ÍNDICE

RESUMEN	VII
ABSTRACT	IX
RESUM	XI
LISTA DE PUBLICACIONES DERIVADAS DE LA TESIS DO	CTORALXIII
PRÓLOGO	XV
ÍNDICE DE FIGURAS	XXIII
ÍNDICE DE TABLAS	XXXVII

Cap	oítulo 1	1. Introd	ucción 1
1.1	Proble	mática ener	gética y medioambiental3
	1.1.1.	El hidróge	eno como vector energético7
	1.1.2.	Técnicas o	le producción de hidrógeno9
		1.1.2.1.	Reformado con vapor 10
		1.1.2.2.	Gasificación11
		1.1.2.3.	Producción biológica11
		1.1.2.4.	Electrólisis del agua 12
		1.1.2.5.	Fotoelectrocatálisis del agua14
	1.1.3. mediar	Producció nte fotoelect	n de hidrógeno a partir de la rotura de la molécula de agua trocatálisis
		1.1.3.1.	Principios de la fotoelectrocatálisis 15
		1.1.3.2.	Importancia de la energía solar para la fotoelectrocatálisis
1.2.	Proble	mática deriv	vada por el uso excesivo de pesticidas

	1.2.1.	Pesticidas	y su clasificación	27
	1.2.2.	Propiedad	es y características del Imazalil	33
	1.2.3.	Técnicas o	le descontaminación de pesticidas en agua	36
		1.2.3.1.	Ozonización	38
		1.2.3.2.	Fenton/Electro-Fenton	39
		1.2.3.3.	Electrooxidación	42
		1.2.3.4.	Fotocatálisis	43
		1.2.3.5.	Fotoelectrocatálisis	46
	1.2.4.	Degradaci	ón fotoelectrocatalítica de pesticidas en agua	47
1.3.	Nanoes	structuras e	mpleadas como fotocatalizadores	52
	1.3.1.	Nanoestru	cturas de TiO ₂	53
		1.3.1.1.	Anodizado electroquímico de Ti	55
	1.3.2.	Nanoestru	cturas híbridas de TiO ₂ /ZnO	62
		1.3.2.1. TiO ₂ /Zn	Métodos de síntesis de nanoestructuras híbrida O	ıs de 66
1.4.	Bibliog	grafía		71
Cap	ítulo 2	2. Objeti	vos y plan de trabajo	85
Сар	ítulo 3	3. Metod	ología experimental	91
3.1.	Síntesi	s de nanoes	tructuras híbridas de TiO2/ZnO	93
	3.1.1.	Síntesis de	e nanoesponjas de TiO ₂	94
		3.1.1.1.	Acondicionamiento de la superficie	94
		3.1.1.2.	Anodizado electroquímico	95
		3.1.1.3.	Post-anodizado	98

	3.1.2.	Electrodeposición de ZnO 101
3.2.	Caracte	erización morfológica, química y estructural109
	3.2.1.	Microscopía Electrónica de Barrido de Emisión de Campo (FE-SEM)
	3.2.2.	Espectroscopía de Energía Dispersiva de Rayos X (EDX) 112
	3.2.3.	Microscopía Electrónica de Transmisión (TEM) 112
	3.2.4.	Espectroscopía Láser Confocal Raman 114
	3.2.5.	Microscopía de Fuerza Atómica (AFM) 117
	3.2.6.	Espectroscopía Fotoelectrónica de Rayos X (XPS) 118
	3.2.7.	Difracción de Rayos X (DRX) 121
	3.2.8.	Espectroscopía UV-Visible y mediciones de la banda prohibida 123
3.3.	Caracte	erización electroquímica y fotoelectroquímica 126
	3.3.1. fotoele	Ensayos de rotura de la molécula de agua mediante ctrocatálisis
	3.3.2.	Ensayos de estabilidad frente a la fotocorrosión 130
	3.3.3.	Espectroscopía de Impedancia Fotoelectroquímica (PEIS)131
	3.3.4.	Análisis de Mott-Schottky
3.4.	Aplicad de TiO	ciones energéticas y medioambientales de las nanoestructuras híbridas 2/ZnO140
	3.4.1. de agua	Producción teórica de hidrógeno a partir de la rotura de la molécula a mediante fotoelectrocatálisis
	3.4.2.	Degradación fotoelectrocatalítica de pesticidas141
		3.4.2.1. Ensayos de degradación fotoelectrocatalítica con el simulador solar
		3.4.2.2. Seguimiento de la degradación fotoelectrocatalítica de pesticidas

