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A B S T R A C T   
 

Remote sensing employs solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthesis from field to airborne and 
satellite sensors. The investigation of SIF offers a unique way of studying vegetation functioning from the local to the global scale. 
However, the passive, optical retrieval of the SIF signal is still challenging. Common retrieval approaches extract the SIF infilling 
directly from atmospheric oxygen bands in down-welling and up-welling radiance. They often involve a complex signal correction 
to compensate for atmospheric reabsorption and require long computing time. In contrast, the exploitation of solar Fraunhofer lines 
is devoid of atmospheric disturbances. We propose a new retrieval method for red and far-red SIF directly from up-welling 
radiance spectra in the spectral range between 650 nm and 810 nm by applying Partial Least Squares (PLS) regression machine 
learning. Solar Fraunhofer lines are exploited for SIF retrieval with the PLS approach by excluding telluric absorption features. 
The PLS models are trained and tested on synthetic reflectance and SIF data modeled with SCOPE. We identified a logarithmic 
relationship of the retrieval error with respect to signal- to-noise ratio of the instrument. The approach has been tested with real-
world data measured by the Fluorescence Box (FloX) and evaluated against two well-established retrieval methods: the spectral 
fitting method (SFM) and the singular value decomposition (SVD). PLS models exploiting solar Fraunhofer lines retrieved 
meaningful SIF values with high precision and demonstrated robustness against atmospheric reabsorption, including from a 100m 
tall tower. In addition, PLS retrieval requires no complex correction for atmospheric reabsorption and computes 37 times faster 
than SFM. Hence, PLS retrieval allows fast and robust exploitation of SIF from solar Fraunhofer lines with high precision under 
conditions in which other retrieval approaches require complex atmospheric correction. 

 

Keywords: 
Solar induced chlorophyll fluorescence Field spectroscopy; Remote sensing SIF retrieval; Ground measurements FloX 

 

1. Introduction 
Remote sensing of solar-induced chlorophyll fluorescence (SIF) has been studied in the past decades as a non-invasive method to 
track photosynthesis from leaf to global scales (Mohammed et al., 2019). The signal is emitted as light in the red and near-infrared 
(NIR) wavelengths (Porcar-Castell et al., 2014). It is comprised of contributions from both photosystems II and I (Agati et al., 
1995; Magney et al., 2019b). Thus, simultaneous monitoring of red and far-red fluorescence allows for obtaining direct insight into 
the light reactions and light-use efficiency of photosynthesis (Wieneke et al., 2018). At the leaf level, SIF changes as plants adjust 
photosynthesis and non-photochemical quenching in response to environmental conditions such as temperature, light, available 
water, and nutrients (Alonso et al., 2017; Camino Id et al., 2018; Campbell et al., 2019; Cendrero-Mateo et al., 2016; Martini et al., 
2019, 2022; Sun et al., 2017; Zarco-Tejada et al., 2016). Additionally, canopy structure affects light absorption, scattering, and 
fluorescence emission, thereby also influencing the SIF signal (Dechant et al., 2020; Migliavacca et al., 2017; Van Wittenberghe et 
al., 2015). The true SIF signal is unknown and difficult to retrieve under natural conditions for its complex nature. The Soil 
Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model fully integrates leaf-level radiative trans- fer and heat 
fluxes in the canopy and produces realistic fluorescence spectra for the validation of canopy SIF retrieval (van der Tol et al., 2009; 
Verhoef et al., 2018; Verrelst et al., 2016b; Yang et al., 2021). On the other hand, inversion of the SCOPE model allows the 
inference of parameters related to photosynthesis and energy balance from measured canopy hyperspectral reflectance (Guanter et 
al., 2012; Pacheco-Labrador et al., 2019b; van der Tol et al., 2016; Verrelst et al., 2015). Evaluation of SIF retrieval methods for 
the optical exploitation of the signal are performed with SCOPE simulated datasets, including known reflectance and SIF spectra 



 

 

(Cogliati et al., 2015b). 

