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Automatic and reliable quantitative tools for MR brain image analysis are a very valuable

resource for both clinical and research environments. In the past few years, this field

has experienced many advances with successful techniques based on label fusion and

more recently deep learning. However, few of them have been specifically designed

to provide a dense anatomical labeling at the multiscale level and to deal with brain

anatomical alterations such as white matter lesions (WML). In this work, we present a

fully automatic pipeline (vol2Brain) for whole brain segmentation and analysis, which

densely labels (N > 100) the brain while being robust to the presence of WML. This

new pipeline is an evolution of our previous volBrain pipeline that extends significantly

the number of regions that can be analyzed. Our proposed method is based on a

fast and multiscale multi-atlas label fusion technology with systematic error correction

able to provide accurate volumetric information in a few minutes. We have deployed

our new pipeline within our platform volBrain (www.volbrain.upv.es), which has been

already demonstrated to be an efficient and effective way to share our technology with

the users worldwide.
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INTRODUCTION

Quantitative brain image analysis based on MRI has become more and more popular over the last
decade due to its high potential to better understand subtle changes in the normal and pathological
human brain. The exponential increase in the current neuroimaging data availability and the
complexity of the methods to analyze them make the development of novel approaches necessary
to address challenges related to the new “Big Data” paradigm (Van Horn and Toga, 2014). Thus,
automatic, robust, and reliable methods for automatic brain analysis will have a major role in the
near future, most of them being powered by cost-effective cloud-based platforms.

Specifically, MRI brain structure volume estimation is being increasingly used to better
understand the normal brain evolution (Coupé et al., 2017) or the progression ofmany neurological
pathologies such as multiple sclerosis (MS, Commowick et al., 2018) or Alzheimer’s disease (Coupé
et al., 2019).

The quantitative estimation of the different brain structure volumes requires automatic, robust,
and reliable segmentation of such structures. As manual delineation of the full brain is unfeasible
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for routine brain analysis (this task is too tedious, time-
consuming, and prone to reproducibility errors), many
segmentation methods have been proposed over the years. Some
of them were initially focused at the tissue level such as the
famous Statistical Parametric mapping (SPM) (Ashburner and
Friston, 2005). However, this level of detail may be insufficient to
detect subtle changes in specific brain structures at early stages of
the disease.

For example, hippocampus and lateral ventricle volumes
can be used as early biomarkers of Alzheimer’s disease.
At this scale, also, cortical and subcortical gray matter
(sGM) structures are of special interest for the neuroimaging
community. Classic neuroimaging tools such as the well-
known FSL package (Jenkinson et al., 2012) or Freesurfer
(Fischl et al., 2002) have been widely used over the last 2
decades. More recently, multi-atlas label fusion segmentation
techniques have been extensively applied, thanks to their ability
to combine multiple atlas information minimizing mislabeling
due to inaccurate registrations (Coupé et al., 2011; Wang
and Yushkevich, 2013; Manjón et al., 2014; Romero et al.,
2015).

However, segmentation of the whole brain into a large
number of structures is still a very challenging problem
even for modern multi-atlas based methods (Wang and
Yushkevich, 2013; Cardoso et al., 2015; Ledig et al., 2015).
The problems encountered are (1) the need of a large
set of densely manually labeled brain scans and (2) the
large amount of computational time needed to combine
all those labeled scans to produce the final segmentation.
Fortunately, a fast framework based on collaborative patch-
matching was recently proposed (Giraud et al., 2016) to
reduce the computational time required by multi-atlas patch-
based methods.

More recently, deep leaning methods have also been
proposed for brain structure segmentation. Those methods
are mainly patch-based (Wachinger et al., 2018) or 2D (slice-
based) (Roy et al., 2019) due to current GPU memory
limitations. The current state-of-the-art whole brain deep
learning methods are based on ensembles of local neural
networks such as the SLANT method (Huo et al., 2019),
or more recently the Assemblynet method (Coupé et al.,
2020).