	3.4.2.3.	Determinación de las cinéticas de degradación	146
3.5.	Bibliografía		149

Capítulo 4. Análisis y discusión de resultados......159

4.1.	Síntesi	s y caracter	ización de nanoesponjas de TiO2162
	4.1.1.	Síntesis de	e nanoesponjas de TiO ₂ 162
	4.1.2.	Caracteriz	ación morfológica, química y estructural 165
		4.1.2.1. (FE-SEM)	Microscopía Electrónica de Barrido de Emisión de Campo 165
		4.1.2.2.	Espectroscopía de Energía Dispersiva de Rayos X (EDX)
		4.1.2.3.	Microscopía Láser Confocal Raman 168
	4.1.3.	Caracteriz	ación fotoelectroquímica170
		4.1.3.1. fotoelectro	Rotura de la molécula de agua mediante ocatálisis
		4.1.3.2.	Estabilidad frente a la fotocorrosión172
4.2.	Síntesi TiO ₂ /Z de TiO	s, caracteri nO obtenid p_2 amorfo	zación y optimización de nanoestructuras híbridas de as mediante electrodeposición de ZnO sobre nanoesponjas
	4.2.1.	Influencia	de la concentración de Zn(NO ₃) ₂ 175
		4.2.1.1.	Electrodeposición de ZnO 175
		4.2.1.2.	Caracterización morfológica, química y estructural 177
		4.2.1.3.	Caracterización fotoelectroquímica
	4.2.2.	Influencia	de la temperatura de electrodeposición 182
		4.2.2.1.	Electrodeposición de ZnO 183

		4.2.2.2.	Caracterización morfológica, química y estructural 185
		4.2.2.3.	Caracterización fotoelectroquímica
	4.2.3.	Influencia	del tiempo de electrodeposición
		4.2.3.1.	Electrodeposición de ZnO 189
		4.2.3.2.	Caracterización morfológica, química y estructural 190
		4.2.3.3.	Caracterización fotoelectroquímica191
4.3.	Síntesi TiO ₂ /Z de TiO	s, caracter nO obtenic p_2 cristalino	ización y optimización de nanoestructuras híbridas de las mediante electrodeposición de ZnO sobre nanoesponjas
	4.3.1.	Influencia	del tiempo de electrodeposición
		4.3.1.1.	Electrodeposición de ZnO 196
		4.3.1.2.	Caracterización morfológica, química y estructural 197
		4.3.1.3.	Caracterización electroquímica y fotoelectroquímica. 199
	4.3.2. concen	Influencia tración de 2	a de la temperatura de electrodeposición y de la Zn(NO ₃) ₂
		4.3.2.1.	Electrodeposición de ZnO 202
		4.3.2.2.	Caracterización morfológica, química y estructural 206
		4.3.2.3.	Caracterización fotoelectroquímica
		4.3.2.4.	Análisis estadístico 227
	4.3.3.	Optimizad	ción de la concentración de Zn(NO ₃) ₂ 232
		4.3.3.1.	Electrodeposición de ZnO 234
		4.3.3.2.	Caracterización morfológica, química y estructural 237
		4.3.3.3.	Caracterización electroquímica y fotoelectroquímica. 263
4.4.	Aplica de TiO	ciones ener ₂ /ZnO	géticas y medioambientales de las nanoestructuras híbridas