The passive optical exploitation of SIF using hyperspectral sensors at the top-of-canopy (TOC) has great potential to enhance 
global monitoring of primary production across both natural ecosystems and agricultural landscapes (Damm et al., 2010a; Dechant 
et al., 2022; Goulas et al., 2017; Guanter et al., 2014; Magney et al., 2019a; Martini et al., 2019; Migliavacca et al., 2017; Nichol et 
al., 2019; Sun et al., 2018a; Tagliabue et al., 2019; Wohlfahrt et al., 2018). Towards this goal, automated SIF monitoring field 
spectrometer systems have been developed for deployment on stationary towers (Burkart et al., 2015; Cogliati et al., 2015a; 
Daumard et al., 2010; Drolet et al., 2014; Meroni et al., 2011; Rascher et al., 2009; Rossini et al., 2010), UAVs (Bendig et al., 
2019; Chang et al., 2020b; Mac Arthur et al., 2014; Wang et al., 2021). Imaging sensors retrieve SIF on aircraft (Frankenberg et 
al., 2018; Wieneke et al., 2016). Current systems include, for example, TriFLEX (Daumard et al., 2010), Piccolo Doppio (Mac 
Arthur et al., 2014), PhotoSpec (Grossmann et al., 2018), FAME (Gu et al., 2019), FluoSpec2 (X. Yang et al., 2018), and 
Fluorescence Box (FloX) (Julitta et al., 2017). These field spectroscopy systems have been invaluable for calibration and 
validation of airborne and satellite missions (Porcar-Castell et al., 2015; Rossini et al., 2015) as well as investigating temporal, 
structural, and physiological dynamics of the monitored target (Fournier et al., 2012; Perez-Priego et al., 2015; Rossini et al., 
2010). The potential of spectrometers was also further investigated in their own realm on the ground (Magney et al., 2017; X. 
Yang et al., 2018). Together, these ground-based measurements support the development of upcoming satellites such as the ESA 
Earth Explorer 8 candidate FLEX (Drusch et al., 2017; Middleton et al., 2017; Mohammed et al., 2019; Rascher et al., 2015), and 
enable calibration and validation of satellite SIF retrieval methods and data products (Hueni et al., 2017). 

Different retrieval methods have been proposed to retrieve the SIF signal from continuous measurements of down-welling and up-
welling radiance recorded by systems with different instrument configurations, as comprehensively reviewed by Meroni et al. 
(2009) and Cendrero-Mateo et al. (2019). The Fraunhofer Line Discrimination (FLD) method (Plascyk and Gabriel, 1975) is the 
basis for further, more advanced FLD retrieval algorithms, e.g. iFLD (Alonso et al., 2008). FLD estimates the emission of SIF 
through relative infilling of the telluric absorption bands, located around 687 nm (the Oxygen-B band, from which SIF-B is 
retrieved) and around 760 nm (the Oxygen-A band, from which SIF-A is retrieved). The Spectral Fitting Method (SFM) models 
the spectral shape of fluorescence and reflectance as mathematical functions to retrieve and correct signal intensities (Cogliati et 
al., 2015b; Meroni et al., 2010). SFM is a mechanistic approach based on physical principles and describes the spectral shape of 
the actual fluorescence signal but suffers from costly computation. Because of its reliability, we used it as the reference for field 
measurements in this study. The SFM is applied as the standard processing method for fluorescence retrieval with the FloX 
monitoring field spectrometer, optimizing first guessed SIF values from the iFLD. Both FLD and SFM approaches require high-
resolution hyperspectral data around the telluric absorption features to exploit their infilling (Cendrero-Mateo et al., 2019; Cogliati 
et al., 2019; Julitta et al., 2016). Recently an improvement of the SFM method has been developed: The SpecFit method that 
allows for the retrieval of the full spectral SIF signal in ground-based field spectrometer measurements (Cogliati et al., 2019). 
Retrieval algorithms do not allow the exploitation of the spectral region of telluric water vapor (H2O) between 715 nm and 735 
nm. Although it overlaps well with the SIF emission spectrum, rapid fluctuations impair signal retrieval (Ko¨hler et al., 2015). 

