deliver models that are good for subsequent control design under all the expected 
operating conditions. This balance between modeling and control could lead to a better 
performance of the controlled MF system. Therefore, a comparison between the available 
methods was made to determine which can be more effective in controlling the operating 
conditions in a changing membrane system. 

In order to obtain the data necessary for the creation of the models, each experiment 
consisted of an operational step with fouling followed by a cleaning step. For the first step, 
the selected foulant was humic acid at a relatively high concentration. Humic acid fouling 
is one of the main factors limiting MF in water treatment [26,27] with humic acid aggre-
gates being responsible for most of the fouling [28]. For the second step, it was considered 
that fouling by organic matter can be removed from ceramic membranes by cleaning-in-
place (CIP) procedures using alkalis. When NaOH is used, typical concentrations are in 
the range of 0.5–2% wt. [29,30]. The combination of rapid fouling with humic acid and 
subsequent cleaning with NaOH allowed short dynamic experiments with a rapid de-
crease in flow rate suitable for model identification and control design. 

The structure of this article is as follows. Section 2 explains the system developed for 
the experiments, the experimental methods, and the model identification and control pro-
cedures. Section 3 shows the results obtained for the three strategies considered: ANN, 
fuzzy logic, and local models. Section 4 discuss the differences between the control strat-
egies studied. Finally, the Conclusions section summarizes the results and proposes ways 
forward for further study. 
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2. Materials and Methods 
2.1. Experimental Setup 

Figure 1 shows a schematic of the pilot plant used in the experiments. The feed tank of 
the main circuit had a volume of 28 L and was tempered in a Polyscience recirculating unit. 
The main circuit contained a Micro CARBOSEP/Kerasep laboratory module. The peristaltic 
pump used was the Masterflex I/P® brushless process drive with high-performance pump 
head able to work from 33 to 650 rpm. The tubing used was Norprene HP 06404-70 with an 
internal diameter of 9 mm. Downstream of the pump, a pulse damper was placed, constructed 
from a helical rubber tube. Two Bürket 8323 pressure sensors prepared to work in the 0–4 bar 
range were placed in the inlet and outlet of the membrane module. A Bürket 8031 flow sensor 
with a range of 10 to 100 L/h was placed at the membrane outlet to measure the crossflow 
during fouling experiments and CIP operations. For permeate flow measurement, a device for 
low flow rates was built ad-hoc. The flow measurement was based on alternate filling and 
emptying of a permeate collection tank controlled by a solenoid valve and measurement of 
the position of a buoy with a laser sensor. Two three-way solenoid valves controlled the alter-
nation between a fouling operation step, an alkali cleaning step, and water flushing between 
both stages. Pump control and acquisition of flow rate and pressure data were performed us-
ing a PCB circuit. An Advantech PC1-1711 DAQ card installed in a PC was used to record 
sensor data and send control actions to the actuators (valves and pump). The user interface 
was performed in Matlab. 

The membrane used in the experiments was the Carbosep M14. This membrane is a 
tubular ceramic membrane with a length of 400 mm and membrane area of 75.4 cm2, a 
nominal cut-off threshold of 0.14 μm, and a nominal water flow rate of 375 L·h−1·m−2·bar−1. 

 
Figure 1. Schematic of the pilot plant. 

2.2. Experimental Conditions 
Model identification experiments were performed using humic acid sodium salt 

(technical grade from Sigma-Aldrich) at a concentration of 20 mg/L. This concentration 
was high enough to produce severe fouling in a short time. The experiments were carried 
out between 2 and 5 h. The temperature of the feed tank was maintained at 25 °C. The 
applied pressure range to build the model was between 0.3 to 2.5 bar. During the experi-
ments, the inlet and outlet pressure, the concentrate flow rate, and the permeate flow were 
sampled at a rate of 1 s. The solenoid valve opening percentage and pump rotational speed 
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were the two variables manipulated by the control system during the fouling operating 
stage to meet the pressure and flow requirements. The control actions were carried out at 
a rate of 20 s. To recover the permeate flow, a CIP operation was performed after each 
model identification experiment using a 0.1 mol/L sodium hydroxide solution. 

