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Background and objective: Since Computed Tomography (CT) is one of the most widely used medical imag-
ing tests, it is essential to work on methods that reduce the radiation the patient is exposed to. Although
there are several possible approaches to achieve this, we focus on reducing the exposure time through
sparse sampling. With this approach, efficient algebraic methods are needed to be able to generate the
images in real time, and since their computational cost is high, using high-performance computing is es-
Keywords: sential. Methods: In this paper we present a GPU (Graphics Processing Unit) software for solving the CT
CT image reconstruction problem using the QR factorization performed with out-of-core (OOC) techniques.
QR f?“"ﬁ““"“ This implementation is optimized to reduce the data transfer times between disk, CPU, and GPU, as well
Medical image as to overlap input/output operations and computations. Results: The experimental study shows that a
Reconstruction . . . .

Out-of-core block cache stored on main page-locked memory is more efficient than using a cache on GPU memory
HPC or mirroring it in both GPU and CPU memory. Compared to a CPU version, this implementation is up to
GPU 6.5 times faster, providing an improved image quality when compared to other reconstruction methods.
Conclusions: The software developed is an optimized version of the QR factorization for GPU that allows
the algebraic reconstruction of CT images with high quality and resolution, with a performance that can
be compared with state-of-the-art methods used in clinical practice. This approach allows reducing the
exposure time of the patient and thus the radiation dose.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Computed tomography (CT) continues to be one of the most
widely used medical imaging tests for the diagnosis and moni-
toring of patients. However, concerns about its safety have been
growing in recent years. Since it uses ionizing radiation through X-
rays, CT represents a risk for especially vulnerable patients such as
pediatric patients, as well as recurrent patients who need to follow
up on the evolution of a disease. Several studies [1-4] have shown
the relationship between high exposure to X-rays and the pos-
sibility of developing different types of cancer such as leukemia,
brain cancer, breast cancer, thyroid cancer, among others. Another
study [5] claims that the maximum dose that does not pose a risk
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to the patient is around 100 milliSieverts, which is equivalent to
approximately 10 abdominal studies in an adult. Exposure above
this threshold for adults or within this range for pediatric patients
can increase the risk of pathologies caused by ionizing radiation.
In consequence, research efforts in this area must focus on de-
veloping methods that reduce the dose required to perform a CT
scan in order to minimize the risk for patients. There are different
approaches to reducing the radiation dose. The two most common
methods are based on the reduction of the tube current [6,7] and
the reduction of tube voltage [8]. Both are usually known as “low-
dose CT” and employ analytical methods, such as the Filtered Back-
Projection (FBP) [9], since they have a very low computational cost
to reconstruct the images. Although these methods with low-dose
projections do not attain an optimal image quality, they are the
basis of the more evolved iterative methods (IR), such as iDose
(by Philips Healthcare) and SAFIRE (by Siemens Medical Solutions).
These iterative techniques can outperform FBP by applying approx-
imations and corrections on the images in each iteration, using the
statistical information available from the scanner and from previ-
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ous reconstructions. Despite their higher computational cost, they
are well established in clinical practice and most manufacturers
use their own optimized iterative method to process low-dose pro-
jections.

On the other hand, the possibility of reducing the radiation
dose by using a sparse sampling scheme has been gaining popu-
larity recently. By using this scheme, the exposure time is reduced
since the acquisition is not continuous and the number of pro-
jections is reduced, thus decreasing the radiation dose absorbed
by the patient during a scan. Although there are no commercial
scanners using this type of acquisition, there are prototypes such
as the one presented by Muckley et al. [10], which performs the
sparse sampling by blocking the X-ray source until a projection
has to be taken. However, although this approach is not being
used yet, there are multiple studies claiming its advantages. In
this case, the computational methods needed to perform the re-
constructions are algebraic, since the analytical ones do not per-
form well due to undersampling. They can be either iterative or
direct.

When compared to analytical methods to reconstruct the im-
ages, new iterative algebraic methods such as SART [11], OS-
SART [12], SIRT [13], and LSQR [14,15] greatly reduce the number
of projections needed to attain a good image quality. Since they
reconstruct the image by solving the system of equations that
models the problem through a series of approximations, they do
not require that the coefficient matrix has a full-rank to be able
to obtain a solution. The disadvantages of the algebraic iterative
approach are the following two: The first one is the high com-
putational cost even if they take advantage of the sparsity of the
problem. The second one is not being able to determine the final
number of iterations needed to obtain a CT study.

In contrast, the use of direct algebraic methods is not so well
explored in this area, due to their high computational cost and the
fact that they require that the coefficient matrix has full-rank in or-
der to obtain the solution. Because of the latter reason, the number
of projections must be higher than when employing the algebraic
iterative methods, meaning a smaller dose reduction. In our previ-
ous works [16,17], we showed both the feasibility of reconstruct-
ing CT images using the direct QR factorization and the extremely
high-quality of the reconstructions, which was achieved with a sig-
nificant dose reduction when compared to the FBP method (up to
an 85%).

However, although the coefficient matrix is initially sparse, the
problem quickly becomes dense through the factorization pro-
cess, so the main memory size needed to store the data becomes
an important issue for high-resolution images. One of our stud-
ies [17] showed that the use of out-of-core (OOC) techniques al-
lows increasing the size (and thus image resolution) of the prob-
lem without having a large (and thus expensive) main memory.
Since OOC relies on secondary storage, either HDD or SSD, the
monetary cost is much smaller, and a problem can be computed
as long as there is disk space available to store the data, regardless
of its dimensions.