However, current research highlights the necessity for correction of atmospheric influences due to varying air-column in the 
oxygen bands when retrieving SIF. In particular, reabsorption affects the accurate retrieval of SIF severely in the Oxygen-A 
absorption band around 760 nm and to a lesser extent in the Oxygen-B band around 687 nm (Sabater et al., 2018). Atmospheric 
reabsorption remains an issue with the computationally costly SFM and other retrieval approaches based on telluric absorption 
features. If the instrument is positioned in the midst of the atmospheric column more than a few meters above canopy, this effect is 
increasingly significant. (Aasen et al., 2019). An empirical correction approach partially addresses the issue but could not suc- 
cessfully demonstrate the retrieval of positive SIF-A values (Liu et al., 2019). An alternative is the use of solar Fraunhofer lines, 
which are in principle unaffected by changes in relative aerosol thickness of the atmospheric column and cloud cover. For 
example, the data driven Sin- gular Vector Decomposition (SVD) method can be configured to either exploit telluric oxygen 
absorption features or the solar Fraunhofer lines (Chang et al., 2020a; Guanter et al., 2013). SVD is capable of retrieving far-red 
SIF from satellite or ground-based field spectrometers with spectral resolution around 0.13 nm FWHM (Guanter et al., 2013, 2012; 
K. Yang et al., 2018). The SVD is limited to the accurate, SIF-free forward modeling of up-welling radiance and computes SIF as 
an inverse problem from the residuals. Furthermore, studies have shown reliable SIF retrieval solely by exploiting SIF infilling in 
solar Fraunhofer absorption lines between 757 nm and 771 nm from satellite data (Frankenberg and Berry, 2018; Sun et al., 
2018b). 

Here, we propose a novel retrieval of red SIF-B and far-red SIF-A based on the supervised machine learning  algorithm  Partial  
Least Squares (PLS) multivariate regression. The method developed aims at overcoming the shortcomings of the SVD and the 
SFM in terms of computing time, robustness, precisions, evading forward model inversion and without needing to compensate 
atmospheric reabsorption. PLS combines dimensionality reduction and statistical multivariate regression. The algorithm origins 
from quantitative analysis in chemo-metrics and was also applied to other fields of research (Biagioni et al., 2011; Biancolillo and 



 

 

Marini,  2018;  Dayal  and  MacGregor,  1997;  Wagner  et al., 2018). PLS is widely used for the retrieval of signals in mixture 
from a large number  of  variables  (Jin  and  Wang,  2019;  Schmidtlein  et al., 2007; Wiklund, 2007). Further applications of the 
PLS algorithm include the analysis of vegetation with regards to leaf  mass,  canopy  foliar chemicals, morphological and 
functional traits as well as  the  remote assessment of biodiversity with hyperspectral reflectance data (Cavender-Bares et al., 2016; 
Ma et al., 2019; Serbin et al., 2019; Serbin and Townsend, 2020; Singh et al., 2015). PLS regression decomposes the predictor data 
space into components (latent variables). As opposed to   the SVD, latent variables are obtained with PLS in an iterative process, 
which optimizes the components to explain the most covariance  be- tween predictor and response in the transferred orthogonal 
space of the singular vectors (Dayal and MacGregor, 1997). Component loading and score matrices are computed accordingly. 
Regression  coefficients  directly explain the variation in the response variable by using the transferred scores. In contrast to SVD-
based SIF retrievals PLS does not compute the measured up-welling signal and residuals in a forward  model. Instead, PLS is a 
supervised machine learning approach which predicts  the  response  variable  using  a  trained  model  to  exploit  the covariance 
structures between predicted variable (SIF) and predictor (preprocessed, up-welling radiance) in the transformed predictor space. 
In this study, we developed a new PLS retrieval method for the retrieval of SIF from up-welling radiance and evaluated its 
performance on a synthetic test dataset and on field measurements collected with the FloX instruments deployed over three field 
sites with differing vegetation targets. For this purpose, a dataset of synthetic up-welling radiance including SCOPE-modelled SIF 
was created. Two configurations of the PLS model were evaluated, the first covering the entire spectrum of the FloX sensor 
between 650 nm and 810 nm and the second excluding the telluric oxygen and water absorption bands. We further modelled a 
synthetic sensor with an adjustable Signal to Noise Ratio (SNR) to test the robustness of the approach across changing SNR with 
changing signal intensity. Finally, we compared the performance of PLS exploiting solar Fraunhofer lines against the two state-of-
the-art retrieval methods (SFM and SVD) on both synthetic and measured data. The evaluation was focused on different aspects of 
the method: the performance, the speed, and the robustness against conditions where the SFM and SVD methods are not 
applicable. 