2.3. Control Strategies 
Three different approaches were used to control the system, requiring different strat-

egies to incorporate the information available from the systems and build the controllers: 
(i) artificial neural networks, (ii) expert control based on fuzzy logic, and (iii) control by 
fuzzy-integrated inverse local models. 

2.3.1. Control Based on Artificial Neural Networks (ANN) 
An artificial neuron is an element that has an internal state (activation level) that re-

ceives signals that can change its state. An artificial neural network (ANN) is a structure 
capable of processing information defined as input variables to obtain a response ex-
pressed as output variables. The ANN is organized in layers of neurons in which their 
parameters (weights wi and biases bi) must be determined to match the mapping between 
inputs and outputs. The fitting procedure to obtain the ANN parameters is known as 
training. In this case, a non-supervised learning strategy has been used in which the data 
is divided into one dataset for training, one for validation, and one for testing. Given an 
experimental output obtained for the input conditions, the errors between the experi-
mental output vector and the response predicted by the ANN in its current state of ad-
justment against the input are evaluated. The error obtained is used to adjust the values 
of the weights and biases. The validation data set is used to measure the overall error of 
the network and determine when to stop training the ANN. In our case, a layer of neurons 
with linear output and radial activation functions (Figure 2) gave satisfactory results. 

 
Figure 2. Artificial neural network: (a) layers structure, (b) detail of a neuron. 

The model identified by ANN can be used to predict the behavior of the system, but 
in this case, the objective was to control the system. Therefore, an ANN-based control 
technique is needed. The designed controller was based on one of the simplest control 
ideas that are applicable when a model of the system to be controlled is available: given a 
desired reference to be followed by a system, the reference passed through the inverse 
model gives the control action to be injected to the system to achieve the desired reference. 
In real-world applications, subjected to disturbances, this simple structure is comple-
mented with additional elements. In this case, a classic direct control with reverse pre-
feed (see Figure 3) based on two ANN and a reference model is used [31]. The ANN is 
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used twice in this case. In the first step, the error, defined as the difference between the 
real (Ycomp) and the desired (ref) output of the system is fed into a predefined reference 
model (the desired behavior of the plant) giving an output (reff). This output goes to the 
inverse of the ANN system model, providing then a control action (Un) which is compared 
to the control action (UPI) given by a proportional-integral controller (PI) designed for the 
reference model. This comparison generates the final control action (U) to be fed into the 
real system. This control action is also fed into the ANN system model, whose output is 
compared to the real output and the difference feedbacks to the reference. Next, the refer-
ence is compensated with the difference between the real output of the plant and the out-
put predicted by a non-affine ANN and this error initiates the control actions computation 
again. 

Therefore, the identification procedure required the identification of two ANNs. First 
the direct model, which provides the output prediction, was identified. The inputs used 
to train the ANN were the output in the previous time and the inputs for the plant oper-
ation (solenoid valve opening rate and pump rotation speed). Secondly, the inverse model 
was identified after applying low-pass filtering to the signal. The Neural Network toolbox 
of Matlab was used for both identifications. 

The experimental data were obtained in the working area of the plant for a matrix of 
combinations of pump speed signals in the range of 0.5–3 V (108–650 rpm) and valve 
opening in the range of 65% to 80%. 

 
Figure 3. Direct control with reverse pre-feed based on artificial neural networks. 

2.3.2. Expert Control Based on Fuzzy Logic 
The term fuzzy logic was introduced in 1965 with the Lotfi Zadeh’s proposal of fuzzy 

set theory [32]. In contrast with Boolean logic which only considers false/truth values of 
variables expressed by the integers 0 or 1, in fuzzy logic, the level of truth of a variable 
can be expressed by any real number between 0 and 1. This is a natural way of represent-
ing vagueness and imprecise information and has been applied to many fields. 

