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Abstract 

As decarbonization and carbon neutrality become increasingly important, battery research has 

received more and more attention. One of the great challenges in battery is thermal runaway and 

its propagation, which is fundamentally a combustion problem featured by reaction-conduction 

coupling, with negligible effects from mass diffusion in the time scale of interest.  In this work, a 

large Ze number asymptotic analysis was performed to describe spherical and cylindrical reaction 

front initiation and propagation in solid combustion, assuming one-step global chemistry and 

infinite Le number. Although the reaction front dynamics bear some similarity to a regular flame 

with finite, greater-than-unity Le number, a theory based on finite Le number is fundamentally 

inapplicable to describe the combustion behavior with infinite Le. Analytical results are derived to 

describe to evolution of reaction front velocity and temperature accounting for the effects of 

changing curvature as well as the ignition energy. A simplified, explicit formula is also derived to 

describe the reaction front propagation velocity by directly linking to the burnt temperature, 

exhibiting very good performance in thermal runaway propagation prediction and experimental 

design. The results also show smaller critical radius and minimum ignition energy for cylindrical 

reaction front, leading to greater concerns for thermal runaway propagation triggered by nail 

penetration, as compared to a local hot spot. 
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Nomenclature1  

𝜌𝜌 Density  

cp Specific heat under constant pressure  

T Temperature  

t time 

U Reaction front propagation velocity  
 

𝜔𝜔 Reaction rate 

Y Mass fraction 

r Radial coordinate  

R Reaction front radius 

Ea Activation energy 

Ru Universal gas constant 

𝜆𝜆 Thermal conductivity  

𝜉𝜉 Radial coordinate relative to the reaction front 

𝛥𝛥𝛥𝛥 Formation enthalpy of the reactant 

Tu Unburnt temperature  

Tb Burnt temperature 

Yu Unburnt mass fraction 

 
1 Symbols with ῀ hat denote the corresponding dimensionless quantity  



3 
 

s Integration variable 

𝛼𝛼 Thermal diffusivity 𝛼𝛼 = 𝜆𝜆/𝜌𝜌𝜌𝜌𝑝𝑝 

Tad Adiabatic flame temperature 

A Pre-exponential factor of the reaction rate constant 

Tin Inner zone temperature variable 

𝜀𝜀 Small perturbation parameter in the order of 1/Ze  

𝜃𝜃 Inner zone temperature perturbation  

𝜒𝜒 Stretched coordinate relative to the reaction front, 𝜒𝜒 = 𝜉𝜉/𝜀𝜀  

Ze Zel’dovich number,  𝑍𝑍𝑍𝑍 = 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏

2 (𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑢𝑢) 

Zead Ze based on adiabatic flame temperature, 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑎𝑎𝑎𝑎

2 (𝑇𝑇𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑢𝑢) 

𝑈𝑈𝑝𝑝 Propagation speed for a planar reaction front 

Le Lewis number, 𝛼𝛼/𝐷𝐷 

𝛿𝛿  Characteristic reaction front thickness 𝛿𝛿 = 𝛼𝛼/𝑈𝑈𝑝𝑝 

𝜎𝜎 Thermal expansion ratio, 𝑇𝑇𝑎𝑎𝑎𝑎 /𝑇𝑇𝑢𝑢 

K Stretch rate 

D Mass diffusivity  

Kext Extinction stretch rate  

Q Ignition heat source intensity  

Tf Flame temperature 
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1. Introduction 

As global emphasis is being put on decarbonization and carbon neutrality, battery 

development and application has received more and more research interest. In fact, if the electricity 

comes from clean energy with low pollutant emission and integrated carbon capture, a battery does 

have a great potential to become a centralized power storage and conversion device in the future. 

However, there are many other critical issues to be resolved for battery research and development 

[1-2], including rare earth element exploitation, battery material preparation, life-cycle 

enhancement, battery recycling and battery safety control, etc. Among these challenges, battery 

thermal runaway and runaway propagation [3-4] directly threatens properties and lives, which is 

fundamentally a combustion problem with reaction-transport coupling.  

 During thermal runaway, side reactions can occur between different battery components, 

for example, Solid-Electrolyte-Interphase (SEI) decomposition, cathode decomposition and 

cathode-electrolyte reaction, anode-electrolyte reaction, and electrolyte decomposition, which is 

accompanied with substantial heat release and followed by thermal runaway propagation and fires. 

The rates of these reaction can frequently be measured through differential scanning calorimeter 

(DSC) and/or Accelerating rate calorimetry (ARC) experiments. More details on the thermal 

runaway chemical kinetics can be found in [5-8]. 

In addition to complex chemical kinetics, actual thermal runaway processes can be more 

complicated due to the heterogeneous nature of the battery such as layered structure, porosity, 

solid-liquid components. However, one of the simplest yet reasonable model to describe such a 

phenomenon can be established by drawing analogy with solid phase combustion, where a battery 

is considered as a homogeneous, isotropic, solid reactive mixture. In addition, electrolyte 

vaporization and battery component decomposition into gas phase species are both possible during 

thermal runaway. In fact, venting gas emission from the battery frequently includes CH4, C2H4 and 

other flammable small hydrocarbons, and serves as a key mechanism for battery thermal runaway 

propagation among battery packs and for general electrical vehicle fires. However, compared to 

combustion chemistry, battery thermal runaway chemistry is more challenging and is still at its 

infant stage. Modeling of venting gas emission is not included in the state-of-the-art thermal 

runaway mechanism, and is still ongoing research. For simplicity, the coupling with gas phase 

reactions is not included in the current study. With these assumptions, the establishment of a 
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thermal runaway theory is feasible and the reaction-conduction nature of the problem allows 

inherent similarity to many other combustion phenomena, such as solid propellant combustion [9], 

self-propagation high-temperature synthesis [10], thermal power waves [11], etc. Meanwhile, 

there exists clear evidence from both experimental and numerical studies suggesting a 

propagating-wave behavior during battery thermal runaway propagation [12-14]. 

Compared to gas phase combustion, reaction front initiation and propagation in solid is less 

studied. A naïve expectation is to directly transform the well-established gas phase flame theory 

based on finite Lewis number (Le) assumption to the solid phase scenario where mass diffusion is 

fundamentally absent in the time scale of interest. However, such a wishful hope is fundamentally 

misleading due to the singular perturbation nature of the problem as Le approaches infinity [15]. 

Actually, almost all flame theories based on finite Le number fail when taking the limit toward 

infinity Le. For example, the classical theory for laminar flames shows that burning flux is 

proportional to the square root of Le [16], which indicates infinite burning flux when Le approaches 

infinity. Such a difficulty is due to the fact that dropping the second-order mass diffusion term 

directly alters the mathematical nature of the governing equation. In fact, this is similar to the 

classical fluid mechanics problem with large Reynolds number, where viscous effect and the well-

known Blasius equation and similarity solution is dominant in the thin boundary layer adjacent to 

the wall, while inviscid Euler flow dominates in the outer mean flow. Due to the different 

controlling physics, the inviscid flow is by no means a perturbation from the viscous solution, and 

vice versa.   

Therefore, theory of solid combustion has to be separately developed. A pioneering work 

for reaction front propagation in solid materials is by Weber, Mercer and coworkers [17-18], where 

the propagation velocity for a quasi-steady propagation in a one-dimensional planar configuration 

is derived analytically using a large β asymptotic analysis. Although this method is recently 

extended to accommodate arbitrary ambient temperature [19], it is still limited to constant wave 

speed and the results cannot be mapped to the commonly used large Ze number asymptotic analysis. 

Williams [20] tackled the reaction front propagation in solid material very systematically, however, 

the zero-order reaction assumption utilized in the analysis removes the negative feedback from 

reactant consumption and hence make little difference in the inner reaction zone structure 

compared to a regular gas phase flame.        
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(a)                                                                            (b) 

Fig. 1 Schematic of (a) spherical and (b) cylindrical reaction fronts in solid materials. 

