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a b s t r a c t 

Background and objective: Since Computed Tomography (CT) is one of the most widely used medical imag- 

ing tests, it is essential to work on methods that reduce the radiation the patient is exposed to. Although 

there are several possible approaches to achieve this, we focus on reducing the exposure time through 

sparse sampling. With this approach, efficient algebraic methods are needed to be able to generate the 

images in real time, and since their computational cost is high, using high-performance computing is es- 

sential. Methods: In this paper we present a GPU (Graphics Processing Unit) software for solving the CT 

image reconstruction problem using the QR factorization performed with out-of-core (OOC) techniques. 

This implementation is optimized to reduce the data transfer times between disk, CPU, and GPU, as well 

as to overlap input/output operations and computations. Results: The experimental study shows that a 

block cache stored on main page-locked memory is more efficient than using a cache on GPU memory 

or mirroring it in both GPU and CPU memory. Compared to a CPU version, this implementation is up to 

6.5 times faster, providing an improved image quality when compared to other reconstruction methods. 

Conclusions: The software developed is an optimized version of the QR factorization for GPU that allows 

the algebraic reconstruction of CT images with high quality and resolution, with a performance that can 

be compared with state-of-the-art methods used in clinical practice. This approach allows reducing the 

exposure time of the patient and thus the radiation dose. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Computed tomography (CT) continues to be one of the most 

idely used medical imaging tests for the diagnosis and moni- 

oring of patients. However, concerns about its safety have been 

rowing in recent years. Since it uses ionizing radiation through X- 

ays, CT represents a risk for especially vulnerable patients such as 

ediatric patients, as well as recurrent patients who need to follow 

p on the evolution of a disease. Several studies [1–4] have shown 

he relationship between high exposure to X-rays and the pos- 

ibility of developing different types of cancer such as leukemia, 

rain cancer, breast cancer, thyroid cancer, among others. Another 

tudy [5] claims that the maximum dose that does not pose a risk 
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o the patient is around 100 milliSieverts, which is equivalent to 

pproximately 10 abdominal studies in an adult. Exposure above 

his threshold for adults or within this range for pediatric patients 

an increase the risk of pathologies caused by ionizing radiation. 

In consequence, research efforts in this area must focus on de- 

eloping methods that reduce the dose required to perform a CT 

can in order to minimize the risk for patients. There are different 

pproaches to reducing the radiation dose. The two most common 

ethods are based on the reduction of the tube current [6,7] and 

he reduction of tube voltage [8] . Both are usually known as “low- 

ose CT” and employ analytical methods, such as the Filtered Back- 

rojection (FBP) [9] , since they have a very low computational cost 

o reconstruct the images. Although these methods with low-dose 

rojections do not attain an optimal image quality, they are the 

asis of the more evolved iterative methods (IR), such as iDose 

by Philips Healthcare) and SAFIRE (by Siemens Medical Solutions). 

hese iterative techniques can outperform FBP by applying approx- 

mations and corrections on the images in each iteration, using the 

tatistical information available from the scanner and from previ- 
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us reconstructions. Despite their higher computational cost, they 

re well established in clinical practice and most manufacturers 

se their own optimized iterative method to process low-dose pro- 

ections. 

On the other hand, the possibility of reducing the radiation 

ose by using a sparse sampling scheme has been gaining popu- 

arity recently. By using this scheme, the exposure time is reduced 

ince the acquisition is not continuous and the number of pro- 

ections is reduced, thus decreasing the radiation dose absorbed 

y the patient during a scan. Although there are no commercial 

canners using this type of acquisition, there are prototypes such 

s the one presented by Muckley et al. [10] , which performs the 

parse sampling by blocking the X-ray source until a projection 

as to be taken. However, although this approach is not being 

sed yet, there are multiple studies claiming its advantages. In 

his case, the computational methods needed to perform the re- 

onstructions are algebraic, since the analytical ones do not per- 

orm well due to undersampling. They can be either iterative or 

irect. 

When compared to analytical methods to reconstruct the im- 

ges, new iterative algebraic methods such as SART [11] , OS- 

ART [12] , SIRT [13] , and LSQR [14,15] greatly reduce the number 

f projections needed to attain a good image quality. Since they 

econstruct the image by solving the system of equations that 

odels the problem through a series of approximations, they do 

ot require that the coefficient matrix has a full-rank to be able 

o obtain a solution. The disadvantages of the algebraic iterative 

pproach are the following two: The first one is the high com- 

utational cost even if they take advantage of the sparsity of the 

roblem. The second one is not being able to determine the final 

umber of iterations needed to obtain a CT study. 

In contrast, the use of direct algebraic methods is not so well 

xplored in this area, due to their high computational cost and the 

act that they require that the coefficient matrix has full-rank in or- 

er to obtain the solution. Because of the latter reason, the number 

f projections must be higher than when employing the algebraic 

terative methods, meaning a smaller dose reduction. In our previ- 

us works [16,17] , we showed both the feasibility of reconstruct- 

ng CT images using the direct QR factorization and the extremely 

igh-quality of the reconstructions, which was achieved with a sig- 

ificant dose reduction when compared to the FBP method (up to 

n 85%). 

However, although the coefficient matrix is initially sparse, the 

roblem quickly becomes dense through the factorization pro- 

ess, so the main memory size needed to store the data becomes 

n important issue for high-resolution images. One of our stud- 

es [17] showed that the use of out-of-core (OOC) techniques al- 

ows increasing the size (and thus image resolution) of the prob- 

em without having a large (and thus expensive) main memory. 

ince OOC relies on secondary storage, either HDD or SSD, the 

onetary cost is much smaller, and a problem can be computed 

s long as there is disk space available to store the data, regardless 

f its dimensions. 

Having determined both the feasibility of using the QR factor- 

zation to solve the CT image reconstruction problem and the opti- 

al performance of our OOC method on affordable CPU hardware, 

he aim of this paper is the adaptation, development, and opti- 

ization of the QR OOC method for faster GPU devices. This is 

n essential step to be able to compete with analytical methods 

n terms of time performance, since the reconstruction speed in 

linical practice must be as high as possible. The best performance 

eached so far was 1.38 slices per second when performing the 

omputations in CPU [17] . Despite being a good performance for 

n affordable CPU, several works [18,19] show how iDose, SAFIRE, 

nd FPB can obtain 16, 20, and up to 40 slices per second, respec-

ively. 
2 
In this work, we present a GPU implementation of the QR 

ethod to solve the CT reconstruction problem, which employs 

OC to solve large dimensions problems with high performance on 

 state-of-the-art hardware platform. The paper contains a solid as- 

essment of high-performance hardware and software, comparing 

he new GPU implementations to the previous CPU implementa- 

ion. We show the scalability of our implementation with respect 

o the number of slices, since computing many more slices in- 

reases only slightly the total time. We also show how the OOC ap- 

roach allows solving systems of dimensions so large that the data 

ould not fit in the GPU memory. Summing up, our new imple- 

entation optimized for GPU forms a stable and scalable method 

or CT reconstruction that is within the time performance and im- 

ge quality expected in clinical practice and also has the potential 

o improve the health of the patients since it needs far fewer pro- 

ections than traditional methods and therefore a lower radiation 

ose. 

The document is organized as follows: Section 2 outlines the 

heoretical concepts of the method proposed. Section 2.1 intro- 

uces the algebraic CT reconstruction process using the QR factor- 

zation of the weights matrix, whereas Subsection 2.2 describes in 

etail the main features of the new software. Section 3 assesses 

ur new method in terms of numerical stability and compares the 

erformance of all the variants developed, as well as the perfor- 

ance of our previous CPU implementation. An analysis of the 

mage quality is also included, comparing several reconstruction 

ethods with our new GPU implementation. Section 4 summarizes 

nd discusses the advantages of the studied method. Section 5 con- 

ains the conclusions. 

