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Abstract. A theorem of Z. Arad and E. Fisman establishes that if A and
B are two non-trivial conjugacy classes of a finite group G such that
either AB = A ∪ B or AB = A−1 ∪ B, then G cannot be a non-abelian
simple group. We demonstrate that, in fact, 〈A〉 = 〈B〉 is solvable, the
elements of A and B are p-elements for some prime p, and 〈A〉 is p-
nilpotent. Moreover, under the second assumption, it turns out that A =
B. This research is done by appealing to recently developed techniques
and results that are based on the Classification of Finite Simple Groups.
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1. Introduction

The well-known and long-standing conjecture of Arad and Herzog claims that
the product of two non-trivial conjugacy classes of a finite non-abelian simple
group cannot be a conjugacy class. Taking one further step, several authors
have studied more general conditions on the product of conjugacy classes
that cannot either happen in a non-abelian simple group. This occurs, for
instance, when the product of two conjugacy classes is the union of certain
limited sets of conjugacy classes (see for instance [2,3,5]).

Our contribution is motivated by the new techniques and results that
have been developed in the last few years (requiring the Classification of
Finite Simple Groups) in this direction. These results not only provide the
non-simplicity of a group but the solvability of certain subgroups generated by
the conjugacy classes when certain conditions on their products are assumed.
This is the case, for example, of the main results of [4,6,8].

Among these results, Arad and Fisman proved that when A and B are
two non-trivial conjugacy classes of a group G such that either AB = A ∪ B
or AB = A−1 ∪ B, then G cannot be non-abelian simple [1]. They used
elementary methods to prove it, however, the new outlined approaches allow
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us to revisit this theorem and supply solvability and structural properties in
the group. We prove the following.

Theorem A. Let A and B be conjugacy classes of a finite group G and suppose
that AB = A ∪ B. Then 〈A〉 = 〈B〉 is solvable. Furthermore, the elements of
A and B are p-elements for some prime p and 〈A〉 is p-nilpotent.

Theorem B. Let A and B be conjugacy classes of a finite group G and suppose
that AB = A−1 ∪ B with A �= A−1. Then A = B and 〈A〉 is solvable.
Furthermore, the elements of A are p-elements for some prime p and 〈A〉 is
p-nilpotent.

The case A = B in Theorem B, that is, A2 = A ∪ A−1, was already
studied in Theorem D of [4]. This asserts that, under this hypothesis, 〈A〉 is
solvable and the elements of A are p-elements. We will improve this result by
showing that 〈A〉 is in addition p-nilpotent. Moreover, for proving Theorem B,
we also need a new solvability criterion concerning the product of a conjugacy
class and its inverse class, which has interest on its own.

Theorem C. Let A be a conjugacy class of a finite group G such that AA−1 =
1 ∪ A ∪ A−1. Then 〈A〉 = AA−1 is an elementary abelian group.

The above result provides further evidence of the following conjecture
posed in [6]: If A and B are conjugacy classes of a group such that AA−1 =
1∪B ∪B−1, then 〈A〉 is solvable. The non-simplicity of G and the solvability
of 〈A〉 for some specific cases were obtained in Theorems A and C of [5] and
also in Theorem C of [7].

The proofs of Theorems A and B are based on the Classification. How-
ever, the proof of Theorem C is elementary. All groups are supposed to be
finite and the notation is standard and essentially follows that appearing in
[1].

2. Preliminary Results

We state some preliminary results. The first one is essential for proving both
Theorems A and B, and part (a) requires the Classification of Finite Simple
Groups. However, part (b) does not need it.

Theorem 2.1. Let G be a finite group and let N be a normal subgroup of G.
Let x ∈ G be such that all elements of xN are conjugate in G. Then:
(a) N is solvable.
(b) If x is a p-element for some prime p, then N has a normal p-complement.

Proof. This is Theorem 3.2 (a) and (c) of [8]. �

The following property, however, is elementary and is used for proving
Theorem B. Observe that in the particular case of Theorem C, this property
is trivial. This situation is addressed in [5].