Our recent work [15] has rigorously demonstrated the fundamental differences in reduced 

mathematical models, controlling physical parameters, discontinuity in propagation speed, 

dominant balance in reaction zone structure for planar reaction front in the finite and infinite Le 

number conditions. In addition, we also compared the planar reaction front propagation in the 

largely Ze limit and the large β limit based on a different nondimensionalization and dimensionless 

parameter. To describe battery thermal runaway propagation and general solid combustion, the 

geometry and curvature of the reaction front must be sufficiently considered, which can 

substantially affect the propagation speed and the burnt temperature through local heat transfer 

and changes in energy balance. As shown in the schematic plot in Fig. 1, typical thermal runaway 

scenarios include those induced by a hot spot in a spherical coordinate, and those in the cylindrical 

geometry as triggered by nail penetration. By drawing analogy with the initiation and propagation 

of gaseous spherical flames [21-24] and following up with our recent work in the 1D planar 

coordinate [15, 19], we shall conduct theoretical asymptotic analysis for both spherical and 

cylindrical reaction front to evaluate the effect of curvature for curved reaction front propagation 

in solid materials. By further modifying the boundary condition and adding an ignition source term, 

a combined analysis for reaction front initiation and propagation in solid materials will be 

conducted.  

In summary, the objective and unique contribution of the current work is to further 

demonstrate the effects of curvature on reaction front propagation with infinite Lewis number, and 

to develop a unified initiation and propagation theory accounting for both curvature and ignition 
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energy. Given the singular perturbation as Le approaching infinity, this is a unique problem that 

needs separate theoretical treatment and embodies unique physical behaviors. Our work is based 

on, and of equal significance to the classical gas-phase flame initiation theory, given the 

importance of reaction front initiation and propagation in battery and other solid materials. 

2. Analysis of reaction front propagation in solids without ignition source 

2-1 Theoretical analysis of spherical reaction front  

Let’s first consider a spherical reaction front in solid initiated from a hot spot or point 

source, with unsteady, diffusion and reaction processes in a laboratory coordinate. We shall first 

focus on propagation dynamics, and then extend the theory to incorporate initiation analysis by 

modifying the boundary condition. By adopting the coordinate attached to the expanding reaction 

front located at 𝜉𝜉 = r - R(t) = 0 with a velocity U = U(R) and assuming first order Arrhenius 

reaction 𝜔𝜔 = 𝐴𝐴𝜌𝜌𝑌𝑌𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇 and quasi-steady propagation, convection induced by relative motion is 

included and the unsteady term is absent: 

−𝜌𝜌𝑐𝑐𝑝𝑝𝑈𝑈
𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

= 𝜆𝜆
(𝜉𝜉+𝑅𝑅)2

𝑑𝑑
𝑑𝑑𝜉𝜉

[(𝜉𝜉 + 𝑅𝑅)2 𝑑𝑑𝑇𝑇
𝑑𝑑𝜉𝜉

] + 𝛥𝛥𝛥𝛥𝛥𝛥    (1) 

    -𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

= −𝜔𝜔    (2) 

Subject to the boundary conditions: 

𝑇𝑇 = 𝑇𝑇𝑏𝑏,𝑌𝑌 = 0 𝑎𝑎𝑎𝑎 𝜉𝜉 = −𝑅𝑅     (3a) 

           𝑇𝑇 = 𝑇𝑇𝑢𝑢,𝑌𝑌 = 𝑌𝑌𝑢𝑢 𝑎𝑎𝑎𝑎 𝜉𝜉 → +∞    (3b) 

In the outer zone solution away from the thin reaction region at 𝜉𝜉 = 0, the chemical reaction is 

negligible due to either reactant depletion or the low temperature chemical frozen condition. By 

further applying the boundary condition 𝑇𝑇(𝜉𝜉 = 0) = 𝑇𝑇𝑏𝑏, we can have the outer solution as: 

𝑇𝑇 = �
𝑇𝑇𝑏𝑏 (−𝑅𝑅 ≤ 𝜉𝜉 < 0)

𝑇𝑇𝑢𝑢 + 𝑇𝑇𝑏𝑏−𝑇𝑇𝑢𝑢
∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅+𝜉𝜉  (𝜉𝜉 > 0)  (4-a & b) 

where the thermal diffusivity 𝛼𝛼 = 𝜆𝜆/𝜌𝜌𝑐𝑐𝑝𝑝 . Clearly the outer solution is continuous but not 

differentiable at 𝜉𝜉 = 0, where a thin transition inner reaction zone with dominant effects from 

reaction and conduction should be acquired.  
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By combining (1) and (2) and canceling the reaction term, we can obtain: 

𝜆𝜆
(𝜉𝜉+𝑅𝑅)2

𝑑𝑑
𝑑𝑑𝜉𝜉
�(𝜉𝜉 + 𝑅𝑅)2 𝑑𝑑𝑇𝑇

𝑑𝑑𝜉𝜉
� + 𝜌𝜌𝑐𝑐𝑝𝑝𝑈𝑈

𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

+ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

= 0  (5) 

That is: 

𝑑𝑑2𝑇𝑇
𝑑𝑑𝜉𝜉2

+ 2 𝑑𝑑
𝑑𝑑𝜉𝜉
� 𝑇𝑇
𝜉𝜉+𝑅𝑅

� + 2𝑇𝑇
(𝜉𝜉+𝑅𝑅)2 + 𝑈𝑈

𝛼𝛼
𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

+ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝜆𝜆

𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

= 0  (6) 

Integrating once from 0 to 𝜉𝜉 and applying the boundary conditions we can obtain the Shvab-

Zel’dovich conserved scalar: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝜉𝜉
− 𝑑𝑑𝑇𝑇

𝑑𝑑𝜉𝜉
�
𝜉𝜉=0

+ ( 2𝑇𝑇
𝜉𝜉+𝑅𝑅

− 2𝑇𝑇𝑏𝑏
𝑅𝑅

) + ∫ 2𝑇𝑇
(𝑠𝑠+𝑅𝑅)2 𝑑𝑑𝑑𝑑

𝜉𝜉
0 + 𝑈𝑈(𝑇𝑇−𝑇𝑇𝑏𝑏)

𝛼𝛼
+ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(𝑌𝑌−0)

𝜆𝜆
= 0 (7) 

Where:  

2𝑇𝑇𝑢𝑢𝜉𝜉
𝑅𝑅(𝜉𝜉+𝑅𝑅)

= ∫ 2𝑇𝑇𝑢𝑢
(𝑠𝑠+𝑅𝑅)2 𝑑𝑑𝑑𝑑

𝜉𝜉
0 ≤ ∫ 2𝑇𝑇

(𝑠𝑠+𝑅𝑅)2 𝑑𝑑𝑑𝑑
𝜉𝜉
0 ≤ ∫ 2𝑇𝑇𝑏𝑏

(𝑠𝑠+𝑅𝑅)2 𝑑𝑑𝑑𝑑
𝜉𝜉
0 = 2𝑇𝑇𝑏𝑏𝜉𝜉

𝑅𝑅(𝜉𝜉+𝑅𝑅)
  (8) 

For 𝜉𝜉  close to zero, the upper bound is a better estimation; while for very large 𝜉𝜉  in the far 

upstream, the lower bound is a better estimation. In the limit of 𝜉𝜉 → +∞, from Eq. (7), we can 

have:  

𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑢𝑢 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑢𝑢
𝜆𝜆(2𝑅𝑅+

𝑈𝑈
𝛼𝛼)

    (9) 

So a small radius with large curvature substantially reduces the reaction front temperature. As R→

+∞, a spherical reaction front approaches a planar one and the effect of curvature becomes 

negligible and Eq. (9) degenerates to the adiabatic relationship: 𝑇𝑇𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑢𝑢 = 𝛥𝛥𝛥𝛥𝛥𝛥𝑢𝑢
𝑐𝑐𝑝𝑝