4.4. de a	1. Producción teórica de hidrógeno a partir de la rotura de la molécula gua mediante fotoelectrocatálisis
4.4.2	2. Degradación fotoelectrocatalítica de Imazalil
	4.4.2.1. Degradación fotoelectrocatalítica de Imazalil en medio básico (NaOH 0.1 M)
	4.4.2.2. Determinación del medio óptimo para la degradación fotoelectrocatalítica de Imazalil
	4.4.2.3. Degradación fotoelectrocatalítica de Imazalil en el medio óptimo (Na ₂ SO ₄ 0.1 M)
	4.4.2.4. Rutas de degradación fotoelectrocatalítica de Imazalil en Na ₂ SO ₄ 0.1 M (pH 6.2)
4.5. Bibl	iografía

5.1.	Conclusiones de la síntesis, caracterización y optimización de nanoestructuras híbridas de TiO ₂ /ZnO obtenidas mediante electrodeposición de ZnO sobre
	nanoesponjas de TiO ₂ amorfo
5.2.	Conclusiones de la síntesis, caracterización y optimización de nanoestructuras híbridas de TiO ₂ /ZnO obtenidas mediante electrodeposición de ZnO sobre nanoesponjas de TiO ₂ cristalino
5.3.	Conclusiones de las aplicaciones energéticas y medioambientales de las nanoestructuras híbridas de TiO ₂ /ZnO

Capítulo 1. Introducción
Figura 1.1 . Emisiones mundiales de CO ₂ a lo largo de los años de acuerdo con diferentes escenarios futuros
Figura 1.2. Esquema de la formación de pares electrón-hueco
Figura 1.3. Esquema de una celda fotoelectroquímica de rotura de la molécula de agua
Figura 1.4. Esquema de celda fotoelectroquímica a escala de laboratorio 18
Figura 1.5 . Diagrama de (a) nanoestructura híbrida de TiO_2/ZnO y (b) intercalación de las bandas de valencia y conducción del TiO_2 y del ZnO 20
Figura 1.6. Insolación anual en el continente europeo
Figura 1.7. Insolación anual en España 22
Figura 1.8. Uso de pesticidas por hectárea en España
Figura 1.9. Esquema de la clasificación de los pesticidas según su composición química
Figura 1.10. Estructura química del Imazalil
Figura 1.11. Principales técnicas utilizadas para llevar a cabo la descontaminación de aguas. 37
Figura 1.12. Mecanismo de degradación fotocatalítica de contaminantes orgánicos en aguas con semiconductores
Figura 1.13 . Posiciones de energía de las bandas de conducción y valencia a pH 0.0 de algunos semiconductores utilizados en fotoelectrocatálisis
Figura 1.14 . Fotoluminiscencia de las nanoestructuras de TiO ₂ en función de la temperatura del tratamiento térmico

Figura 1.15. Etapas del proceso de anodizado electroquímico de Ti utilizando electrolitos compuestos por fluoruros
Figura 1.16 . Esquema de la formación de nanotubos, nanoesponjas o capas compactas de TiO_2 en función de la concentración de NH_4F , las revoluciones por minuto (RPM) del electrodo de trabajo y el potencial aplicado
Figura 1.17. Diagrama de los niveles energéticos en heterouniones de TiO ₂ /ZnO
Capítulo 2. Objetivos y plan de trabajo
Figura 2.1. Esquema del plan de trabajo de la presente Tesis Doctoral
Capítulo 3. Metodología experimental
Figura 3.1. Esquema de una capa compacta (izquierda) y una capa porosa (derecha) de óxido de titanio
Figura 3.2. Esquema de la celda electroquímica durante el anodizado electroquímico de Ti metálico
Figura 3.3 . Montaje utilizado durante el proceso de anodizado electroquímico de Ti
Figura 3.4 . Esquema del proceso experimental seguido desde el acondicionamiento de la superficie hasta el corte de las muestras de TiO ₂ anodizadas
Figura 3.5. Horno tubular utilizado durante el tratamiento térmico de las nanoestructuras
Figura 3.6. Esquema del mecanismo de crecimiento del TiO ₂ y del ZnO 103
Figura 3.7 . Montaje de la celda electroquímica utilizada durante la electrodeposición de ZnO sobre (a) TiO ₂ amorfo y (b) TiO ₂ cristalino 105