. Materials and methods 

.1. CT image reconstruction 

To reconstruct CT images with an algebraic approach, we model 

he problem as: 

X + N elec + N meas = B (1) 

here A = 

(
a i, j 

)
∈ R 

M×N denotes the so-called system, weights, or 

oefficient matrix, with dimensions M × N. A models the physical 

canner, a i, j being the contribution of the i th ray on the jth pixel.

he dimension M is the product of the number of detectors of the 

T scanner multiplied by the number of projections or views taken. 

denotes the resolution of the image ( 256 × 256 pixels, 512 × 512 

ixels, etc.). B = (B j ) is a matrix of M × S elements, where S is the

umber of slices to be reconstructed, and B j denotes the jth col- 

mn, which corresponds to the jth sinogram. X = (X j ) is a matrix

f dimensions N × S, where X j is the column that will store the 

econstructed image corresponding with the jth sinogram. Note 

hat the above formula considers the noise present in the projec- 

ions, where N elec is the electronic noise and N meas is the noise 

n the measurements provoked by the scanner. Our work processes 

imulated projections and focuses on optimizing the reconstruc- 

ion process of high spatial resolution images based on the QR fac- 

orization. Analyzing the effects of the noise in the system is an 

nteresting and complex research that is beyond the goals of this 

ork. Nevertheless, the feasibility of solving the CT image recon- 

truction problem using the QR factorization with real projections 

rom a micro-CT scanner has already been demonstrated [20] . Al- 

hough those projections contained noise, the reconstructions were 

f good quality. Even though no filter was applied, better results 

han those of other classical methods were obtained, even with 

 lower spatial resolution. When working with real data, filtering 

echniques could be applied both before and after the reconstruc- 

ion method based on the QR factorization. Filtering techniques 
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hould be applied to the sinogram before our reconstruction pro- 

ess as a part of the acquisition process, which modern commer- 

ial scanners already perform. Image filters could be applied to the 

nal reconstructions too. 

To solve the problem in Eq. (1) without considering the noise, 

rst the QR factorization of A is computed ( Eq. (2) ), where Q is

rthonormal and R is upper triangular. Then, to finally reconstruct 

he images, Eq. (3) is used. Section 2.2.1 describes in detail these 

esolution steps. Recall that Q 

∗ is the transpose of Q . 

 = QR (2) 

 = R 

−1 (Q 

∗B ) (3) 

A more detailed definition of the scanner parameters used for 

he simulations can be seen in our previous work [17] . In that pa-

er, we presented the initial approach to the QR method applied 

o the CT image reconstruction problem, with a CPU implementa- 

ion that employs out-of-core techniques to solve large-scale sys- 

ems that do not fit in main memory (RAM). That implementation 

as optimized to overlap I/O operations with computations so the 

verall time could be reduced. We encourage the reader to consult 

he paper to have a better understanding of the techniques we are 

sing. 

Although the method was very efficient on medium-cost CPUs, 

he performance attained was still far from the performance 

chieved by the more widespread methods. Having already proved 

he quality and stability of the method, the current aim is to im- 

rove its performance by using GPUs and several other optimiza- 

ions that are explained in the following subsection. 

.2. Algorithms and implementations 

Our new algorithm and implementations contain the following 

ontributions: 

• The code has been ported to the GPU so that the main compu- 

tational tasks are performed in the GPU, thus accelerating the 

full process. 
• The block cache management system has been improved to re- 

duce the number of cache misses in order to reduce the num- 

ber of data transfers. 
• Page-locked memory (pinned) is used and assessed in several 

variants to accelerate data transfers. 
• The placement of the storage of the block cache is assessed to 

determine the best place (main memory, GPU memory, or mir- 

rored in both). 

Next, we describe some of the above in more detail. 

.2.1. Porting and optimization of the code for GPU 

When considering the full computational process ( Eq. (1) ), the 

ode comprises six main computational different tasks. In contrast, 

hen considering only the system solving ( Eq. (3) ), only four main 

omputational tasks are needed. The six computational tasks are 

he following: 

1. Upper triangular system solving. 

2. Matrix-matrix product. 

3. Computation of a dense QR factorization. 

4. Applying a dense QR factorization. 

5. Computation of a triangular-dense QR factorization. 

6. Applying a triangular-dense QR factorization. 

The porting of the first two operations, the upper triangular 

ystem solving and the matrix-matrix product, is straightforward 

y making a call to the cuBLAS dTRSM and dGEMM subroutines, 

espectively. 
3 
Before describing the porting of the other four tasks, we intro- 

uce Householder transformations since they are heavily used in 

hose. A Householder transformation [21] can be defined as: 

 = I − τvv ∗, (4) 

here I is the identity matrix, τ is a scalar, and v is a vector. By 

hoosing appropriate values for τ and v , a Householder transfor- 

ation can be used to nullify some elements of a column of the 

oefficient matrix, such as those in the lower triangular part. How- 

ver, when applying H to the coefficient matrix to nullify some el- 

ments, the latter formula employs only matrix-vector operations, 

hich are not so efficient due to the low ratio of the number of 

oating-point operations to the number of memory accesses in 

his type of computations. On the other hand, the product of a 

et of Householder transformations [22,23] Q = H 1 H 2 · · · H b , H i = 

 − τi v i v ∗i can be combined as: 

 = I − Y T Y ∗, (5) 

here Y is a lower trapezoidal matrix and T is a b × b upper tri- 

ngular matrix. The latter formula employs a few matrix-matrix 

roducts, which are much more efficient in modern architectures 

ince the ratio of the number of floating-point operations to the 

umber of memory accesses is higher, thus obtaining speeds much 

loser to the peak speed of the computing device. 

Now we are going to describe the porting of the two tasks for 

omputing and for applying the dense QR factorization. Though 

he cuSOLVER library offers two highly-optimized subroutines for 

omputing and applying the QR factorization, these two subrou- 

ines do not return and do not receive, respectively, the T factors 

rom Eq. (5) as arguments. Hence, these factors must be recom- 

uted internally each time the QR factorization is applied. Note 

hat the T factors are computed by using the not so efficient 

atrix-vector operations. As every QR factorization must be usu- 

lly applied to many blocks, it is more efficient to save the T fac- 

ors when computing the dense QR factorizations so that they can 

e reused when applying the dense QR factorization. Therefore, we 

ave implemented our own version of the dense QR factorization 

hat computes and returns the T factors. Accordingly, we have im- 

lemented our version of the applying of a dense QR factorization 

hat receives and uses the T factors, instead of computing them 

very time. Both implementations employ the cuSOLVER and the 

uBLAS libraries. 

Finally, we are going to describe the porting of the two tasks 

or computing and for applying the triangular-dense QR factoriza- 

ion. We have implemented the computation of a triangular-dense 

R factorization and its applying since the cuSOLVER library does 

ot contain subroutines for performing these specific operations. 

nalogously, in this case we also compute and store the T factors 

uring the QR factorization in order to reuse them when updating 

ther blocks. Both implementations also employ the cuSOLVER and 

he cuBLAS libraries. 

.2.2. Optimization of the block cache management system 

In [17] a new out-of-core software that employed a block cache 

anagement system was proposed for CPU-based architectures. 

ne of the main features of this system was that it used an LRU 

Least-Recently Used) 4-set associative cache. The advantage of this 

ystem is that the search to check whether the block is already in 

he cache is 4 times as fast. The drawback is that blocks can only 

o to one of the four sets, and when looking for a block to be re-

laced, only the current set is considered. Another feature was that 

t only considered square blocks. It could work with rectangular 

locks, but when computing maximum sizes and cache sizes only 

quare blocks were considered and the number of entries in the 

ache was limited by the size of the square blocks. 
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We propose a new management system that can perform better 

y changing these two features. We only use an LRU 1-set cache. 

earches of blocks are a bit slower, but the LRU method considers 

ll the blocks, thus giving better choices. Besides, the new system 

s prepared to work with any block size. The number of maximum 

locks to be stored is not statically set (except for a very high max- 

mum to avoid a too long list of blocks), and the number of blocks 

epends only on the memory available in every moment. 