The aim of this study is to present a new software pipeline
for whole brain analysis that we have called vol2Brain. It is
based on an optimized multi-atlas label fusion scheme that has a
reduced execution time, thanks to the use of our fast collaborative
patch-matching approach, which has been specifically designed
to deal with both normal appearing and lesioned brains (a
feature that most of preceding methods ignored). This pipeline
automatically provides volumetric brain information at different
scales in a very simple manner through a web-based service
not requiring any installation or technical requirements in a
similar manner as previously done by our volBrain platform
that since 2015 has processed more than 360,000 brains
online worldwide. In the following sections, the new pipeline
will be described, and some evidences of its quality will
be presented.

MATERIALS AND METHODS

Dataset Description
In our proposed method, we used an improved version
of the full Neuromorphometrics dataset (http://www.
neuromorphometrics.com), which consists of 114 manually
segmented brain MR volumes corresponding to subjects with
ages covering almost the full lifespan (from 5 to 96 years).
Dense neuroanatomical manual labeling of MRI brain scans was
performed at Neuromorphometrics, Inc., following the methods
described in the study by Caviness et al. (1999).

The original MRI scans were obtained from the following
sources: (1) the Open Access Series of Imaging Studies
(OASIS) project website (http://www.oasis-brains.org/) (N =

30), (2) the Child and Adolescent NeuroDevelopment Initiative
(CANDI) Neuroimaging Access Point (http://www.nitrc.org/
projects/candi_share) (N = 13), (3) the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) project website (http://adni.
loni.usc.edu/data-samples/access-data/) (N = 30), (4) the
McConnell Brain Imaging Center (http://www.bic.mni.mcgill.ca/
ServicesAtlases/Colin27Highres/) (N = 1), and (5) the 20Repeats
dataset (http://www.oasis-brains.org/) (N = 40).

Before manual labeling, all the images were preprocessed with
an automated bias field inhomogeneity correction (Arnold et al.,
2001) and geometrically normalized using three anatomical
landmarks [anterior commissure (AC), posterior commissure
(PC), and mid-sagittal point]. The scans were reoriented and
resliced so that anatomical labeling could be done in coronal
planes that follow the AC-PC axis. The manual outlining was
performed using an in-house software called the NVM and the
exact specification of each region of interest is defined in (1)
Neuromorphometrics’ General Segmentation Protocol (http://
neuromorphometrics.com/Seg/) and (2) the BrainCOLOR
Cortical Parcellation Protocol (http://Neuromorphometrics.
com/ParcellationProtocol_2010-04-05.PDF). It has to be noted
that the exact protocols used to label the scans evolved over time.
Because of this, not all anatomical regions were labeled in every
group (label number range: max= 142, min= 136).

Dataset Correction
Right after downloading the Neuromorphometrics dataset,
we performed a rigorous quality control of the dataset. We
discovered that this dataset presented several issues that had to
be corrected before using it.

Image Resolution, Orientation, and Size
After checking each individual file, we found that they had
different acquisition orientations (coronal, sagittal, and axial).
They also have different resolutions (1 × 1 × 1, 0.95 × 0.93 ×

1.2, 1.26× 1.24× 12, etc.) and different volume sizes (256× 256
× 307, 256 × 256 × 299, 256 × 256 × 160, etc.). To standardize
them, we registered all image and corresponding label files to
the MNI152 space using ANTS software, which resulted in a
homogeneous dataset with axial orientation, 1 × 1 × 1 mm3

voxel resolution, and a volume size of 181 × 217 × 181 voxels.
We also checked the image quality and we removed 14 cases from
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the original dataset that presented strong image artifacts and
severe blurring effects. This resulted in a final dataset of 100 cases.