2. Materials and methods 
First, PLS models were tested for the prediction of red SIF-B around 687 nm and far-red SIF-A around 760 nm in different 
configurations using synthetic up-welling radiance data in which we could precisely control the spectral SIF contribution. 
Furthermore, the retrieval error of PLS was assessed against SCOPE simulated SIF in a synthetic test dataset in comparison to 
SFM and SVD. Secondly, we applied the optimized PLS models to retrieve SIF-B and SIF-A from up-welling radiance, measured 
at three different sites. The workflow of composing training data, tuning and evaluating the PLS models is described below. 

2.1. Modelling synthetic data 

We created a dataset of synthetic up-welling radiance spectra, which contained modelled fluorescence ranging between 0 and 5 
mW m-2 sr-1 nm-11. To do so, we randomly selected 30 measurements of down-welling radiance from a clear day recorded by 
each of the three instruments. We used SCOPE to model 265 different SIF and reflectance spectra. The SCOPE dataset has been 
obtained through inversion against TOC reflectance collected over grassland (Pacheco-Labrador et al., 2019b). The down-welling 
radiance spectra were then combined with each of the SIF and reflectance spectra using a strong permutation, which randomly 
shuffled and 3-fold oversampled each SIF and reflectance spectra. Thus, a total synthetic dataset of 23,850 up-welling radiance 
spectra (L) at TOC was obtained according to Eq. (1). Here ̂T is the total atmospheric transmittance (including both direct and 
diffuse radiation) of the entire path-length to the target and back to the sensor, R is the reflectance, E is the down-welling 
irradiance, F the fluorescence signal and T⌣ considers the reabsorption of fluorescence for the transmittance of the single path-
length between target and sensor, specified for wavelength λ and view field direction Ω. 

 

The relative fractional depth of solar Fraunhofer lines remains unaffected by atmospheric attenuation in spectral regions devoid of 
telluric absorption features (Frankenberg and Berry, 2018; Guanter et al., 2012). Thus, atmospheric modelling is greatly simplified 
if no telluric absorption bands are present. The influence of total atmospheric transmittance as well as reabsorption can be 
neglected if retrieving SIF from the fractional infilling of solar Fraunhofer lines in spectral regions with flat telluric absorption. In 
this study we retrieved SIF from both telluric oxygen absorption features (O2-A and O2-B) considering atmospheric attenuation 
and reabsorption, as well as the solar Fraunhofer lines devoid of telluric absorption features. We resampled the SCOPE-simulated 
SIF and reflectance spectra, which were initially generated at a resolution of 1 nm. Because they are relatively smooth, linear 
interpolation was used with respect to the FloX Instrument Spectral Response Function of the down-welling radiance 
measurements. 