Having determined both the feasibility of using the QR factor-
ization to solve the CT image reconstruction problem and the opti-
mal performance of our OOC method on affordable CPU hardware,
the aim of this paper is the adaptation, development, and opti-
mization of the QR OOC method for faster GPU devices. This is
an essential step to be able to compete with analytical methods
in terms of time performance, since the reconstruction speed in
clinical practice must be as high as possible. The best performance
reached so far was 1.38 slices per second when performing the
computations in CPU [17]. Despite being a good performance for
an affordable CPU, several works [18,19] show how iDose, SAFIRE,
and FPB can obtain 16, 20, and up to 40 slices per second, respec-
tively.
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In this work, we present a GPU implementation of the QR
method to solve the CT reconstruction problem, which employs
00C to solve large dimensions problems with high performance on
a state-of-the-art hardware platform. The paper contains a solid as-
sessment of high-performance hardware and software, comparing
the new GPU implementations to the previous CPU implementa-
tion. We show the scalability of our implementation with respect
to the number of slices, since computing many more slices in-
creases only slightly the total time. We also show how the OOC ap-
proach allows solving systems of dimensions so large that the data
would not fit in the GPU memory. Summing up, our new imple-
mentation optimized for GPU forms a stable and scalable method
for CT reconstruction that is within the time performance and im-
age quality expected in clinical practice and also has the potential
to improve the health of the patients since it needs far fewer pro-
jections than traditional methods and therefore a lower radiation
dose.

The document is organized as follows: Section 2 outlines the
theoretical concepts of the method proposed. Section 2.1 intro-
duces the algebraic CT reconstruction process using the QR factor-
ization of the weights matrix, whereas Subsection 2.2 describes in
detail the main features of the new software. Section 3 assesses
our new method in terms of numerical stability and compares the
performance of all the variants developed, as well as the perfor-
mance of our previous CPU implementation. An analysis of the
image quality is also included, comparing several reconstruction
methods with our new GPU implementation. Section 4 summarizes
and discusses the advantages of the studied method. Section 5 con-
tains the conclusions.

2. Materials and methods
2.1. CT image reconstruction

To reconstruct CT images with an algebraic approach, we model
the problem as:

AX + Nelec + Nmeas = B (1)

where A = (ai.j) e RMxN denotes the so-called system, weights, or
coefficient matrix, with dimensions M x N. A models the physical
scanner, @; ; being the contribution of the ith ray on the jth pixel.
The dimension M is the product of the number of detectors of the
CT scanner multiplied by the number of projections or views taken.
N denotes the resolution of the image (256 x 256 pixels, 512 x 512
pixels, etc.). B = (B/) is a matrix of M x S elements, where S is the
number of slices to be reconstructed, and B/ denotes the jth col-
umn, which corresponds to the jth sinogram. X = (X/) is a matrix
of dimensions N x S, where X/ is the column that will store the
reconstructed image corresponding with the jth sinogram. Note
that the above formula considers the noise present in the projec-
tions, where Ny is the electronic noise and Nmeas is the noise
in the measurements provoked by the scanner. Our work processes
simulated projections and focuses on optimizing the reconstruc-
tion process of high spatial resolution images based on the QR fac-
torization. Analyzing the effects of the noise in the system is an
interesting and complex research that is beyond the goals of this
work. Nevertheless, the feasibility of solving the CT image recon-
struction problem using the QR factorization with real projections
from a micro-CT scanner has already been demonstrated [20]. Al-
though those projections contained noise, the reconstructions were
of good quality. Even though no filter was applied, better results
than those of other classical methods were obtained, even with
a lower spatial resolution. When working with real data, filtering
techniques could be applied both before and after the reconstruc-
tion method based on the QR factorization. Filtering techniques



G. Quintana-Orti, M. Chillarén, V. Vidal et al.

should be applied to the sinogram before our reconstruction pro-
cess as a part of the acquisition process, which modern commer-
cial scanners already perform. Image filters could be applied to the
final reconstructions too.

To solve the problem in Eq. (1) without considering the noise,
first the QR factorization of A is computed (Eq. (2)), where Q is
orthonormal and R is upper triangular. Then, to finally reconstruct
the images, Eq. (3) is used. Section 2.2.1 describes in detail these
resolution steps. Recall that Q* is the transpose of Q.

A=QR (2)

X =R 1(Q*B) (3)

A more detailed definition of the scanner parameters used for
the simulations can be seen in our previous work [17]. In that pa-
per, we presented the initial approach to the QR method applied
to the CT image reconstruction problem, with a CPU implementa-
tion that employs out-of-core techniques to solve large-scale sys-
tems that do not fit in main memory (RAM). That implementation
was optimized to overlap I/O operations with computations so the
overall time could be reduced. We encourage the reader to consult
the paper to have a better understanding of the techniques we are
using.

Although the method was very efficient on medium-cost CPUs,
the performance attained was still far from the performance
achieved by the more widespread methods. Having already proved
the quality and stability of the method, the current aim is to im-
prove its performance by using GPUs and several other optimiza-
tions that are explained in the following subsection.

2.2. Algorithms and implementations

Our new algorithm and implementations contain the following
contributions:

e The code has been ported to the GPU so that the main compu-
tational tasks are performed in the GPU, thus accelerating the
full process.

The block cache management system has been improved to re-
duce the number of cache misses in order to reduce the num-
ber of data transfers.

Page-locked memory (pinned) is used and assessed in several
variants to accelerate data transfers.

The placement of the storage of the block cache is assessed to
determine the best place (main memory, GPU memory, or mir-
rored in both).

Next, we describe some of the above in more detail.

2.2.1. Porting and optimization of the code for GPU

When considering the full computational process (Eq. (1)), the
code comprises six main computational different tasks. In contrast,
when considering only the system solving (Eq. (3)), only four main
computational tasks are needed. The six computational tasks are
the following:

. Upper triangular system solving.

. Matrix-matrix product.

. Computation of a dense QR factorization.

. Applying a dense QR factorization.

. Computation of a triangular-dense QR factorization.
. Applying a triangular-dense QR factorization.