Inconsistent and Different Number of Labels
The selected 100 files from the previous step had 129 common
labels from a total of 142 labels. After analyzing these 13
inconsistent labels, we decided to treat each of them in a specific
manner according to the detected issue. Label file description
assigns label numbers from 1 to 207. However, we found that
labels 228, 229, 230, and 231 were present in some files. After
checking them, we realized that labels 228 and 229 on the left
corresponded to a right basal foreground (labels 75 and 76) and
so we renumbered them. Labels 230 and 231 just represented few
pixels in three of the cases and therefore were removed. Labels
63 and 64 (right and left vessel) were not present in all the cases
(not always visible) and we decided to renumber them as a part of
the putamen (labels 57 and 58), as they were located inside. We
removed label 69 (optic chiasm) because it was not present in all
the cases and its delineation was very inconsistent. Labels 71, 72,
and 73 (cerebellar vermal lobules I-V, VI-VII, and VIII-X) were
present in 74 of the 100 cases, and we decided to re-segment the
inconsistent cases so that all the cases have these labels (details
are given in the following section). Label 78 (corpus callosum)
was only present in 25 cases, and we decided to relabel it as
right and left white matter (WM, labels 44 and 45). Label 15 (5th
ventricle) was very tiny and only present in a few cases (13); thus,
it was relabeled as lateral ventricles (labels 51 and 52). Finally,
we decided to add two new labels that we found important, i.e.,
external cerebrospinal fluid (CSF) (labeled as 1) and left and right
WM lesions (labels 53 and 54). Details on how these labels were
added are provided in the following section. After all the cleanup,
the final dataset had a consistent number of 135 labels (refer
to Appendix).

Labeling Errors
Once the dataset had a homogeneous number of labels, we
inspected them to check their quality. After inspecting the dataset
visually, we found that the boundaries of all the structures in
sagittal and axial planes were very irregular. This is probably due
to the fact that the original manual delineation was performed
in the coronal plane. However, one of the main problems we
found was the fact that cortical gray matter (cGM) was severely
overestimated, and correspondingly, the CSF and WM were
underestimated. This fact has been already highlighted by other
researchers (Huo et al., 2017) who pointed out this problem in
the context of cortical thickness estimation. The same problem
arises in the cerebellum, although it is a bit less pronounced.
To solve this problem (Huo et al., 2017), an automatic fusion of
the original GM/WM maps was used, and partial volume maps
were generated by the TOADS method (Bazin and Pham, 2008)
to correct the cortical labels. In this study, we have followed a
different approach based on the original manual segmentation
and the intensity information.

First, we combined all the 135 labels into seven different
classes (CSF, cGM, cerebral white matter (cWM), sGM, cerebellar
gray matter (ceGM), cerebellar white matter (ceWM), and
brain stem (BS)]. External CSF was not labeled in the

Neuromorphometrics dataset, so we added it using volBrain
(Manjón and Coupé, 2016) (we copied CSF label to those pixels
that had label 0 in the original label file). Then, the median
value of cGM and cWM was estimated and used to generate the
partial volume maps using a linear mixing model (Manjón et al.,
2008). Voxels in the cGM and cWM interface were relabeled
according to their partial volume content (e.g., a cGM voxel with
a cWM partial volume coefficient bigger than its corresponding
cGM partial volume coefficient was relabeled as cWM). The
same process was repeated for the CSF/cGM interface, the
ceGM/ceWM interface, and the ceGM/CSF interface. To ensure
the regularity of the new label maps, each partial volumemap was
regularized using a non-local means filter (Coupé et al., 2018).
Finally, each case was visually revised and small labeling errors
were manually corrected using the ITK-SNAP software. Most of
the corrections were related with cGM in the upper part of the
brain, and misclassifications of WM lesions were termed as cGM
and CSF-related corrections. Figure 1 shows an example of the
cGM/cWM tissue maps before and after the correction.

After the tissue correction, the original structure labels
were automatically relabeled to match the new tissue maps.
Specifically, those voxels that kept the same tissue type before
and after the correction kept their original labels and those
that changed were automatically labeled according to the most
likely label considering their position and intensity. Results were
visually reviewed to assess its correctness and manually corrected
when necessary. Finally, we realized that sGM structures showed
important segmentation errors and we decided to re-segment
them using volBrain automatic segmentation followed bymanual
correction when needed. Figure 2 shows an example of the final
relabeling result.