SIF-B and SIF-A values were extracted from the SCOPE modelled SIF spectra at 687 nm and 760 nm, respectively, and used as 



 

 

response variables for the model training, testing and retrieval benchmark. The measured down-welling radiance data already 
contains atmospheric absorption at sensor height together with characteristic spectral response and noise from the respective 
instrument. This measured noise was statistically decreased as the same down-welling radiance measurements were repeatedly 
used to model multiple synthetic up-welling radiances in different combinations with SCOPE-modelled SIF and true reflectance. 
Thus, the following noise assumptions were added to account for the actual noise levels found in real-world measurements. First, 
Noise equivalent delta Radiance (NedL) was characterized according to Schaepman and Dangel (2000), using the FloX 
spectrometer configured for 0.3 nm FWHM spectral resolution and 0.1 nm spectral sampling rate around 820 SNR. As shown in 
Eq. (2), NedL is computed with respect to wavelength for each pixel with the radiometric calibration gain g. The detector was 
characterized with 110 measurements of a stable light source and dark current in digital numbers for an integration time (IT) 
optimized at 80% of the detector’s dynamic range, with σ2(N) and σ2(NDC) being the standard deviation of the lamp and the dark-
current, respectively, 

 

In our case, the noise was considered consistent due to an automatic optimization of the integration time (IT) in the FloX, resulting 
in a steady signal-level around 80% of the detector’s dynamic range. Note that this assumption does not hold for devices without 
automatic optimization of the signal level, as the noise scales with changing signal level at the detector. 

To simulate random noise as described in Eq. (3), we then applied Monte Carlo simulation using a normal distribution N centered 
at mean zero and standard deviation equal to NedL to propagate instrument-characteristic uncertainty for ca. 80% optimized signal 
exposure at detector level to the synthetic dataset. 

 

The artificial noise level was controlled with scaling factor c to replicate the actual SNR in real measured data. Thus, simulated 
noise was computed individually and added to each instance in the synthetic dataset. Signal to noise ratio (SNR) was calculated as 
denoted in Eq. (4): 

 

with μL being the mean signal intensity with respect to wavelength and σNoise being the standard deviation of the simulated, 
random noise with respect to wavelength for this detector. Note that zero noise was not simulated as the SNR is not defined or 
infinite in this case. 

Following the approach of Caporaso et al. (2018), we computed the first spectral derivative with respect to wavelength as a final 
pre-treatment. The first spectral derivative expresses the change in spectral shape rather than the actual intensities in the spectral 
continuum. Training the PLS on the first spectral derivative ensured that the algorithm exploits relative changes in the up-welling 
radiance instead of absolute intensities. Thus, offsets from absolute intensities were eliminated. We then split the synthetic dataset 
into 60% training and 40% testing datasets by randomized selection. The PLS was trained to exploit the covariance in the first 
spectral derivatives with respect to SIF-B values or SIF-A values given from the SCOPE simulation, decomposing the spectral-
temporal domain into orthogonal scores and loadings. This testing dataset was further used for evaluation of the retrieval error 
against the known SCOPE SIF, where we compared the methods of PLS, SFM and SVD, as described below. We additionally 
compared the performance of PLS and five other machine learning algorithms against the baseline of a linear regression model and 
found that PLS was the most promising with respect to retrieval error and computing time over 30 repetitions (Appendix A1). 

2.2. Evaluation of PLS retrieval performance 

Two configurations of the synthetic data simulating the physical instrument were investigated in the spectral range of the detector 
be- tween 650 nm and 810 nm for model training, cross-validation and testing of PLS: 
1) Including the full, usable spectral range of the FloX between 650 nm and 810 nm (hereafter referred to as PLSfull), 
2) Excluding the spectral region of telluric absorption bands for O2- B between 684 nm and 700 nm, for H2O between 715 nm 

and 735 nm and for O2-A between 759 nm and 770 nm (hereafter referred to as PLS). 

Each of the two response variables, SIF-B and SIF-A, were extracted from the SCOPE-simulated full SIF spectrum at 687 nm and 



 

 

760 nm, respectively, and used in separate regression models. The models were trained using the “pls” package (Mevik and 
Wehrens, 2007) in R (Core Team, 2017) facilitating the orthogonal scores algorithm. Hereafter we refer to these as the SIF-B 
model and SIF-A model. The SIF-B model can predict only red-SIF values (SIF at 687 nm) and the SIF-A model can only predict 
far-red SIF values (SIF at 760nm) from the first spectral derivative of the up-welling radiance spectrum. 