AU A WN =

The porting of the first two operations, the upper triangular
system solving and the matrix-matrix product, is straightforward
by making a call to the cuBLAS dTRSM and dGEMM subroutines,
respectively.
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Before describing the porting of the other four tasks, we intro-
duce Householder transformations since they are heavily used in
those. A Householder transformation [21] can be defined as:

H=1I-tur, (4)

where [ is the identity matrix, 7 is a scalar, and v is a vector. By
choosing appropriate values for t and v, a Householder transfor-
mation can be used to nullify some elements of a column of the
coefficient matrix, such as those in the lower triangular part. How-
ever, when applying H to the coefficient matrix to nullify some el-
ements, the latter formula employs only matrix-vector operations,
which are not so efficient due to the low ratio of the number of
floating-point operations to the number of memory accesses in
this type of computations. On the other hand, the product of a
set of Householder transformations [22,23] Q = H{H, ---Hp,, H; =
[ - vy can be combined as:

Q=1I-YTY", (5)

where Y is a lower trapezoidal matrix and T is a b x b upper tri-
angular matrix. The latter formula employs a few matrix-matrix
products, which are much more efficient in modern architectures
since the ratio of the number of floating-point operations to the
number of memory accesses is higher, thus obtaining speeds much
closer to the peak speed of the computing device.

Now we are going to describe the porting of the two tasks for
computing and for applying the dense QR factorization. Though
the cuSOLVER library offers two highly-optimized subroutines for
computing and applying the QR factorization, these two subrou-
tines do not return and do not receive, respectively, the T factors
from Eq. (5) as arguments. Hence, these factors must be recom-
puted internally each time the QR factorization is applied. Note
that the T factors are computed by using the not so efficient
matrix-vector operations. As every QR factorization must be usu-
ally applied to many blocks, it is more efficient to save the T fac-
tors when computing the dense QR factorizations so that they can
be reused when applying the dense QR factorization. Therefore, we
have implemented our own version of the dense QR factorization
that computes and returns the T factors. Accordingly, we have im-
plemented our version of the applying of a dense QR factorization
that receives and uses the T factors, instead of computing them
every time. Both implementations employ the cuSOLVER and the
CuBLAS libraries.

Finally, we are going to describe the porting of the two tasks
for computing and for applying the triangular-dense QR factoriza-
tion. We have implemented the computation of a triangular-dense
QR factorization and its applying since the cuSOLVER library does
not contain subroutines for performing these specific operations.
Analogously, in this case we also compute and store the T factors
during the QR factorization in order to reuse them when updating
other blocks. Both implementations also employ the cuSOLVER and
the cuBLAS libraries.

2.2.2. Optimization of the block cache management system

In [17] a new out-of-core software that employed a block cache
management system was proposed for CPU-based architectures.
One of the main features of this system was that it used an LRU
(Least-Recently Used) 4-set associative cache. The advantage of this
system is that the search to check whether the block is already in
the cache is 4 times as fast. The drawback is that blocks can only
go to one of the four sets, and when looking for a block to be re-
placed, only the current set is considered. Another feature was that
it only considered square blocks. It could work with rectangular
blocks, but when computing maximum sizes and cache sizes only
square blocks were considered and the number of entries in the
cache was limited by the size of the square blocks.
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We propose a new management system that can perform better
by changing these two features. We only use an LRU 1-set cache.
Searches of blocks are a bit slower, but the LRU method considers
all the blocks, thus giving better choices. Besides, the new system
is prepared to work with any block size. The number of maximum
blocks to be stored is not statically set (except for a very high max-
imum to avoid a too long list of blocks), and the number of blocks
depends only on the memory available in every moment.

Another interesting optimization used in the new system is the
storage of the data. As in GPUs every allocation/free operation re-
quires the synchronization of all the GPU threads, a big chunk of
memory (main memory or GPU, depending on the variant) is allo-
cated (as large as the cache size to be used) at startup time, and
then an own management of allocation/free is used, thus reducing
the bottlenecks and accelerating the application.

2.2.3. Page-locked memory

Modern operating systems have memory areas that are page-
locked or “pinned”, that is, never swapped to secondary storage.
The size of this page-locked memory is usually small, but it can be
easily defined by the system administrator. As the contents of the
page-locked memory cannot be removed from main memory, they
usually allow a higher transfer bandwidth and an asynchronous
concurrent execution. When transferring between main memory
and NVIDIA GPUs, if the main memory buffer is not page-locked,
the CUDA driver allocates a pinned block and uses it as an inter-
mediary buffer, thus incurring in a higher overhead.

In some variants, we have used pinned memory to acceler-
ate the transfers between main memory and the GPU, as well as
between disk and main memory. Since a block cache size much
smaller than main memory usually attains good results, keeping all
the block cache storage in pinned memory is nowadays feasible.

2.2.4. Families and variants in the out-of-core implementations

We developed three different families of implementations, ac-
cording to where the block cache was kept. The varb family of
implementations kept the block cache in the main memory of
the computer. The var6 family of implementations kept the block
cache in the GPU memory. The var7 family of implementations
kept the block cache mirrored in main memory and the GPU mem-
ory.

o Family varb: This family of implementations keeps the block
cache in the main memory of the computer.
Since this block cache is stored in main memory, the transfer of
data between disk and main memory will be overlapped with
the transfer of data between main memory and the GPU mem-
ory and the computation in the GPU. Therefore, this family will
be very beneficial if the transfer time between disk and main
memory is comparable to the transfer between disk and the
GPU and the computation.
For this family of implementations we have implemented the
following variants:

e Variant varbt: This is the traditional implementation that
does not use any block cache. Any input operand is read
from disk (into the main memory and then) into the GPU
memory every time, and every output operand is written
from the GPU memory (into the main memory and then)
into the disk every time.

e Variant varbc: To reduce the number of data tranfers, this
implementation uses the old block cache management sys-
tem.

e Variant varbd: To reduce the number of data tranfers, it
uses the new block cache management system.

