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Abstract: Most construction managers use deterministic scheduling techniques to plan construction
projects and estimate their duration. However, deterministic techniques are known to underestimate
the project duration. Alternative methods, such as Stochastic Network Analysis, have rarely been
adopted in practical contexts as they are commonly computer-intensive, require extensive historical
information, have limited contextual/local validity and/or require skills most practitioners have
not been trained for. In this paper, we propose some mathematical expressions to approximate
the average and the standard deviation of a project duration from basic deterministic schedule
information. The expressions’ performance is successfully tested in a 4100-network dataset with
varied activity durations and activity durations variability. Calculations are quite straightforward and
can be implemented manually. Furthermore, unlike the Project Evaluation and Review Technique
(PERT), they allow drawing inferences about the probability of project duration in the presence of
several critical and subcritical paths with minimal additional calculation.

Keywords: project duration; scheduling; merge event bias; construction; PERT

1. Introduction

Projects ending later and costing more than planned are widespread phenomena in the construction
industry [1,2]. Numerous causes were identified in the construction management literature [3–5].
Among them, one cause that is persistently identified in late projects is poor planning and project
control practices [6].

Paradoxically, extensive research focused for quite some time on the development of enhanced
project planning tools, such as the project evaluation and review technique (PERT) [7], stochastic network
analysis (SNA) [8], and artificial intelligence and statistical learning techniques [9]. Additionally, in
recent years, project monitoring and control techniques also gained more research attention, including
critical chain management [10], earned value management [11], and schedule risk analysis [12].

However, most of the advanced techniques above were not successfully adopted by construction
management practitioners [13]. Currently, classical deterministic scheduling techniques such as the
Gantt chart [14] and the critical path method (CPM) [15] still occupy a prominent position in the daily
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practice of construction management [16]. Indeed, deterministic techniques have some important
advantages. They are easier to learn, and their outputs are easier to understand and communicate. The
amount of input information they require is generally much lower than other advanced techniques.
Additionally, the calculations they involve are also significantly less computer-intensive and do not
generally require advanced training to implement them.

However, deterministic scheduling techniques also suffer from serious limitations [16]. In a recent
study, Ballesteros-Pérez et al. [17] broke down the core assumptions of some classical scheduling
techniques and exemplified why they consistently underestimate the project duration even when
accurate input information is available. Their findings were not new, but they emphasized that
deterministic techniques’ major source of inaccuracy stems from neglecting and/or not properly
handling activity duration variability. Duration variability is defined here as the difference between
the actual (final) duration and the planned (initial) duration of a project activity.

Hence, the purpose of this paper is to propose some mathematical expressions that approximate
the average project duration and the project duration standard deviation when its activities have some
variability (virtually all real-life projects). Our estimates are compared against the analogous PERT
project duration estimates. It is shown how, at the expense of minimal additional calculation and from
the very same input information, our estimates largely outperform the PERT estimates. This allows
bridging the accuracy gap that separates deterministic techniques from more complex techniques.

The paper is structured as follows: Section 2 Background describes the activity duration variability
and the merge event bias, which are the major source and consequence, respectively, of inaccuracy in
all deterministic techniques. In Section 3 Research methods, the mathematical expressions proposed
are presented and all their subcomponents are justified. Section 4 Application example describes how
all the calculations can be easily implemented step by step. Section 5 Analysis and Section 6 Results
describe how the two expressions were tested with a diverse and representative artificial network
dataset. Section 7 Discussions comments on how the expressions can be used in real contexts to improve
the reliability of project management tasks in general, and the accuracy of some complementary
scheduling techniques in particular. Then, Section 8 Conclusions summarizes the paper’s contributions,
highlighting the research limitations and proposing future avenues of research.

2. Background

The literature on project duration estimation is vast and cannot be representatively outlined
here. Some of the most relevant scheduling techniques were presented in Introduction, and more are
commented on later in the Discussions. This section considers in detail why activity duration variability
is the major source of inaccuracy of all deterministic scheduling techniques and what can be done to
(partially) overcome that problem.

Activities in all projects, construction projects included, suffer from some degree of duration
variability [18,19]. Projects are unique, which means that, even when contractors have extensive
experience, subsequent projects may differ regarding clients, contract type, location, regulations,
labor, equipment, subcontractors, stakeholders, and weather [20]. All these (and many other) factors
constitute potential causes of uncertainty and, eventually, of activity duration variability [21].

Deterministic scheduling techniques assume that activity durations are constant. In an attempt
to draw up a representative execution plan, most project schedulers use the average activity durations,
expecting that such an approach will produce the most likely project duration [13]. However, such a
schedule is often not reliable.

When two or more activities are performed in parallel, the average time it takes to complete all of
them is not the maximum of the activity averages, but generally more. Indeed, this situation is identical
to the problem of calculating the maximum of two or more random variables. Imagine two activities
whose duration is modeled by a normal distribution. Half of the time, each activity ends early, and,
half of the time, it ends late. However, when performing both activities in parallel, only in one out of
four occasions will both activities finish early. In the other three occasions, either one of the activities
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will finish late, or both will be late. Hence, the maximum time of completion of these two activities
will be higher than the average of the activity durations. This phenomenon is known as the merge event
bias, and it is the reason why deterministic scheduling techniques generally underestimate the actual
project duration.

The merge event bias is nothing but a manifestation of Jensen’s inequality [22]. More precisely, the
maximum of several random variables (each representing the activity durations) is a convex function.
This means that, on average, the maximum of several randomly generated activity durations will always
be higher than, or at least equal to, the averages of those activity durations. Hence, the problem of
obtaining the average project duration (also known as project makespan) is the same as obtaining
the maximum of several random variables, and this was intensively studied in the field of stochastic
network analysis (SNA).

In SNA, activity durations are modeled with different statistical distributions. One randomly
generated duration value is generated for each activity in each simulation run, and then the project
duration is computed by following the activities precedence network. This operation is repeated
thousands of times until the sample of project durations is deemed representative. Then, the statistical
project duration distribution can be represented, and its first two moments (the project duration average
and the standard deviation) can be easily calculated.

However, as hinted above, there are no analytical solutions to find (accurate) values of the average
project duration in project network topologies that involve multiple parallel critical and subcritical
paths. The only technique that provides reliable results when activities have variable durations is the
Monte Carlo simulation, which is one of the most common in SNA [23–25].

The main reason why there is no analytical solution in a schedule network is because there are no
statistical distributions that are, at the same time, sum-stable and max-stable. When activities are in
series, their durations are added (convoluted) to calculate the path durations. When activities are in
parallel, the maximum of several path durations (distributions) has to be calculated instead. If the
activity duration distributions of a schedule were sum-stable and max-stable, a distribution of the same
family would result after calculating the project duration irrespective of whether the schedule mixed
activities in series and parallel. Also, the parameters from such a distribution could be anticipated
from the original activity duration distributions. However, as noted above, there are no sum-stable and
max-stable distributions. The normal distribution is sum-stable, but not max-stable. The lognormal is
product-stable, but neither sum- nor max-stable. Hence, in the absence of a distribution that can be
used across a whole schedule involving activities in series and in parallel, approximate approaches
must be used.

Precisely with the intention of allowing project managers to make probabilistic inferences about
the likely project duration, the project evaluation and review technique (PERT) was proposed over
60 years ago [7]. By means of three-point activity duration estimates (the well-known optimistic,
most likely, and pessimistic durations of an activity), the average project duration is assimilated to
the average duration of the (longest) critical path. Then, the project duration standard deviation is
also assimilated to the duration standard deviation of that same longest critical path. The problem,
however, is that PERT underestimates the average project duration and overestimates the project
duration standard deviation [26,27]. Indeed, the PERT average project duration coincides with the one
from a deterministic schedule. The project duration standard deviation, on the other hand, assumes
that only a single critical path exists.