From a practical view, a fuzzy system can be seen as a linguistically interpretable 
model consisting of several “if-then” rules and logical operators using fuzzy sets as input 
and output variables: 

If input is A then output is B (1) 

A rule-based fuzzy system, although it is a mathematical function and can be identi-
fied from data similar to any other system, can make direct use of expert information as 
long as it is interpretable. Therefore, experts in the operation of a specific system can easily 
build a model or a controller without any modelling or control knowledge. 

In this case, a fuzzy controller was built for the MF system defined above, based on 
the available knowledge of the experts. The expert (in close collaboration with the control 
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engineer) defined the linguistic variables and the fuzzy rules. The Matlab Fuzzy Systems 
toolbox was used for implementation purposes. 

Although two independent fuzzy controllers can be built to control TMP and reten-
tate flow rate separately, it was thought that a multivariable controller could give better 
results by taking into account their interaction. Combining expert information and control 
possibilities, the structure presented in Figure 4 was agreed upon, aiming for fast and 
accurate control. The main ideas were to quickly drive the system close to the desired 
TMP/flow operating point, and then fine-tune the control around this point more precisely 
but more slowly. 

The first fast part can be accomplished using a look-up-table (LUT) strategy [33]. The 
inputs of this table are the desired TMP (P_ref) and the retentate flow rate (Qr_ref) at the 
operating point, and its outputs are the valve opening percentage (k_0) and the pump 
speed (n_0) control actions to reach approximately the reference under standard base con-
ditions. 

These base control actions can be modified to new values (k and n) by a fuzzy con-
troller whose input variables are the transmembrane pressure error and the retentate flow 
error, thus closing the gap between the actual output results (P and Qr) and the desired 
ones (P_ref and Qr_ref). 

 
Figure 4. Diagram of the fuzzy controller. 

2.3.3. Control by Inverse Local Models 
By making use of the expert system information on the operating points defined in 

the LUT (or any other partition of the input space) defined in the previous section, a more 
classical control approach can be used. The idea is the opposite of the ANN approach 
where a very accurate model of the systems is obtained to perform a good control of the 
plant based on a complex controller. In this case, very simple models of the system must 
be identified at each of the required operating points and a simple controller must be de-
signed for each of the models. Subsequently, all available control actions are integrated 
into a single control action depending on the actual operating point. The complete con-
troller can be built, for example, as a fuzzy system [34] in which each controller at each 
operating point is a rule, and the outputs are interpolated using membership functions 
created by weighting the distances to the operating points (Figure 5). 
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Figure 5. Control structure with local models. 

Therefore, the idea was to identify several models for relating inputs vs. outputs of 
the system (i.e., Vel and %Ev vs. P_ref and Qr_ref in the previous section) that contain 
only the gain information between each pair of variables at each operating point. The in-
formation included in each pair-of-variables local model can be arranged into a matrix 
where the increments of each output with respect to each input associated with an oper-
ating point can be easily organized: 
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where, for the sake of clarity, n is pump speed Vel, k is solenoid valve opening %Ev, P is 
transmembrane pressure TMP, and Q is flow rate Qr. In this framework, the derivatives 
of the local function directly relate the required control actions and the desired change in 
operating conditions for a particular operating point (ko, no). 

The controller for both outputs at the same time was easily obtained by inverting the 
derivative matrix: 
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⎥
⎤
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However, although the simple gain models in each cell of the matrix can easily be 
inverted (thus having an inverse system model at each operating point for a particular 
input-output combination), the two-inputs–two-outputs derivative matrix in Equation (2) 
is not always invertible (values close to zero, or one row/column is linearly dependent on 
another). 

If it is the case and the system is not very fast (as in MF), an approximate multivaria-
ble control can be achieved by alternating small steps of single input-output control ac-
tions for each of the matrix cells in Equation (3). Figure 6 shows the final control diagram 
used in the control of the process, where a “control strategy” defines the alternate opera-
tion of the single-input–single-output controllers based on the inverse of the appropriate 
matrix cell. 
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Figure 6. Global control diagram in an operating point. 