, where 𝑇𝑇𝑎𝑎𝑎𝑎 is the 

adiabatic flame temperature, and 𝑇𝑇𝑏𝑏 < 𝑇𝑇𝑎𝑎𝑎𝑎 holds for a spherical reaction front in general. For some 

𝜉𝜉 falls in the thin reaction zone, we can estimate ∫ 2𝑇𝑇
(𝑠𝑠+𝑅𝑅)2 𝑑𝑑𝑑𝑑

𝜉𝜉
0  by using an average temperature of 

T and 𝑇𝑇𝑏𝑏, such that ∫ 2𝑇𝑇
(𝑠𝑠+𝑅𝑅)2 𝑑𝑑𝑑𝑑

𝜉𝜉
0 ≈ 𝜉𝜉(𝑇𝑇𝑏𝑏+𝑇𝑇)

𝑅𝑅(𝜉𝜉+𝑅𝑅)
. Substituting back to Eq. (7), it can be reorganized as: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝜉𝜉

+ (𝑇𝑇 − 𝑇𝑇𝑏𝑏)( 1
𝜉𝜉+𝑅𝑅

+ 1
𝑅𝑅

) + 𝑈𝑈(𝑇𝑇−𝑇𝑇𝑏𝑏)
𝛼𝛼

+ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝜆𝜆

= 0   (10) 

Therefore, the concentration Y can be expressed as a function of T and Eq. (1) will become: 
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𝑑𝑑2𝑇𝑇
𝑑𝑑𝜉𝜉2

+ 2
𝜉𝜉+𝑅𝑅

𝑑𝑑𝑇𝑇
𝑑𝑑𝜉𝜉

+ 𝑈𝑈
𝛼𝛼
𝑑𝑑𝑇𝑇
𝑑𝑑𝜉𝜉

+ 𝐴𝐴
𝑈𝑈
�− 𝑑𝑑𝑇𝑇

𝑑𝑑𝜉𝜉
− (𝑇𝑇 − 𝑇𝑇𝑏𝑏) � 1

𝜉𝜉+𝑅𝑅
+ 1

𝑅𝑅
� − 𝑈𝑈(𝑇𝑇−𝑇𝑇𝑏𝑏)

𝛼𝛼
� 𝑒𝑒−

𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇 = 0  (11) 

In the thin inner reaction zone, we introduce an inner temperature variable 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑏𝑏 − 𝜀𝜀𝜀𝜀 + 𝑂𝑂(𝜀𝜀2) 

and a stretched coordinate 𝜒𝜒 = 𝜉𝜉/𝜀𝜀 , where 𝜀𝜀  is a small parameter to be determined later. 

Substituting back to Eq. (11), we can obtain: 

  𝑑𝑑2𝜃𝜃
𝑑𝑑𝜒𝜒2

+ 2𝜀𝜀
𝜀𝜀𝜀𝜀+𝑅𝑅

𝑑𝑑𝑑𝑑
𝑑𝑑𝜒𝜒

+ 𝜀𝜀 𝑈𝑈
𝛼𝛼
𝑑𝑑𝑑𝑑
𝑑𝑑𝜒𝜒

+ 𝐴𝐴
𝑈𝑈
�−𝜀𝜀 𝑑𝑑𝑑𝑑

𝑑𝑑𝜒𝜒
− 𝜀𝜀2𝜃𝜃 � 1

𝜀𝜀𝜀𝜀+𝑅𝑅
+ 1

𝑅𝑅
� − 𝜀𝜀2 𝑈𝑈𝜃𝜃

𝛼𝛼
� 𝑒𝑒

− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢(𝑇𝑇𝑏𝑏−𝜀𝜀𝜀𝜀) = 0 (12) 

Where 𝜃𝜃 satisfies the following boundary conditions: 

  𝜃𝜃(𝜒𝜒 = 0) = 0, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜒𝜒 = 0) = 0, 𝜀𝜀𝜀𝜀(𝜒𝜒 → +∞) = 𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑢𝑢  (13) 

Note that 1
𝜀𝜀𝜀𝜀+𝑅𝑅

= 1
𝑅𝑅(1+𝜀𝜀𝜒𝜒𝑅𝑅)

= 1
𝑅𝑅

(1 − 𝜀𝜀 𝜒𝜒
𝑅𝑅

) and that 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢(𝑇𝑇𝑏𝑏−𝜀𝜀𝜀𝜀)

= 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏(1−𝜀𝜀𝜀𝜀𝑇𝑇𝑏𝑏

)
= 𝐸𝐸𝑎𝑎

𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏
(1 + 𝜀𝜀𝜀𝜀

𝑇𝑇𝑏𝑏
), Eq. 12 

becomes: 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝜒𝜒2

+ 2𝜀𝜀
𝑅𝑅

(1 − 𝜀𝜀 𝜒𝜒
𝑅𝑅

) 𝑑𝑑𝑑𝑑
𝑑𝑑𝜒𝜒

+ 𝜀𝜀 𝑈𝑈
𝛼𝛼
𝑑𝑑𝑑𝑑
𝑑𝑑𝜒𝜒

+ 𝐴𝐴
𝑈𝑈
�−𝜀𝜀 𝑑𝑑𝑑𝑑

𝑑𝑑𝜒𝜒
− 𝜀𝜀2𝜃𝜃 �2

𝑅𝑅
− 𝜀𝜀 𝜒𝜒

𝑅𝑅2
� − 𝜀𝜀2 𝑈𝑈𝜃𝜃

𝛼𝛼
� 𝑒𝑒

− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏

(1+𝜀𝜀𝜀𝜀𝑇𝑇𝑏𝑏
) 

= 0     (14) 

Ignoring O(𝜀𝜀) and O(𝜀𝜀2) terms, the controlling balance in the inner reaction zone is: 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝜒𝜒2

− 𝜀𝜀 𝐴𝐴
𝑈𝑈
𝑑𝑑𝑑𝑑
𝑑𝑑𝜒𝜒
𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏

(1+𝜀𝜀𝜀𝜀𝑇𝑇𝑏𝑏
) 

= 0   (15) 

Eq. (15) is identical to the inner structure relation under the planar case under Le infinity [15]. The 

fact that that all the terms containing curvature factor 1
𝑅𝑅
 are of second or lower order and hence are 

completely dropped out, indicates that curvature and stretch will not affect the reaction zone 

structure to the leading order. Instead, the role of curvature will be reflected in the outer zone 

solution through the upstream preheat zone temperature profile. In other words, in the infinite Le 

limit, the outer solutions exhibit both qualitatively and quantitatively changes, as species diffusion 

term is ignored. Consequently, the difference in outer zone solution gives different constraints and 

matching conditions for the inner reaction zone solution. This is the challenge for a unified 

asymptotic analysis for arbitrary Le numbers.  Eq. (15) can be integrated once with the boundary 

condition (13) to obtain: 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜒𝜒 → +∞) = 𝜀𝜀 𝐴𝐴
𝑈𝑈
𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏

𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏
2

𝐸𝐸𝑎𝑎
�𝑒𝑒

− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏

2(𝑇𝑇𝑏𝑏−𝑇𝑇𝑢𝑢)
− 1�  (16) 

Note that the parameter group 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏

2 (𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑢𝑢)  is the Zel’dovich number Ze, which is a large 

dimensionless number. We can hence choose 𝜀𝜀 = 1
𝑍𝑍𝑍𝑍

, such that the exponent 𝜀𝜀 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏

2 𝜃𝜃 = 𝜃𝜃
𝑇𝑇𝑏𝑏−𝑇𝑇𝑢𝑢

 is 

always O (1). 