However, despite the limitations of PERT, it is a hugely popular technique in the field of project
management. From the research standpoint, practically all its assumptions and calculation procedures
were broken down and analyzed in pursuit of improvements from every possible perspective, for
example, the activity duration distributions, the resulting project duration distribution, the accuracy
of the three-point estimates, the inclusion of activity time–cost trade-offs, the inclusion of extra
scheduling operations like minima of multiple paths, and activity self-loops, to cite just a few (see
Ballesteros-Pérez [13] for an extensive review).



Appl. Sci. 2020, 10, 654 4 of 22

Of particular interest, however, may be the work of Pritsker [28]. He developed the graphical
evaluation and review technique (GERT) in 1966. GERT attempted to overcome many of PERT’s
fundamental problems, including the merge event bias. However, due to its mathematical complexity,
its implementation was not possible without resorting to Monte Carlo simulation. More recently,
some of GERT’s principles plus other convenient features were incorporated into M-PERT [13]. This
technique was proposed by Ballesteros-Pérez et al. and also allows manual calculation of the project
duration average and standard deviation. Specifically, M-PERT recursively merges all project activities
until there is one activity left which represents the project duration variability. For medium and big
project networks, however, this technique can be come time consuming.

Hence, there is one common trait among almost all these PERT extensions. Those which (partially)
overcome the merge event bias problem do so at the expense of (substantially) increasing the technique
complexity and/or the time it takes to calculate the project duration average and standard deviation. That
is why our aim here is to resort to a number of operations very similar to the original PERT technique,
but which significantly improve its accuracy by allowing multiple critical and subcritical paths.

3. Materials and Methods

We assume that a project p corresponds to a network of activities connected by technological
and/or resource precedence relationships. Any activity i in the schedule can have some duration
variability which is modeled by a statistical distribution with mean µi and standard deviation σi. This
does not preclude, however, the use of other non-location-scale or asymmetrical activity duration
distributions later.

As discussed earlier, in stochastic network analysis (SNA), a representative sample of project
durations are obtained by Monte Carlo simulation and eventually represented by a cumulative
distribution function (CDF). Here, we are not interested in the analysis of the project duration CDF, but
rather in proposing some mathematical expressions for estimating its first two moments. The first
moment of the project duration distribution is the project duration mean (µp). The second moment is
the project duration standard deviation (σp).

From now on, we generically refer to the distribution of all possible project durations as real
duration (RD). This term is intentionally chosen in contrast with the planned duration (PD) which is
generally associated with the (unique) project duration estimate coming from a deterministic schedule
(a Gantt chart, for instance). PD also coincides with the PERT estimate of the project duration average
which, as described earlier, is prone to underestimations when activities have duration variability.
Hence, we propose the following:

RD ∼ Project Duration distribution
(
mean = µp, st.deviation = σp

)
→ with µp ≥ PD. (1)

Finding approximated values of µp and σp is the aim of this research.

3.1. General Notation

In this subsection, we introduce the most relevant variables, subscripts, and sets.
Let i = 1, 2 . . . ni ∈ I be the set of all activities in the project schedule.
Let k = 1, 2 . . . nk ∈ K be the set of all critical activities in the project schedule, that is, those whose

total slack is zero (noted later as si = 0).
Let j = 1, 2 . . . n j ∈ J be the set of all critical and subcritical activities in the project schedule

(those whose slack 0 ≤ si < τ, with τ being a cut-off slack value named slack admissibility threshold
defined later).

From the definitions above, it is clear that K is always a subset of J, whereas J is always a subset of
I, that is, K ⊂ J ⊂ I.
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Additionally, di, dk, and dj represent the duration of activities i (all), k (critical), or j (critical and
subcritical), respectively. In deterministic schedules, they are assumed as static (constant) (generally,
di = µi), even though they may actually have some variability σi.

si, sk, and sj represent the total slack (or floats) of an activity i (all), k (critical), or j (critical or
subcritical) obtained from a deterministic schedule. The activity free slacks is not used. Furthermore, it
is worth noting that, although PERT does not directly use the slack values in its calculations, they must
be calculated anyway; otherwise, the critical activities cannot be identified.

Now, due to its practical interest, we need to take a closer look at the activity duration standard
deviations. Like the activity duration means (µi, µk, µj), the activity duration standard deviations (σi,
σk, σj) can be estimated in real contexts from the scheduler’s past experience, from the PERT three-point
estimates, or even by analogy to similar projects. With the three-point estimates, for example, the
values of the first two moments of each activity duration distribution (µi and σi) can be calculated with
the following simple expressions:

µi =
Oi + 4Li + Pi

6
, (2)

σi =
Pi −Oi

6

√
5
7
+

16
7
·
(Li −Oi)(Pi − Li)

(Pi −Oi)
2 , (3)

where Oi, Li, and Pi represent the optimistic (minimum), most likely (the mode), and pessimistic
(maximum) duration of activity i, respectively, to be elicited by the project scheduler. As can
be seen, Equation (3) already includes a correction (the square root term) recently proposed by
Herrerías-Velasco et al. [29]. This extra term makes the σi estimate more accurate and also unbiased.

Regarding the possibility of estimating σi values by analogy, Ballesteros-Pérez et al. [30] established
that activity duration variability in construction projects is closely modeled by lognormal distributions
with median zero and coefficients of variation (CVi) of 0.10 (for activities with low variability),
0.20 (for medium variability), and 0.3 (for high variability). The coefficient of variation is the ratio
of the activity duration standard deviation by the duration mean, that is, CVi = σi/µi. However,
Ballesteros-Pérez et al. [30] measured the log ratios of actual versus planned activity durations. If
we want to calculate any activity i’s duration in the first two moments in the natural scale (µ’i
and σ’i), we must perform the following calculations (derived from the first two moments of a
lognormal distribution):

µ′i = µi·e
(2.302·CVi)

2

2 (4)

σ′i =
√(

e(2.302·CVi)
2
− 1

)
e(2·LN(µi)+(2.302·CVi)

2) (5)

where CVi = 0.10, 0.20, and 0.30 for low, medium, and high activity duration variability, respectively.
The coefficient 2.302 is added to change the base from 10 (the one used in Ballesteros-Pérez et al.’s [30]
study) to e (the most common with lognormal distributions). The activity duration mean µi is directly
expressed in (natural) time units and can be calculated from the scheduler’s past experience or from
Equation (2), for instance.

3.2. Expression for Estimating the Average Project Duration µp

As anticipated earlier, the calculation of µp involves screening out some initial activities and
keeping only those activities which are either critical or subcritical. The explanations below illustrate
the necessary calculations in the same exact order a practitioner should implement them.

We consider as critical or subcritical those activities whose total slack (si) remains below a slack
admissibility threshold (τ), that is, i ∈ J↔ 0 ≤ si < τ . The slack admissibility threshold τ is calculated
from the critical activities (k), that is, those with si = 0, with the following expression:

τ = K0(1− SP)σK, (6)
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where σK is an estimate of the critical path(s) duration standard deviation. It can be calculated with the
following straightforward (but approximated) expression:

σK =

√
PD∑

dk
·

∑
σ2

k . (7)

When there is a single critical path, the sum of all critical activity durations is equal to the

(deterministic) duration of the whole project, that is,
∑

dk = PD. In this case, σK =
√∑

σ2
k and the

value of σK is exact. Only in this case does σK coincide with the PERT estimate of the project duration
standard deviation.