LesionBrain Dataset
One of the main goals of the proposed pipeline was to make
it robust to the presence of WM lesions that normally are
misclassified as gray matter (GM) in pathological brains. To this
end, we included not only healthy cases but also subjects with
WM lesions in our library. Specifically, 32 of the 100 cases of
the previously described Neuromorphometrics dataset had WM
visible lesions with a lesion load ranging frommoderate to severe.
We are aware that WM lesions can appear anywhere in the brain,
but it is also known that they have a priori probability to be
located in the periventricular areas among others (Coupé et al.,
2018).

We found though that the number of cases with lesions on
the dataset was not enough to capture the diversity of WM
lesion distribution, so we decided to expand the dataset using a
manually labeled MS dataset. We previously used this dataset to
develop a MS segmentation method (Coupé et al., 2018).

This dataset is composed of 43 patients with MS who
underwent 3T 3D-T1w MPRAGE and 3D-Fluid-Attenuated
Inversion Recovery (FLAIR) MRI. We used only the T1 images,
as this is the input modality of our proposed pipeline. To further
increase the size of the dataset, we included the left-right flipped
version of the images and labels resulting in an extended dataset
of 86 cases.
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FIGURE 1 | Example of cGM tissue correction. From right to left: Reference T1 image, original cGM map, corrected cGM map, and map of changes (white means

inclusion and black means removal of pf voxels). In the bottom row, a close up is shown to better highlight the differences.

FIGURE 2 | Top row shows the original labeling and bottom row shows the corrected labeling. Note that the external CSF label has been added to the labeling

protocol.

Vol2Brain Pipeline Description
The vol2Brain pipeline is a set of image processing
tasks dedicated to improve the quality of the input data
and to set them into a specific geometric and intensity

space, to segment the different structures and to generate
useful volumetric information (refer to Figure 3 for a
general overview). The vol2Brain pipeline is based on the
following steps:
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FIGURE 3 | vol2Brain pipeline scheme. In the first row, the preprocessing for any new subject is presented. In the second row, the results of the ICC extraction,

structure, and tissue segmentations jointly with the cortical thickness estimation are presented. Finally, in the third row, the volumetric information is extracted and

presented.

1. Preprocessing
2. Multiscale labeling and cortical thickness estimation
3. Report and csv generation

Preprocessing
We have used the same preprocessing steps as those described
in the volBrain pipeline (Manjón and Coupé, 2016), as it
has been demonstrated to be very robust (based in our
experience processing more than 360,000 subjects worldwide).
This preprocessing consists of the following steps. To improve
the image quality, first, the raw image is denoised using
the Spatially Adaptive Non-Local Means (SANLM) filter

(Manjón et al., 2010) and inhomogeneity is corrected using the
N4 method (Tustison et al., 2010). The resulting image is then
affinely registered to the Montreal Neurological Institute (MNI)
space using the ANTS software (Avants et al., 2008). The image in
the MNI space has a size of 181 × 217 × 181 voxels with 1 mm3

voxel resolution. Then, we used an inhomogeneity correction
based on SPM8 (Ashburner and Friston, 2005) toolbox, as this
model-based method has proven to be quite robust once the data
are located at the MNI space. Finally, we normalized the images
as per intensity by applying a piecewise linear tissue mapping
based on the TMS method (Manjón et al., 2008) as described in
the study by Manjón and Coupé (2016). It is worth to note that
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the library images were also normalized as per intensity using
the described approach so that both library and the case to be
segmented share a common geometrical and intensity space.

Multiscale Labeling and Cortical Thickness

Estimation
After the preprocessing, the images are ready to be segmented
and measured. This segmentation is performed in several stages.

ICC Extraction
The first step in the segmentation process is the intracranial
cavity extraction (ICC). This is obtained using the NICE method
(Manjón et al., 2014). NICE method is based on a multi-scale
non-local label fusion scheme. Details of the NICE method can
be found in the study byManjón et al. (2014). To further improve
the quality of the original NICE method, we have increased the
size of the original volBrain template library from 100 to 300 cases
using the 100 cases of the vol2Brain library and their left-right
mirrored version.