« Variant varbv: Analogous to var5c but overlapping of disk
/0O and computation is performed to reduce the overall cost.
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o Variant varbw: Analogous to varbd but overlapping of disk
I/0 and computation is performed to reduce the overall cost.

e Variant varbr: Analogous to varbw but page-locked mem-
ory (pinned) is employed to store the block cache.

o Family var6: This family of implementations keeps the block
cache in the GPU memory.
Since this block cache is stored in GPU memory, the transfer of
data between disk and main memory and between main mem-
ory and the GPU memory will be overlapped with the compu-
tation in the GPU. Therefore, this family could be very benefi-
cial if the computational time in the GPU is comparable to the
transfer between disk and the GPU.
The var6t, var6c, var6d, var6v, var6bw, var6p, and
var6r variants are analogous to those in the var5 family. In
addition to those, for this family of implementations we have
implemented the following variant:

e Variant var6z: As the block cache is stored in the GPU,
two CUDA streams are used to overlap computations in the
GPU with transfers from disk to main memory to GPU mem-
ory (and viceversa transfers). One of the CUDA streams is
used for the computations, and the other one is used for
the transfers.

e Family var7: This family of implementations keeps the block
cache mirrored in main memory and the GPU memory.
Since this block cache is stored in both memories, the trans-
fer of data between disk and main memory will be overlapped
with the transfer between main memory and the GPU memory
and the computation in the GPU. Therefore, this family could
be very beneficial if the computational time in the GPU is com-
parable to the transfer between disk and the GPU. The advan-
tage of this family with respect to the varb family is to reduce
some transfers between main memory and the GPU memory.
For this family of implementations we have implemented anal-
ogous variants to those of the var5 family.

3. Results

In this section, we investigate the speed of our new implemen-
tations. In all the experiments double-precision real matrices were
processed.

As described before, when solving a linear system of equa-
tions AX = B, two stages are required: The first one is to compute
the QR factorization of A: A = QR. The second one is to compute X
with the following expression: X = R~1(Q*B). Note that the first
stage can be computed only once since it is independent of B,
whereas the second stage must be computed for every image or
set of images to be generated. Since the first stage can be com-
puted only once and then reused, unless explicitly stated other-
wise, all the following tables and figures report only times of the
second stage.

Unless explicitly stated otherwise, all the times shown in the
tables and figures of this section are computed as the average of
five executions to reduce the effect of variability on the results.

3.1. Experimental setup

Most of the experiments were performed in a computer called
alinna. It featured two AMD EPYC 7282®processors (base clock
at 2.8 GHz), with 32 cores and 512 GiB of RAM in total. It also fea-
tured a NVIDIA GPU A100 with 40 GiB of RAM inside this device.
Its OS was GNU/Linux (kernel version 4.18.0-240.15.1.e18_3.x86_64).
GCC compiler (version 8.3.1 20191121) was used. Intel Math Kernel
Library (MKL) 2020.0.1 Product Build 20200208 for Intel(R) 64 ar-
chitecture was employed. The version of the driver employed in
the NVIDIA GPU was 455.32.00 and the version of CUDA was 11.1.
In addition to one small Solid-State Drive (SSD) for the operating
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Table 1

Residuals ||AX — B||r/||Allr computed for both the CPU traditional in-core software
(based on Intel MKL code) and our new out-of-core GPU software when solving the
system AX = B with a matrix A of dimension 266 500 x 262 144 and a matrix B with
several number of columns.

slices CPU-based software new GPU-based out-of-core software
256 3.04-10°12 2.04-1012
512 1.24.10°1 7.15.10-12
1024 1.31.10°" 7.46 10712
2048 1.44.10°1 7.52.10712
Table 2

Time in seconds to solve a system AX = B with a random matrix A of dimension
266500 x 262 144 and a matrix B with 256 columns for out-of-core variant varbr
with a block cache of 32 GB for different block sizes.

Block Time in Time in
size QR solving
5120 4692.9 105.7
7 680 3879.2 135.8
10 240 3 838.6 129.4
12 800 3127.6 132.2
15 360 3 308.6 129.8
17 920 2 858.3 132.3
20 480 3015.1 130.5
23 040 2 682.5 137.0
25 600 2 822.1 135.2

system and programming tools, this computer used one Samsung
SSD 970 EVO 2TB (Firmware 1B2QEXE7) with an M.2 connector
and a capacity of 2 TB to store all the data of the application. Ac-
cording to the Linux operating system hdparm tool, the cached
read speed was 9642.57 MB/s and the buffered disk read speed
was 2499.21 MB/s (the average of ten executions was computed).

Our new implementations were coded with the libflame
(Release 11104) high-performance library. To perform lower level
tasks, our code employed Intel MKL when performing linear alge-
bra computations on the CPU and NVIDIA cuSOLVER and cuBLAS
when performing linear algebra computations on the GPU.

Unless explicitly stated otherwise, all the experiments based on
the CPUs used all the cores in the computer. When using sub-
routines of MKL's LAPACK, optimal block sizes determined by that
software were employed.

The implementations assessed in this section are described in
Section 2.2.4.

3.2. Precision

Table 1 shows the residuals ||AX — B||r/||Al|r after solving the
system AX =B with a matrix A of dimension 266500 x 262 144
and several matrices B with different numbers of columns shown
in the first column. The second column shows the residuals for
the traditional CPU-based in-core software (based on Intel MKL li-
brary). The third column shows the residuals for our new out-of-
core GPU-based software. In particular, the results of the varbr
variant are shown. Other variants obtained very similar results. The
table shows that our new software obtain a precision slightly bet-
ter than the CPU-based Intel MKL software.

3.3. Effect of block sizes

Table 2 shows the effect of the block sizes on the time spent
in both stages when solving a system AX = B with a random ma-
trix A of dimension 266500 x 262 144 and a matrix B with 256
columns. This table reports the times of the varb5r variant with
a 32-GB block cache. Only one execution was run to obtain the
times of the computation of the QR factorization shown in this
table since the computational cost of the QR factorization is very
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high and the variability in the obtained times is usually smaller
on longer experiments. The first column shows the block size. The
second column shows the time to compute the factorization of A:
A = QR. The third column shows the time to compute the solution:
X =R-1(Q*B). As can be seen, the times for computing the QR fac-
torization (second column) strongly depend on the block size, the
best block size being 23 040. In contrast, the times for solving the
system (third column) do not depend so much on the block size,
the best block size being 5120. Both the QR factorization and the
system solution are important, but the second one is key since the
first one can be reused for many system solutions. Therefore, from
now on, 10240 will be used as block size in the rest of experi-
ments since it is a good compromise between both stages and it is
the same block size used in previous CPU-based experiments [17].