SP is the serial–parallel topological indicator, which can be calculated as follows:

SP =
m− 1
ni − 1

, (8)

where m is the number of activities in the path with more activities (not necessarily the longest in duration,
that is, not necessarily the critical path); ni is the total number of (initial) activities in the schedule.

The SP measures how close a network is to a parallel network (SP = 0 when all activities are in
parallel) or a serial network (SP = 1 when all activities are in series). Recent studies pointed out that
most real-life project SP values range from 0.3 to 0.7 [31].

K0 is an empirical coefficient which represents the number of σK multiples that define the overall
cut-off value of τ. Specifically, values of K0 = 0 would only accept critical activities (no subcritical
activities, that is, no activities with si > 0). Conversely, values of K0 > 3 (meaning three times σK) would
identify as subcritical activities with too big slacks. After some experimentation, it was found that
values of K0 within [1,2] generally lead to higher R2 values when calculating µp (Equation (9)) shown
later). Consequently, most of the time, we just assume K0 = 1.5.

The attentive reader would have noticed that the purpose of Equation (6) is just ruling out those
activities with excessive slacks. This is simply because the paths to which those activities belong are
more unlikely to extend the project duration and ultimately do not affect µp. Furthermore, the purpose
of SP is to fine-tune the effectiveness of Equation (6) by considering the network macro-structure.

Therefore, once the value of τ is known, it is possible to know which activities are critical and
subcritical (the J set). These are the activities whose total slack si remains below the threshold defined
by τ. Only with those j activities can the average project duration distribution (µp) then be easily
obtained with

µp = PD·

1 + K1

√
Np

n j
·

∑
σ j∑
d j
·LN

(
S·Np

). (9)

For calculating Equation (9), we need the total number of critical + subcritical activities nj, the
(deterministic) activity durations dj, the activity duration standard deviations σj, and the activity total
slacks sj (to calculate S), and the deterministic project duration PD. This is the same input information
that the PERT technique uses. Its components are outlined below.

K1 is another empirical coefficient whose recommended value is 1.12 when the activity duration
distributions are symmetrical (for example, normal, uniform). If the activity duration distributions
are asymmetrical (for example, lognormal, most triangular distributions), then we suggest taking a
slightly higher value (K1 = 1.22). It must be borne in mind, however, that coefficients K0 and K1 are
somehow in equilibrium with each other. If K0 in Equation (6) was higher (accept more activities as j),
then K1 would have to be smaller (to account for a potentially lower impact of those j activities on µp),
and vice versa. After some experimentation, we found the values proposed here for both coefficients
seem to work well in almost all cases.
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Np represents an estimate of the equivalent number of parallel critical + subcritical paths (assuming
they all spanned from the project start to the project end). We calculate it as follows:

Np =

∑
d j

PD
. (10)

It is worth noting that, although the numerator and denominator of Np could have been integrated
and simplified within Equation (9), they are presented separately for a reason; Np shows a high
correlation on its own with µp, despite it not being linear. Future studies may want to improve our
equations by revising, for example, how Np is mathematically included in Equation (9).∑

σ j corresponds to the sum of all critical + subcritical activity duration standard deviations. We
present it separately because, in cases where we were using coefficients of variation (CVj), we could

easily replace this term with
∑(

CV j·d j
)
.

LN(·) corresponds to the natural (Euler’s) logarithm.
S is the slack tightness coefficient, whose values always remain in the range 0 < S ≤ 1; it is

calculated as

S =
τ−

∑
s j

n j

τ
= 1−

∑
s j

τ·n j
. (11)

S represents the average (total) slack per activity. When S = 1, all paths have to be critical (there
is not a single activity with a slack s j > 0). When S = 0 (an extreme which is not mathematically
possible), all subcritical paths would (theoretically) not be causing an impact on µp (impossible project
duration extension beyond PD). Hence, like SP in Equation (6), the variable S allows fine-tuning the
representativeness of Np by considering how loose the subcritical activities are.

With all these terms, Equation (9) for calculating µp was fully defined and can be
easily implemented.

3.3. Justification of the Expression for Estimating µp

Equation (9) encompasses several terms, each in charge of one task. Let us review them in
reverse order.

The maximum of n independent and identically distributed (iid) normal random variables has
no analytical expression, but it is upper bounded by

√
2·LN(n). This is important as, in our context,

n ≈ Np, the random variables represent the path durations (which converge to normal distributions as
there are more activities in series by the Central Limit theorem), and their maximum coincides with the
average project duration (µp).

This upper bound, however, largely overestimates µp for small values of n (for instance, when n <

50, the deviations are still above 20%). Most real projects have far fewer than 50 critical and subcritical
parallel paths. That is why, from the upper bound

√
2·LN(n), we kept the LN(n) term but reformulated

it as K1·LN(S·Np). More precisely, the contribution of S was discussed in the paper, whereas K1 was
adjusted to maximize the fit for Np < 5 paths (which approximately corresponds to projects with a
serial–parallel indicator SP > 0.2, that is, most real projects as justified earlier). Consequently, in cases
when Np > 5, Equation (9) slowly (but progressively) loses accuracy.

Next, the term
∑
σ j/

∑
d j in Equation (9) represents the average activity duration coefficient of

variation, that is, the average CVj. In particular, this term is obtained from a weighted average of all
activity coefficients of variation (CVj) using the deterministic activity durations (dj) as weights.

∑
(d j·CV j)

n j∑
d j

n j

=

∑(
d j·CV j

)∑
d j

=

∑
σ j∑
d j

.



Appl. Sci. 2020, 10, 654 8 of 22

The ratio above is eventually multiplied by PD in Equation (9) which converts it into a proper
standard deviation (in time units). The raison d’etre of this term is that, following the previous analogy,
the maximum of n iid normally distributed random variables is always proportional to the duration
standard deviation of the parallel paths to which those activities belong. This justifies why we need to
include a term that represents the average activity duration standard deviation, or, in this case, the
average activity coefficient of variation.

There is just one term left to justify from Equation (9); this is
√

Np/n j. This term provides an
estimate of the average number of activities per critical and subcritical path. When n iid activities are

in series, then
√∑

σ2
j =

√
n·σ2

j . However, since we are working with the coefficient of variation here

instead of variances, it means we need to divide the latter expression by the average activity duration,

that is,

√
n·σ2

j

n·d j
=

√
n·d2

j ·CV2
j

n·d j
=

CV j
√

n
. In this expression, CVj represents the term

∑
σ j/

∑
d j explained

earlier. Hence, 1/
√

n represents the reduction of CVj as more activities are located in the same path. In
our case, the average number of critical and subcritical activities per path can be approximated by

n ≈
n j
Np

, then 1
√

n
≈

√
Np
n j

, exactly as in Equation (9).

3.4. Expression for Estimating the Project Duration Standard Deviation σp

Along with µp, calculating an approximation of σp allows a practitioner to make probabilistic
inferences about how likely it is that a project will finish by different dates. Our expression for
estimating σp is

σp =

√
σ2

K + σ2
J

2
·

[
1 + K2·LN

(
S·Np

)]
. (12)

Most variables in Equation (12) are already known. σK represents an estimate of the project
duration standard deviation coming from the critical activities, as in Equation (7). Indeed, σJ is
quite similar to σK. The only difference is that σJ is calculated with all critical and subcritical activity
durations, not just the critical ones. Hence,

σJ =

√
PD∑

d j
·

∑
σ2

j . (13)

K2 is another empirical coefficient whose value is suggested to be K2 = −0.22 when activity
duration variability is predominantly coming from a symmetrical distribution (for example, normal
distribution), and K2 = 0.07 when the activity duration variability is modeled with asymmetrical
distributions (for example, lognormal).