Full Brain Structure Segmentation
The dense segmentation of the full brain is based on a multiscale
version of the non-local patch-based label fusion technique
(Coupé et al., 2011) wherein patches of the subject to be
segmented are compared with patches of the training library to
look for similar patterns within a predefined search volume to
assign the proper label v as can be seen in the following equation:

v (xi) =

∑N
s=1

∑

j∈Vi
w(xi, xs,j)ys,j

∑N
s = 1

∑

j∈Vi
w(xi, xs,j)

(1)

where Vi corresponds to the search volume, N is the number of
subjects in the templates library, ys,j is the label of the voxel xs,j at
the position j in the library subject s, and w(xi, xs,j) is the patch
similarity defined as:

w
(

xi, xs,j
)

= exp
−Di,j,s

h2 (2)

Di,j,s =
∥

∥P (xi) − P(xs,j)
∥

∥

2
2

(3)

where P(xi) is the patch centered at xi, P(xs,j) is the patch centered
at xj in the templates, and ||.||2 is the normalized L2 norm
(normalized by the number of elements) calculated from the
distance between each pair of voxels from both patches P(xi) and
P(xs,j). h is a normalization parameter that is estimated from the
minimum of all patch distances within the search volume.

However, exhaustive patch comparison process is very time-
consuming (even in reduced neighborhoods, i.e., when the search
volume V is small). To reduce the computational burden of
this process, we have used a multiscale adaptation of the OPAL
method (Giraud et al., 2016) previously proposed in the study
by Romero et al. (2017), which takes benefit from the concept
of Approximate Nearest Neighbor Fields (ANNF). To further
speed up the process, we processed only those voxels that were
segmented as ICC by the NICE method.

In patch-based segmentation, the patch size is a key parameter
that is strongly related to the structure to be segmented and

image resolution. It can be seen in the literature that multi-
scale approaches improve segmentation results (Manjón et al.,
2014). In the OPAL method (Giraud et al., 2016), independent
and simultaneous multi-scale and multi-feature artificial neural
networks (ANN) fields were computed. Thus, we have followed
a multi-scale approach in which several different ANNs are
computed for different patch sizes resulting in different label
probability maps that have to be combined. In this study, two
patch sizes are used, and an adaptive weighting scheme is
proposed to fuse these maps (Equation 3).

p(l) = α p1 (l) + (1 − α)p2(l) (4)

where p1(l) is the probability map of patch-size 3× 3× 3 volxels
for label l, p2(l) is the probability map of patch-size 5 × 5 × 5
voxels for label l, p(l) is the final probability map for label l, and α

ǫ [0,1] is the probability mixing coefficient.

Systematic Error Correction
Any segmentation method is subject to both random and
systematic errors. The first error type can be typically minimized
by using bootstrapped estimations. Fortunately, the non-local
label fusion technique estimates the voxel label averaging the
votes of many patches, which naturally reduces the random
classification error. Unfortunately, systematic errors cannot be
reduced using this strategy, as they are not random. However,
due to its nature, this systematic bias can be learned, and later,
this knowledge can be used to correct the segmentation output
(Wang and Yushkevich, 2013).

In the study by Romero et al. (2017), we proposed an error
corrector method based on a patch-based ensemble of neural
networks (PEC for Patch-based Ensemble Corrector) to increase
the segmentation accuracy by reducing the systematic errors.
Specifically, a shallow neural network ensemble is trained with
image patches of sizes 3 × 3 × 3 voxels (fully sampled) and
7 × 7 × 7 voxels (subsampled by skipping two voxels at each
dimension) from the T1w images, the automatic segmentations,
a distance map value, and their x, y, and z coordinates at MNI152
space. The distance map we used is calculated for the whole
structure as the distance in voxels to the structure contour. This
results in a vector of 112 features that are mapped to a patch
of manual segmentations of size 3 × 3 × 3 voxels. We used a
multilayer perceptron with two hidden layers of size 83 and 55
neurons resulting in a network with a topology of 112× 83× 55
× 27 neurons. An ensemble of 10 neural networks was trained
using a boosting strategy. Each new network was trained with
a different subset of data, which was selected by giving a higher
probability of selection to those samples that weremisclassified in
the previous ensemble. More details can be found in the original
study (Romero et al., 2017).