Another interesting optimization used in the new system is the 

torage of the data. As in GPUs every allocation/free operation re- 

uires the synchronization of all the GPU threads, a big chunk of 

emory (main memory or GPU, depending on the variant) is allo- 

ated (as large as the cache size to be used) at startup time, and

hen an own management of allocation/free is used, thus reducing 

he bottlenecks and accelerating the application. 

.2.3. Page-locked memory 

Modern operating systems have memory areas that are page- 

ocked or “pinned”, that is, never swapped to secondary storage. 

he size of this page-locked memory is usually small, but it can be 

asily defined by the system administrator. As the contents of the 

age-locked memory cannot be removed from main memory, they 

sually allow a higher transfer bandwidth and an asynchronous 

oncurrent execution. When transferring between main memory 

nd NVIDIA GPUs, if the main memory buffer is not page-locked, 

he CUDA driver allocates a pinned block and uses it as an inter- 

ediary buffer, thus incurring in a higher overhead. 

In some variants, we have used pinned memory to acceler- 

te the transfers between main memory and the GPU, as well as 

etween disk and main memory. Since a block cache size much 

maller than main memory usually attains good results, keeping all 

he block cache storage in pinned memory is nowadays feasible. 

.2.4. Families and variants in the out-of-core implementations 

We developed three different families of implementations, ac- 

ording to where the block cache was kept. The var5 family of 

mplementations kept the block cache in the main memory of 

he computer. The var6 family of implementations kept the block 

ache in the GPU memory. The var7 family of implementations 

ept the block cache mirrored in main memory and the GPU mem- 

ry. 

• Family var5 : This family of implementations keeps the block 

cache in the main memory of the computer. 

Since this block cache is stored in main memory, the transfer of 

data between disk and main memory will be overlapped with 

the transfer of data between main memory and the GPU mem- 

ory and the computation in the GPU. Therefore, this family will 

be very beneficial if the transfer time between disk and main 

memory is comparable to the transfer between disk and the 

GPU and the computation. 

For this family of implementations we have implemented the 

following variants: 
• Variant var5t : This is the traditional implementation that 

does not use any block cache. Any input operand is read 

from disk (into the main memory and then) into the GPU 

memory every time, and every output operand is written 

from the GPU memory (into the main memory and then) 

into the disk every time. 
• Variant var5c : To reduce the number of data tranfers, this 

implementation uses the old block cache management sys- 

tem. 
• Variant var5d : To reduce the number of data tranfers, it 

uses the new block cache management system. 
• Variant var5v : Analogous to var5c but overlapping of disk 

I/O and computation is performed to reduce the overall cost. 
4 
• Variant var5w : Analogous to var5d but overlapping of disk 

I/O and computation is performed to reduce the overall cost. 
• Variant var5r : Analogous to var5w but page-locked mem- 

ory (pinned) is employed to store the block cache. 
• Family var6 : This family of implementations keeps the block 

cache in the GPU memory. 

Since this block cache is stored in GPU memory, the transfer of 

data between disk and main memory and between main mem- 

ory and the GPU memory will be overlapped with the compu- 

tation in the GPU. Therefore, this family could be very benefi- 

cial if the computational time in the GPU is comparable to the 

transfer between disk and the GPU. 

The var6t , var6c , var6d , var6v , var6w , var6p , and

var6r variants are analogous to those in the var5 family. In 

addition to those, for this family of implementations we have 

implemented the following variant: 
• Variant var6z : As the block cache is stored in the GPU, 

two CUDA streams are used to overlap computations in the 

GPU with transfers from disk to main memory to GPU mem- 

ory (and viceversa transfers). One of the CUDA streams is 

used for the computations, and the other one is used for 

the transfers. 
• Family var7 : This family of implementations keeps the block 

cache mirrored in main memory and the GPU memory. 

Since this block cache is stored in both memories, the trans- 

fer of data between disk and main memory will be overlapped 

with the transfer between main memory and the GPU memory 

and the computation in the GPU. Therefore, this family could 

be very beneficial if the computational time in the GPU is com- 

parable to the transfer between disk and the GPU. The advan- 

tage of this family with respect to the var5 family is to reduce 

some transfers between main memory and the GPU memory. 

For this family of implementations we have implemented anal- 

ogous variants to those of the var5 family. 

. Results 

In this section, we investigate the speed of our new implemen- 

ations. In all the experiments double-precision real matrices were 

rocessed. 

As described before, when solving a linear system of equa- 

ions AX = B , two stages are required: The first one is to compute

he QR factorization of A : A = QR . The second one is to compute X

ith the following expression: X = R −1 (Q 

∗B ) . Note that the first

tage can be computed only once since it is independent of B , 

hereas the second stage must be computed for every image or 

et of images to be generated. Since the first stage can be com- 

uted only once and then reused, unless explicitly stated other- 

ise, all the following tables and figures report only times of the 

econd stage. 

Unless explicitly stated otherwise, all the times shown in the 

ables and figures of this section are computed as the average of 

ve executions to reduce the effect of variability on the results. 

.1. Experimental setup 

Most of the experiments were performed in a computer called 

linna . It featured two AMD EPYC 7282®processors (base clock 

t 2.8 GHz), with 32 cores and 512 GiB of RAM in total. It also fea-

ured a NVIDIA GPU A100 with 40 GiB of RAM inside this device. 

ts OS was GNU/Linux (kernel version 4.18.0-240.15.1.el8_3.x86_64). 

CC compiler (version 8.3.1 20191121) was used. Intel Math Kernel 

ibrary (MKL) 2020.0.1 Product Build 20200208 for Intel(R) 64 ar- 

hitecture was employed. The version of the driver employed in 

he NVIDIA GPU was 455.32.00 and the version of CUDA was 11.1. 

n addition to one small Solid-State Drive (SSD) for the operating 
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Table 1 

Residuals ‖ AX − B ‖ F / ‖ A ‖ F computed for both the CPU traditional in-core software 

(based on Intel MKL code) and our new out-of-core GPU software when solving the 

system AX = B with a matrix A of dimension 266 500 × 262 144 and a matrix B with 

several number of columns. 

slices CPU-based software new GPU-based out-of-core software 

256 3 . 04 · 10 −12 2 . 04 · 10 −12 

512 1 . 24 · 10 −11 7 . 15 · 10 −12 

1024 1 . 31 · 10 −11 7 . 46 · 10 −12 

2048 1 . 44 · 10 −11 7 . 52 · 10 −12 

Table 2 

Time in seconds to solve a system AX = B with a random matrix A of dimension 

266 500 × 262 144 and a matrix B with 256 columns for out-of-core variant var5r 
with a block cache of 32 GB for different block sizes. 

Block Time in Time in 

size QR solving 

5 120 4 692.9 105.7 

7 680 3 879.2 135.8 

10 240 3 838.6 129.4 

12 800 3 127.6 132.2 

15 360 3 308.6 129.8 

17 920 2 858.3 132.3 

20 480 3 015.1 130.5 

23 040 2 682.5 137.0 

25 600 2 822.1 135.2 
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ystem and programming tools, this computer used one Samsung 

SD 970 EVO 2TB (Firmware 1B2QEXE7) with an M.2 connector 

nd a capacity of 2 TB to store all the data of the application. Ac-

ording to the Linux operating system hdparm tool, the cached 

ead speed was 9642.57 MB/s and the buffered disk read speed 

as 2499.21 MB/s (the average of ten executions was computed). 

Our new implementations were coded with the libflame 
Release 11104) high-performance library. To perform lower level 

asks, our code employed Intel MKL when performing linear alge- 

ra computations on the CPU and NVIDIA cuSOLVER and cuBLAS 

hen performing linear algebra computations on the GPU. 