3.5. Justification of the Expression for Estimating σp

Equation (12) takes an average path duration variance from σJ and σK. Then, it applies a correction
factor that takes into account the reduction/increase (with K2 and S) as a function of the estimated total
number of existing critical + subcritical paths (with Np).

As described earlier, in the PERT technique, the project duration standard deviation corresponds

to the square root of the sum of all critical activity duration variances, that is, σK =
√∑

σ2
k . This is

exactly like our σK variable from Equation (7), but always assuming the existence of a single critical
path (

∑
dk = PD). However, as real projects may have more than one critical or subcritical path, this

would significantly bias the σp estimate. In Equation (12), by averaging the variances of σK and σJ, it is
more likely that our estimate of the actual project duration standard deviation will improve because
the magnitude of σJ, in most cases, is lower than σK.
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Finally, the term
[
1 + K2·LN

(
S·Np

)]
in Equation (12), constitutes a simplified linear regression of

the σp reduction, as there are more paths in parallel. In this term, Np takes care of counting the number
of those paths, and S takes care of reducing their importance as a function of how large their average
slack is. K2 again just centers the regression expression to maximize accuracy for cases when Np < 5.
As expected then, the estimate of σp keeps losing accuracy as Np grows beyond five.

3.6. A Final Note on Calculations with Non-Symmetrical Activity Duration Distributions

With the exception of the different values for coefficients K1 and K2, we made no distinction
between how the expressions of µp and σp work when activity duration distributions are asymmetrical.
In those cases, the scheduler must ensure that the deterministic activity durations (di) always correspond
to their activity duration average. Indeed, this is also a requirement for symmetrical distributions as well;
however, in those cases, choosing the average durations is the default option (as the median, mode, and
mean coincide in all common symmetrical distributions). Hence, in the case of symmetrical activity
duration distributions, di = µi always. However, in the case of asymmetrical distributions, then di = µ′i
(as in Equation (4) for lognormal distributions, for instance). Only then will it be possible to calculate
si, σi, and PD properly. If not done this way, the estimates of µp and σp may not be representative.

4. Application Example

In this section, we develop a manual example with a small project schedule. The purpose is to
illustrate how µp and σp could be easily calculated by practitioners. All necessary auxiliary calculations
and intermediate steps are also included. The results of the µp and σp are eventually compared with
the PERT estimates and the (more accurate) estimates obtained by Monte Carlo simulation.

Let us refer to the nine-activity schedule network represented in Figure 1. This project consists of
activities with varied duration variabilities (represented by different gray tones).
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Figure 1. Example project schedule.

Initially, we assume the activity duration variability is normally distributed. This way, the
deterministic activity durations are di = µi, and the activity duration standard deviations are σi =

µi·CVi. Both sets of values are represented for all activities in the leftmost part of Table 1. From them,
calculating the activity slacks is straightforward (indeed, all are equal to zero, apart from the slacks of
activities 4 and 6, which are s4 = d5 − d4 and s6 = d6 − d5, respectively).
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Table 1. Project network example: deterministic schedule information. Avg.—average; Dur.—duration.

Normally Distributed Activity Duration
Variability

Lognormally Distributed Activity Duration
Variability

Activity Avg. Dur. Dur. Variability (Total) Slack Avg. Dur. Dur. Variability (Total) Slack

i di CVi σi si d′i CVi σ’i si

1 10 0.2 2 0 11.12 0.2 5.40 0
2 10 0.3 3 0 12.69 0.3 9.92 0
3 10 0.3 3 0 12.69 0.3 9.92 0
4 5 0.1 0.5 5 5.13 0.1 1.20 5.98
5 10 0.2 2 0 11.12 0.2 5.40 0
6 8 0.1 0.8 2 8.21 0.1 1.92 2.90
7 10 0.3 3 0 12.69 0.3 9.92 0
8 10 0.3 3 0 12.69 0.3 9.92 0
9 10 0.2 2 0 11.12 0.2 5.40 0

In this case, the deterministic project duration PD coincides with the sum of d1 + d2, d3 + d5 + d7,
or d8 + d9 = 50 days (or time units).

From the initial set of all nine activities (i), we know that the critical activities (k) are those with
si = 0, that is, K = {1, 2, 3, 5, 7, 8, 9} (all i other than activities 4 and 6).

The second step involves calculating the approximated critical path duration standard deviation
σK with Equation (7).

σK =

√
PD∑

dk
·

∑
σ2

k =

√
50

7·10
·

∑
(3·22 + 4·32) = 5.86 days.

The longest chain of activities is five activities long; thus, m = 5 and, since ni = 9 activities (all
initial activities), the value of the serial–parallel indicator with Equation (8) is

SP =
m− 1
ni − 1

=
5− 1
9− 1

= 0.5

As σK and SP are known, we can calculate the slack admissibility threshold τ with Equation (6).
By assuming K0 = 1.5, then

τ = K0(1− SP)σK = 1.5(1− 0.5)5.86 = 4.39 days.

The only non-critical activity whose total slack is lower than 4.39 is activity 6 (s6 = 2 days). Activity
4 with a slack s4 = 5 > τ = 4.39 is not considered any further. Hence, the set of critical + subcritical
activities is J = {1, 2, 3, 5, 6, 7, 8, 9}, that is, all but activity 4. The cardinality of J (the number of elements
in the set) is then nj = 8.

Before calculating µp, it is necessary to calculate the value of a few more auxiliary variables.
nj = 8 act.; Σdj =7 × 10 + 8 = 78 days; Σσj =3 × 2 + 4 × 3 + 0.8 = 18.8 days; Σsj =7 × 0 + 2 = 2 days.
K1 = 1.12, as we are assuming symmetrical (normal) activity duration variability.

Np =

∑
d j

PD
=

78
50

= 1.56 paths, with Equation (10).

S = 1−

∑
s j

τ·n j
= 1−

2
4.39·8

= 0.94, with Equation (11).

With all this information, we can now easily calculate µp with Equation (9).

µp = PD·

1 + K1

√
Np

n j
·

∑
σ j∑
d j
·LN

(
S·Np

) = 50·

1 + 1.12

√
1.56

8
·
18.8
78
·LN(0.94·1.56)

 = 52.3 days.
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A much more accurate estimate of the average project duration with Monte Carlo simulation
would be 53.4 days; that is, we miss it by 1.1 days. However, our estimate is substantially closer than the
only estimate obtained (PD = 50 days, which is also the PERT estimate), and it was calculated manually.

Now, imagine we want to calculate the project duration standard deviation σp. First, we need to
calculate σJ with Equation (13).

σJ =

√
PD∑

d j
·

∑
σ2

j =

√
50
78
·

∑
(3·22 + 4·32 + 0.82) = 5.72 days.

Then, assuming K2 = −0.22 (symmetrical activity duration variability), we use Equation (12) to
calculate σp.

σp =

√
σ2

K + σ2
J

2
·

[
1 + K2·LN

(
S·Np

)]
=

√
5.862 + 5.722

2
·[1− 0.22·LN(0.94·1.56)] = 5.24 days.