3.4. Comparison between in-core and 00C

Our new out-of-core codes are able to process matrices so large
that they do not fit in main memory and thus must be stored
in secondary storage (disks). However, as the matrices are stored
in secondary storage, blocks of data must be continuously trans-
ferred between this storage and main memory, which can reduce
performances if special care is not taken. Therefore, it would be
very interesting to compare the performances of both GPU in-core
codes and GPU out-of-core codes on the same machine (or similar
machines) to assess the effect of the data movement on the per-
formances. Obviously, the development of GPU out-of-core codes
is covered in our work, but GPU in-core codes are more prob-
lematic. Since current GPU codes require that all the data to be
processed is stored in the GPU memory, very large matrices can-
not be processed on GPU because the GPU memory size is usually
smaller than the main memory. Recently, NVIDIA has provided a
new method to process matrices so large that they do not fit in
the GPU memory and they are stored in main memory. We as-
sessed this method, but its performances dropped extremely when
the size exceeded the GPU memory capacity.

Nevertheless, as a comparison between in-core and out-of-cores
would be very interesting to find out if the out-of-core approach
actually offers high performances, the only solution was to com-
pare in-core and out-of-core codes based on CPU, instead of GPU.
To do that, we employed a similar computer with a main memory
large enough to store the data employed in the image processing.
Recall that matrix A is of dimension 266 500 x 262 144 and matrix
B is of dimension 266 500 x S, where S is the number of slices. In
particular, since the storage of all those data requires about 520
GiB, we employed a computer identical to alinna with 768 GiB
to assess the in-core codes.

Fig. 1 shows the total and decomposed times for the recon-
struction of images of two CPU codes. As said before, though we
could not compare the in-core and out-of-core GPU codes, this
comparison of CPU codes can be very useful to assess our out-of-
core approach. The out-of-core var4v is a CPU-based code anal-
ogous to the GPU-based var5v code. The in-core (all the data fit
in main memory) method assessed is a code that we developed to
this end based on the efficient and well-known Intel MKL library
This code is very simple since it keeps all the data in main mem-
ory, but its main restriction is that all data must fit inside main
memory; otherwise, it could fail or performances would drop no-
tably. In this case, we included the time (though the plot shows
the partial times) to load the data and to save the results. Note that
this time could be saved by keeping the data in main memory if
many systems are solved in a row. On the other hand, our out-of-
core code employs the CPU of the system too. The main advantage
is that our code can work with any matrix size, and it only em-
ploys 40 GB of main memory (this is a parameter that can be eas-
ily reduced or increased). The main disadvantage is the continuous
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Fig. 1. Decomposed times for CPU in-core and CPU out-of-core codes. For each
number of slices, the left bar shows the performance of the in-core MKL code,
whereas the right bar shows the performance of the var4v out-of-core code with
a 40-GB block cache, which is analogous to var5v, but executed on the CPU.

Table 3

Number of disk I/O read and write operations and total time in seconds when
solving a system AX = B with a matrix A of dimension 266 500 x 262 144 and
a matrix B with two different number of columns (slices) for several out-of-
core variants with a cache of 16 GB.

Cache 256 slices 2048 slices

Variant ~ system  Read Write  Time Read Write  Time
varbt  no 1858 428 3284 1858 428 410.0
varbc  old 1747 380 3323 1747 380 508.9
varbd  new 1437 189 269.6 1527 246 289.3
varbv  old 1747 380 2915 1747 380 385.0
varbw  new 1437 189 2157 1531 246 198.5

data movement between secondary storage and main memory. As
can be noticed, our out-of-core approach is very competitive with
the in-core code based on the MKL library. For 256 slices the out-
of-core code is much faster because in that case the in-core MKL
is very slow. As expected, the real time of our out-of-core method
grows linearly (or very close to it) with the number of slices. The
real time of the in-core method also grows linearly (or very close
to it) with the number of slices except for 256 slices.

3.5. Effect of the block cache management system

Table 3 compares the old and the new block cache management
system when solving a system AX = B with a coefficient matrix A
of dimension 266 500 x 262 144 and matrices B with 256 and 2048
columns. The QR factorization is assumed to be already computed,
and only the system solving is assessed (Eq. (3)). The out-of-core
codes used a block cache of 16 GB. For each number of slices, the
table shows the number of disk 1/O read operations, the number of
disk I/O write operations, and the total time in seconds. Recall that
the varbt variant does not use any block cache management sys-
tem, the varbc and var5v variants employ the old block cache
management system, and the var5d and var5w variants employ
the new block cache management system. As you can see, the use
of the old block cache management system reduces the number of
disk I/O read operations (6% for both number of slices) and disk 1/O
write operations (11% for both number of slices) of both variants
varbc and var5v with respect to the non-cache variant, whereas
only the total time for the var5v variant is reduced. On the other
hand, the use of the new block cache management system reduces
much more the number of disk I/O read operations (23% and 18%
for 256 and 2048 slices, respectively) and disk I/O write opera-
tions (56% and 43% for 256 and 2048 slices, respectively) of both
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Fig. 2. Decomposed times for the best variants on the main SSD.
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Fig. 3. Decomposed times for several cache sizes on the main SSD.

variants var5d and var5w with respect to the non-cache variant.
The total total time of both var5d and varbw also dropped. For
the latter the time reduction was 34% and 52% for 256 and 2048
slices, respectively.