Recall that there is a controller, as defined in Figure 6, for each predefined operating 
point j in the (n, k) plane, and all of them are integrated using the scheme showed in Figure 
5. The integration is performed by weighting each control action j by its membership func-
tion μj calculated as the relative distance from the actual operating point of the plant to 
the local operating point j of the model/controller. Whenever our system operates in the 
(n, k) plane of operating points, a particular operating point (ni, ki) of the plant at instant i 
will be surrounded by 4 operating points, and the normalized membership (from 0 to 1) 
of, e. g., the operating point i (out of 4) can be calculated as [35]: 

𝜇𝜇𝑖𝑖 =

1
𝑑𝑑𝑖𝑖

∑ 1
𝑑𝑑𝑗𝑗

4
1

 (4) 

where d is the absolute value of the Euclidean distance from the actual operating point 
of the plant to the 4 nearest predefined operating points in the controller. 

3. Results and Discussion 
3.1. Control Based on Artificial Neural Networks 

The neural network structure used to build the direct and inverse ANN models of 
the controller had two hidden layers with 6 neurons per layer. The non-affine ANN used 
as inverse models had an input layer with 8 neurons. This structure permitted a reasona-
ble balance between training time and prediction capability. The best training results were 
obtained using the Levenberg-Marquardt algorithm. Model identification results were 
reasonably good for both the direct and inverse models at most operating points. 

The controller was tested on a 7 × 7 matrix of equally spaced operating setpoints 
given by combinations in pump speed signal ranging 0.5–3 V (108–650 rpm) and valve 
opening percentages from 65% to 80%. Figure 7 shows the trajectories in the flow-pressure 
space of the controlled pilot plant. The ANN-based control was able to achieve the desired 
reference (static specifications). However, these satisfactory results could be improved 
from the dynamic specifications point of view since the controlled system showed signif-
icant overshoot and long settling time during the plant start-up at some operating points 
(Figure 8). This behavior was a consequence of a poor identification of the process dynam-
ics when the network was trained using the entire dataset. 
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Figure 7. Operating working area of the pilot plant obtained for pump signal speed 0.5–3 V (108–
650 rpm) and valve opening 65–80%. 

 
Figure 8. Control dynamics of ANN controller (flow rate reference in dashed green and flow out-
put in red). 

3.2. Expert Control Based on Fuzzy Logic 
In order to represent the expert knowledge on plant operation in a Mamdani rule-

based expert system with a number of fuzzy rules as in Equation (1), the “vocabulary” of 
fuzzy input and output variables was first defined. 

The input variables to the fuzzy controller in Figure 4 were the transmembrane pres-
sure error (eP) and the retentate flow rate error (eQ). First, the ranges of values of the 
inputs were stablished to obtain the membership functions. The pressure error was di-
vided into the following categories: very negative (VN), negative (N), slightly negative 
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(NS), zero (Z), slightly positive (PS), positive (P), and very positive (VP). The same cate-
gories were used to divide the flow rate range. The above definitions, in combination with 
the information provided by experts, were translated into the fuzzification structure pre-
sented in Figure 9. 

 
Figure 9. Linguistic values assigned to the controller inputs. 

Linguistic values were also assigned to the controller outputs in Figure 4: pump 
speed and valve opening. All the linguistic variables are shown in Table 1, and the result-
ing defuzzification structure is shown in Figure 10. 

Table 1. Linguistic variables of the controller output. 

 Pump Speed Valve Opening 
increase (high) NIH KIH 

increase (medium) NIM KIM 
increase (slight) NIS KIS 
decrease (slight) NDS KDS 

decrease (medium) NDM KDM 
decrease (high) NDH KDH 

 

 
Figure 10. Linguistic values assigned to the controller outputs. 
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Once all the linguistic variables and their ranges were defined, the expert in the op-
eration plant was able to translate all his/her knowledge using the limited vocabulary in 
the expert rules in Table 2. Each row is a possible eQ input, and each column is one of the 
eP input possibilities. Each cell in the table represents the outputs to be applied. For ex-
ample, the first cell of the table corresponds to the rule: 

If eQ is VN and eP is VN then pump speed is NDH (4) 

Next, a fuzzy rule-based system composed of 49 rules as described above was then 
defined to perform the control of the MF plant. 