The project duration standard deviation obtained by simulation yields 4.88 days. We observe
a deviation of just 0.36 days in this case. The only alternative estimate would have been the PERT
one, but it does not offer a solution when there are multiple critical paths. If we assume that there is
only a single critical path (as all critical paths intentionally had the same standard deviations in our
example), then

PERT σK =

√ ∑
one path

σ2
k =

√∑
(3·22 + 2·32) = 5.47 days,

which has a deviation of 0.59 days, that is, again worse than our σp estimate.
Finally, the same calculations could have been replicated but assuming activity duration variability

modeled with lognormal distributions. In this case, the values of K1 and K2 would change to 1.22 and
0.07, respectively. Additionally, before starting all calculations, the activity di and σi values would need
to be calculated with Equations (4) and (5). The results of these variables for all activities are displayed
in the rightmost part of Table 1 under the d′i and σ′i columns. Then, the deterministic project duration
(PD = 58.7 days) and the activity slacks (si) could have been calculated in the same way as normal
activity duration variability. Indeed, the rest of the calculation process is exactly analogous to the
previous example. The final results would have been as follows:

µp = 66.8 days (simulation estimate = 68.7 days) better than PD = 58.7 days.
σp = 18.3 days (simulation estimate = 18.4 days) better than PERT σK =18.9 days.

5. Analysis

In the previous section, we developed a manual example with the single purpose of illustrating
how the expressions would be implemented by practitioners. In this section, a much wider and
representative validation and performance analysis is conducted.

Our expressions depart from deterministic schedule information to estimate the first two moments
of the project duration distribution (µp and σp). As in the manual example, we again employ Monte
Carlo simulations to calculate the almost exact values of µp and σp. Then, the simulation estimates are
compared with those obtained with our expressions. However, in order to draw valid conclusions, we
use a wide benchmarking set of project schedules and model all their activities representatively.

5.1. Artificial Project Dataset

Network topology refers to the logical layout of a network (a project schedule). It defines the
way different activities (often referred to as nodes) are placed and interconnected with each other.
To test the quality of our µp and σp estimates, an artificial network dataset was used consisting of
4100 different networks (project schedules) with varied topologies. This dataset was developed by
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the Operations Research and Scheduling Research Group at Ghent University (Belgium). It can be
downloaded from http://www.projectmanagement.ugent.be/research/data (MT dataset in the “artificial
project data” section (MT = measuring time)).

This set contains 4100 activity-on-node networks with 32 activities each. However, two activities
out of the 32 are included simply to signpost the project start and end and are considered dummy
activities (zero duration). The network dataset was generated with the RanGen2 algorithm. RanGen2
is a robust random network generator capable of generating a wide range of network topologies, which
was validated in several studies [32,33]. Also, this very same network dataset was representatively
used in other research studies on earned value management (for example, References [31,34–36]) and
schedule risk analysis (for example, References [11,12,37]).

In particular, the network dataset was generated under pre-set values of four topological indicators:
the serial–parallel (SP), the activity distribution (AD), the length of arcs (LA), and the topological float
(TF). These four topological indicators were initially proposed by Tavares et al. [38] and later refined by
Vanhoucke et al. [33] and Vanhoucke [11]. More precisely, the SP indicator, introduced earlier, describes
how close a network is to a serial or parallel network. AD describes the distribution of activities in
the different schedule paths. LA measures the distance between two activities in the project network.
TF measures how dense a network is (the amount of topological slacks) at the topological level. The
values of these indicators all range between 0% and 100%, and they are considered representative
and accurate descriptors of a network topology. For the interested reader, the values of all these
indicators for the 4100 networks can be found in Appendix B of the Supplementary Materials (µp and
σp regression results file).

5.2. Activity Duration Distribution

There were not many studies analyzing which statistical distribution is the most suitable to
describe the distribution of the activity durations in a project schedule. Trietsch et al. [39] suggested
that both the activity duration distribution and the activity duration variability seemed to be fairly
well approximated by lognormal distributions. Hence, we also predominantly use the lognormal
distribution in our validation analysis. However, we also resorted to other distributions (e.g., normal,
uniform) to explore whether our expressions worked equally well with them. The second column of
Table 2 includes the 12 different distribution combinations used.

Table 2. Project dataset configurations of activity durations (one per set) and activity duration
variabilities (two per set). Act.—activity; Proj.—project.

Dataset Act. Dur. (di) Distribution Nº Proj. Nº act./
Proj. (ni)

Activity Duration Variability 1 Activity Duration Variability 2

I Lognormal (µ = 2, σ = 1) 4100 30 Normal with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)
II Lognormal (µ = 2, σ = 1) 4100 30 Normal with CVi = 0.1 (constant) Lognormal with CVi = 0.1 (constant)
III Lognormal (µ = 2, σ = 1) 4100 30 Normal with CVi = 0.3 (constant) Lognormal with CVi = 0.3 (constant)
IV Lognormal (µ = 2, σ = 1) 4100 15 Normal with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)
V Lognormal (µ = 0.25, σ = 0.005) 4100 30 Normal with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)
VI Lognormal (µ = 0.25, σ = 0.75) 4100 30 Normal with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)
VII Lognormal (µ = 6, σ = 0.12) 4100 30 Normal with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)
VIII Lognormal (µ = 6, σ = 1.5) 4100 30 Normal with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)
IX Normal (µ = 25, σ = 7.5) 4100 30 Normal with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)
X Normal (µ = 25, σ = 7.5) 4100 30 Normal with CVi = 0.1 (constant) Lognormal with CVi = 0.1 (constant)
XI Normal (µ = 25, σ = 7.5) 4100 30 Normal with CVi = 0.3 (constant) Lognormal with CVi = 0.3 (constant)
XII Uniform (l = 0, u = 100) 4100 30 Uniform with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)
XIII Constant (di = 10) 4100 30 Normal with CVi = Uniform (l = 0.1, u = 0.3) Lognormal with CVi = Uniform (l = 0.1, u = 0.3)

To choose the parameter values of each dataset combination presented in Table 2, a preliminary
study was conducted of 101 real construction projects comprising over 6000 activities. The intention
was to choose some distribution parameter values that emulated those of real projects. The 101
project schedules were retrieved from a real project dataset developed by Batselier and Vanhoucke [40]
and Vanhoucke et al. [41]. These schedules contained both planned and actual (as-built) durations.
From both sets of durations and from each project, activity log duration values were taken and then
their average and standard deviation calculated. Later, these two moments were used to generate
activity duration distributions that seemed as realistic as possible in our simulations. In particular,

http://www.projectmanagement.ugent.be/research/data
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they were used to generate the lognormally distributed (deterministic) activity duration values of the
30 non-dummy activities in the 4100 schedules. For the interested reader, the values of both moments
(µ and σ) of the activity log durations for the 101 real projects can be found in Appendix A of the
Supplementary Materials (Table S1). For further details about the real projects, the reader is referred to
the individual project cards at OR-AS.be [42].

5.3. Activity Duration Variability

Having set the (initial) activity durations, the activity duration variability was modeled with normal
distributions and lognormal distributions predominantly (although a few simulations were also run
using uniform distributions, see dataset XII in Table 2). Normal distributions were used because they are
the most common in academic settings and theoretical studies. Lognormal distributions were also used
because, as explained earlier, this distribution seems to be the closest for modeling real construction
project activities. Furthermore, building on the recent findings of Ballesteros-Pérez et al. [30] for
construction projects, we assumed that the median of our distributions would equal the initial
(deterministic) activity durations defined in the previous subsection. This would ensure that half of
the time the activities would end soon and half of the time late. This would avoid biasing the results
toward predominantly early or late projects.