Eq. (16) must match the inner gradient of the outer solution from Eq. (4b) as 𝜒𝜒 → 0, i.e.,  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜒𝜒 → 0) = −𝜀𝜀 𝑇𝑇𝑏𝑏−𝑇𝑇𝑢𝑢
∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

1
𝑅𝑅2
𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼  (17) 

Therefore, the propagation velocity of the spherical reaction front must satisfy: 

    𝑈𝑈𝑅𝑅−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

= 𝐴𝐴
𝑍𝑍𝑍𝑍
𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏(1 − 𝑒𝑒−𝑍𝑍𝑍𝑍)  (18) 

Given the largeness of Ze number, 𝑒𝑒−𝑍𝑍𝑍𝑍 ≈ 0, hence Eq. (18) can be further simplified as: 

 𝑈𝑈𝑅𝑅−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

= 𝐴𝐴
𝑍𝑍𝑍𝑍
𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏   (19) 

In the limit of a planar reaction front, it can be shown that lim
𝑅𝑅→+∞

𝑈𝑈𝑅𝑅−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

= 𝑈𝑈2

𝛼𝛼
, also 

𝑇𝑇𝑏𝑏 = 𝑇𝑇𝑎𝑎𝑎𝑎 , and hence U degenerates to the planar result 𝑈𝑈𝑝𝑝 = � 𝛼𝛼𝛼𝛼
𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎

𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑎𝑎𝑎𝑎  with infinite Le 

number, as shown in our previous work [15], where 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 is the Zel’dovich number based on the 

adiabatic temperature, i.e., 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑎𝑎𝑎𝑎

2 (𝑇𝑇𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑢𝑢). Such consistency further justifies the current 

theory. The burnt temperature 𝑇𝑇𝑏𝑏 and the propagation speed U can be determined by Eqs. (9) and 

(19). 

The velocity, radius and temperature can be non-dimensionalized as: 

𝑈𝑈� =
𝑈𝑈
𝑈𝑈𝑝𝑝

,𝑅𝑅� =
𝑅𝑅
𝛿𝛿

,𝑇𝑇𝑏𝑏� =
𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑢𝑢
𝑇𝑇𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑢𝑢
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where 𝛿𝛿 = 𝛼𝛼/𝑈𝑈𝑝𝑝. Considering that 𝑇𝑇𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑢𝑢 = 𝛥𝛥𝛥𝛥𝛥𝛥𝑢𝑢
𝑐𝑐𝑝𝑝

,  Eqs (9) and (19) can be transferred in the 

general non-dimensional form as: 

𝑇𝑇𝑏𝑏� �𝑈𝑈� + 2
𝑅𝑅�
� = 𝑈𝑈�    (20) 

𝑈𝑈�𝑅𝑅�−2𝑒𝑒−𝑈𝑈�𝑅𝑅�

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈�𝑠𝑠𝑑𝑑𝑑𝑑+∞
𝑅𝑅�

= 1
𝑇𝑇𝑏𝑏�

[𝑇𝑇𝑏𝑏
�(𝜎𝜎−1)+1

𝜎𝜎
 ]2𝑒𝑒

𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎[ (𝑇𝑇𝑏𝑏�−1)𝜎𝜎
𝑇𝑇𝑏𝑏� (𝜎𝜎−1)+1]

   (21) 

𝜎𝜎 is the thermal expansion ratio defined as 𝑇𝑇𝑎𝑎𝑎𝑎/𝑇𝑇𝑢𝑢. It is emphasized here again that from Eq. (20),  

𝑇𝑇𝑏𝑏� always less than unity for a spherical reaction front, indicating sub-adiabatic condition due to 

the curvature effect. Now if we substitute the expression of 𝑇𝑇𝑏𝑏� from Eq. (20) into Eq. (21), we can 

obtain an equation that only contains 𝑈𝑈� and 𝑅𝑅�, which can readily generate 𝑈𝑈� as 𝑅𝑅� changes.  

For large 𝑅𝑅�, the term on of LHS of Eq. (21) can be expanded in power series of 1/𝑅𝑅� from 

Taylor expansion (see the supplementary material for more details): 

 𝑅𝑅�−2𝑒𝑒−𝑈𝑈�𝑅𝑅�

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈�𝑠𝑠𝑑𝑑𝑑𝑑+∞
𝑅𝑅�

= 𝑈𝑈� + 2
𝑅𝑅�
− 2

𝑈𝑈�𝑅𝑅�2
+ 𝑂𝑂( 1

𝑅𝑅�3
)   (22) 

Substitute Eqs. (20) and (22) into Eq. (21), we can have: 

𝑈𝑈�2[𝑈𝑈�+2𝑅𝑅�+𝑂𝑂�
1
𝑅𝑅�2
�]

�𝑈𝑈�+2𝑅𝑅��
= [𝑇𝑇𝑏𝑏

�(𝜎𝜎−1)+1
𝜎𝜎

 ]2𝑒𝑒
𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎[ (𝑇𝑇𝑏𝑏�−1)𝜎𝜎

𝑇𝑇𝑏𝑏� (𝜎𝜎−1)+1]
   (23) 

By ignoring the second and higher order terms, �𝑈𝑈� + 2
𝑅𝑅�
� term on the LHS of Eq. (23) can be 

directly canceled, indicating the same effect from curvature on the reduction of 𝑈𝑈� and 𝑇𝑇𝑏𝑏�. Eq. (23) 

becomes: 

    𝑈𝑈�2 = [𝑇𝑇𝑏𝑏
�(𝜎𝜎−1)+1

𝜎𝜎
 ]2𝑒𝑒

𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎[ (𝑇𝑇𝑏𝑏�−1)𝜎𝜎
𝑇𝑇𝑏𝑏� (𝜎𝜎−1)+1]

    (24) 

which further leads to an explicit formula of 𝑈𝑈� as a function of the burnt temperature 𝑇𝑇𝑏𝑏�: 

𝑈𝑈� = 𝑇𝑇𝑏𝑏�(𝜎𝜎−1)+1
𝜎𝜎

𝑒𝑒
𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎
2 [ (𝑇𝑇𝑏𝑏�−1)𝜎𝜎

𝑇𝑇𝑏𝑏� (𝜎𝜎−1)+1]
    (25) 
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As 𝑅𝑅� → +∞, 𝑇𝑇𝑏𝑏� → 1, and it is obvious the RHS of Eq. (25) approaches unity, which means the 

velocity approaches that of the planar reaction front. We can therefore justify Eq. (25) by 

comparing the results with those obtained from Eqs. (20) and (21).  

2.2 Theoretical analysis of cylindrical reaction front  

The above methodology can be easily extended to the cylindrical reaction front. Let’s 

further consider an axisymmetric cylindrical reaction front initiate from a line source, for example, 

a typical scenario will be a nail penetration event that triggers battery thermal runaway. By 

adopting the coordinate attached to the reaction front located at 𝜉𝜉 = r - R(t) = 0 with a velocity U 

= U(R) and assume first order Arrhenius reaction 𝜔𝜔 = 𝐴𝐴𝜌𝜌𝑌𝑌𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇 and quasi-steady propagation: 

−𝜌𝜌𝑐𝑐𝑝𝑝𝑈𝑈
𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

= 𝜆𝜆
𝜉𝜉+𝑅𝑅

𝑑𝑑
𝑑𝑑𝜉𝜉

[(𝜉𝜉 + 𝑅𝑅) 𝑑𝑑𝑇𝑇
𝑑𝑑𝜉𝜉

] + 𝛥𝛥𝛥𝛥𝛥𝛥    (26) 

    -𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

= −𝜔𝜔    (27) 

Subject to the boundary conditions: 

𝑇𝑇 = 𝑇𝑇𝑏𝑏,𝑌𝑌 = 0 𝑎𝑎𝑎𝑎 𝜉𝜉 = −𝑅𝑅     (28a) 

           𝑇𝑇 = 𝑇𝑇𝑢𝑢,𝑌𝑌 = 𝑌𝑌𝑢𝑢 𝑎𝑎𝑎𝑎 𝜉𝜉 → +∞    (28b) 

The outer solution away from the thin reaction region at 𝜉𝜉 = 0 is: 

𝑇𝑇 = �
𝑇𝑇𝑏𝑏 (−𝑅𝑅 ≤ 𝜉𝜉 < 0)