Unless explicitly stated otherwise, all the experiments based on 

he CPUs used all the cores in the computer. When using sub- 

outines of MKL’s LAPACK, optimal block sizes determined by that 

oftware were employed. 

The implementations assessed in this section are described in 

ection 2.2.4 . 

.2. Precision 

Table 1 shows the residuals ‖ AX − B ‖ F / ‖ A ‖ F after solving the

ystem AX = B with a matrix A of dimension 266 500 × 262 144 

nd several matrices B with different numbers of columns shown 

n the first column. The second column shows the residuals for 

he traditional CPU-based in-core software (based on Intel MKL li- 

rary). The third column shows the residuals for our new out-of- 

ore GPU-based software. In particular, the results of the var5r 
ariant are shown. Other variants obtained very similar results. The 

able shows that our new software obtain a precision slightly bet- 

er than the CPU-based Intel MKL software. 

.3. Effect of block sizes 

Table 2 shows the effect of the block sizes on the time spent 

n both stages when solving a system AX = B with a random ma- 

rix A of dimension 266 500 × 262 144 and a matrix B with 256

olumns. This table reports the times of the var5r variant with 

 32-GB block cache. Only one execution was run to obtain the 

imes of the computation of the QR factorization shown in this 

able since the computational cost of the QR factorization is very 
5 
igh and the variability in the obtained times is usually smaller 

n longer experiments. The first column shows the block size. The 

econd column shows the time to compute the factorization of A : 

 = QR . The third column shows the time to compute the solution: 

 = R −1 (Q 

∗B ) . As can be seen, the times for computing the QR fac-

orization (second column) strongly depend on the block size, the 

est block size being 23 040 . In contrast, the times for solving the 

ystem (third column) do not depend so much on the block size, 

he best block size being 5 120 . Both the QR factorization and the 

ystem solution are important, but the second one is key since the 

rst one can be reused for many system solutions. Therefore, from 

ow on, 10 240 will be used as block size in the rest of experi-

ents since it is a good compromise between both stages and it is 

he same block size used in previous CPU-based experiments [17] . 

.4. Comparison between in-core and OOC 

Our new out-of-core codes are able to process matrices so large 

hat they do not fit in main memory and thus must be stored 

n secondary storage (disks). However, as the matrices are stored 

n secondary storage, blocks of data must be continuously trans- 

erred between this storage and main memory, which can reduce 

erformances if special care is not taken. Therefore, it would be 

ery interesting to compare the performances of both GPU in-core 

odes and GPU out-of-core codes on the same machine (or similar 

achines) to assess the effect of the data movement on the per- 

ormances. Obviously, the development of GPU out-of-core codes 

s covered in our work, but GPU in-core codes are more prob- 

ematic. Since current GPU codes require that all the data to be 

rocessed is stored in the GPU memory, very large matrices can- 

ot be processed on GPU because the GPU memory size is usually 

maller than the main memory. Recently, NVIDIA has provided a 

ew method to process matrices so large that they do not fit in 

he GPU memory and they are stored in main memory. We as- 

essed this method, but its performances dropped extremely when 

he size exceeded the GPU memory capacity. 

Nevertheless, as a comparison between in-core and out-of-cores 

ould be very interesting to find out if the out-of-core approach 

ctually offers high performances, the only solution was to com- 

are in-core and out-of-core codes based on CPU, instead of GPU. 

o do that, we employed a similar computer with a main memory 

arge enough to store the data employed in the image processing. 

ecall that matrix A is of dimension 266 500 × 262 144 and matrix 

 is of dimension 266 500 × S, where S is the number of slices. In 

articular, since the storage of all those data requires about 520 

iB, we employed a computer identical to alinna with 768 GiB 

o assess the in-core codes. 

Fig. 1 shows the total and decomposed times for the recon- 

truction of images of two CPU codes. As said before, though we 

ould not compare the in-core and out-of-core GPU codes, this 

omparison of CPU codes can be very useful to assess our out-of- 

ore approach. The out-of-core var4v is a CPU-based code anal- 

gous to the GPU-based var5v code. The in-core (all the data fit 

n main memory) method assessed is a code that we developed to 

his end based on the efficient and well-known Intel MKL library 

his code is very simple since it keeps all the data in main mem- 

ry, but its main restriction is that all data must fit inside main 

emory; otherwise, it could fail or performances would drop no- 

ably. In this case, we included the time (though the plot shows 

he partial times) to load the data and to save the results. Note that 

his time could be saved by keeping the data in main memory if 

any systems are solved in a row. On the other hand, our out-of- 

ore code employs the CPU of the system too. The main advantage 

s that our code can work with any matrix size, and it only em- 

loys 40 GB of main memory (this is a parameter that can be eas- 

ly reduced or increased). The main disadvantage is the continuous 
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Fig. 1. Decomposed times for CPU in-core and CPU out-of-core codes. For each 

number of slices, the left bar shows the performance of the in-core MKL code, 

whereas the right bar shows the performance of the var4v out-of-core code with 

a 40-GB block cache, which is analogous to var5v , but executed on the CPU. 

Table 3 

Number of disk I/O read and write operations and total time in seconds when 

solving a system AX = B with a matrix A of dimension 266 500 × 262 144 and 

a matrix B with two different number of columns (slices) for several out-of- 

core variants with a cache of 16 GB. 

Cache 256 slices 2048 slices 

Variant system Read Write Time Read Write Time 

var5t no 1858 428 328.4 1858 428 410.0 

var5c old 1747 380 332.3 1747 380 508.9 

var5d new 1437 189 269.6 1527 246 289.3 

var5v old 1747 380 291.5 1747 380 385.0 

var5w new 1437 189 215.7 1531 246 198.5 
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Fig. 2. Decomposed times for the best variants on the main SSD. 

Fig. 3. Decomposed times for several cache sizes on the main SSD. 
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ata movement between secondary storage and main memory. As 

an be noticed, our out-of-core approach is very competitive with 

he in-core code based on the MKL library. For 256 slices the out- 

f-core code is much faster because in that case the in-core MKL 

s very slow. As expected, the real time of our out-of-core method 

rows linearly (or very close to it) with the number of slices. The 

eal time of the in-core method also grows linearly (or very close 

o it) with the number of slices except for 256 slices. 

.5. Effect of the block cache management system 

Table 3 compares the old and the new block cache management 

ystem when solving a system AX = B with a coefficient matrix A 

f dimension 266 500 × 262 144 and matrices B with 256 and 2048 

olumns. The QR factorization is assumed to be already computed, 

nd only the system solving is assessed ( Eq. (3) ). The out-of-core 

odes used a block cache of 16 GB. For each number of slices, the 

able shows the number of disk I/O read operations, the number of 

isk I/O write operations, and the total time in seconds. Recall that 

he var5t variant does not use any block cache management sys- 

em, the var5c and var5v variants employ the old block cache 

anagement system, and the var5d and var5w variants employ 

he new block cache management system. As you can see, the use 

f the old block cache management system reduces the number of 

isk I/O read operations (6% for both number of slices) and disk I/O 

rite operations (11% for both number of slices) of both variants 

ar5c and var5v with respect to the non-cache variant, whereas 

nly the total time for the var5v variant is reduced. On the other 

and, the use of the new block cache management system reduces 

uch more the number of disk I/O read operations (23% and 18% 

or 256 and 2048 slices, respectively) and disk I/O write opera- 

ions (56% and 43% for 256 and 2048 slices, respectively) of both 
6 
ariants var5d and var5w with respect to the non-cache variant. 

he total total time of both var5d and var5w also dropped. For 

he latter the time reduction was 34% and 52% for 256 and 2048 

lices, respectively. 