Random k-fold stratified cross-validation with four segments was applied during the training process for 360 latent vectors ranked 
ac- cording to the explained signal covariance. In a second cross-validation step, the models were evaluated in their ability to 
predict the response variable of the unknown synthetic testing dataset. The Root Mean Squared Error of Prediction (RMSEP) was 
calculated with respect to the actual known SCOPE-modelled value according to Eq. (5): 

 

where ̂x is the actual known fluorescence value and x is the predicted value from the PLS regression model for n instances in the 
testing dataset. The process was repeated 100 times each for different configurations of the testing and training data to determine 
mean and standard deviation goodness-of-fit metrics. The average RMSEP and standard deviation were then calculated with 
respect to the number of components of prediction in the testing data. To investigate the algorithm’s limitations on scaling noise, 
we assumed an ideal, synthetic detector with controllable noise. Using a single down-welling measurement, a training and testing 
dataset was modelled which was practically free of random noise but still included the specific response characteristics of the 
sensor. Increasing amounts of Monte-Carlo simulated noise were added by changing the scaling factor c in Eq. (3) stepwise in 100 
iterations to simulate detector SNR between 10,000 and 10 to account for scaling noise with changing signal intensity (see Eq. (4)). 
RMSEP was reported with respect to simulated SNR. The covariance scale was calculated for both of the abovementioned spectral 
configurations for the standardized covariance of the SIF signal with the first spectral derivative of synthetic up-welling radiance 
continuum, i.e., cov (Fλ, Ω, Lλ, ΩdL dλ). Each covariance value was scaled by the standard deviation of the total covariance in the 
respective waveband to normalize the covariance in the spectral continuum. Inversely, the covariance scale multiplied with the 
standardized latent variables results in the regular, temporal covariance of the computed components (scores) in the deflated 
spectral continuum. 

2.3. Instruments for field measurements 

The FloX monitoring field spectrometer(JB-Hyperspectral Devices, Düsseldorf, Germany) is a fully autonomous dual field of view 
system, which records long term time-series of down-welling and up-welling radiance computed towards hyperspectral reflectance 
and SIF (Acebron et al., 2021; Burkart et al., 2015; Dechant et al., 2022; Julitta et al., 2016; Kra¨mer et al., 2021). 

We measured hyperspectral reflectance using three different FloX systems installed in France, Germany and Italy (Table 1). The 
instruments at both the Italian and German sites were installed at close distance to canopy. In contrast, the instrument in France 
was mounted at a 100 m distance from the canopy, to evaluate atmospheric reabsorption of the SIF signal with increasing air-
column between sensor and canopy. Fig. 1 shows the setup conditions of the instruments in the field. Data processing and further 
use of the data is described in the next sections. 

 
Fig. 1. From left to right, setup of the FloX systems (a) at TOC over Rumex in Germany, (b) at TOC over Alfalfa in Italy and (c) at 
100 m distance to canopy over oak forest in France. 



 

 

Table 1 

 
Table 2. Fitting windows and spectral points acquired by the FloX field spectrometer used for the retrieval of SIF-B and SIF-A 
with SFM, PLS, SVD-O2 and SVD-FL. * the full spectral configuration of PLS was tested in synthetic to estimate the loss of in- 
formation when excluding the telluric absorption features under ideal conditions. 

 
 
2.4. Evaluation of retrieval methods using simulated and field measurements 

Finally, the SFM and SVD retrievals were compared with PLS retrieval of SIF-B and SIF-A in synthetic testing data against 
known SCOPE modelled SIF values. 