Lemma 2.2. Let K and D be conjugacy classes of a finite group G such that
KK−1 = 1 ∪ D ∪ D−1. If K is real, then D is real.
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Proof. See Lemma 3.1 of [5]. �

Our approach mainly utilizes the complex group algebra. We denote by
C[G] the complex group algebra of a group G over the complex field C. Let
K be a conjugacy class of G and denote by ̂K the class sum of the elements
of K in C[G]. Let g1, . . . , gk be representatives of the conjugacy classes of a
finite group G. Let ̂S =

∑k
i=1 ni

̂gGi with ni ∈ N for 1 ≤ i ≤ k. We write

(̂S, ̂gGi ) = ni following [1]. Nevertheless, our notation for class sums differs
from that appearing in [1] in order to facilitate the reading. The following
properties are well known.

Lemma 2.3. If D1, D2 and D3 are conjugacy classes of a finite group G, then

(i) (̂D1
̂D2, ̂D3) = ( ̂D−1

1
̂D−1
2 , ̂D−1

3 )

(ii) (̂D1
̂D2, ̂D3) = |D2||D3|−1(̂D1

̂D−1
3 , ̂D−1

2 )

(iii) (̂D1
̂D2, ̂D1)= |D2||D1|−1(̂D1

̂D−1
1 , ̂D−1

2 )=(̂D2
̂D−1
1 , ̂D−1

1 )=( ̂D−1
2

̂D1, ̂D1).

Proof. This easily follows, for instance, from Theorem 4.6 of [9]. �

3. Proofs

We start by proving Theorem C, which will be used for proving Theorem B.

Proof of Theorem C. The case A = A−1 is easy and known, so we can assume
that A �= A−1. By Lemma 2.3 we have

m = ( ̂A ̂A−1, ̂A) = ( ̂A ̂A−1, ̂A−1) = ( ̂A2, ̂A) = ( ̂A−1
2
, ̂A−1),

where m is a positive integer, and so we can write

̂A ̂A−1 = |A|̂1 + m ̂A + m ̂A−1

̂A2 = m ̂A + α ̂A−1 + ̂T

̂A−1
2

= m ̂A−1 + α ̂A + ̂T−1

(1)

where α ≥ 0, and ̂T is a sum of conjugacy classes taking into account the
multiplicities and such that (̂T , ̂L) = ( ̂T−1, ̂L) = 0 for L ∈ {1, A,A−1}. For
convenience, we write

̂T = l1̂L1 + · · · + lŝLs

where Li are distinct conjugacy classes of G and li the corresponding multi-
plicities, and ̂T−1 denotes l1

̂L−1
1 + · · · + ls

̂L−1
s .

Suppose first T �= ∅ and calculate

̂A2
̂A−1

2
= (m ̂A + α ̂A−1 + ̂T )(m ̂A−1 + α ̂A + ̂T−1)

= m2
̂A ̂A−1 + mα ̂A2 + m ̂A ̂T−1 + mα ̂A−1

2
+ α2

̂A−1 ̂A

+α ̂A−1 ̂T−1 + m ̂T ̂A−1 + α ̂T ̂A + ̂T ̂T−1.



257 Page 4 of 12 A. Beltrán et al. MJOM

Consequently, from the above equation, we observe

( ̂A2
̂A−1

2
,̂1) = m2|A| + α2|A| + l1|L1| + · · · ls|Ls|. (2)

On the other hand,

( ̂A ̂A−1)2 = (|A|̂1 + m ̂A + m ̂A−1)(|A|̂1 + m ̂A + m ̂A−1)

= |A|2̂1 + |A|m ̂A + |A|m ̂A−1 + |A|m ̂A + m2
̂A2 + m2

̂A ̂A−1

+m|A| ̂A−1 + m2
̂A−1 ̂A + m2

̂A−1
2
.

Thus,
(( ̂A ̂A−1)2,̂1) = |A|2 + 2m2|A|. (3)

By joining Eqs. (2) and (3) we obtain

l1|L1| + · · · + ls|Ls| = |A|2 + (m2 − α2)|A| (4)

and from Eq. (1) we have

l1|L1| + · · · + ls|Ls| = |A|2 − (m + α)|A|. (5)

Hence, from Eqs. (4) and (5), we conclude that m = α − 1.
On the other hand, we calculate

̂A( ̂A ̂A−1) = ̂A(|A|̂1 + m ̂A + m ̂A−1)

= |A| ̂A + m(m ̂A + α ̂A−1 + ̂T ) + m(|A|̂1 + m ̂A + m ̂A−1)

= m|A|̂1 + (|A| + 2m2) ̂A + (αm + m2) ̂A−1 + m ̂T

(6)

and
̂A2

̂A−1 = (m ̂A + α ̂A−1 + ̂T ) ̂A−1

= m(|A|̂1 + m ̂A + m ̂A−1) + α(m ̂A−1 + α ̂A + ̂T−1) + ̂T ̂A−1

= |A|m̂1 + (m2 + α2) ̂A + (m2 + αm) ̂A−1 + α ̂T−1 + ̂T ̂A−1.