Figura 3.8 . Esquema del electrodo de trabajo empleado para electrodepositar ZnO sobre TiO ₂ cristalino
Figura 3.9 . Esquema de la celda electroquímica empleada para llevar a cabo la electrodeposición de ZnO sobre las nanoesponjas de TiO ₂ 107
Figura 3.10. Microscopio Electrónico de Barrido de Emisión de Campo ZEISS ULTRA 55
Figura 3.11. Esquema del diagrama de rayos para TEM convencional 114
Figura 3.12. Microscopio Láser Confocal Raman 115
Figura 3.13. Diagrama de las formas de dispersión de la luz al incidir sobre la materia
Figura 3.14. Esquema del equipo utilizado durante el análisis XPS de las nanoestructuras
Figura 3.15 . Representación del procedimiento para obtener la banda prohibida de las muestras a partir de los resultados de la Espectroscopía UV-Visible 125
Figura 3.16. Esquema de la celda electroquímica de tres electrodos con identificación de sus componentes
Figura 3.17 . Montaje de la celda electroquímica utilizada durante los ensayos de rotura de la molécula de agua mediante fotoelectrocatálisis
Figura 3.18 . Diagrama de la densidad de corriente frente al potencial aplicado en condiciones de luz/oscuridad
Figura 3.19. Esquema del montaje empleado durante los ensayos PEIS 131
Figura 3.20. Representación de la respuesta sinusoidal de un sistema frente al tiempo
Figura 3.21 . Representación del gráfico de Nyquist. Rs representa la resistencia del electrolito y Rt la resistencia total del sistema
Figura 3.22. Diagrama de Nyquist con circuito eléctrico equivalente
Figura 3.23. Diagramas de (a) Bode-módulo y (b) Bode-fase 137

Figura 3.24. Montaje de la celda electroquímica utilizada durante los ensayos PEIS 137
Figura 3.25 . Representación del gráfico de Mott-Schottky para semiconductores de tipo n y tipo p
Figura 3.26. Esquema del equipo UHPLC-MS-QTOF utilizado para la detección y cuantificación del Imazalil
Figura 3.27 . Imagen del equipo UHPLC-MS-QTOF utilizado durante las mediciones de las muestras obtenidas durante la degradación fotoelectrocatalítica del Imazalil

Figura 4.4. Espectros Raman de las nanoesponjas de TiO₂ antes y después de realizar un tratamiento térmico a 450 °C durante 1 h...... 169

Figura 4.5. Respuesta fotoelectroquímica de las nanoesponjas de TiO_2 durante los ensayos de rotura de la molécula de agua mediante fotoelectrocatálisis ... 171

Figura 4.18. Efecto del tiempo de electrodeposición sobre los ensayos de rotura de la molécula de agua mediante fotoelectrocatálisis utilizando como fotoánodos nanoesponjas de TiO₂ y nanoestructuras híbridas de TiO₂/ZnO electrodepositadas sobre TiO₂ amorfo a 25 °C con una concentración de Zn(NO₃)₂ de 1 mM..... 192

Figura 4.22. Efecto del tiempo de electrodeposición sobre los ensayos de rotura de la molécula de agua mediante fotoelectrocatálisis utilizando como fotoánodos nanoesponjas de TiO₂ y nanoestructuras híbridas de TiO₂/ZnO electrodepositadas sobre TiO₂ cristalino a 25 °C con una concentración de Zn(NO₃)₂ de 1 mM . 200

Figura 4.23. Transitorio de densidad de corriente obtenido durante la electrodeposición de ZnO sobre TiO_2 cristalino utilizando diferentes temperaturas de electrodeposición con una concentración de $Zn(NO_3)_2$ de 1 mM durante 15 minutos, con una ampliación de los primeros 100 segundos....... 203

XXVIII

Figura 4.52. Esquema del mecanismo de intercalación entre las bandas de valencia y conducción del TiO₂ y del ZnO en la interfaz TiO₂/ZnO...... 260