Multiscale Label Generation
Once the full brain segmentation is performed, different scale
versions were computed by combining several labels to generate
more generic ones and allowing a multiscale brain analysis. The
135 labels were combined to create a tissue-type segmentation
map, including eight different tissues [CSF, cGM, cWM, sGM,
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ceGM, ceWM, BS, and white matter lesions (WML)]. The cGM
and cWM maps will be later used to compute the cortical
thickness. Also, cerebrum lobe maps were created by combining
cortical GM structures. These maps will be used later to compute
the lobe-specific volumes and thickness.

Cortical Thickness Estimation
To estimate the cGM thickness, we have used the DiReCT
method. DiReCT was introduced in the study by Das et al. (2009)
and was made available in ANTs under the program named
KellyKapowski. This method is based on the use of a dense non-
linear registration to estimate the distance between the inner and
the outer parts of the cGM. Cortical thickness per cortical label
and per lobe were estimated from the thickness map and the
corresponding segmentation maps (Tustison et al., 2014).

Report Generation
The output produced by the vol2Brain pipeline consists in
a pdf and csv files. These files summarize the volumes and
asymmetry ratios estimated from the images. If the user provides
sex and age of the submitted subject, population-based normal
volumes and asymmetry bounds for all structures are added for
reference purposes. These normality bounds were automatically
estimated from the IXI dataset (https://brain-development.
org/ixi-dataset/), which contains almost 600 normal subjects
covering most of the adult lifespan. We are aware that one of
the most important sources of variability is the use of different
scanners to build the normative values (although the use of our
preprocessing reduces this variability). In the near future, we
will extend the dataset to have a larger and more representative
sample of the population as we already did for the volBrain
pipeline (Coupé et al., 2017).

Furthermore, the user can access to its user area through
volBrain website to download the resulting nifti files containing
the segmentations at different scales (both in native and MNI
space). An example of the volumetric report produced by
vol2Brain is shown in Appendix.

EXPERIMENTS AND RESULTS

In this section, some experimental results are shown to
highlight the accuracy and reproducibility of the proposed
pipeline. A leave-two-out procedure was performed for the
100 subjects of the library (i.e., excluding the case to be
segmented and its mirrored version). In the dataset, there
are 19 cases that were scanned and labeled twice for the
purpose of reproducibility estimation. In this case, a leave-
four-out procedure was applied to avoid any problem (i.e.,
excluding the case to be segmented and its mirrored version
of the two acquisitions of the same subject). To measure
the segmentation quality, the dice index (Zijdenbos et al.,
1994) was computed by comparing the manual segmentations
with the segmentations obtained with our method. A visual
example of the automatic segmentation results is shown in
Figure 4.

Results
Since presenting dice results of the 135 labels would be
impractical, we have decided to show the average results for
cortical and non-cortical labels as done in previous studies (Wang
and Yushkevich, 2013). In Table 1, the results of the proposed
method are shown with and without the corrective learning step
(PEC) to show the impact that this postprocessing has in the final
results (it improved the results in all the cases).

To further explore the results, we separated them by dataset,
as it is well-known that results within the same dataset are
normally better than across the datasets. This allows to explore
the generalization capabilities of the proposed method. Results
are summarized in Table 2. As can be seen, results of the OASIS
dataset were the best among the datasets. This makes perfect
sense, as precisely, this dataset is the largest. CANDI dataset
showed the worst results. This dataset had the worst image
quality, which somehow explains these results.