(7)

So, from Eqs. (6) and (7) we conclude that T = T−1 and m = α + β
for some β ∈ N

∗, a contradiction. This contradiction implies that T = ∅, and
hence A2 = A ∪ A−1.
Now we prove that 〈A〉 is elementary abelian. Indeed, we have A3 = AA2 =
A(A∪A−1) = A2∪AA−1 = 1∪A∪A−1, so we deduce that 〈A〉 = 1∪A∪A−1.
In particular, all non-trivial elements of 〈A〉 have the same order, and this
forces 〈A〉 to be p-elementary for some prime p. Finally, we prove that 〈A〉 is
abelian. Put N = 〈A〉 and let x ∈ A. Observe that |xN | divides |A| = |xG|,
but on the other hand, |xN | also divides |N | = 1 + 2|A|. This implies that
|xN | = 1, and hence N is abelian. �

Examples. The smallest group for Theorem C with A non-trivial and real is
the symmetric group on 3 letters with the conjugacy class of 3-cycles. The
smallest example for Theorem C with A non-real is the non-abelian group of
order 21, G = 〈x, y | xy = x2, x7 = 1〉, when we consider the conjugacy class
A = {x, x2, x4} where 〈A〉 = 〈x〉 ∼= Z7.
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We restate Theorems A and B in terms of the theorems appearing in
[1]. We will divide the proofs into several steps. Although Steps 1 and 4 are
identical to those appearing in [1] we are including again their proofs for the
reader’s convenience.

Theorem A. Let D1 and D2 be conjugacy classes of a finite group G and
suppose that D1D2 = D1 ∪ D2. Then 〈D1〉 = 〈D2〉 is solvable. Furthermore,
the elements in D1 and D2 are p-elements for some prime p and 〈D1〉 is
p-nilpotent.

Proof. First, let us prove 〈D1〉 = 〈D2〉 by induction on |G|. If G = 〈D1〉 =
〈D2〉 the proof is finished. Suppose, for instance, that 〈D1〉 < G and write
G = G/〈D1〉. Then D1D2 = D1 ∪ D2, which implies that D2 = 1, and hence
〈D2〉 ⊆ 〈D1〉. Now, if we consider the factor group G/〈D2〉, by arguing as
above we get 〈D1〉 ⊆ 〈D2〉.

We continue the proof by induction on |G|. We write ̂D1
̂D2 = n1

̂D1 +
n2

̂D2 with n1, n2 ∈ N
∗.

Step 1: ̂D1
̂D−1
2 = n1

̂D1 + n2
̂D−1
2 and Di = D−1

i for 1 ≤ i ≤ 2.

By Lemma 2.3 (iii), n1 = (̂D1
̂D2, ̂D1) = (̂D1

̂D−1
2 , ̂D1) and n2 = (̂D1

̂D2, ̂D2) =

(̂D1
̂D−1
2 , ̂D−1

2 ). So ̂D1
̂D−1
2 = n1

̂D1 + n2
̂D−1
2 + ̂T where ̂T is a sum of classes

(counting multiplicities) with (̂T , ̂L) = 0 for L ∈ {D1,D
−1
2 }. Since

n1|D1| + n2|D−1
2 | = n1|D1| + n2|D2| = |D1||D2| = |D1||D−1

2 |
= n1|D1| + n2|D−1

2 | + |T |,
then ̂T = 0.

In addition,

(n1
̂D1 + n2

̂D−1
2 )̂D2 = (̂D1

̂D−1
2 )̂D2 = (̂D1

̂D2) ̂D−1
2 = (n1

̂D1 + n2
̂D2) ̂D−1

2 .

So ̂D1
̂D−1
2 = ̂D1

̂D2 or equivalently n1
̂D1 +n2

̂D−1
2 = n1

̂D1 +n2
̂D2 then

D2 = D−1
2 and similarly D1 = D−1

1 .
Step 2: We have

̂D1

2
= |D1|̂1 + n1|D1||D2|−1

̂D2 + s1 ̂D1 + ̂M1

̂D2

2
= |D2|̂1 + n2|D2||D1|−1

̂D1 + s2 ̂D2 + ̂M2

where si ∈ N and ̂Mi are sums of conjugacy classes taking into account their
multiplicities such that (̂Mi, ̂C) = 0 for C ∈ {1,Dj}, i, j,∈ {1, 2}.