3.6. Assessment of variants

Fig. 2 shows the total and decomposed times for the recon-
struction of images of several variants. Recall that the var5 vari-
ants keep the block cache in main memory, the var6 variants
keep the block cache in the GPU memory, and the var7 vari-
ants keep the block cache mirrored both in main memory and GPU
memory. In all the variants assessed for this plot a block cache of
16 GB was used. As can be noticed, the varb5w variant greatly re-
duces the disk I/O time of the varbv variant since it performs
a more efficient use of the block cache. Besides, varb5r reduces
both the disk I/O time and the GPU I/O time of var5w even more
by using page-locked (pinned) memory. On the other side, the
var7r variant offer performances slightly lower than varbr. The
var6 variants are usually the slowest ones since the block cache
is stored in the GPU memory and therefore they overlap disk 1/0
and GPU I/O with GPU computation. Note the nearly perfect over-
lapping of some variants such as var5r that completely hides the
GPU /0 time and the computational time.

3.7. Effect of block cache sizes

To study the effect of the block cache size on performances,
Fig. 3 shows the total and decomposed times for the reconstruction
of images of two variants with several block cache sizes. As can
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Fig. 5. Decomposed times for the best configurations.

be seen, large block cache sizes affect performances, but the best
performances are not always achieved with the largest block cache.
The varbw variant usually obtain better results with smaller cache
sizes. On the other hand, the varbr variant obtain the best perfor-
mances when employing a block cache size of 16 GB for 256 slices,
and the largest cache sizes (32 GB and 40 GB) for 2048 slices. This
might be produced because the larger the block cache size in main
memory, the smaller the space available for disk buffers of the op-
erating system.

3.8. Effect of main memory (RAM) sizes

To study the effect of the size of main memory on perfor-
mances, Fig. 4 shows the total and decomposed times for the re-
construction of images of two variants with two main memory
sizes. All variants in this plot use a block cache of 16 GB. The
reader can see that the larger main memory size increases per-
formances for all variants. The cause is that a larger main memory
size can be leveraged by the operating system to store more disk
buffers, thus reducing the overall 1/O cost.

3.9. A comparison of several configurations

Fig. 5 shows the total and decomposed times for the recon-
struction of images on several hardware/software configurations.
For this plot we have selected the following configurations:

o The first configuration is based on a computer called anka
with no GPU. Therefore, only the CPU was used in the com-
putations. It featured one Intel i7-7800X®CPU, with 6 physical
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Fig. 6. Slices per second versus several numbers of slices for the best configura-
tions.

cores and 128 GiB of RAM in total. Its clock base frequency was
3.50 GHz, and the so-called Max Turbo Frequency was 4.00 GHz.
In addition to one small SSD for the operating system and pro-
gramming tools, the computer had one Solid-State Drive (SSD)
with an M.2 connector and a capacity of 2 TB to store all
the data of the application. This SSD was a Samsung SSD 970
EVO 2TB (Firmware 1B2QEXE7). According to the Linux operat-
ing system hdparm tool, the read speed of the first one was
about 191.43 MB/s, whereas the read speed of the second one
was about was 242750 MB/s. Its OS was GNU/Linux (kernel
version 3.10.0-862.14.4.e17.x86_64). GCC compiler (version 4.8.5
20150623) was used. Intel(R) Math Kernel Library (MKL) Ver-
sion 2018.0.2 Product Build 20180127 for Intel(R) 64 architec-
ture was employed.

o The second configuration is the out-of-core codes that employ
a NVIDIA A100 GPU. See the description above.

Note that both configurations have exactly the same model of
SSD (Samsung EVO 970) with the purpose of a fair comparison.

The best available software was employed on both platforms.
The var4v variant was employed in the anka server. It is analo-
gous to var5v, but it performs all computations on CPU instead
of GPU. The varbr variant was employed in the alinna server.

The sizes of the block caches for the out-of-core CPU-based
software assessed in anka and the out-of-core GPU-based soft-
ware assessed in alinna were 32 GB and 16 GB, respectively.

As can be seen, the GPU implementation greatly reduces the
computational times of the code based on CPU. For 2048 slices, the
GPU implementation is about 7 times faster than the configuration
with the CPU i7. Another interesting remark to be made is that
the total time of the GPU implementation does not increase much
when the number of slices grows from 256 to 2048, thus show-
ing a great scalability with respect to the number of slices. The
employment of fast GPUs in our out-of-core code causes the new
bottleneck of this application to be the speed of the disks (SSD).

3.10. Speed of image reconstruction

Fig. 6 shows the speed of image reconstruction of same two
hardware/software configurations as before. The speed is measured
in slices per second. Therefore, unlike the previous plots, higher
values are better. As the reader can notice, our new software on
the alinna server can generate between about 1.5 and 9 slices
per second, much better than those attained in the CPU-based
server anka.
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3.11. Image quality

All the images for this study have been selected from the
COVID-CT-MD dataset [24], which includes a collection of real
CT images obtained from patients with no pathologies, patients
with pneumonia due to Covid-19, and patients with community-
acquired pneumonia (CAP). The images have been re-projected
with Joseph’s [25] method in order to simulate the sinograms and
then reconstruct them using the QR method. The CT scanner sim-
ulated has 1025 detectors, and the number of projections needed
to have a full-rank system matrix is 260. The chosen image resolu-
tion of the reconstructions is 512 x 512 pixels. More details on the
geometry of the scanner can be found in our previous work [17].

Three image quality metrics have been used to test the qual-
ity of the reconstructed images. The first one is the Mean Absolute
Error (MAE). It denotes the average difference of the pixels in ab-
solute value all over the image. See Eq. (6), where M and N are the
numbers of rows and columns in pixels, Iy is the reference image,
and I is the reconstructed image.

The second one is called Peak Signal-to-Noise Ratio (PSNR), and
it measures the level of image noise (see Eq. (7)). In the equation,
MAX represents the maximum value that a pixel can take.