One of the objectives of the proposed method was to be able to
deal with images with white mater lesions. This is fundamental,
as if we do not take into account those regions, they are normally
misclassified as a cGM or sGM (which also affects the cortical
thickness estimation) (Dadar et al., 2021). The results of WM
lesion segmentation are summarized in Table 3 (left and right
lesions were considered together). We separated the results by
lesion volume, as it is well-known that small lesions are more
difficult to segment than the big ones (Manjón et al., 2018).

Once the full brain is segmented into 135 labels, those
labels are grouped together to provide information at different
anatomical scales. Specifically, eight different tissue labels are
generated. Dice results are summarized in Table 4.

Method Reproducibility
A very important feature for a measurement method is its
reproducibility. To measure the reproducibility of the proposed
method, we used a subset of our library. Specifically, we used 19
cases of the OASIS subset that were scanned and labeled twice.
In this case, we have two sources of variability, which are related
to the inter-image changes and manual labeling differences. To
measure the reproducibility, we computed the dice coefficient
between the two different segmentations (of each case and its
repetition). This was done for both the manual segmentation
(that we used as a reference) and the automatic one. Results are
summarized in Table 5. As can be seen, the proposed method
showed a slightly superior reproducibility than manual labeling.

Method Comparison
It is difficult to compare the proposed method with similar state-
of-the-art methods such as Freesurfer, as the labeling protocol
is slightly different. For this reason, we have used as a freely
available and well-known method called Joint Label Fusion as a
reference (Wang and Yushkevich, 2013). This method is a state-
of-the-art multi-atlas segmentation approach. To make it fully
comparable, we used the corrected cases of our library as the
atlas library. We summarized the results of the comparison in
Table 6. We compared our proposed method with two versions
of the JLF approach, one using an affine registered library (linear)
and another using a non-linear registered library. It is worth to
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FIGURE 4 | Example results of vol2Brain. T1 image, ICC mask, brain tissues, lobes, and structures.
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TABLE 1 | Proposed method dice results.

Method All labels Cortical labels Non-cortical labels

Our method 0.8190 ± 0.0300 0.7912 ± 0.0397 0.8929 ± 0.0173

Our method + PEC 0.8262 ± 0.0257 0.7996 ± 0.0347 0.8969 ± 0.0157

The mean dice is evaluated on all the considered labels (135 without background). *Best
results highligthed in bold.

TABLE 2 | Proposed method overall dice results for the full dataset and for each

of the subsets.

All

(N = 100)

OASIS

(N = 68)

CANDI

(N = 6)

ADNI

(N = 25)

COLIN

(N = 1)

0.8262 ± 0.0257 0.8353 ± 0.0233 0.7831± 0.0326 0.8111 ± 0.0142 0.8353

TABLE 3 | Proposed method lesion dice results.

Method Small (N = 76) Medium (N = 21) Big (N = 3) Avg (N = 100)

Lesion 0.5767 ± 0.1486 0.8281 ± 0.0500 0.8467 ± 0.0524 0.6440 ± 0.1589

*Small (<4ml), Medium (4–18ml), Big (>18 ml).

TABLE 4 | Proposed method dice results for each brain tissue.

CSF cGM cWM sGM

0.9006 ± 0.0307 0.9543 ± 0.0144 0.9669 ± 0.0131 0.9518 ± 0.0114

ceGM ceWM BS Lesion

0.9644 ± 0.0172 0.9448 ± 0.0363 0.9693 ± 0.0137 0.6440 ± 0.1589

TABLE 5 | Proposed method dice results.

Method All labels Cortical labels Non-cortical labels

vol2Brain 0.8405 ± 0.0181 0.8234 ± 0.0206 0.8856 ± 0.0158

Manual 0.8368 ± 0.0171 0.8198 ± 0.0200 0.8818 ± 0.0163

The mean dice is evaluated on all the considered labels (135 without background).

TABLE 6 | Proposed method dice results compared with the results of two

versions of JLF method.