Next, activity duration variability was reproduced by randomly allocating a coefficient of
variation between 0.10 (low variability) and 0.3 (high variability) to each activity as measured by
Ballesteros-Pérez et al. [30] (in log10 scale). The median in the normal distribution is equal to the
mean, which indicates that the stochastic activity duration values were generated with the following
expression:

di ∼ µi·Normal−1 (mean = 1, st.dev. = CVi). (14)

In the expression above, µi represents the default (deterministic) duration of each activity (defined
in the previous subsection). Normal−1(·) represents the quantile function of the normal distribution,
that is, the one in charge of generating the normally distributed stochastic values. CVi is the coefficient
of variation randomly chosen for each activity in the range [0.1, 0.3]. It is worth noting that this range
of CVi values in natural scale produces significantly less variability than in log scale (see Equation (15)).
However, values of CVi > 0.3 are very likely to generate negative activity durations, which makes no
sense and should be avoided.

In the case of lognormally distributed activity duration variability, the median does not coincide
with the distribution mean unless it is transformed into a log scale first. That is why the following
expression was adopted to generate thousands of (stochastic) activity duration values for each activity
in the Monte Carlo simulations:

di ∼ µi·eNormal−1(mean=0, st.dev.=2.302·CVi). (15)

As before, the coefficient 2.302 is included in Equation (15) to change the base from 10 to e.
Variables µi, Normal−1(·), and CVi are analogous to those in Equation (14).

5.4. Parameter Configuration Summary

In the proposed simulation framework, all activities were scheduled to start as soon as possible,
and activity preemption was not allowed to avoid losing (simulation) control over the impact of activity
duration variability on µp or σp. All activity precedence relationships were assumed to be finish–start.
The latter choice, however, is not relevant, as the other three types of precedence (start–start, start–finish,
and finish–finish) can be easily reformulated as a finish–start relationship (or the other way around)
in any schedule (see Lu and Lam [43] for a comprehensive treatment of precedence relationship
transformations).
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Hence, 13 different parametrizations of the same 4100-network dataset were finally used, with
different activity duration distributions, and two activity duration variabilities per set. They are all
summarized in Table 2.

To summarize, the different simulation combinations differed in one or more of the
following aspects:

• By the distribution used to generate the initial (deterministic) activity duration values. Most of
the time lognormal distributions were used (datasets I–VIII); sometimes, normal distributions
(datasets IX–XI) were used, as well as a uniform (dataset XII), and even a constant distribution
(dataset XIII, which assumed all activities lasted 10 days on average). Of particular interest are
datasets V to VIII which approximately represent the maximum and minimum values found in
the first two (log) moments of the 101 real projects.

• By the number of activities in the schedule. In all cases other than dataset IV, the 30 non-dummy
activities per network were used. However, a case with fewer activities was also considered to be
sure that the network size (number of activities) did not affect the performance of our expressions.

• By distribution (normal, lognormal, and uniform) and level of activity duration variability (CVi).
These are represented in the central and rightmost blocks of Table 2. Some assumed CVi = 0.1
always and some assumed CVi = 0.3 always, whereas most assumed uniformly distributed CVi
values between a lower bound (l = 0.1) and an upper bound (u = 0.3).

Overall, the 13 dataset parametrizations seem to be representative of any possible real project. If
our expressions for estimating µp and σp work well with these 13 datasets, then they must also work
reasonably well in other contexts. For each of the 4100 projects in the 13 datasets, 10,000 simulations
were run assuming normal activity duration variability and another 10,000 assuming lognormal
duration variability. Results are discussed next.

6. Results

The detailed project results for all 13 datasets can be found in Appendix B of the Supplementary
Materials. Here, we present some summary results in Tables 3 and 4.

Table 3. Project duration estimates (µp/PD) performance results for the 13 project datasets. MAE—mean
absolute error; MSE—mean squared error; red.—reduction.

Activity Duration Variability 1 Activity Duration Variability 2

Dataset R R2 K1
MAE × 10−3

(red.)
MSE × 10−3

(red.)
R R2 K1

MAE × 10−3

(red.)
MSE × 10−3

(red.)

I 0.91 0.83 1.12 4.4 (56%) 0.1 (88%) 0.92 0.85 1.22 19.1 (64%) 0.9 (85%)
II 0.90 0.81 1.12 1.3 (50%) 0.0 (87%) 0.92 0.85 1.22 5.0 (61%) 0.1 (82%)
III 0.92 0.84 1.12 8.0 (59%) 0.2 (94%) 0.96 0.92 1.22 27.1 (73%) 1.5 (86%)
IV 0.84 0.71 1.12 5.5 (42%) 0.1 (75%) 0.86 0.74 1.22 26.6 (46%) 1.8 (72%)
V 0.96 0.93 1.12 8.1 (71%) 0.2 (95%) 0.96 0.93 1.22 20.7 (76%) 1.3 (93%)
VI 0.91 0.83 1.12 4.1 (59%) 0.1 (92%) 0.95 0.90 1.22 16.4 (72%) 0.7 (85%)
VII 0.97 0.94 1.12 3.9 (77%) 0.1 (95%) 0.97 0.94 1.22 17.9 (78%) 0.9 (95%)
VIII 0.86 0.74 1.12 4.8 (44%) 0.1 (77%) 0.86 0.74 1.22 21.7 (50%) 1.3 (75%)
IX 0.97 0.93 1.12 3.4 (74%) 0.0 (95%) 0.97 0.94 1.22 16.1 (78%) 0.7 (94%)
X 0.97 0.93 1.12 1.1 (67%) 0.0 (92%) 0.97 0.95 1.22 4.4 (74%) 0.1 (90%)
XI 0.96 0.93 1.12 6.4 (75%) 0.2 (95%) 0.97 0.95 1.22 29.7 (78%) 2.4 (92%)
XII 0.95 0.90 1.12 4.0 (70%) 0.1 (94%) 0.96 0.93 1.22 18.0 (75%) 0.8 (92%)
XIII 0.96 0.93 1.12 8.6 (71%) 0.3 (95%) 0.96 0.93 1.22 20.9 (76%) 1.3 (92%)

Avg. 0.93 0.87 1.12 4.9 (63%) 0.1 (90%) 0.94 0.89 1.22 18.3 (69%) 1.1 (87%)
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Table 4. Project duration standard deviation estimates (σp/σK) performance results for the
13 project datasets.

Activity Duration Variability 1 Activity Duration Variability 2

Dataset R R2 K2
MAE × 10−3

(red.)
MSE × 10−3

(red.)
R R2 K2

MAE × 10−3

(red.)
MSE × 10−3

(red.)