Fitting windows used for each retrieval method are shown in Table 2. We used the SFM algorithm implemented in the R packages 



 

 

FieldSpectroscopyCC (https://github.com/tommasojulitta/FieldSpectroscopyCC) and FieldSpectroscopyDP 
(https://github.com/tommasojulitta/FieldSpectroscopyDP) as part of the standardized open source FloX processing. Here, SFM 
was applied as the standard processing method for fluorescence retrieval in the FloX monitoring field spectrometer, after 
optimizing first guessed SIF values based on iFLD retrieval. The SVD was implemented as reported in Guanter et al. (2013) and 
Chang et al. (2020a) to exploit the telluric oxygen absorption bands (SVD-O2) and solar Fraunhofer lines (SVD-FL). We 
calculated RMSEP with respect to the known SCOPE SIF values in each instance. The error was investigated with respect to 
changes in the SCOPE-modelled SIF, respectively. Following the approach of Cogliati et al. (2015b), SCOPE simulated SIF and 
reflectance spectra (Appendix A2) were used to assess the retrieval performance of the SFM, SVD-FL and SVD-O2 retrievals with 
a known "true SIF". We then used the three field datasets (Table 1) to retrieve SIF-B and SIF-A with SFM, SVD-FL and SVD-O2, 
respectively. Given that the true SIF signals in the measured data is unknown, the SFM retrieval was used as reference for later 
comparison. 

We trained individual PLS models specifically for each instrument and response variable to retrieve red SIF-B at 687 nm and far-
red SIF-A at 760 nm. The optimal number of components for prediction was selected with respect to the first minimum in average 
RMSEP with synthetic testing data simulating each instrument. The number of components for SIF-B and SIF-A retrieval were 
thus individually identified for the PLS models. SIF was then retrieved with PLS models trained with noise contribution according 
to in-field conditions, excluding major telluric absorption features, or with SFM, SVD-O2 or SVD-FL models, as described in 
Table 2. To compare the performance of PLS, SVD-O2, SVD-FL retrievals from measured observations, we calculated RMSEP as 
well as the coefficient of determination (R2), incident and slope from linear regression with respect to the SFM-retrieved SIF 
values. 

3. Results 
The results of the model training, testing and retrieval validation against SCOPE SIF with synthetic data are described in the 
following section, followed by the retrieval results from field measurements of up- welling radiance. 

3.1. Model training and testing 

The covariance of the PLS model across the spectrum describes the influence of spectral regions in the predictor space which 
covary with the response variable of the model. In this section we investigate the covariance of the two PLS Models for SIF-B and 
SIF-A response, respectively, and the impact of the exclusion of the telluric absorption features in the fitting window. When 
trained for the data configuration including telluric absorption features, the PLS model found high covariance predominantly at the 
O2-A band at 760 nm, with increased covariance also observed in the water vapor absorption band between 715 nm and 735 nm 
and in the O2-B band at 687 nm (Fig. 2b). In the model configuration excluding atmospheric absorption features, the covariance 
was predominantly observed around 660 nm and a large number of smaller yet pronounced peaks across the remaining spectrum 
(Fig. 2c). The fitting window excluding atmospheric absorption bands between 650 nm and 810 nm is an almost perfect overlay of 
the top of atmosphere solar irradiance spectrum (Fig. 2a) based on satellite data (Brault and Neckel, 1999; Thuillier et al., 2004). 
As a result, the latter model configuration is trained to exploit solar Fraunhofer lines as relevant spectral features for the 
fluorescence retrieval. 

We simulated a synthetic FloX sensor with adjustable SNR between 10,000 and 10 to investigate the PLS algorithm limitations 
with respect to scalable noise. Both SIF-B and SIF-A PLS regression models are very sensitive to noise across all components 
(Fig. 3). The propagation of uncertainties increases RMSEP directly in proportion to the amount of SNR on a logarithmic scale and 
becomes increasingly unstable below 150 SNR (dotted line). The SIF-A model is slightly more susceptible to very low SNR at the 
NIR shoulder in comparison with the SIF-B model. Furthermore,  the  worst  error  is  exceeding  0.5  mW  m-2  sr-1  nm-1  in 
both models and varying largely due to the random noise contribution for very low SNR below 150. Thus, retrieval errors beyond 
SNR 150 cannot be reliably predetermined and is not suitable for the fluorescence retrieval. With the SNR of FloX instruments 
ranging around 390 in the red and 800 in the NIR shoulder wavelengths in operational scenarios due to automatic optimization of 
the signal level, we predicted a retrieval error of below 0.1 mW m-2 sr-1 nm-1 in both SIF-B and in SIF- A, using synthetic 
training and testing data. 