Method All labels Cortical labels Non-cortical labels

vol2Brain 0.8262 ± 0.0257 0.7996 ± 0.0347 0.8969 ± 0.0157

JLF (linear) 0.7369 ± 0.0292 0.7016 ± 0.0337 0.8305 ± 0.0241

JLF (non-linear) 0.7591 ± 0.0252 0.7327 ± 0.0288 0.8291 ± 0.0228

note the proposed method uses only a linearly registered library
(i.e., no non-linear registration was used). As can be noticed, the
proposed method was far superior to both versions.

Computational Time
The proposed method takes around 20min on average to
complete the whole pipeline (including cortical thickness
estimation and report generation). JLF method takes around

only 2 h for structure segmentations without cortical thickness
estimation (excluding the preprocessing, which includes several
hours of non-linear registration depending on the number of
atlases used). Freesurfer normally takes around 6 h to perform
the complete analysis (which also includes surface extraction).

DISCUSSION

We have presented a new pipeline for full brain segmentation
(vol2Brain) that is able to segment the brain into 135 different
regions in a very efficient and accurate manner. The proposed
method also integrates these 135 regions to provide measures
at different anatomical scales, including brain tissues and
lobes. It also provides cortical thickness measurements per
cortical structure and lobe displayed into an automatic report
summarizing the results (refer to Appendix).

To create vol2Brain pipeline, we had to create a template
library that integrates all the anatomical information needed to
perform the labeling process. This was a long and laborious work,
as the original library obtained from Neuromorphometrics did
not meet the required quality and we had to invest a significant
amount of time to make it ready to use. To create this library, we
homogenized the image resolution, orientation, and size of the
images, removed and relabeled inconsistent labels, and corrected
systematic labeling errors. Besides, we extended the labeling
protocol by adding external CSF and WM lesions. As a result, we
generated a highly consistent and high-quality library that not
only allowed to develop the current proposed pipeline but will
also be a valuable resource for future developments.

The proposed method is based on patch-based multi-atlas
label fusion technology. Specifically, we have used an optimized
version of non-local label fusion called OPAL that efficiently finds
patch matches needed to label each voxel in the brain by reducing
the required time to label the full brain from hours to minutes.
To further improve the results, we have used a patch-based error
corrector, which has been previously used in other segmentation
problems such as hippocampus subfield labeling (Romero et al.,
2017) or cerebellum lobules (Carass et al., 2018).

Wemeasured the results of the proposed pipeline using a LOO
methodology and achieved an average dice value of 0.8262. This
result was obtained from four different sub-datasets ranking from
0.7831 to 0.8353 showing a good generalization of the proposed
method. This result was quite close to the manual intraobserver
accuracy that was estimated as 0.8363 using a reduced dataset.
We also compared the proposed method with a related currently
available state-of-the-art method for full brain labeling. We
demonstrated that vol2Brain was not only far superior to the
linear (0.8262 vs. 0.7369) and nonlinear (0.8262 vs. 0.7591)
versions of JLF method but also more efficient with a temporal
cost of minutes compared with hours.

The proposed vol2Brain pipeline is already available through
our volBrain platform (https://volbrain.upv.es). As compared to
the rest of the volBrain platform pipelines, this pipeline receives
an anonymized and compressed nifti file (a T1-weighted image
in the case of vol2Brain) through the website and reports the
results 20min later by sending an email to the user. The user
can also download the segmentation nifti files through the user
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area of volBrain platform (an example of the pdf report is shown
in Appendix).

We hope that the accuracy and efficiency of the proposed
method and the ease of use through the volBrain platform will
boost the anatomical analysis of the normal and pathological
brain (especially on those cases with WM lesions).

CONCLUSION

In this study, we present a novel pipeline to densely segment
the brain and to provide measurements of different features at
different anatomical scales in an accurate and efficient manner.
The proposed pipeline has been compared with a state-of-
the-art-related method showing competitive results in terms of
accuracy and computational time. Finally, we hope that the
online accessibility of the proposed pipeline will facilitate the
access of any user around the world to the proposed pipeline
making their MRI data analysis simpler and more efficient.
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