𝑇𝑇𝑢𝑢 + 𝑇𝑇𝑏𝑏−𝑇𝑇𝑢𝑢
∫ 𝑠𝑠−1𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

∫ 𝑠𝑠−1𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅+𝜉𝜉  (𝜉𝜉 > 0)  (29-a & b) 

By defining the Shvab-Zel’dovich conserved scalar, we can again obtain the energy conservation 

identity similar but different to Eq. (9): 

𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑢𝑢 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑌𝑌𝑢𝑢
𝜆𝜆�1𝑅𝑅+

𝑈𝑈
𝛼𝛼�

= (𝑇𝑇𝑎𝑎𝑎𝑎−𝑇𝑇𝑢𝑢)𝑈𝑈
𝛼𝛼
𝑅𝑅+𝑈𝑈

    (30) 

Similar to the spherical case, it can be shown that the inner structure equation is independent of 

the curvature effect, such that the inner zone equation and the outer temperature gradient of the 

inner solution are exactly the same as Eqs. (15) and (16). The outer temperature gradient of the 

inner solution must match with the inner gradient of the out solution in (29-b), as 𝜒𝜒 → 0: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜒𝜒 → 0) = −𝜀𝜀 𝑇𝑇𝑏𝑏−𝑇𝑇𝑢𝑢
∫ 𝑠𝑠−1𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

1
𝑅𝑅
𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼   (31) 
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Set (31) and (16) equal: 

  𝑈𝑈𝑅𝑅−1𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼

∫ 𝑠𝑠−1𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

= 𝐴𝐴
𝑍𝑍𝑍𝑍
𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏   (32) 

As R approaches infinity, we can have lim
𝑅𝑅→+∞

𝑈𝑈𝑅𝑅−1𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼

∫ 𝑠𝑠−1𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

= 𝑈𝑈2

𝛼𝛼
, and meanwhile 𝑇𝑇𝑏𝑏 =

𝑇𝑇𝑎𝑎𝑎𝑎 , Eq. (32) degenerates to the planar velocity, 𝑈𝑈𝑝𝑝 = � 𝛼𝛼𝛼𝛼
𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎

𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑎𝑎𝑎𝑎 . Using the same non-

dimensionalization as in the spherical case, Eqs. (30) and (32) become: 

     𝑇𝑇𝑏𝑏� �𝑈𝑈� + 1
𝑅𝑅�
� = 𝑈𝑈�   (33) 

𝑈𝑈�𝑅𝑅�−1𝑒𝑒−𝑈𝑈�𝑅𝑅�

∫ 𝑠𝑠−1𝑒𝑒−𝑈𝑈�𝑠𝑠𝑑𝑑𝑑𝑑+∞
𝑅𝑅�

= 1
𝑇𝑇𝑏𝑏�

[𝑇𝑇𝑏𝑏
�(𝜎𝜎−1)+1

𝜎𝜎
 ]2𝑒𝑒

𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎[ (𝑇𝑇𝑏𝑏�−1)𝜎𝜎
𝑇𝑇𝑏𝑏� (𝜎𝜎−1)+1]

  (34) 

(33) and (34) are inherently similar to the spherical solution (20) and (21), but subject to a reduced 

curvature effect. Similarly, for large 𝑅𝑅�, the LHS of Eq. (34) can be expanded in power series of 

1/𝑅𝑅�: 

𝑅𝑅�−1𝑒𝑒−𝑈𝑈�𝑅𝑅�

∫ 𝑠𝑠−1𝑒𝑒−𝑈𝑈�𝑠𝑠𝑑𝑑𝑑𝑑+∞
𝑅𝑅�

= 𝑈𝑈� + 1
𝑅𝑅�
− 1

𝑈𝑈�𝑅𝑅�2
+ 𝑂𝑂( 1

𝑅𝑅�3
)  (35) 

Therefore, similar to Eq. (23), we can have: 

𝑈𝑈�2[𝑈𝑈�+1𝑅𝑅�+𝑂𝑂�
1
𝑅𝑅�2
�]

�𝑈𝑈�+1𝑅𝑅��
= [𝑇𝑇𝑏𝑏

�(𝜎𝜎−1)+1
𝜎𝜎

 ]2𝑒𝑒
𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎[ (𝑇𝑇𝑏𝑏�−1)𝜎𝜎

𝑇𝑇𝑏𝑏� (𝜎𝜎−1)+1]
  (36) 

Ignoring the second order terms and take the square root, Eq. (36) leads to the same simplified, 

explicit formula for the propagation velocity as Eq. (25). This implies that the curvature imposes 

similar effects on propagation velocity and burnt temperature. Eq. (25) hence can capture the 

leading and first order effects on reaction front propagation for both spherical and cylindrical cases, 

and their propagation velocity should always overlap when mapping on the 𝑇𝑇𝑏𝑏� space.   

2.3 Results and analysis on reaction front propagation in solids 
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(a)                                                                 (b) 

Fig. 2. Evolutions of (a) propagation velocity 𝑈𝑈� and (b) burnt temperature 𝑇𝑇𝑏𝑏� with radius  𝑅𝑅� as 

described by Eqs. (20) and (21) at different 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 5, 10, 15, 𝜎𝜎 = 7. Arrows indicate the 

direction of reaction front evolution and symbols indicate the critical states. 

Fig. 2 shows the evolution of 𝑈𝑈�  and 𝑇𝑇𝑏𝑏�  with radius at different adiabatic Zel’dovich 

numbers 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎  for both the spherical and cylindrical case, which both exhibit a C-shape curve 

response, qualitatively similar to the behavior of gaseous spherical flame with Le >1 [21-22]. The 

turning point of each C-shape curve corresponds to the critical radius and critical temperature, only 

beyond which can a self-sustained reaction front survive. Any reaction front with radius or 

temperature below the critical value will be quenched by the increased curvature effect. The upper 

branch of the C-shape curve contains all the achievable states, where both the propagation speed 

and burnt temperature drastically increases as the reaction front expands. Such increasing rate 

gradually decreases with increasing radius, and eventually both 𝑈𝑈�  and 𝑇𝑇𝑏𝑏�  approach unity for 

sufficiently large 𝑅𝑅�~1000.  
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Fig 3. Critical radius as a function of 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 for both the spherical and cylindrical case. 

Fig. 3 shows the dimensionless critical radius identified at the turning point of C-shape 

curve as a quasi-linear function of 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎. With reduced 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎, we can observe smaller critical radius 

at the turning point, which indicates that the reaction front can be triggered more easily. 

Furthermore, the comparison of the spherical and cylindrical cases shows that critical radius for 

the cylindrical configuration is exactly 50% of the value for the spherical case under the same 

reaction conditions, indicating that reaction front can be triggered more easily in the cylindrical 

case. The smaller critical radius in the cylindrical configuration can have interesting implications 

for battery thermal runaway, in that a nail penetration-induced thermal runaway event is potentially 

more dangerous compared to the event triggered by a local point source.  

A classical way to show the curvature effect on reaction front dynamics is through the 

introduction of stretch rate. Here a dimensionless stretch rate 𝐾𝐾� can be defined as 𝐾𝐾� = 1
𝐴𝐴�
𝑑𝑑𝐴𝐴�

𝑑𝑑𝑑𝑑
, where 

the dimensionless surface area is 𝐴̃𝐴 = 4𝜋𝜋𝑅𝑅�2 for a sphere and 2𝜋𝜋𝑅𝑅�ℎ for a cylindrical surface with 

height h. Therefore, 𝐾𝐾� = 2
 𝑅𝑅�
𝑑𝑑𝑅𝑅�

𝑑𝑑𝑑𝑑
= 2𝑈𝑈�

𝑅𝑅�
 for a spherical reaction front, and 𝑈𝑈

�

𝑅𝑅�
 for a cylindrical reaction 

front. As shown in Fig. 4, there exhibit a critical stretch rate beyond which a reaction front cannot 

survive, and this can be defined as the extinction stretch rate, 𝐾𝐾�𝑒𝑒𝑒𝑒𝑒𝑒, which provides the threshold 

residence time for the reaction front. In the upper branch above the turning point, all cases show 
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negative dependence on stretch rate as the reaction front expands. Strong nonlinear effects in the 

slope are observed in the beginning, which gradually evolve into a quasi-linear dependence as 

approaching to the unstretched planar reaction front at 𝐾𝐾� = 0. Similar to the gaseous spherical 

flame, this feature can be utilized to determine the unstretched reaction front propagation speed 

and Markstein length [25] in the solid materials. With decreasing 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎, the slope becomes flatter 

and flatter as 𝐾𝐾� approaches 0, showing a smaller magnitude of the Markstein length. Another 

important observation is that although the spherical and cylindrical reaction fronts tend to have 

different propagation velocities and temperatures at the same radius (shown in Fig. 2), they almost 

completely overlap with each other in the 𝑈𝑈� - 𝐾𝐾� phase plot in Fig. 4.  