I 0.77 0.59 −0.22 28.2 (26%) 2.2 (64%) 0.76 0.58 0.07 43.6 (19%) 8.6 (49%)
II 0.62 0.39 −0.22 18.4 (8%) 1.2 (44%) 0.58 0.33 0.07 27.7 (−5%) 2.2 (28%)
III 0.73 0.53 −0.22 33.1 (36%) 2.5 (66%) 0.82 0.67 0.07 46.4 (1%) 5.8 (49%)
IV 0.70 0.48 −0.22 31.2 (12%) 2.5 (49%) 0.75 0.56 0.07 44.4 (16%) 9.7 (49%)
V 0.92 0.84 −0.22 22.6 (54%) 1.7 (80%) 0.83 0.70 0.07 21.0 (25%) 1.3 (62%)
VI 0.77 0.60 −0.22 26.6 (33%) 1.9 (66%) 0.76 0.58 0.07 40.1 (26%) 8.5 (50%)
VII 0.92 0.85 −0.22 18.5 (65%) 1.0 (89%) 0.86 0.74 0.07 20.2 (36%) 1.3 (70%)
VIII 0.57 0.33 −0.22 29.9 (9%) 3.3 (37%) 0.73 0.54 0.07 45.6 (12%) 11.1 (45%)
IX 0.88 0.78 −0.22 20.5 (57%) 1.2 (82%) 0.89 0.79 0.07 23.7 (39%) 2.4 (70%)
X 0.91 0.82 −0.22 11.1 (58%) 0.4 (85%) −0.48 0.23 0.07 37.8 (−19%) 4.2 (−49%)
XI 0.94 0.88 −0.22 21.4 (67%) 1.3 (89%) 0.90 0.82 0.07 17.4 (49%) 0.8 (76%)
XII 0.82 0.67 −0.22 25.9 (47%) 2.0 (73%) 0.82 0.67 0.07 32.6 (29%) 4.5 (51%)
XIII 0.92 0.85 −0.22 23.7 (54%) 1.7 (80%) 0.58 0.34 0.07 27.6 (1%) 2.3 (28%)

Avg. 0.81 0.66 −0.22 23.5 (40%) 1.8 (70%) 0.68 0.58 0.07 32.5 (18%) 4.8 (44%)

Tables 3 and 4 compare the actual values (obtained by simulation) with the estimated values
(with our expressions) of µp and σp values in the form of ratios, that is, µp/PD and σp/σK. There are
two reasons for this. Firstly, in this way, projects of different durations can be compared under the
same scale. Secondly, we can also compare how much better our estimates perform compared to
the PERT estimates. As described earlier, PD is the deterministic project duration but also the PERT
µp estimate. The PERT project duration standard deviation estimate, on the other hand, cannot be
produced with PERT when there is more than one critical path. That is why we assumed that the
best possible PERT-like estimate would be σK, although we ourselves proposed it for the first time in
Equation (7).

Let us review all the information displayed in Tables 3 and 4. The first column gives an indication
of the dataset analyzed (by row). Each dataset contained 4100 projects and they were all analyzed
under two different activity duration variabilities (central and rightmost blocks of Tables 3 and 4).
The first block (activity duration variability 1) mostly coincides with normally distributed duration
variability except for dataset XII, which was uniformly distributed. The rightmost block (activity
duration variability) always coincides with lognormally distributed activity duration variability. The
bottom row in both tables displays the column averages for easier data interpretation.

Inside both the central and rightmost blocks, the same information is found. Pearson’s coefficient
of correlation (R) for µp is in Table 3 and that for σp is in Table 4, which shows the degree of linear
correlation between the actual and estimated 4100 µp/PD and σp/σK values, respectively, in each dataset.
The coefficient of determination (R2) quantifies the proportion of the (actual vs. estimated µp/PD and
σp/σK) variability described by our empirical estimates. R2 is, of course, the squared version of R;
however, as it offers complementary information, it was deemed useful to include both. Finally, the
last two columns in the central and rightmost blocks display the mean absolute error (MAE) and the
mean squared error (MSE), both in 10−3 scale, calculated as follows:

MAE =
1

4100

4100∑
p=1

∣∣∣Yp − Ŷp
∣∣∣, (16)

MSE =
1

4100

p=1∑
4100

(
Yp − Ŷp

)2
, (17)

where Equations (16) and (17) were calculated for the 13 datasets. Yp corresponds to the actual value of
µp (in Table 3) or σp (in Table 4) for each project p (all of them obtained by simulation). Ŷp corresponds
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to our estimated values of µp (in Table 3) or σp (in Table 4). In addition, all MAE and MSE values in
Tables 3 and 4 are also accompanied by an indication of the reduction achieved in MAE and MSE in
percentage terms when using our µp (in Table 3) or σp (in Table 4) estimates, compared to using PD or
σK, respectively. These values are included within parentheses.

Multiple readings can be made from Tables 3 and 4. For the sake of clarity, we limit ourselves to
the most essential. A quick inspection of the first columns of Table 3 shows that values of R > 0.90
are achieved for both duration variabilities. R2 values are also very close to 90%. Overall, this means
that there is a high degree of correlation between our estimates and the actual values. Also, in Table 3,
inspection of the MAE confirms that our expressions manage to reduce the variability from the PERT
estimates by around two-thirds (63% and 69%). However, the reduction in the MSE is even higher (90%
and 87%). This means that, when using our estimates, values can be expected to be around two-thirds
closer to the actual values compared to the deterministic project duration estimates, but also that the
amount of large deviations (measured by squared errors) would be significantly reduced.

Results in Table 4 are still good, but clearly not as good as those in Table 3. In this table, our project
duration standard deviation estimates are not indisputably superior when compared to σK (which, it
must be borne in mind, are already better estimates than PERT’s). Still, in the case of normal variability
(central block), we can observe R > 0.80 and R2 values again around two-thirds. The absolute errors
are reduced by 40% on average and the squared errors by around 70%. As σK is already better than the
PERT estimate, we can expect our estimates to double (at the very least) PERT’s accuracy in absolute
terms concerning its project duration standard deviation estimate. In squared terms, we could expect
our estimates to improve PERT’s estimate by around 75% at least.

Results on the lognormal variability (rightmost block in Table 4) also improve the σK estimates,
but not as much as hoped. Indeed, there are a couple of datasets (II and X) which worsen the σK
estimates (negative reduction values) in the MAE, MSE, or both. These datasets coincide with the
configurations with lower activity duration variability (CVi = 0.10). However, configurations with
higher variability (datasets III and XIII, with CVi = 0.3) do not report much better results compared to
the case with average variability. Overall, this means that the expression for estimating σp, although
promising because of its decent correlation values, still needs some work. This is something we already
disclosed when introducing it; however, this will probably come at the expense of complicating it
numerically. This is an option for future research.

Tables 3 and 4 also contain two columns each reporting the values of coefficients K1 and K2.
During the design stage, we experimented by letting these coefficients vary freely in order to minimize
the MSE in every dataset. Results of these alternative scenarios can be found in Appendix D of the
Supplementary Materials (Tables S3 and S4). It can be seen, however, that the reduction from making
coefficients K1 and K2 constant did not have a substantial impact on the expressions’ performance.

Finally, for those visual readers, Figures 2 and 3 represent the regression graphs of the first dataset
(dataset I). Dataset I can be considered the most representative of all datasets, as it approximately
presents the average parameters and distribution configurations.

In Figures 2 and 3, the top graphs represent the regression results in ratio scale. On observing the
µp estimates (in Figure 2), it is evident that they are superior to the σp estimates (in Figure 3) as the
datapoint clouds of the former follow a clearer bisector pattern. The other four graphs (the ones at
the bottom of each figure), represent the correlations of estimated and actual µp and σp values in the
natural scale instead of ratios (not homogenized by project duration). Arguably, the effect of the project
size (duration) plays an important role as it gives the impression of obtaining higher correlations than
in ratio scale. Still, these graphs show that the empirical expressions proposed in this paper work
quite satisfactorily.

A final comment concerns the last two conditions of a representative regression analysis:
independence of errors (normally distributed residuals) and constant variance of errors across
observations (homoscedasticity). Regarding the first condition, we must be aware that our expressions
are tested in a benchmark network dataset. The projects in this dataset do not follow a perfectly regular
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(random) pattern. For example, many of them (approximately one-third, but dependent on each
dataset parameter configuration) did not produce a project duration extension at all (µp = PD). This
means that, in those cases, there was a clearly dominant critical path, and our expressions anticipated
it perfectly. However, although this aspect was intrinsically good (demonstrating that our expressions
work as they are supposed to), it also artificially increased the residuals kurtosis (a higher than usual
density of µp/PD = 1 and σp/σK =1 values). This artificially produced a slight departure from normality
in the quantile–quantile (QQ) plots of some datasets (a sample of which is included in Appendix C of
the Supplementary Materials for dataset I). Still, all things considered, the QQ plots showed that the
residual normality assumption was perfectly tenable.