Table 2. Expert rules for the fuzzy controller according to defined fuzzy variables for inputs and 
outputs. 

eQ/eP VN N NS Z PS P VP 
VN NDH KDM NDM NDM KDM NDS NIS KDM KDM NIM 
N NDH NDM NDM KDM KDS NIS KDM KDM NIS 

NS NDM NDM NDS KDS KIS KIM NIM 
Z KIS NDM KIS - KDS NIM NIM KDS 
PS KIM KIM KIS KIS KDS NIS NIM NIM 
P KIH KIM KIM KIM NIM NIM NIM 

VP KIH KIS NDS KIS KIS NIS KDS KDS NIH 

The combination of all the information provided by the expert (linguistic variables 
and rules) resulted in the nonlinear response surface of the controller for both outputs. 
The controller performance can be seen for different operating points in Figure 11, with 
lower overshoot and settling time than in the ANN approach for the same operating con-
ditions. 

 
Figure 11. Controller performance for flow rate at different operating points defined by flow rate 
and pressure (flow references are marked in dashed green in all cases). 
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The performance of the controller was also good for long experiments (about 4 h), 
where the effect of fouling changed the plant behavior, as shown in Figure 12. The exper-
iments were repeated several times. The figure shows 3 cycles for pressure and flow con-
trol at the operation point (55 L/h, 1.5 bar). 

 
(a) (b) 

Figure 12. Controller performance in long time runs at the operation point (55 L/h, 1.5 bar): (a) op-
erating point for pressure; (b) operating point for flow rate. 

Finally, some experiments were performed to see the behavior of the controller when 
changing the operating point. The results are shown in Figure 13. 

 
(a) (b) 

Figure 13. Controller performance (reference in green and output in blue): (a) change of the operat-
ing point for pressure; (b) change of operating point for flow. 

3.3. Control by Fuzzy-Integrated Inverse Local Models 
The 49 operating points, defined in the previous section, covering the entire operat-

ing space of the plant were also considered in this study. A local model was identified for 
each of them following Equation (2), and a local controller designed as in Equation (3). 
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In order to reach a desired operating point (P_ref, Qr_ref) while avoiding the inver-
sion problem in Equation (3), the alternate operation of the two controllers shown as “con-
trol strategy” in Figure 6 was: 
• Reach Qr_ref using the pump speed control variable Vel, but with the solenoid valve 

fully open (for security reasons) 
• If more pressure is needed, then close the solenoid valve by controlling the valve 

opening %Ev to reach P_ref 
• The last action will decrease the flow. Then reach again Qr_ref using the pump speed 

control variable Vel. 
• Follow the last two steps until both references (P_ref, Qr_ref) are obtained. 

The desired operating point (P_ref, Qr_ref) need not be exactly one of the 49 prede-
fined operating points. Therefore, an interpolation strategy of the control actions was de-
fined (Equation (4)). Figure 14 shows, in the flow-pressure plane, how a representative 
operating point (P_ref = 2 bar, Qr_ref = 54 L/h) was reached using the proposed strategy. 

 
Figure 14. Flow-pressure path followed to reach a predefined operating point (P_ref = 2 bar, Qr_ref 
= 54 L/h) using the proposed strategy. 

Figures 15–18 then show the evolution over time of the outputs and control actions 
in the same experiment. The results of the new strategy (inverse local models) are plotted 
in blue, while the best strategy so far (expert control based on fuzzy logic) is plotted in red 
for ease of comparison. 
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Figure 15. Evolution of pressure output to reach the representative operating point (P_ref = 2 bar, 
Qr_ref = 54 L/h) using inverse local models (blue), and expert control based on fuzzy logic (red). 

 
Figure 16. Evolution of flow output to reach the representative operating point (P_ref = 2 bar, Qr_ref 
= 54 L/h) using inverse local models (blue), and expert control based on fuzzy logic (red). 