 

Fig. 4. Evolutions of propagation velocity 𝑈𝑈� with dimensionless stretch rate 𝐾𝐾� at different 

𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 5, 10, 15, 𝜎𝜎 = 7, showing the extinction state. Arrows indicate the direction of 

expanding radius. 

Extensive numerical and theoretical analysis have been performed for a regular gaseous 

spherical flame with arbitrary Le. It is well-known that the flame temperature, the propagation 

speed and the extinction stretch rate all depends on the Le of the mixture. Due to the absence of 

mass diffusion in a solid material, it is of interest to show if the combustion characteristics are 

consistent between a solid with infinite Le and a gas with asymptotically increased Le. Based on 
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the spherical flame theory [22, 24], it has been shown that the dimensionless propagation velocity 

and flame temperature for a finite Le spherical flame is (same notation in the current work): 

𝑇𝑇𝑏𝑏�𝑅𝑅�−2𝑒𝑒−𝑈𝑈�𝑅𝑅�

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈�𝑠𝑠𝑑𝑑𝑑𝑑+∞
𝑅𝑅�

= 1
𝐿𝐿𝐿𝐿

𝑅𝑅�−2𝑒𝑒−𝑈𝑈�𝐿𝐿𝐿𝐿𝑅𝑅�

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈�𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑+∞
𝑅𝑅�

= [𝑇𝑇𝑏𝑏
�(𝜎𝜎−1)+1

𝜎𝜎
 ]2𝑒𝑒

𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎
2 [ (𝑇𝑇𝑏𝑏�−1)𝜎𝜎

𝑇𝑇𝑏𝑏� (𝜎𝜎−1)+1]
  (37) 

  And with the following dimensional form [24]: 

𝑇𝑇𝑏𝑏 = 𝑇𝑇𝑢𝑢 + 𝑞𝑞𝑌𝑌𝑢𝑢
𝑐𝑐𝑝𝑝

1
𝐿𝐿𝐿𝐿
𝑒𝑒
𝑈𝑈𝑈𝑈
𝛼𝛼 (1−𝐿𝐿𝐿𝐿) ∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞

𝑅𝑅

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝐷𝐷𝑑𝑑𝑑𝑑+∞
𝑅𝑅

   (38) 

𝑅𝑅−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

= � 2𝐴𝐴
𝑍𝑍𝑍𝑍2𝐷𝐷

𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑏𝑏   (39) 

Where D is the mass diffusivity. Compared to the current work, there is no explicit 

assumption on the order of magnitude of Lewis number in the regular gas phase flame theory in 

the derivation of Eq. (37-39), where Le is an arbitrary finite number. Hence, the different behavior 

for finite and infinite Le will be solely attributed to the Le itself. Obviously, these results in Eqs. 

(37-39) lose physical meaning by taking the limit of Le approaching infinity. For example, in the 

limit of R → +∞, by further taking the limit of Le → +∞, Eq. (38) becomes 𝑇𝑇𝑏𝑏 = 𝑇𝑇𝑢𝑢 and Eq. (39) 

becomes 𝑈𝑈 = �2𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎2

𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑎𝑎𝑎𝑎 → +∞.  

In Fig. 5, the evolution of gas phase spherical flame with various Le is calculated using Eq. 

(35), and compared with the current theory with an infinite Le in the 𝑈𝑈� - 𝐾𝐾� diagram. Clearly, as Le 

increases from 2 to 100, extinction occurs at lower extinction stretch rate 𝐾𝐾�𝑒𝑒𝑒𝑒𝑒𝑒, and meanwhile the 

magnitude of the Markstein length increases. However, the limit with infinite Le cannot be 

achieved by further increasing the Le using Eq. (35), instead, the case with infinite Le has a similar 

behavior as the case with Le = 10. In fact, to the best of the authors’ knowledge, the largest Lewis 

number involved in gas phase fuel mixture experiment in the literature is about 5.40, which is from 

stoichiometric iso-octane with 21% O2 diluted with balanced Helium [26]. The larger molecular 

weight of the fuel leads to smaller diffusivity, and the He dilution substantially increases the 

thermal diffusivity of the mixture. With large Le, the flame is subject to strong pulsating behavior. 

In the meantime, a large Le flame is usually subadiabatic in common flame configurations with 
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positive stretch, such as spherical bomb and counterflow, which strongly narrows the flammability 

limits of the mixture and leads to great challenges in the experiment.  

 

Fig. 5 Evolution of propagation velocity 𝑈𝑈� with dimensionless stretch rate 𝐾𝐾� at different 

Le numbers, 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 10, 𝜎𝜎 = 6.67. 

The extinction stretch rate is evaluated and shown as a function of 1/Le in Fig. 6, with 

𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 5 , 𝜎𝜎 = 6.67 . It is seen that as Le increases, 𝐾𝐾�𝑒𝑒𝑒𝑒𝑒𝑒  monotonically decreases, showing 

reduced resistance to stretch. The 10% discrepancy in the predicted value of the nondimensional 

extinction stretch rate does seem to quantitively support the usefulness of gas phase spherical flame 

theory. However, the key point in Fig. 6 is to demonstrate the mathematical discontinuity in 𝐾𝐾�𝑒𝑒𝑒𝑒𝑒𝑒 

from these two theories as Le approaches infinity, and hence a limit does not exist. Due to the 

qualitative difference of the two theories in terms of controlling parameter, reduced physical model 

and reaction zone structure [15], the small discrepancy in extinction stretch rate is most likely a 

coincidence. For other applications such as the propagation speed, the difference between the two 

theories can be substantial, one leads to finite prediction and the other gives infinity. Therefore, 

although the evolution of 𝑈𝑈� and 𝑇𝑇𝑏𝑏� and the existence of 𝐾𝐾�𝑒𝑒𝑒𝑒𝑒𝑒 in the solid spherical reaction front 

bear qualitative similarities to the gaseous phase scenario with a finite Le greater than unity, it is 
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always misleading to directly take the limit of infinite Le to describe solid combustion based on 

gas phase combustion.  

 

Fig. 6. Dimensionless extinction stretch rate 𝐾𝐾� as a function of 1/Le, showing discontinuity at 

infinite Le, 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 5, 𝜎𝜎 = 6.67. The gaseous spherical flame theory is described in [24]. 

Lastly, we want to further justify the simple, explicit formula Eq. (25) for spherical and 

cylindrical reaction front propagation in solid materials.  As shown in Fig. 7, the relationship 

between 𝑈𝑈� and 𝑇𝑇𝑏𝑏� is satisfactorily captured. The implication of Eq. (25) is highly useful, in that 

the propagation velocity of a spherical or cylindrical reaction front in a solid material can be 

uniquely and straightforwardly determined from the burnt temperature. Considering that 

temperature measurement is much easier for solids, it is straightforward to design experiments to 

measure combustion wave propagation in solids utilizing temperature measurement. It should be 

noted that Eq. (25) in general does not hold for gas phase combustion, where stronger coupling 

exists between nonequidiffusivities and curvature effects. We can easily validate the performance 

of Eq. (25) for cylindrical reaction front propagation in the similar way.    
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Fig. 7. Normalized propagation velocity 𝑈𝑈� as a function of the burnt temperature 𝑇𝑇𝑏𝑏�, showing 

good performance of the simplified formula Eq. (25). 