Finally, the third one is the Structural Similarity Index (SSIM).
It is a perceptual metric that measures the level of conservation of
the internal structures and edges of the images (see Eq. (8)). It is
applied through pairs of windows of fixed size, and the difference
between two windows x and y corresponding to the two images
to be compared is calculated. In this equation, ux and p, are the
average values of the respective window x and y, o2 and ay2 are
the variances, oyy is the covariance between the two windows, and
¢ and ¢, are two stabilizing variables dependent on the dynamic
range of the image. More information about these quality metrics
can be found in [26]. Specific parameters for each metric are more
detailed in [17].

1 M-1N-1
MAE = oo D 3 oG, ) =16, ) (6)
i=0 j=0
MAX(lp)? .
PSNR = 10 log;, T(EO’ with
1 M—-1N-1
MSE = 5w >~ D (o(i, ) =1, )? (7)
i=0 j=0
SSIM = —_(ZHxbty +€1) 20wy + C2) (8)

(1E +p3 + 1) (0 + 07 +c2)

In order to assess the quality of the proposed GPU-based im-
plementation, the same reconstructions have been performed us-
ing two other techniques. The first one is the Least Squares QR
(LSQR) method, which has been combined with both the Soft-
Thresholding-Filter (STF) and the FISTA acceleration [27,28]. It is an
iterative algebraic method that can thus deal with rank-deficient
problems and that was employed for solving the same system of
equations as that solved by the QR method (Eq. (1)) using 260
projections. As was shown [27], the LSQR attained both better
quality and significantly lower computational times than the SART
method, which is one of the most widely methods used in alge-
braic reconstructions. For this reason, it was selected for this com-
parison instead of SART.

The second method selected is the classical analytical method
Filtered Back-Projection (FBP) using the Ram-Lak filter [9], which
continues to be the most common reconstruction technique. Al-
though nowadays there are state-of-the-art iterative reconstruction
methods (IR) that take into account the scanner information to
improve the FBP reconstructions, they are complex methods pro-
vided by manufacturers via embedded software in their systems.
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Fig. 8. Covid pneumonia.

Therefore, as we do not have access of any of this software, we
have not been able to include a comparison with IR methods here.
The FBP method does not perform optimally when the number
of projections is small due to undersampling. The minimum num-
ber of views is determined by the Nyquist-Shannon sampling the-
orem [29], and for this particular problem we need to employ
around 1600 projections to obtain a good quality, as was previ-
ously shown [17]. Hence, when compared to the analytical method
FBP, the QR method could mean an 85% reduction of the number
of projections needed since it only requires 260 out of 1600. This
is a significant reduction, and even if iterative algebraic methods
need fewer projections, they also imply a higher error, as we will
show in the results.

Figs. 7, 8, and 9 show the images of three reconstructions, cor-
responding to each of the type of case included in the dataset:
healthy patients, patients with Covid-19, and patients with CAP.

Table 4 shows the results of the image quality metrics applied
to these reconstructions. The FBP method employed 260, 360, 720,
and 1610 projections. It is worth mentioning that the metrics have
been calculated using the images with Hounsfield Units (HU) val-
ues.

As can be seen in this table, the reconstructions using the QR
method attain the highest quality, and they can be considered
identical to the reference images in every case, with a perfect SSIM
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Table 4
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Results of the image quality metrics applied to the reconstructions corresponding to three selected CT images: no pathol-
ogy, Covid pneumonia, and community-acquired pneumonia (CAP).

No pathology Covid CAP

Method  # Projec. = MAE PSNR SSIM  MAE PSNR SSIM  MAE PSNR SSIM
QR 260 35.10% 20722 1 36-10% 20730 1 36-10% 20654 1

LSQR 260 2.65 50.05 0.97 3.09 40.01 0.97 9.74 36.22 0.92
FBP 260 45.16 26.37 0.33 46.76 26.48 0.34 42.85 25.41 0.38
FBP 360 34.81 28.28 0.43 36.08 28.50 0.43 31.75 27.77 0.48
FBP 720 27.63 29.76 0.75 27.98 30.19 0.74 24.28 29.37 0.80
FBP 1610 27.06 29.79 0.86 27.41 30.24 0.86 23.82 29.41 0.90

(e) FBP 720 views

(f) FBP 1610 views

Fig. 9. Community-acquired pneumonia.

and a very low MAE. For this reason, the reference images for this
case are not shown.

The second best quality results are obtained by LSQR. Although
the SSIM does not reach 1, the error is hardly perceived by the
human eye, as can be seen in Figs. 7b, 8 b, and 9 b. However,
the metrics show that the quality is not as high as the obtained
with QR, and it is mainly due to the oversmoothing effect of this
method, as can be seen in Fig. 9b, in which the image loses some
texture compared to the reference image. Attaining a MAE ranging
from 2.65 to 9.74 HU could be detrimental for the application of
postprocessing techniques to the images, such as image segmenta-
tion or automatic detection of anomalies through artificial intelli-
gence.

The reconstructions by the FBP methods are the ones with the
poorest quality. If FBP is used with the same number of projec-
tions as that required by the algebraic methods (260), the error
and noise obtained is very high, losing a third part of the internal
structures information. Fig. 8c clearly shows the streak artifacts,
and how they affect the structures of the image. When the number
of projections is increased, the quality improves accordingly, but in
every reconstruction slightly blurry edges can be noticed (reflected
by the SSIM results), as well as a slight change in the grey scale of
the images, compared to the reference. Even when using the opti-
mal number of views the quality does not match that obtained by
the algebraic methods. The best reconstruction has a MAE of 23.82
HU, much worse than the 9.74 HU attained by LSQR.

In order to show how the intensity of the pixels fluctuate with
all the methods, Fig. 11 shows the intensity profile along a cho-
sen segment of the image corresponding to a community-acquired
pneumonia case (the segment is shown in Fig. 10, displayed in
green). It can be seen how the profiles of both the QR and the
LSQR are very similar, the QR profile being identical to the refer-

Fig. 10. Selected segment of the CAP image.

ence image profile, whereas FBP with 260 views is very different
from the original values. The reconstruction by FPB with 1610 pro-
jections does not fluctuate that much, but it still shows error. The
FBP with 360 and 720 projections are not displayed, but the error
ranges between the best and the worst FBP cases displayed.