.6. Assessment of variants 

Fig. 2 shows the total and decomposed times for the recon- 

truction of images of several variants. Recall that the var5 vari- 

nts keep the block cache in main memory, the var6 variants 

eep the block cache in the GPU memory, and the var7 vari- 

nts keep the block cache mirrored both in main memory and GPU 

emory. In all the variants assessed for this plot a block cache of 

6 GB was used. As can be noticed, the var5w variant greatly re- 

uces the disk I/O time of the var5v variant since it performs 

 more efficient use of the block cache. Besides, var5r reduces 

oth the disk I/O time and the GPU I/O time of var5w even more 

y using page-locked (pinned) memory. On the other side, the 

ar7r variant offer performances slightly lower than var5r . The 

ar6 variants are usually the slowest ones since the block cache 

s stored in the GPU memory and therefore they overlap disk I/O 

nd GPU I/O with GPU computation. Note the nearly perfect over- 

apping of some variants such as var5r that completely hides the 

PU I/O time and the computational time. 

.7. Effect of block cache sizes 

To study the effect of the block cache size on performances, 

ig. 3 shows the total and decomposed times for the reconstruction 

f images of two variants with several block cache sizes. As can 
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Fig. 4. Decomposed times for several main memory (RAM) sizes on the main SSD. 

Fig. 5. Decomposed times for the best configurations. 
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Fig. 6. Slices per second versus several numbers of slices for the best configura- 
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e seen, large block cache sizes affect performances, but the best 

erformances are not always achieved with the largest block cache. 

he var5w variant usually obtain better results with smaller cache 

izes. On the other hand, the var5r variant obtain the best perfor- 

ances when employing a block cache size of 16 GB for 256 slices, 

nd the largest cache sizes (32 GB and 40 GB) for 2048 slices. This

ight be produced because the larger the block cache size in main 

emory, the smaller the space available for disk buffers of the op- 

rating system. 

.8. Effect of main memory (RAM) sizes 

To study the effect of the size of main memory on perfor- 

ances, Fig. 4 shows the total and decomposed times for the re- 

onstruction of images of two variants with two main memory 

izes. All variants in this plot use a block cache of 16 GB. The 

eader can see that the larger main memory size increases per- 

ormances for all variants. The cause is that a larger main memory 

ize can be leveraged by the operating system to store more disk 

uffers, thus reducing the overall I/O cost. 

.9. A comparison of several configurations 

Fig. 5 shows the total and decomposed times for the recon- 

truction of images on several hardware/software configurations. 

or this plot we have selected the following configurations: 

• The first configuration is based on a computer called anka 
with no GPU. Therefore, only the CPU was used in the com- 

putations. It featured one Intel i7-7800X®CPU, with 6 physical 
7 
cores and 128 GiB of RAM in total. Its clock base frequency was 

3.50 GHz, and the so-called Max Turbo Frequency was 4.00 GHz. 

In addition to one small SSD for the operating system and pro- 

gramming tools, the computer had one Solid-State Drive (SSD) 

with an M.2 connector and a capacity of 2 TB to store all 

the data of the application. This SSD was a Samsung SSD 970 

EVO 2TB (Firmware 1B2QEXE7). According to the Linux operat- 

ing system hdparm tool, the read speed of the first one was 

about 191.43 MB/s, whereas the read speed of the second one 

was about was 2427.50 MB/s. Its OS was GNU/Linux (kernel 

version 3.10.0-862.14.4.el7.x86_64). GCC compiler (version 4.8.5 

20150623) was used. Intel(R) Math Kernel Library (MKL) Ver- 

sion 2018.0.2 Product Build 20180127 for Intel(R) 64 architec- 

ture was employed. 
• The second configuration is the out-of-core codes that employ 

a NVIDIA A100 GPU. See the description above. 

Note that both configurations have exactly the same model of 

SD (Samsung EVO 970) with the purpose of a fair comparison. 

The best available software was employed on both platforms. 

he var4v variant was employed in the anka server. It is analo- 

ous to var5v , but it performs all computations on CPU instead 

f GPU. The var5r variant was employed in the alinna server. 

The sizes of the block caches for the out-of-core CPU-based 

oftware assessed in anka and the out-of-core GPU-based soft- 

are assessed in alinna were 32 GB and 16 GB, respectively. 

As can be seen, the GPU implementation greatly reduces the 

omputational times of the code based on CPU. For 2048 slices, the 

PU implementation is about 7 times faster than the configuration 

ith the CPU i7. Another interesting remark to be made is that 

he total time of the GPU implementation does not increase much 

hen the number of slices grows from 256 to 2048, thus show- 

ng a great scalability with respect to the number of slices. The 

mployment of fast GPUs in our out-of-core code causes the new 

ottleneck of this application to be the speed of the disks (SSD). 

.10. Speed of image reconstruction 

Fig. 6 shows the speed of image reconstruction of same two 

ardware/software configurations as before. The speed is measured 

n slices per second. Therefore, unlike the previous plots, higher 

alues are better. As the reader can notice, our new software on 

he alinna server can generate between about 1.5 and 9 slices 

er second, much better than those attained in the CPU-based 

erver anka . 
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Fig. 7. No pathology. 

Fig. 8. Covid pneumonia. 
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.11. Image quality 

All the images for this study have been selected from the 

OVID-CT-MD dataset [24] , which includes a collection of real 

T images obtained from patients with no pathologies, patients 

ith pneumonia due to Covid-19, and patients with community- 

cquired pneumonia (CAP). The images have been re-projected 

ith Joseph’s [25] method in order to simulate the sinograms and 

hen reconstruct them using the QR method. The CT scanner sim- 

lated has 1025 detectors, and the number of projections needed 

o have a full-rank system matrix is 260. The chosen image resolu- 

ion of the reconstructions is 512 × 512 pixels. More details on the 

eometry of the scanner can be found in our previous work [17] . 

Three image quality metrics have been used to test the qual- 

ty of the reconstructed images. The first one is the Mean Absolute 

rror (MAE). It denotes the average difference of the pixels in ab- 

olute value all over the image. See Eq. (6) , where M and N are the

umbers of rows and columns in pixels, I 0 is the reference image, 

nd I is the reconstructed image. 

The second one is called Peak Signal-to-Noise Ratio (PSNR), and 

t measures the level of image noise (see Eq. (7) ). In the equation,

AX represents the maximum value that a pixel can take. 

Finally, the third one is the Structural Similarity Index (SSIM). 

t is a perceptual metric that measures the level of conservation of 

he internal structures and edges of the images (see Eq. (8) ). It is

pplied through pairs of windows of fixed size, and the difference 

etween two windows x and y corresponding to the two images 

o be compared is calculated. In this equation, μx and μy are the 

verage values of the respective window x and y , σ 2 
x and σ 2 

y are 

he variances, σxy is the covariance between the two windows, and 

 1 and c 2 are two stabilizing variables dependent on the dynamic 

ange of the image. More information about these quality metrics 

an be found in [26] . Specific parameters for each metric are more 

etailed in [17] . 

AE = 

1 

MN 

M−1 ∑ 

i =0 

N−1 ∑ 

j=0 

| I 0 (i, j) − I(i, j) | (6) 

SNR = 10 log 10 

MAX (I 0 ) 
2 

MSE 

, with 

MSE = 

1 

MN 

M−1 ∑ 

i =0 

N−1 ∑ 

j=0 

(I 0 (i, j) − I(i, j)) 2 (7) 

SIM = 

(2 μx μy + c 1 )(2 σx,y + c 2 ) 

(μ2 
x + μ2 

y + c 1 )(σ 2 
x + σ 2 

y + c 2 ) 
(8) 

In order to assess the quality of the proposed GPU-based im- 

lementation, the same reconstructions have been performed us- 

ng two other techniques. The first one is the Least Squares QR 

LSQR) method, which has been combined with both the Soft- 

hresholding-Filter (STF) and the FISTA acceleration [27,28] . It is an 

terative algebraic method that can thus deal with rank-deficient 

roblems and that was employed for solving the same system of 

quations as that solved by the QR method ( Eq. (1) ) using 260

rojections. As was shown [27] , the LSQR attained both better 

uality and significantly lower computational times than the SART 

ethod, which is one of the most widely methods used in alge- 

raic reconstructions. For this reason, it was selected for this com- 

arison instead of SART. 