 
Figure 17. Evolution of pump speed control action to reach the representative operating point (P_ref 
= 2 bar, Qr_ref = 54 L/h) using inverse local models (blue), and expert control based on fuzzy logic 
(red). 
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Figure 18. Evolution of valve opening control action to reach the representative operating point 
(P_ref = 2 bar, Qr_ref = 54 L/h) using inverse local models (blue), and expert control based on fuzzy 
logic (red). 

3.4. Discussion of the Results 
The three chosen approaches (ANNs, expert control, and fuzzy-integrated local in-

verse models) were able to adequately control the MF system, as shown in the previous 
results subsections. However, the three controllers showed differences in the performance 
of the dynamic specifications: the speed at which the system reaches the operating point 
(settling time), and presence of oscillations (overshoot). Some differences were also found 
in terms of their robustness, and the data required for the development of the controllers 
(Table 3). 

Table 3. Comparison of the control techniques studied. 

Controller Modelling Control Robustness 

Local models 
Few data re-

quired Slow, precise 
High. Some problems in differ-

ent functioning points 

Expert control Only models 
look-up-table 

Sharp, fast, precise Pondering problems in differ-
ent working areas 

Artificial neural 
networks 

Many data re-
quired 

Slow, precision 
achieved by PI con-

troller 

Limited. The models do not 
cover all areas 

The ANN-based control had some problems at different operating points showing 
oscillations that can be attributed to incorrect identification of the dynamics when the net-
work is trained to meet the full range of operating conditions. However, in this case much 
more data is needed, or a more complex network structure may be required. This implies 
a higher training effort which may make it difficult to use an adaptive approach. 

The control based on fuzzy rules was able to work quickly from the fuzzy rules de-
duced from the plant operating experience. However, it has the problem that in case of 
major changes in the system, the expert will be needed again to define the new rules and 
the whole identification process will have to be repeated. 

Local models have the great advantage of requiring less data and expert effort than 
the other methods for their identification. The settling time is somewhat slower than that 
achieved by the expert model but sufficient for the studied process. Moreover, compared 
to the expert models, they allow an easy adaptive implementation of the control, being 
then the best simplicity-performance trade-off of the AI approaches shown. 
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4. Conclusions 
All three types of regulators implemented were functional and capable of accurately 

achieving the static specification reference over a wide range of flow and pressure oper-
ating conditions. The controllers were also able to function properly during the period 
when the system was subjected to a high degree of fouling whenever the membrane of 
the system was cleaned after each operation. The controllers performed well during ex-
periments in which the cleaning operations were able to avoid high irreversible fouling. 
Therefore, it can be said that the AI control approaches studied in this work showed very 
good performance in the control of a MF process. 

The proposed control techniques can be applied to different fields: separation in the 
food industry, membrane bioreactors, membrane medical applications, and laboratory-
scale experimentation. The technique to be used in each specific case depends mainly on 
the information available: ANNs require a lot of experimental data, expert systems require 
a human expert to be available, and local models require a combination of some expert 
information and a few data. Dynamic process control requirements may also decide the 
most appropriate approach, as some techniques are faster than others, in this case expert 
control being the fastest technique. The same is true for robustness with expert systems 
providing the best results in this case as well. 

Although the proposed control strategies worked well under the conditions of the in 
the experiments, adaptive versions of the three approaches are desirable and will be de-
veloped in the future. Adaptive strategies will allow on-line calibration of the model and 
controller during operation in the event of irreversible fouling or other changes in the 
system, such as changes in temperature, pressure, or feed composition. In most situations, 
the effects on process performance of operating pressure, crossflow velocity, temperature, 
and pH are complex, highly feed composition dependent, and sometimes weakly ex-
plained by physical models. A desirable adaptive control would be able to adjust in min-
imum time the operating variables seeking to optimize process performance. For example, 
such controllers can be used in a batch process to adjust pressure and crossflow velocity 
to minimize the energy required for the concentration stage. Alternatively, they can also 
be used in continuous processes to jointly optimize the operation phase and the cleaning 
phase to improve process economics. 
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