By Lemma 2.3 we know that

(̂D1

2
,̂1) = |D1|(̂D1, ̂D1) = |D1|,

(̂D1

2
, ̂D2) = |D1||D2|−1(̂D1

̂D2, ̂D1) = |D1||D2|−1n1.

Then we can write
̂D1

2
= |D1|̂1 + n1|D1||D2|−1

̂D2 + s1 ̂D1 + ̂M1

and analogously,

̂D2

2
= |D2|̂1 + n2|D2||D1|−1

̂D1 + s2 ̂D2 + ̂M2
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for some si ∈ N and ̂Mi such that (̂Mi, ̂C) = 0 for C ∈ {1,Dj}, i, j,∈ {1, 2}.
We distinguish two subcases depending on whether M1 = ∅ or not.

Step 3: If M1 = ∅, then 〈D1〉 is p-elementary abelian, so the theorem is
proved.

If M1 = ∅, then either D2
1 = 1 ∪ D1 ∪ D2 or D2

1 = 1 ∪ D2. In the first
case, D3

1 = 1 ∪ D1 ∪ D2 and in the second D4
1 = 1 ∪ D1 ∪ D2, so in both

cases it certainly follows that 〈D1〉 = 1 ∪ D1 ∪ D2. Hence, joint with the fact
that 〈D1〉 = 〈D2〉, we deduce that 〈D1〉 is a minimal normal subgroup of
G. Furthermore, it must be solvable due to the fact that its elements only
have two possible orders. Consequently, 〈D1〉 is p-elementary abelian for some
prime p, so the thesis of the theorem trivially follows.

Henceforth, we will assume that M1 �= ∅.
Step 4: We have

n1
̂M1 = n1|D1||D2|−1

̂M2 + ̂M1
̂D2 − ( ̂M1

̂D2, ̂D2)̂D2

n2
̂M2 = n2|D2||D1|−1

̂M1 + ̂M2
̂D1 − ( ̂M2

̂D1, ̂D1)̂D1.

By applying Steps 1 and 2,
̂D1(̂D1

̂D2) = ̂D1(n1
̂D1 + n2

̂D2) = n1(|D1|̂1 + n1|D1||D2|−1
̂D2 + s1 ̂D1 + ̂M1)

+n2(n1
̂D1 + n2

̂D2)

and
̂D1

2
̂D2 = (|D1|̂1 + n1|D1||D2|−1

̂D2 + s1 ̂D1 + ̂M1)̂D2

= |D1|̂D2 + n1|D1||D2|−1(|D2|̂1 + n2|D2||D1|−1
̂D1 + s2 ̂D2 + ̂M2)

+s1(n1
̂D1 + n2

̂D2) + ̂M1
̂D2.

Since ̂D1(̂D1
̂D2) = ̂D1

2
̂D2, 0 = ( ̂M1

̂D2,̂1) and

( ̂M1
̂D2, ̂D1) = |M1||D1|−1( ̂M1, ̂D1

̂D2) = 0,

then

n1
̂M1 = n1|D1||D2|−1

̂M2 + ̂M1
̂D2 − ( ̂M1

̂D2, ̂D2)̂D2.

Similarly we get

n2
̂M2 = n2|D2||D1|−1

̂M1 + ̂M2
̂D1 − ( ̂M2

̂D1, ̂D1)̂D1.

Step 5: Conclusion.
First, let us see that 〈D1〉 is solvable. By applying Step 4, we have

n1n2
̂M2 = n1n2|D2||D1|−1

̂M1 + n1( ̂M2
̂D1 − ( ̂M2

̂D1, ̂D1)̂D1)

= n2|D2||D1|−1(n1|D1||D2|−1
̂M2 + ̂M1

̂D2 − ( ̂M1
̂D2, ̂D2)̂D2)

+n1
̂M2

̂D1 − n1( ̂M2
̂D1, ̂D1)̂D1.