4. Discussion

In this paper, we present an optimized implementation of the
QR method applied to the CT image reconstruction problem. Our
software combines the use of GPU computing with out-of-core
techniques to attain high performance when solving large prob-
lems that do not fit in the main memory of the computer.

In this new implementation, we have improved the block cache
management system and we have assessed several configurations
regarding the placement of the cache. The three options evaluated
are the following: keeping the blocks in main memory, in GPU
memory, or mirrored in both memories. The best performance is
attained when employing the main memory of the computer to
store the block cache making use of pinned memory to reduce the
transfer time among disk, main memory, and GPU memory.

The results obtained show that our new GPU version clearly
outperforms the previous implementation on the CPU, with
speedups of the reconstruction step ranging from 2.5 to 6.5 for 256
and 2048 slices, respectively. The speed in terms of slices per sec-
ond has increased from 0.6 slices per second on CPU to 1.7 slices
per second on GPU for 256 slices, and it has increased from 1.4
slices per second on CPU to 9 slices per second on GPU for 2048
slices. The improvement factor is significant, achieving a perfor-
mance that can be competitive with the IR methods used by the
manufacturers.

For this reason, once the sparse sampling scheme is introduced
in clinical practice, we believe our approach could be a robust and
efficient method for performing the reconstructions with a reduced
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Fig. 11. Intensity profile along a segment of the CAP image.

number of projections, which implies lower radiation doses for
patients. The image quality obtained with the QR method is ex-
tremely high when the matrix has full rank, since it obtains an ex-
act solution, which makes it more reliable than algebraic iterative
methods. As shown in the quality analysis, the performance of the
LSQR method is good, but the images still contain noise and they
suffer from oversmoothing, which can cause to lose relevant infor-
mation. The more complex the internal structures are, the lower
the quality is. This can be easly appreciated in the reconstructions:
The simpler one (no pathology) achieves good quality with LSQR,
the one corresponding to bilateral community-acquired pneumo-
nia has lower quality since it is more complex, and the quality
corresponding to Covid-19 is between the previous two. However,
employing an iterative algebraic method such as LSQR could also
noticeably reduce the number of projections needed, since it can
process rank-deficient matrices. A study [28] showed that the LSQR
method can obtain good reconstructions even with a lower num-
ber of projections. In contrast, another study [30] showed that the
quality of the QR decreases when the matrix does not have full
rank. For a 512 x 512 resolution, it attains good quality using 30
noise-free projections of a mathematical phantom. Unlike the QR
method, it is worth mentioning that the LSQR required an in-depth
search of the optimal parameters to obtain this quality. Therefore,
the two algebraic reconstruction alternatives could co-exist, with
the direct approach oriented to get the best image quality, ensur-
ing a minimum error and a more robust process, and the iterative
one oriented to minimize the radiation dose even if both the error
and the variability (depending on the parameters) is higher. The
decision on which one to employ would depend on the patients
and their particular needs.

In addition, in our experimental study, we show that in the GPU
implementation the number of slices to be reconstructed does not
strongly affect the overall reconstruction time. In contrast, in the
CPU implementation the increase of the number of slices meant
a strong increase in the total time. Therefore, this optimization is

10

very suitable for full-body CTs, as well as for reconstructing multi-
ple studies at once (batch processing). For instance, the total time
needed to reconstruct a study with 256 slices is 2.5 min, whereas
the time needed to reconstruct 2048 slices (8 times as large) is
only 3.8 min.

Besides, since now the bottleneck is the SSD performance, the
overall time could be further reduced with new PCle 4.0 Solid-
State Drives, which could double the reading speed and improve
the writing speed by a 1.5 factor approximately. Another interest-
ing option would be a high-performance RAID system with cur-
rent SSD disks that increased the read and write speeds. Though
the speed of our GPU method is close to that of commercial meth-
ods, both types of new hardware would allow faster reconstruc-
tions, making our method even more competitive.

Finally, it is worth mentioning that the numerical stability of
this method allows us to increase the image resolution and thus
the size of the problem with the same hardware as long as there
is enough storage space without suffering from image quality loss,
which we intend to do in the future. In addition, although we are
now modelling the problem as a 2D multi-slice reconstruction pro-
cess, it would be possible to adapt the method to 3D approaches
such as Cone-Beam CT (CBCT). Some works [31-33] employ alge-
braic methods to reconstruct CBCT volumes by modelling the sys-
tem matrix using voxels instead of pixels. Other works [20] solve
the CBCT system by using the QR method, but for small micro-CT
images. Switching to CBCT would mean a larger matrix and thus a
larger equations system, but by using OOC techniques it would not
pose a problem in terms of memory requirements.

5. Conclusions

Our new implementation of the QR method provides an effi-
cient, scalable, and robust approach to solving the CT image recon-
struction problem with a direct algebraic method on GPUs when
the number of projections is reduced to lower the exposure time to
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the X-rays. The method has been thoroughly optimized to employ
an optimal block cache system in order to reduce the data trans-
fer times, and with the high performance delivered by the GPU for
this out-of-core approach, the overall reconstruction time has been
significantly reduced.

Although the monetary cost of the hardware we employ is
about one order of magnitude higher than with our CPU version,
since top-of-the-line GPU cards are more expensive, we consider
the equipment is still affordable for this kind of medical applica-
tion.

Future investigations should consider using real projections,
such as those from the open-access library of CT patient projec-
tion data provided by the Mayo Clinic [34]. The method presented
in this paper does not contemplate noise in the sinograms, so the
quality of the reconstructions may be lower when working with
real data. Thus, it would be very interesting to assess the effect of
noise in the resulting images and to integrate filtering techniques
on our reconstruction process.
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