The second method selected is the classical analytical method 

iltered Back-Projection (FBP) using the Ram-Lak filter [9] , which 

ontinues to be the most common reconstruction technique. Al- 

hough nowadays there are state-of-the-art iterative reconstruction 

ethods (IR) that take into account the scanner information to 

mprove the FBP reconstructions, they are complex methods pro- 

ided by manufacturers via embedded software in their systems. 
8 
herefore, as we do not have access of any of this software, we 

ave not been able to include a comparison with IR methods here. 

he FBP method does not perform optimally when the number 

f projections is small due to undersampling. The minimum num- 

er of views is determined by the Nyquist-Shannon sampling the- 

rem [29] , and for this particular problem we need to employ 

round 1600 projections to obtain a good quality, as was previ- 

usly shown [17] . Hence, when compared to the analytical method 

BP, the QR method could mean an 85% reduction of the number 

f projections needed since it only requires 260 out of 1600. This 

s a significant reduction, and even if iterative algebraic methods 

eed fewer projections, they also imply a higher error, as we will 

how in the results. 

Figs. 7 , 8 , and 9 show the images of three reconstructions, cor- 

esponding to each of the type of case included in the dataset: 

ealthy patients, patients with Covid-19, and patients with CAP. 

Table 4 shows the results of the image quality metrics applied 

o these reconstructions. The FBP method employed 260, 360, 720, 

nd 1610 projections. It is worth mentioning that the metrics have 

een calculated using the images with Hounsfield Units (HU) val- 

es. 

As can be seen in this table, the reconstructions using the QR 

ethod attain the highest quality, and they can be considered 

dentical to the reference images in every case, with a perfect SSIM 
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Table 4 

Results of the image quality metrics applied to the reconstructions corresponding to three selected CT images: no pathol- 

ogy, Covid pneumonia, and community-acquired pneumonia (CAP). 

No pathology Covid CAP 

Method # Projec. MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM 

QR 260 3 . 5 · 10 −8 207.22 1 3 . 6 · 10 −8 207.30 1 3 . 6 · 10 −8 206.54 1 

LSQR 260 2.65 50.05 0.97 3.09 40.01 0.97 9.74 36.22 0.92 

FBP 260 45.16 26.37 0.33 46.76 26.48 0.34 42.85 25.41 0.38 

FBP 360 34.81 28.28 0.43 36.08 28.50 0.43 31.75 27.77 0.48 

FBP 720 27.63 29.76 0.75 27.98 30.19 0.74 24.28 29.37 0.80 

FBP 1610 27.06 29.79 0.86 27.41 30.24 0.86 23.82 29.41 0.90 

Fig. 9. Community-acquired pneumonia. 
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Fig. 10. Selected segment of the CAP image. 
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nd a very low MAE. For this reason, the reference images for this 

ase are not shown. 

The second best quality results are obtained by LSQR. Although 

he SSIM does not reach 1, the error is hardly perceived by the 

uman eye, as can be seen in Figs. 7 b, 8 b, and 9 b. However,

he metrics show that the quality is not as high as the obtained 

ith QR, and it is mainly due to the oversmoothing effect of this 

ethod, as can be seen in Fig. 9 b, in which the image loses some

exture compared to the reference image. Attaining a MAE ranging 

rom 2.65 to 9.74 HU could be detrimental for the application of 

ostprocessing techniques to the images, such as image segmenta- 

ion or automatic detection of anomalies through artificial intelli- 

ence. 

The reconstructions by the FBP methods are the ones with the 

oorest quality. If FBP is used with the same number of projec- 

ions as that required by the algebraic methods (260), the error 

nd noise obtained is very high, losing a third part of the internal 

tructures information. Fig. 8 c clearly shows the streak artifacts, 

nd how they affect the structures of the image. When the number 

f projections is increased, the quality improves accordingly, but in 

very reconstruction slightly blurry edges can be noticed (reflected 

y the SSIM results), as well as a slight change in the grey scale of

he images, compared to the reference. Even when using the opti- 

al number of views the quality does not match that obtained by 

he algebraic methods. The best reconstruction has a MAE of 23.82 

U, much worse than the 9.74 HU attained by LSQR. 

In order to show how the intensity of the pixels fluctuate with 

ll the methods, Fig. 11 shows the intensity profile along a cho- 

en segment of the image corresponding to a community-acquired 

neumonia case (the segment is shown in Fig. 10 , displayed in 

reen). It can be seen how the profiles of both the QR and the 

SQR are very similar, the QR profile being identical to the refer- 
9 
nce image profile, whereas FBP with 260 views is very different 

rom the original values. The reconstruction by FPB with 1610 pro- 

ections does not fluctuate that much, but it still shows error. The 

BP with 360 and 720 projections are not displayed, but the error 

anges between the best and the worst FBP cases displayed. 

. Discussion 

In this paper, we present an optimized implementation of the 

R method applied to the CT image reconstruction problem. Our 

oftware combines the use of GPU computing with out-of-core 

echniques to attain high performance when solving large prob- 

ems that do not fit in the main memory of the computer. 

In this new implementation, we have improved the block cache 

anagement system and we have assessed several configurations 

egarding the placement of the cache. The three options evaluated 

re the following: keeping the blocks in main memory, in GPU 

emory, or mirrored in both memories. The best performance is 

ttained when employing the main memory of the computer to 

tore the block cache making use of pinned memory to reduce the 

ransfer time among disk, main memory, and GPU memory. 

The results obtained show that our new GPU version clearly 

utperforms the previous implementation on the CPU, with 

peedups of the reconstruction step ranging from 2.5 to 6.5 for 256 

nd 2048 slices, respectively. The speed in terms of slices per sec- 

nd has increased from 0.6 slices per second on CPU to 1.7 slices 

er second on GPU for 256 slices, and it has increased from 1.4 

lices per second on CPU to 9 slices per second on GPU for 2048 

lices. The improvement factor is significant, achieving a perfor- 

ance that can be competitive with the IR methods used by the 

anufacturers. 

For this reason, once the sparse sampling scheme is introduced 

n clinical practice, we believe our approach could be a robust and 

fficient method for performing the reconstructions with a reduced 
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Fig. 11. Intensity profile along a segment of the CAP image. 
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umber of projections, which implies lower radiation doses for 

atients. The image quality obtained with the QR method is ex- 

remely high when the matrix has full rank, since it obtains an ex- 

ct solution, which makes it more reliable than algebraic iterative 

ethods. As shown in the quality analysis, the performance of the 

SQR method is good, but the images still contain noise and they 

uffer from oversmoothing, which can cause to lose relevant infor- 

ation. The more complex the internal structures are, the lower 

he quality is. This can be easly appreciated in the reconstructions: 

he simpler one (no pathology) achieves good quality with LSQR, 

he one corresponding to bilateral community-acquired pneumo- 

ia has lower quality since it is more complex, and the quality 

orresponding to Covid-19 is between the previous two. However, 

mploying an iterative algebraic method such as LSQR could also 

oticeably reduce the number of projections needed, since it can 

rocess rank-deficient matrices. A study [28] showed that the LSQR 

ethod can obtain good reconstructions even with a lower num- 

er of projections. In contrast, another study [30] showed that the 

uality of the QR decreases when the matrix does not have full 

ank. For a 512 × 512 resolution, it attains good quality using 30 

oise-free projections of a mathematical phantom. Unlike the QR 

ethod, it is worth mentioning that the LSQR required an in-depth 

earch of the optimal parameters to obtain this quality. Therefore, 

he two algebraic reconstruction alternatives could co-exist, with 

he direct approach oriented to get the best image quality, ensur- 

ng a minimum error and a more robust process, and the iterative 

ne oriented to minimize the radiation dose even if both the error 

nd the variability (depending on the parameters) is higher. The 

ecision on which one to employ would depend on the patients 

nd their particular needs. 