It follows that n2|D2||D1|−1
̂M1

̂D2 + n1
̂M2

̂D1 = l1 ̂D1 + l2 ̂D2 for l1, l2 ∈
N. In particular, ̂M1

̂D2 = m1
̂D1 + m2

̂D2 for m1,m2 ∈ N. As we know
( ̂M1

̂D2, ̂D1) = 0, then ̂M1
̂D2 = m2

̂D2. Symmetrically, ̂M2
̂D1 = m1

̂D1.
Hence, taking into account Step 4 and the definition of M1, we obtain n1

̂M1 =
n1|D1||D2|−1

̂M2. Thus, M1 = M2, as sets that are union of conjugacy classes,
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so we have D1M1 = D1. As a result, D1〈M1〉 = D1. Then, as either D2
1 =

1 ∪ D2 ∪ D1 ∪ M1 or D2
1 = 1 ∪ D2 ∪ M1, we easily deduce that 〈D1〉 =

1 ∪ D2 ∪ D1 ∪ M1.
We write G = G/〈M1〉 and then 〈D1〉 = 1 ∪ D1 ∪ D2. By induction, the

elements in D1 and D2 are p-elements for some prime p, so 〈D1〉 is a p-group.
Let d ∈ D1. As all elements in d〈M1〉 are conjugate in G, then 〈M1〉 is solvable
by Theorem A(a). It clearly follows that 〈D1〉 is solvable. Finally let us prove
that the elements in D1 and D2 are p-elements too. Let 1 �= P ∈ Sylp(〈D1〉).
Note that 〈D1〉 = P 〈M1〉 = P 〈M1〉D1 = PD1. In particular, we can write
1 = xd with x ∈ P and d ∈ D1. This shows that the elements in D1 are
p-elements. Analogously, we can deduce that the elements in D2 are also p-
elements. By Theorem A(b), we conclude that 〈M1〉, and then also 〈D1〉, has
normal p-complement. �
Examples. We show different examples corresponding to distinct cases of
Theorem A.

1. The easiest example is the dihedral group of order 10, in which the only
two conjugacy classes of size 2 satisfy the hypotheses of the theorem.
This example can be generalized by taking G = 〈x〉�〈a〉 ∼= Zp�Z(p−1)/2,
where p is a prime such that p ≡ 1 (mod 4) and a is an automorphism
of order (p − 1)/2 of 〈x〉. The subgroup 〈x〉 contains exactly the trivial
class and two (real) conjugacy classes A and B of size (p − 1)/2, which
satisfy AB = A∪B and 〈A〉 = 〈x〉. This corresponds to the case M1 = ∅
in Step 3 of the proof of Theorem A.

2. Two examples with 〈A〉 non-cyclic are the following. Let G = (〈x〉 ×
〈y〉)� 〈a〉 ∼= (Z3 ×Z3)�Z4, where a is defined by: xa = x2y, ya = xy. If
we take A = {x, x2y, x2, xy2} and B = {y, xy, y2, x2y2}, then we have
AB = A∪B and 〈A〉 = 〈B〉 = 〈x〉×〈y〉. On the other hand, the group of
the library of the small groups of GAP [10] with number Id(1176, 213)
has two conjugacy classes A and B of size 24 satisfying the hypotheses
of Theorem A, with 〈A〉 ∼= Z7 × Z7. Also in both examples M1 = ∅.

3. The group Id(108, 15) has two conjugacy classes A and B of size 12
satisfying AB = A ∪ B with 〈A〉 ∼= (Z3 × Z3) � Z3. This example
shows that 〈A〉 is not necessarily abelian. We remark that this example
corresponds to the case M1 �= ∅ in the proof of Theorem A (see Step 4).
In fact, 〈M1〉 = Z(〈A〉).

4. The smallest group that we have found with the help of [10] satis-
fying the hypothesis of Theorem A and 〈A〉 not being a p-group is
Id(480, 1188). Its structure description is (((Z2 × Z2 × Z2 × Z2) � Z5) �

Z2) � Z3 and has two conjugacy classes A and B of size 32 of elements
of order 5, such that AB = A∪B and 〈A〉 ∼= (Z2 × Z2 × Z2 × Z2) � Z5,
which is 5-nilpotent but not a 5-group.

As we said in the introduction, to prove Theorem B we make a slight
improvement of Theorem D of [4] by proving p-nilpotency.

Theorem 3.1. Let G be a group and let K = xG be a conjugacy class of G. If
K2 = K ∪ K−1, then 〈K〉 is solvable. Moreover, x is a p-element for some
prime p and 〈K〉 is p-nilpotent.