Figura 4.55. Efecto de la concentración de $Zn(NO_3)_2$ sobre los ensayos de estabilidad frente a la fotocorrosión a un potencial de 0.6 $V_{Ag/AgCl}$ para las

XXXII

Figura 4.57. Gráficos de Bode (a) módulo y (b) fase, obtenidos a 0.6 $V_{Ag/AgCl}$ en condiciones de oscuridad e iluminación para las nanoesponjas de TiO₂ y las nanoestructuras híbridas de TiO₂/ZnO electrodepositadas sobre TiO₂ cristalino a 75 °C durante 15 minutos con una concentración de Zn(NO₃)₂ de 30 mM 273

Figura 4.63. Recta de calibrado para el Imazalil obtenida mediante UHPLC-MS-QTOF utilizando patrones de 1, 5, 8 y 10 ppm de Imazalil en NaOH 0.1 M. 289

Figura 4.64. Ampliación de los cromatogramas EIC de los picos asociados al Imazalil obtenidos durante la degradación fotoelectrocatalítica del compuesto en

XXXIII

NaOH 0.1 M utilizando nanoestructuras híbridas de TiO₂/ZnO como fotoánodos

Figura 4.66. Ampliación de los cromatogramas EIC de los picos asociados al Imazalil obtenidos durante la degradación fotoelectrocatalítica del compuesto en NaOH 0.1 M utilizando nanoesponjas de TiO₂ cristalino como fotoánodos... 295

Figura 4.72. Ampliación de los cromatogramas EIC de los picos asociados al Imazalil obtenidos durante la degradación fotoelectrocatalítica del compuesto en Na₂SO₄ 0.1 M utilizando nanoesponjas de TiO₂ cristalino como fotoánodos. 314

XXXIV

ÍNDICE DE TABLAS

Capítulo 1. Introducción1
Tabla 1.1 . Comportamiento medioambiental de los pesticidas en función de suscaracterísticas fisicoquímicas
Tabla 1.2 . Clasificación de los pesticidas según su toxicidad de acuerdo aparámetros fijados por la OMS
Tabla 1.3. Clasificación de los pesticidas según su vida media (DT ₅₀)
Tabla 1.4. Propiedades fisicoquímicas del Imazalil 34
Capítulo 3. Metodología experimental
Capítulo 4. Análisis de resultados159
Tabla 4.1 . Resultados EDX de las nanoesponjas de TiO ₂ y las nanoestructuras híbridas de TiO ₂ /ZnO electrodepositadas sobre TiO ₂ cristalino a diferentes temperaturas y concentraciones de $Zn(NO_3)_2$
Tabla 4.2. Porcentajes atómicos de O1s (O1s_a, O1s_b y O1s_c), Ti ⁺⁴ y Zn ⁺²

XXXVII

ÍNDICE DE TABLAS

Tabla 4.5. Resultados EDX de las nanoesponjas de TiO2 y las nanoestructurashíbridas de TiO2/ZnO electrodepositadas sobre TiO2 cristalino a 75 °C durante15 minutos con concentraciones de Zn(NO3)2 de 10, 20, 30, 40, 50 y 60 mM244

Tabla 4.11. Densidad de portadores de carga en condiciones de oscuridad e iluminación de las nanoesponjas de TiO_2 y las nanoestructuras híbridas de

XXXVIII

Tabla 4.15. Resultados de las degradaciones fotoelectrocatalíticas de Imazalil en NaOH 0.1 M a lo largo del tiempo utilizando nanoesponjas de TiO₂ cristalino como fotoánodos, donde "C" es la concentración de la muestra problema, "C_{Deg}" es la concentración degradada y "% Deg" es el porcentaje de degradación. .. 296

Tabla 4.17. Resultados de las degradaciones fotoelectrocatalíticas de Imazalil en Na₂SO₄ 0.1 M a lo largo del tiempo utilizando nanoesponjas de TiO₂ cristalino como fotoánodos, donde "C" es la concentración de la muestra problema, "C_{Deg}" es la concentración degradada y "% Deg" es el porcentaje de degradación ... 315

XXXIX