In addition, in our experimental study, we show that in the GPU 

mplementation the number of slices to be reconstructed does not 

trongly affect the overall reconstruction time. In contrast, in the 

PU implementation the increase of the number of slices meant 

 strong increase in the total time. Therefore, this optimization is 
t

10 
ery suitable for full-body CTs, as well as for reconstructing multi- 

le studies at once (batch processing). For instance, the total time 

eeded to reconstruct a study with 256 slices is 2.5 min, whereas 

he time needed to reconstruct 2048 slices (8 times as large) is 

nly 3.8 min. 

Besides, since now the bottleneck is the SSD performance, the 

verall time could be further reduced with new PCIe 4.0 Solid- 

tate Drives, which could double the reading speed and improve 

he writing speed by a 1.5 factor approximately. Another interest- 

ng option would be a high-performance RAID system with cur- 

ent SSD disks that increased the read and write speeds. Though 

he speed of our GPU method is close to that of commercial meth- 

ds, both types of new hardware would allow faster reconstruc- 

ions, making our method even more competitive. 

Finally, it is worth mentioning that the numerical stability of 

his method allows us to increase the image resolution and thus 

he size of the problem with the same hardware as long as there 

s enough storage space without suffering from image quality loss, 

hich we intend to do in the future. In addition, although we are 

ow modelling the problem as a 2D multi-slice reconstruction pro- 

ess, it would be possible to adapt the method to 3D approaches 

uch as Cone-Beam CT (CBCT). Some works [31–33] employ alge- 

raic methods to reconstruct CBCT volumes by modelling the sys- 

em matrix using voxels instead of pixels. Other works [20] solve 

he CBCT system by using the QR method, but for small micro-CT 

mages. Switching to CBCT would mean a larger matrix and thus a 

arger equations system, but by using OOC techniques it would not 

ose a problem in terms of memory requirements. 

. Conclusions 

Our new implementation of the QR method provides an effi- 

ient, scalable, and robust approach to solving the CT image recon- 

truction problem with a direct algebraic method on GPUs when 

he number of projections is reduced to lower the exposure time to 



G. Quintana-Ortí, M. Chillarón, V. Vidal et al. Computer Methods and Programs in Biomedicine 218 (2022) 106725 

t

a

f

t

s

a

s

t

t

s

t

i

q

r

n

o

D

s

c

A

d

a

“

G

t

p

R

 

 

 

 

 

 

 

 

 

 

 

 

 

[

 

 

 

 

 

[  

[
[  

[

[  

[

[

[

[

[

[  

[  

[  

[  

[  
he X-rays. The method has been thoroughly optimized to employ 

n optimal block cache system in order to reduce the data trans- 

er times, and with the high performance delivered by the GPU for 

his out-of-core approach, the overall reconstruction time has been 

ignificantly reduced. 

Although the monetary cost of the hardware we employ is 

bout one order of magnitude higher than with our CPU version, 

ince top-of-the-line GPU cards are more expensive, we consider 

he equipment is still affordable for this kind of medical applica- 

ion. 

Future investigations should consider using real projections, 

uch as those from the open-access library of CT patient projec- 

ion data provided by the Mayo Clinic [34] . The method presented 

n this paper does not contemplate noise in the sinograms, so the 

uality of the reconstructions may be lower when working with 

eal data. Thus, it would be very interesting to assess the effect of 

oise in the resulting images and to integrate filtering techniques 

n our reconstruction process. 

eclaration of Competing Interest 

The authors declare that the research was conducted in the ab- 

ence of any commercial or financial relationships that could be 

onstructed as a potential conflict of interest. 

cknowledgements 

This research has been supported by the “Universitat Politècnica 

e València ”, “Generalitat Valenciana” under PROMETEO/2018/035 

nd ACIF/2017/075 , co-financed by FEDER and FSE funds, and the 

Spanish Ministry of Science, Innovation and Universities” under 

rant RTI2018-098156-B-C54 co-financed by FEDER funds. The au- 

hors would also like to thank Francisco D. Igual (Universidad Com- 

lutense de Madrid) for granting access to the volta1 server. 

eferences 

[1] J.M. Meulepas , C.M. Ronckers , A.M. Smets , R.A. Nievelstein , P. Gradowska ,

C. Lee , A. Jahnen , M. van Straten , M.-C.Y. de Wit , B. Zonnenberg , et al. , Ra-

diation exposure from pediatric CT scans and subsequent cancer risk in the 
Netherlands, J. Natl. Cancer Inst. 111 (3) (2019) 256–263 . 

[2] J.-Y. Hong , K. Han , J.-H. Jung , J.S. Kim , Association of exposure to diagnostic
low-dose ionizing radiation with risk of cancer among youths in South Korea, 

JAMA Netw. Open 2 (9) (2019) . e1910584–e1910584 
[3] L. Krille , S. Dreger , R. Schindel , T. Albrecht , M. Asmussen , J. Barkhausen ,

J. Berthold , A. Chavan , C. Claussen , M. Forsting , et al. , Risk of cancer incidence

before the age of 15 years after exposure to ionising radiation from computed 
tomography: results from a German cohort study, Radiat. Environ. Biophys. 54 

(1) (2015) 1–12 . 
[4] M.S. Pearce , J.A. Salotti , M.P. Little , K. McHugh , C. Lee , K.P. Kim , N.L. Howe ,

C.M. Ronckers , P. Rajaraman , A.W. Craft , et al. , Radiation exposure from ct
scans in childhood and subsequent risk of leukaemia and brain tumours: a 

retrospective cohort study, Lancet 380 (9840) (2012) 499–505 . 

[5] C.H. Schultz, R. Fairley, L.S.-L. Murphy, M. Doss, The risk of cancer from 

CT scans and other sources of low-dose radiation: a critical appraisal of 

methodologic quality, Prehosp. Disaster Med. 35 (1) (2020) 3–16, doi: 10.1017/ 
S1049023X1900520X . 

[6] D. Lee , S. Choi , H. Lee , D. Kim , H.-J. Kim , Quantitative evaluation of anatom-
ical noise in chest digital tomosynthesis, digital radiography, and computed 

tomography, J. Instrum. 12 (04) (2017) T04006 . 

[7] T. Kubo , Y. Ohno , M. Nishino , P.-J. Lin , S. Gautam , H.-U. Kauczor , H. Hatabu ,
iLEAD Study Group , et al. , Low dose chest ct protocol (50 mAs) as a routine

protocol for comprehensive assessment of intrathoracic abnormality, Eur. J. Ra- 
diol. Open 3 (2016) 86–94 . 

[8] A.N. Khan , F. Khosa , W. Shuaib , K. Nasir , R. Blankstein , M. Clouse , Effect of tube
voltage (100 vs. 120 kVp) on radiation dose and image quality using prospec- 

tive gating 320 row multi-detector computed tomography angiography, J. Clin. 
Imaging Sci. 3 (2013) . 
11 
[9] X. Tang , J. Hsieh , R.A. Nilsen , S. Dutta , D. Samsonov , A. Hagiwara , A three-di-
mensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for 

image reconstruction in volumetric CT helical scanning, Phys. Med. Biol. 51 (4) 
(2006) 855 . 

[10] M.J. Muckley , B. Chen , T. Vahle , T. O’Donnell , F. Knoll , A.D. Sodickson , D.K. Sod-
ickson , R. Otazo , Image reconstruction for interrupted-beam X-ray CT on diag- 

nostic clinical scanners, Phys. Med. Biol. 64 (15) (2019) 155007 . 
[11] M. Jiang , G. Wang , Convergence of the simultaneous algebraic reconstruction 

technique (SART), IEEE Trans. Image Process. 12 (8) (2003) 957–961 . 