257 Page 8 of 12 A. Beltrán et al. MJOM

Proof. Following the proof of Theorem D of [4] we have KK−1 = 1 ∪ K ∪
K−1∪S where S is union of conjugacy classes of G other than 1, K and K−1.
If S = ∅, by the proof given in [4] we have that 〈K〉 is p-elementary abelian
for some prime p and the theorem is proved. If S �= ∅, again by following
the quoted proof, KS = K, 〈K〉/〈S〉 is p-elementary abelian for some prime
p and x is a p-element. In particular, the elements of x〈S〉 are all conjugate
in G and, by applying Theorem A(b), 〈S〉 has normal p-complement. Since
〈K〉/〈S〉 is a p-group, then 〈K〉 has normal p-complement too. �

Theorem B. Let D1 and D2 be conjugacy classes of a finite group G and
suppose that D1D2 = D−1

1 ∪ D2 with D1 �= D−1
1 . Then D1 = D2 and 〈D1〉 is

solvable. Moreover, D1 is a class of p-elements and 〈D1〉 is p-nilpotent.

Proof. By arguing by induction on |G| as at the beginning of the proof of
Theorem B, we can easily deduce that 〈D1〉 = 〈D2〉.

If D1 = D2, by Theorem 3.1 we have that 〈D1〉 is solvable, the elements
of D1 are p-elements, and 〈D1〉 is p-nilpotent. To complete the proof, in
the following, we will prove by minimal counterexample that there do not
exist distinct classes D1 and D2 in a finite group satisfying the hypotheses
of the theorem. Let G be a finite group of minimal order and let D1 and D2

two conjugacy classes such that D1D2 = D−1
1 ∪ D2, with D1 non-real and

D1 �= D2. We write ̂D1
̂D2 = n1

̂D−1
1 +n2

̂D2 with n1, n2 ∈ N
∗. We distinguish

two cases: first, D2 = D−1
2 and second D2 �= D−1

2 .
Case 1: D2 = D−1

2 .
Step 1.1: We have

̂D1

2
= n1

̂D2 + n2
̂D1

̂D−1
1

̂D1 = ̂D2

2

̂D2

2
= |D2|̂1 + n2(̂D1 + ̂D−1

1 ) + ̂L

with L = L−1, 0 = (̂L, ̂C) for C ∈ {1,D1,D
−1
1 ,D2}.

Follow Steps c(1)(i), c(1)(ii), c(1)(iii) and c(1)(iv) of the proof of The-
orem 2 of [1]. We remark that the proof of these properties do not need to
assume that G is simple (as assumed in the quoted theorem).

Step 1.2: We have ̂D−1
1

̂D2 = n1
̂D1 + n2

̂D2.

Since ̂D1
̂D2 = n1

̂D−1
1 + n2

̂D2 and ̂D2 = ̂D−1
2 , we have ̂D−1

1
̂D2 =

̂D−1
1

̂D−1
2 = n1

̂D1 + n2
̂D−1
2 = n1

̂D1 + n2
̂D2.

Step 1.3: L �= ∅.
If L = ∅, then D2

2 = 1 ∪ D1 ∪ D−1
1 and since D2 is real, by Lemma 2.2,

D1 is also real, a contradiction.
Step 1.4: Conclusion.

We know, by Step 1.1,

̂D2

2
̂D1 = (|D2|̂1 + n2(̂D1 + ̂D−1

1 ) + ̂L)̂D1

= |D2|̂D1 + n2
̂D1

2
+ n2

̂D2

2
+ ̂L̂D1
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and, by applying Step 1.2,

̂D2(̂D1
̂D2) = ̂D2(n1

̂D−1
1 + n2

̂D2) = n1(n1
̂D1 + n2

̂D2) + n2
̂D2

2
.

Hence

|D2|̂D1 + n2(n1
̂D2 + n2

̂D1) + ̂L̂D1 = n2
1
̂D1 + n1n2

̂D2.