Regarding the homoscedasticity check, the standardized estimates versus standardized residual
graphs were also drawn for all datasets (Appendix C in the Supplementary Materials shows some for
dataset I). The gunshot pattern found in all of them evidenced an absence of datapoint directionality
which eventually confirms that there was hardly any heteroscedasticity. Overall, all regression
conditions were met, indicating that our estimates are unbiased and consistent.Appl. Sci. 2020, 10, 654 17 of 22 
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Figure 2. Dataset I µp regressions with normal (a) and lognormal (b) activity duration variability.
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7. Discussion

In this paper, we proposed several expressions that allow calculating the overall project duration
average (µp) and standard deviation (σp) from purely deterministic schedule information. Calculations
are quite straightforward and were exemplified step by step by means of a small project network in
Section 4. These calculations can be implemented either manually or in a simple spreadsheet. The only
requirement is that the scheduler is familiar with the critical path algorithm. Basically, identifying the
critical activities of a project involves the calculation of the activities’ earliest and latest start dates. The
difference between earliest and latest start dates is equal to the activities’ total slacks (si). Eventually,
by comparing the size of si against the slack admissibility threshold τ from Equation (6), we can
discriminate which activities are critical or subcritical. Hence, any basic spreadsheet that sequences
activities departing from the activity durations and precedencies can implement the formulae proposed
here. The only requirement is to follow the calculations in the same exact order used in the small project
example. For those project schedulers who are not familiar with how to calculate the critical of bigger
projects, it is always possible to resort to a commercial scheduling software (e.g., Microsoft Project,
Oracle Primavera) to extract the values of the activity slacks (si). Then, the rest of the calculations can
be implemented in a spreadsheet, even manually.

However, beyond obtaining a more accurate estimate of the project duration average, there are
other potentially interesting practical applications of the estimates proposed in this paper. Obviously,
the first is the possibility of calculating a more accurate average project duration estimate (µp) from basic
deterministic schedule information with hardly any extra effort. This improved estimate will allow
project managers, for instance, to plan execution and resource allocation better with lower margins of
error. Also, we anticipated that calculating both µp and σp values could allow us to make probabilistic
inferences about any likely project duration (X). More precisely, we could say that z =

(
X − µp

)
/σp.
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Then, assuming X follows a normal distribution, the value of z could be looked up in a standard normal
distribution table and an (approximated) project completion date inferred.

There are other project management tools and techniques that can also benefit from more
accurate µp and σp values. Earned value management (EVM), for example, is a deterministic project
monitoring and control technique that also produces project duration forecasts, named EAC(t) (see
Ballesteros-Pérez et al. [31] for a recent and comprehensive comparison of the most relevant EAC(t)
expressions). All possible parametrizations of EAC(t) include a deterministic estimate of the planned
duration PD which, after this research, could be replaced by µp, enhancing their overall accuracy.
Similarly, schedule risk analysis (SRA) is a proactive planning and monitoring technique which ranks
project activities and determines their relative importance and exerts different levels of project control
on them. SRA uses Monte Carlo simulations to calculate its metrics because, so far, there is no other way
of calculating their parameters from deterministic schedule information. For example, the significance
index (SI) metric uses E(PD) (the expectation of the project duration) which is our µp here. Also, the
schedule sensitivity index (SSI) and the criticality slack sensitivity index (CSS) both use σp. There
are still more variables to calculate (for example, the probability of an activity being critical), but the
steps taken in this piece of research promise to avoid the use of computer-intensive simulations when
calculating these metrics in the future.

On the other hand, a first apparent limitation of our performance measurement approach is that
we predominantly tested our expressions with activity durations modeled by normal and lognormal
distributions, and just testimonially with other distributions. The advanced reader may wonder
whether the performance results from Tables 3 and 4 might have differed significantly if other
distributions were used. In this vein, Hajdu and Bokor [44] concluded that the maximum project
duration deviation when using alternative activity distributions was generally well below 10%. This
finding resonated with observations from other earlier studies on PERT. For example, MacCrimmon
and Ryavec [45] showed in 1964 that, if triangular distributions for modeling activity durations were
chosen instead of beta distributions, the probabilistic project duration would have produced almost
identical results. All these results are also aligned with our K1 coefficient values in Equation (9) for
calculating µp. It was observed that the regression coefficient values (K1) that minimize the MSE were
1.12 and 1.22 for symmetrical and asymmetrical distributions, respectively. Hence, irrespective of the
specific distribution modeling the activity duration variability, what matters is the order of magnitude
of each activity’s first two moments (µi and σi). That is why they constitute the most relevant input
information in our expressions.

Another practical limitation of our expressions would be how they can be used in real projects when
no activity duration variability estimates (σi) are available. In this regard, Ballesteros-Pérez et al. [30]
measured that the average activity duration variability in construction projects remains generally close
to CVi = 0.20. Hence, if only average activity duration values (µi) are known, a project scheduler could
assume that σi = CVi ·µi· = 0.20·µi for all its activities in the case of symmetrical (for example, normal)
duration variability. If they wanted to simulate more realistic (for example lognormal) asymmetrical
activity variability, then they would need to resort to Equations (4) and (5) by replacing CVi with 0.20
and proceeding as usual.

8. Conclusions

Deterministic scheduling techniques, such as the Gantt chart and the critical path method,
are still the most common in practical settings these days. However, these techniques neglect activity
duration variability which exacerbates a phenomenon known as the merge event bias. This bias is
shared with the PERT duration estimates and is generally translated into average project durations
being underestimated and standard deviations being overestimated. More recently, many advanced
non-deterministic scheduling techniques were proposed. However, they are significantly more complex
and highly computer-intensive, they require extensive precalibration information, and/or practitioners
are not adequately trained to implement them. As a result, their adoption in practice is quite limited.
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In this paper, we proposed a series of empirical expressions that allow construction project
schedulers to come up with better estimates of the average project duration (µp) and the project
duration standard deviation (σp). These estimates clearly outperform the analogous classical PERT
estimates with the need for neither extra (deterministic) scheduling information nor a substantial
additional calculation effort. For testing the superiority of our estimates, a wide and representative
benchmark dataset containing 4100 networks (schedules) was employed. The activity durations and
their variabilities were modeled with different statistical distributions and different parametrizations.

In this study, we commented on some apparent limitations of our estimates and how to overcome
them. Finally, we also extensively discussed how theµp and σp estimates can be used in real construction
contexts and/or in combination with other techniques (such as earned value management, and schedule
risk analysis) to enhance accuracy or reduce calculation effort.

Future avenues of research are plentiful. For example, the current estimates work well with
fewer than five critical and subcritical parallel paths (Np < 5). Future expressions may want to use
higher-degree polynomials of the variable LN(Np) to improve the accuracy of our µp and σp estimates.
Similarly, the accuracy of the σp estimate, when lognormal activity duration variability is assumed,
could clearly be improved. Future research may want to consider extending the array of estimates that
can be (deterministically) calculated. A fine example would be approximating the probability of an
activity being critical (the criticality index) with deterministic calculations. This would greatly benefit
the field of schedule risk analysis by allowing many metrics to be calculated with computer simulation.
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