3. Further consideration of reaction front initiation with ignition source 

3.1 Theoretical analysis on reaction front initiation in solids 

So far Sec. 2 considers the quasi-steady propagation regime of curved reaction front in 

solids, without the ignition effect and hence the reaction front initiation process. In this part, we 

further consider a reaction front initiation in solid, by adopting the same coordinate, chemical 

reaction model, but with a constant ignition source 𝑄𝑄 through the boundary condition, with a 

dimension of Temperature x Length. In the spherical coordinate, the governing equations are the 

same as (1) and (2), but subject to the modified boundary conditions: 

(𝜉𝜉 + 𝑅𝑅)2 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

= −𝑄𝑄,𝑌𝑌 = 0 𝑎𝑎𝑎𝑎 𝜉𝜉 = −𝑅𝑅     (40a) 

𝑇𝑇 = 𝑇𝑇𝑓𝑓,𝑌𝑌 = 0 𝑎𝑎𝑎𝑎 𝜉𝜉 = 0   (40b) 

           𝑇𝑇 = 𝑇𝑇𝑢𝑢,𝑌𝑌 = 𝑌𝑌𝑢𝑢 𝑎𝑎𝑎𝑎 𝜉𝜉 → +∞    (40c) 

𝑇𝑇𝑓𝑓is now the flame temperature, which is different from the burnt temperature 𝑇𝑇𝑏𝑏without 

the ignition source. It can be shown that a particular solution of Eqs. (1) and (2) satisfying this 

inhomogeneous boundary condition of Eq. (40a) will be: 
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𝑇𝑇′ = 𝑄𝑄 ∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅+𝜉𝜉  (−𝑅𝑅 ≤ 𝜉𝜉 < 0)    (41) 

Therefore, by superimposing the general solution with homogeneous boundary condition 

Eq. 4 (a & b) and the particular solution with non-homogeneous boundary condition Eq (41), we 

can have the outer solution incorporating the effect of ignition energy: 

𝑇𝑇 = �
𝑇𝑇𝑏𝑏 + 𝑄𝑄 ∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞

𝑅𝑅+𝜉𝜉  (−𝑅𝑅 ≤ 𝜉𝜉 < 0)

𝑇𝑇𝑢𝑢 + 𝑇𝑇𝑓𝑓−𝑇𝑇𝑢𝑢
∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅+𝜉𝜉  (𝜉𝜉 > 0)

  (42) 

At the immediate burnt zone of the flame front 𝜉𝜉 = 0−, 𝑇𝑇 = 𝑇𝑇𝑓𝑓 = 𝑇𝑇𝑏𝑏 + 𝑄𝑄 ∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅 . The 

identity from the energy conservation equivalent to Eq. (9) can be derived as: 

�𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑢𝑢� �
2
𝑅𝑅

+ 𝑈𝑈
𝛼𝛼
� = 𝑄𝑄𝑅𝑅−2𝑒𝑒−

𝑈𝑈𝑈𝑈
𝛼𝛼 + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑢𝑢

𝜆𝜆
    (43) 

For 𝑄𝑄 = 0, it is clear that 𝑇𝑇𝑓𝑓 = 𝑇𝑇𝑏𝑏 and Eq. (43) degenerates to Eq. (9). As 𝑅𝑅 approaches infinity, 

Eq. (43) degenerates to 𝑇𝑇𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑢𝑢 = 𝛥𝛥𝛥𝛥𝛥𝛥𝑢𝑢
𝑐𝑐𝑝𝑝

, showing that the adiabatic flame temperature for the 

planar reaction front is not being affected by the ignition energy 𝑄𝑄. In the thin inner reaction zone, 

we introduce an inner temperature variable 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑓𝑓 − 𝜀𝜀𝜀𝜀 + 𝑂𝑂(𝜀𝜀2)  and the same stretch 

coordinate variable, we can show that all the inner zone derivation is fundamental the same as has 

been described in Sec. 2.1, except that all the 𝑇𝑇𝑏𝑏 are replaced by 𝑇𝑇𝑓𝑓. Through matching procedure, 

similar to Eq. (19), we can readily show that: 

𝑈𝑈𝑅𝑅−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈𝑈𝑈/𝛼𝛼𝑑𝑑𝑑𝑑+∞
𝑅𝑅

= 𝐴𝐴
𝑍𝑍𝑍𝑍
𝑒𝑒
− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑢𝑢𝑇𝑇𝑓𝑓   (44) 

By introducing the same nondimensionalization for 𝑈𝑈�  and 𝑅𝑅� , as well as 𝑇𝑇𝑓𝑓� = 𝑇𝑇𝑓𝑓−𝑇𝑇𝑢𝑢
𝑇𝑇𝑎𝑎𝑎𝑎−𝑇𝑇𝑢𝑢

 and 𝑄𝑄� =

𝑄𝑄/(𝛥𝛥𝛥𝛥𝛥𝛥𝑢𝑢𝛿𝛿
𝑐𝑐𝑝𝑝

), Eq. (43) and (44) will become: 

𝑇𝑇𝑓𝑓� �𝑈𝑈� + 2
𝑅𝑅�
� = 𝑄𝑄�𝑅𝑅�−2𝑒𝑒−𝑈𝑈�𝑅𝑅� + 𝑈𝑈�   (45) 

𝑈𝑈�𝑅𝑅�−2𝑒𝑒−𝑈𝑈�𝑅𝑅�

∫ 𝑠𝑠−2𝑒𝑒−𝑈𝑈�𝑠𝑠𝑑𝑑𝑑𝑑+∞
𝑅𝑅�

= 1
𝑇𝑇𝑓𝑓�

[𝑇𝑇𝑓𝑓
�(𝜎𝜎−1)+1

𝜎𝜎
 ]2𝑒𝑒

𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎[
(𝑇𝑇𝑓𝑓�−1)𝜎𝜎

𝑇𝑇𝑓𝑓� (𝜎𝜎−1)+1]
   (46) 
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Eq. (45) and (46) include effects from the ignition source and hence can describe the entire reaction 

front initiation and propagation process in the spherical coordinate. 

Following a similar procedure, we can derive the following Eq. (47) and (48) for cylindrical 

reaction front initiation and propagation:   

𝑇𝑇𝑓𝑓� �𝑈𝑈� + 1
𝑅𝑅�
� = 𝑄𝑄�𝑅𝑅�−1𝑒𝑒−𝑈𝑈�𝑅𝑅� + 𝑈𝑈�   (47) 

𝑈𝑈�𝑅𝑅�−1𝑒𝑒−𝑈𝑈�𝑅𝑅�

∫ 𝑠𝑠−1𝑒𝑒−𝑈𝑈�𝑠𝑠𝑑𝑑𝑑𝑑+∞
𝑅𝑅�

= 1
𝑇𝑇𝑓𝑓�

[𝑇𝑇𝑓𝑓
�(𝜎𝜎−1)+1

𝜎𝜎
 ]2𝑒𝑒

𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎[
(𝑇𝑇𝑓𝑓�−1)𝜎𝜎

𝑇𝑇𝑓𝑓� (𝜎𝜎−1)+1]
  (48) 

3.2 Results combining reaction front initiation and propagation branches 

  

Fig. 8. Spherical reaction front propagation velocity as a function of radius with different 

dimensionless ignition energy 𝑄𝑄� = 0, 5, 30, 100 based on Eqs. (45) and (46). 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 5, 𝜎𝜎 = 6.67. 