Thus (|D2| + n2
2)̂D1 + ̂L̂D1 = n2

1
̂D1. It follows that ̂L̂D1 = k ̂D1 for some

k ∈ N
∗. As a consequence, there exists a conjugacy class C of G other than 1,

D1, D−1
1 and D2 such that D1C = D1. Thus, D1〈C〉 = D1, with 1 �= 〈C〉�G

and we write G = G/〈C〉. We have |G| < |G|, D1D2 = D−1
1 ∪ D2, with D1 �=

D−1
1 , because otherwise D1 = D1〈C〉 = D−1

1 〈C〉 = D−1
1 , a contradiction. In

addition, D1 �= D2 because otherwise D1 = D1〈C〉 = D2〈C〉 ⊇ D2, which is
impossible. By minimality, we get a contradiction and this case is finished.
Case 2: D2 �= D−1

2 .
We have

0 = (̂D1
̂D2, ̂D1) =

|D2|
|D1| (

̂D1
̂D−1
1 , ̂D−1

2 ) =
|D2|
|D1| (

̂D1
̂D−1
1 , ̂D2) = (̂D1

̂D−1
2 , ̂D1)

0 = (̂D1
̂D2,

̂D−1
2 ) =

|D1|
|D2| (

̂D2

2
, ̂D−1

1 )

n1 = (̂D1
̂D2,

̂D−1
1 ) =

|D2|
|D1| (

̂D1

2
, ̂D−1

2 )

n2 = (̂D1
̂D2, ̂D2) = (̂D1

̂D−1
2 , ̂D−1

2 ) =
|D1|
|D2| (

̂D2
̂D−1
2 , ̂D−1

1 ).

We denote by

l1 =(̂D1
̂D−1
2 , ̂D−1

1 ) =
|D2|
|D1| (

̂D1

2
, ̂D2),

l2 =(̂D1
̂D−1
2 , ̂D2) =

|D1|
|D2| (

̂D2

2
, ̂D1)

j1 =(̂D1

2
, ̂D1) = (̂D1

̂D−1
1 , ̂D1),

j2 =(̂D2

2
, ̂D2) = (̂D2

̂D−1
2 , ̂D−1

2 )

d1 =(̂D1

2
,D−1

1 ),

d2 =(̂D2

2
,D−1

2 ).

Therefore, we can collect all these multiplicities in Table 1, which also appears
in the proof given by Arad and Fisman.

In Table 1, we have Ni = N−1
i and (̂L, ̂C) = 0 for C ∈ {1,Dk,D

−1
k },

L ∈ {Mij , Ni} for every k, i, j ∈ {1, 2}.

Step 2.1: n1
̂N1 = n1

|D1|
|D2|

̂N2 and ̂N2
̂D1 = (̂N2

̂D1, ̂D1)̂D1.

Follow Steps c(2)(i) to (vii) of the proof of Theorem 2 of [1]. We remark
again that the assumption of simplicity of G in that theorem is not needed
to prove these properties.
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Table 1. Multiplicities of D1 and D2 and their inverse classes
in their respective products

̂1 ̂D1
̂D−1
1

̂D2
̂D−1
2

̂D1
̂D2 0 0 n1 n2 0

̂D1
̂D−1
2 0 0 l1 l2 n2

̂M12

̂D1

2
0 j1 d1 l1

|D1|
|D2| n1

|D1|
|D2|

̂M11

̂D2

2
0 l2

|D2|
|D1| 0 j2 d2 ̂M22

̂D1
̂D−1
1 |D1| j1 j1 0 0 N1

̂D2
̂D−1
2 |D2| n2

|D2|
|D1| n2

|D2|
|D1| j2 j2 N2

Step 2.2: Conclusion.
We distinguish two cases, whether ̂N2 �= 0 or not. First, if ̂N2 �= 0,

then there exists a conjugacy class C of G such that D1C = D1. We can
apply the same argument as at the end of Step 1.4 of Case 1 and, by minimal
counterexample, we get a contradiction.

Assume now that ̂N2 = 0. By Step 2.1, we know that

n1
̂N1 = n1

|D1|
|D2|

̂N2.

Therefore, ̂N1 = 0. Thus, from Table 1, we have D1D
−1
1 = 1 ∪ D1 ∪ D−1

1

and by Theorem C, we conclude that 〈D1〉 = D1D
−1
1 = 1 ∪ D1 ∪ D−1

1 . This
forces that D2 = D−1

1 or D2 = D1 and both certainly are contradictions.
This finishes the proof. �

Examples. This is an example of Theorem B where 〈A〉 is p-nilpotent and not
a p-group. We take the group G = ((Z2 × Z2 × Z2) � Z7) � Z3 = Id(168, 43)
which has a conjugacy class A of elements of order 7 and size 24 satisfying
A2 = A ∪ A−1. Also, 〈A〉 = (Z2 × Z2 × Z2) � Z7.
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