12] G. Wang , M. Jiang , Ordered-subset simultaneous algebraic reconstruction tech- 
niques (OS-SART), J. X-ray Sci. Technol. 12 (3) (2004) 169–177 . 

[13] J. Gregor , T. Benson , Computational analysis and improvement of SIRT, IEEE 
Trans. Med. Imaging 27 (7) (2008) 918–924 . 

[14] E. Parcero , L. Flores , M.G. Sánchez , V. Vidal , G. Verdú, Impact of view reduction
in ct on radiation dose for patients, Radiat. Phys. Chem. 137 (2017) 173–175 . 

[15] L.A. Flores , V. Vidal , P. Mayo , F. Rodenas , G. Verdú, Parallel CT image recon-

struction based on GPUs, Radiat. Phys. Chem. 95 (2014) 247–250 . 
[16] M. Chillarón, V. Vidal, G. Verdú, CT image reconstruction with SuiteSparseQR 

factorization package, Radiat. Phys. Chem. (2019), doi: 10.1016/j.radphyschem. 
2019.04.039 . 

[17] M. Chillarón, G. Quintana-Ortí, V. Vidal, G. Verdú, Computed tomography med- 
ical image reconstruction on affordable equipment by using out-of-core tech- 

niques, Comput. Methods Programs Biomed. 193 (2020) 105488, doi: 10.1016/j. 

cmpb.2020.105488 . 
[18] A . Moscariello , R.A . Takx , U.J. Schoepf , M. Renker , P.L. Zwerner , T.X. O’Brien ,

T. Allmendinger , S. Vogt , B. Schmidt , G. Savino , et al. , Coronary CT angiography:
image quality, diagnostic accuracy, and potential for radiation dose reduction 

using a novel iterative image reconstruction technique-comparison with tradi- 
tional filtered back projection, Eur. Radiol. 21 (10) (2011) 2130–2138 . 

[19] Y. Funama , K. Taguchi , D. Utsunomiya , S. Oda , Y. Yanaga , Y. Yamashita , K. Awai ,

Combination of a low tube voltage technique with the hybrid iterative recon- 
struction (iDose) algorithm at coronary CT angiography, J. Comput. Assist. To- 

mogr. 35 (4) (2011) 480 . 
20] M.J. Rodríguez-Alvarez , F. Sánchez , A. Soriano , L. Moliner , S. Sánchez , J.M. Ben-

lloch , QR-factorization algorithm for computed tomography (CT): comparison 
with FDK and conjugate gradient (CG) algorithms, IEEE Trans. Radiat. Plasma 

Med.Sci. 2 (5) (2018) 459–469 . 

21] G.H. Golub , C.F. van Loan , Matrix Computations, 4th ed., JHU Press, 2013 . 
22] C. Bischof , C. Van Loan , The wy representation for products of householder

matrices, SIAM J. Sci. Stat.Comput. 8 (1) (1987) s2–s13 . 
23] T. Joffrain, T.M. Low, E.S. Quintana-Ortí, R. van de Geijn, F.G. Van Zee, Accumu- 

lating householder transformations, revisited, ACM Trans. Math. Softw. 32 (2) 
(2006) 169–179, doi: 10.1145/1141885.1141886 . 

24] P. Afshar , S. Heidarian , N. Enshaei , F. Naderkhani , M.J. Rafiee , A. Oikonomou ,

F.B. Fard , K. Samimi , K.N. Plataniotis , A. Mohammadi , COVID-CT-MD, COVID-19 
computed tomography scan dataset applicable in machine learning and deep 

learning, Sci. Data 8 (1) (2021) 1–8 . 
25] P. Joseph , An improved algorithm for reprojecting rays through pixel images, 

IEEE Trans. Med. Imaging 1 (3) (1982) 192–196 . 
26] A. Hore, D. Ziou, Image quality metrics: PSNR vs. SSIM, in: 2010 20th In- 

ternational Conference on Pattern Recognition, IEEE, 2010, pp. 2366–2369, 
doi: 10.1109/ICPR.2010.579 . 

27] L. Flores , V. Vidal , G. Verdú, Iterative reconstruction from few-view projections, 

Procedia Comput. Sci. 51 (2015) 703–712 . 
28] M. Chillarón, V. Vidal, D. Segrelles, I. Blanquer, G. Verdú, Combining grid com- 

puting and docker containers for the study and parametrization of CT image 
reconstruction methods, Procedia Comput. Sci. 108 (2017) 1195–1204, doi: 10. 

1016/j.procs.2017.05.065 . International Conference on Computational Science, 
ICCS 2017, 12–14 June 2017, Zurich, Switzerland 

29] A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, Society 

for Industrial and Applied Mathematics, 2001, doi: 10.1137/1.9780898719277 . 
30] M. Chillarón , V. Vidal , G. Verdú, J. Arnal , CT medical imaging reconstruction

using direct algebraic methods with few projections, in: Computational Science 
– ICCS 2018, Springer International Publishing, Cham, 2018, pp. 334–346 . 

31] M.A . Al-masni , M.A . Al-antari , M.K. Metwally , Y.M. Kadah , S.-M. Han , T.-S. Kim ,
A rapid algebraic 3D volume image reconstruction technique for cone beam 

computed tomography, Biocybern. Biomed. Eng. 37 (4) (2017) 619–629 . 

32] H.C. Lee , B. Song , J.S. Kim , J.J. Jung , H.H. Li , S. Mutic , J.C. Park , Variable
step size methods for solving simultaneous algebraic reconstruction technique 

(SART)-type CBCT reconstructions, Oncotarget 8 (20) (2017) 33827 . 
33] W. Qiu , T. Pengpan , N. Smith , M. Soleimani , Evaluating iterative algebraic algo-

rithms in terms of convergence and image quality for cone beam CT, Comput. 
Methods Programs Biomed. 109 (3) (2013) 313–322 . 

34] T.R. Moen , B. Chen , D.R. Holmes III , X. Duan , Z. Yu , L. Yu , S. Leng , J.G. Fletcher ,

C.H. McCollough , Low-dose CT image and projection dataset, Med. Phys. 48 (2) 
(2021) 902–911 . 

https://doi.org/10.13039/501100004233
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0004
https://doi.org/10.1017/S1049023X1900520X
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0015
https://doi.org/10.1016/j.radphyschem.2019.04.039
https://doi.org/10.1016/j.cmpb.2020.105488
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0022
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0022
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0022
https://doi.org/10.1145/1141885.1141886
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0025
https://doi.org/10.1109/ICPR.2010.579
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0027
https://doi.org/10.1016/j.procs.2017.05.065
https://doi.org/10.1137/1.9780898719277
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0030
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0030
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0030
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0030
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0030
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0031
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0031
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0031
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0031
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0031
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0031
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0031
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0033
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0033
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0033
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0033
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0033
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00111-0/sbref0034

	High-performance reconstruction of CT medical images by using out-of-core methods in GPU
	1 Introduction
	2 Materials and methods
	2.1 CT image reconstruction
	2.2 Algorithms and implementations
	2.2.1 Porting and optimization of the code for GPU
	2.2.2 Optimization of the block cache management system
	2.2.3 Page-locked memory
	2.2.4 Families and variants in the out-of-core implementations


	3 Results
	3.1 Experimental setup
	3.2 Precision
	3.3 Effect of block sizes
	3.4 Comparison between in-core and OOC
	3.5 Effect of the block cache management system
	3.6 Assessment of variants
	3.7 Effect of block cache sizes
	3.8 Effect of main memory (RAM) sizes
	3.9 A comparison of several configurations
	3.10 Speed of image reconstruction
	3.11 Image quality

	4 Discussion
	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