Fig. 8 shows the evolution of spherical reaction front velocity as a function of radius with 

different ignition energy, following the above theoretical results Eq. (45) and (46). When 𝑄𝑄� = 0, 

the solution only includes the C-shape propagation branch as shown in Fig. 2 with a critical radius 

of 15, below which no solution exists. When 𝑄𝑄�  is increased to 5, there exist two branches of 

solutions, including an initiation branch on the left, with decreased velocity as the kernel develops 

and extinguishes, as well as a propagation branch on the right, adjacent to the solution with 𝑄𝑄� = 0. 
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These two branches are separated and hence describe a failed initiation process. With further 

increased ignition energy 𝑄𝑄� = 30, the left initiation branch and the right propagation branch merge 

with each other, such that the kernel can be successfully initiated and propagate. For this case, it 

can be seen that close to the merging regime, the system exhibits hysteresis in the form of an S-

curve, with an ignition and extinction turning point. Similar behavior is described in the spherical 

flame initiation as demonstrated in [21-22]. With further increased ignition energy, for example, 

𝑄𝑄� = 100, such hysteresis disappears, and the folded S-curve degenerates to a stretched one. It can 

be seen that the two successful initiations with sufficient ignition energy both have their 

propagation branches eventually overlapping with the baseline case of 𝑄𝑄� = 0, demonstrating the 

insignificance of ignition energy from the center once a reaction front is successfully triggered. 

Hence, all these branches share the same critical radius around 15. The minimum ignition energy 

is found to be around 𝑄𝑄� = 25, which is much higher compared to the minimum ignition energy 

𝑄𝑄� = 0.97 for a spherical flame with Le = 2 [22].  

 

Fig. 9. Regimes of reaction front initiation and propagation, 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 5, 𝜎𝜎 = 6.67, 𝑄𝑄� = 100. 

Similar to gas phase combustion [27], the entire process of curved reaction front initiation 

and propagation in solid include multiple regimes, which can be readily shown on the stretch rate 

space. As shown in Fig 9., the evolution dimensionless propagation velocity 𝑈𝑈� is shown with 
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variation of the dimensionless stretch rate 𝐾𝐾�. In general, there are three distinct reaction front 

regimes: (I) the ignition energy induced kernel development (AB), (II) ignition kernel transition 

(BC), (III) the normal flame propagation (CD). Regime I (AB) is the initiation regime driven by 

the ignition energy Q. At the end of Regime I, the ignition kernel reaches the minimum velocity 

and is readily to go beyond the critical radius. In Regime II (BC), the effect from ignition energy 

becomes negligible, and the ignition kernel quickly expands with the driving force of chemical 

reaction and heat conduction. In Regime III (CD), the reaction front is mature enough and 

propagates quasi-steadily as it expands. The change of curvature becomes the dominant factor that 

controls its dynamics, before it eventually approaches the planar limit. It is worth noting that the 

physical regimes of reaction front initiation in gas phase mixture have been correctly identified 

even under the quasi-steady propagation assumption as in the theoretical work in [21] [22] based 

on large activation energy asymptotic analysis. More recently, the quasi-steady propagation 

assumption is further evaluated by [28], where analytical results of transient initiation of a 

premixed flame is obtained without ignoring the unsteady term. The results further justify that the 

quasi-steady assumption is a very good approximation in reaction front initiation analysis. 

 

Fig. 10. Cylindrical reaction front propagation velocity as a function of radius with different 

dimensionless ignition energy 𝑄𝑄� = 0~5, based on Eqs. (47) and (48). 𝑍𝑍𝑍𝑍𝑎𝑎𝑎𝑎 = 5, 𝜎𝜎 = 6.67. 
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Fig. 10 shows the initiation and propagation regime of the cylindrical reaction front with different 

ignition source, acquired based on the theoretical results in Eq. (47) and (48). When 𝑄𝑄� = 0, the 

solution only exhibits a C-shape propagation branch as shown above in Fig. 2. With slightly 

increased 𝑄𝑄� = 0.3, the initiation branch is manifested in the form a S-curve behavior with both 

ignition and extinction turning point, and the upper S-curve merges with the propagation branch 

of the solution. With continued increment in ignition energy to 𝑄𝑄� = 0.5 , the folded S-curve 

becomes stretched, leading to monotonic and continuous kernel growth from the center. It should 

be noted that for the solutions around  𝑄𝑄� = 0.5 or below, given the large 𝑅𝑅� and the small 𝑈𝑈� in the 

lower branch of the S-curve, we can immediately realize that the system takes a very long time to 

actually reach the ignition state and transition to the propagation branch, and hence this kind of 

solution is most likely induced by the artifact of constant ignition source in the boundary with 

infinitely long duration time, and hence of less interest. With further increased ignition energy to 

𝑄𝑄� = 1.5, the system has a similar behavior of direct initiation as the spherical case with large 

ignition energy, showing a local minimum in propagation velocity before bridging with the 

propagation branch. The minimum ignition energy in the cylindrical case that allows this kind of 

behavior is around 𝑄𝑄� = 1, which is much lower compared to the spherical cases, demonstrating 

that thermal runaway in the cylindrical geometry is more easily to occur.  

Direct comparisons have been conducted with numerical simulation performed using 

CONVERGE and detailed runaway chemistry from [29], achieving qualitative agreement and 

further demonstrating the usefulness of our theory. Specifically, for the same ignition energy and 

same kernel size of 2 mm, the cylindrical case successfully initiates a reaction front while the 

spherical case fails to, due to stronger curvature effect. This is consistent with our finding that 

thermal runaway propagation is more likely triggered by nail penetration comparing to local hot 

spots. In addition, in the cylindrical case, with further reduced kernel size from 2 mm to 1.5 and 1 

mm, thermal runaway fails to be initiated in both cases. This is consistent to our findings of the 

critical radius in thermal runaway propagation. On the other hand, the simulation with detailed 

chemistry has shown some pulsating behavior, consistent to the large Lewis number gas flame 

with pulsating instability and seminal work by Matkowsky and Sivashinsky [30] and Weber et al. 

[17] on solid combustion. A thermal runaway theory incorporating both curvature and pulsating 

merits further exploration.  
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Conclusion  

In this work, large Ze number asymptotic analysis is performed based on infinite Le number 

and one-step global chemistry to describe the curved reaction front propagation in solid materials, 

with potential applications for battery thermal runaway propagation and solid combustion. The 

results show that although there are some qualitative similarities between the infinite Le number 

scenario with a finite, greater-than-unity Le case, including propagation dynamics, the existence 

of critical radius, dependence on stretch, etc, existing theory based on finite Le number cannot be 

directly applied to describe solid combustion where mass diffusion is completely ignored. 

Discontinuity in reaction front dynamics and extinction stretch rate is shown in the limit of an 

infinite Le.  

The large Ze number asymptotic analysis has shown that the curvature related terms are of 

higher orders and hence will not affect the inner reaction zone structure. The effect of curvature is 

manifested through the outer zone temperature profile when matching with the inner zone gradient.  

Analytical formulas are derived to describe the temperature and propagation velocity during 

reaction front initiation and propagation, accommodating the curvature and ignition energy effects. 

The results also show that the cylindrical reaction front always has a smaller critical radius, 50% 

for the value of the spherical case, indicating greater concerns for thermal runaway propagation in 

the nail penetration scenario, as compared with a local hot spot. Such concern is further justified 

by the much lower minimum ignition energy in the cylindrical case. 

It is shown that the spherical and cylindrical reaction front largely overlaps in the phase 

plot 𝑈𝑈� - 𝐾𝐾�. Through perturbation analysis, the effects from curvature on the propagation velocity 

and temperature can be canceled out when second and higher order terms are ignored in both 

spherical and cylindrical case. A simple, explicit formula Eq. (25) has been developed to directly 

link the propagation velocity with the burnt temperature in solid combustion, which can be useful 

to guide experiments and estimate reaction front propagation in solids.  

2D and 3D CONVERGE simulations using detailed thermal runaway chemistry have 

further confirmed some of the findings from the theory, such as the existence of critical radius for 

thermal runaway propagation and greater safety concern in the cylindrical coordinate.  In the future, 

we shall further extend the theory to predict pulsation behaviors of the reaction front and 

accommodate porosity and heterogeneous nature of the materials.  
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