 



 

 

 
Fig. 2. Disk Integrated Solar Irradiance spectrum with Fraunhofer lines at 0.05 nm resolution after Thuillier et al. (2004) (black 
solid line) and measured Diffuse Sky Radiation Irradiance spectrum with telluric absorption features at0.3 nm resolution (grey 
dashed line) (a). Covariance between SIF and the first spectral derivative of up-welling radiance across the spectrum exploited by 
the PLS algorithm including telluric absorption features (b) and excluding telluric absorption features (c). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.). 

 
Fig. 3. Root Mean Square Error of Prediction (RMSEP) from testing data of PLS models with response variable SIF-B (red) and 
SIF-A (3) for simulated spectrometer SNR on logarithmic scale in 100 simulations with scaled Signal to Noise Ratio (SNR). SNR 
150 is indicated by black dotted line. Operational SNR around 390 in the red and around 800 in the NIR shoulder wavelengths are 
marked with a red dotted line blue dotted line, respectively (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.). 

 



 

 

When including telluric absorption and noise simulated according to field conditions, RMSEP significantly varied by model 
complexity over 100 randomized training and test datasets (Fig. 4a). Testing error significantly  increased  when  model  
complexity  deviated  from  the optimal number of components. We found an optimum of lowest RMSEP at 134 components for 
prediction of SIF-A with RMSEP around 0.07 mW m-2  sr-1  nm-1  and 245 components of SIF-B and RMSEP around 0.09 mW 
m-2  sr-1  nm-1. The standard deviation of the error also increased below and above the optimal number of components for 
prediction. When a low number of components was used, the error of the SIF-B model tended to be slightly lower than the error of 
the SIF-A model. This tendency was inverted as the number of components increased and resulted in an overall lower error of the 
PLS model for SIF-A prediction compared with SIF-B prediction. 

 
Fig. 4. Root Mean Square Error of Prediction (RMSEP) and its standard deviation across 100 PLS model training and validation 
cycles is shown for each of the separate PLS models in predicting the response variable SIF-B (red dots) and SIF-A (blue 
triangles), respectively, with increasing number of components (ncomp). Telluric absorption features are included in (a) and 
excluded in (b). The optimal number of components and associated lowest RMSEP is indicated with dashed lines for the SIF-B 
and the SIF-A model, respectively in red and blue (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.). 

In contrast, when excluding telluric absorption and using noise simulated according to field conditions, very little increase in 
RMSEP was observed with respect to PLSfull (Fig. 4b). The error of SIF prediction was similar excluding telluric absorption 
features compared to the previous case which included those spectral regions (Fig. 4a). The mean RMSEP is minimal with 0.09 
mW m-2  sr-1  nm-1  around 136 components for SIF-A model and 0.11 mW m-2 sr-1 nm-1 for the SIF-B model with 169 
components, respectively. Furthermore, less complex PLS models performed with less error for SIF-B retrievals than for SIF-A re- 
trievals. At higher complexity, the performance of the SIF-A models was again superior compared to the SIF-B model. The 
standard deviation increased slightly more compared to the former configuration with increasing number of components for 
prediction. While the PLS models for SIF retrieval showed a slightly enhanced performance when including telluric absorption 
features (i.e., RMSEP with respect to model complexity and standard deviation with respect to randomly permuting training and 
testing), the difference was not significant. 

The retrieval performance of PLS, SFM, SVD-O2 and SVD-O2 was assessed with respect to known SCOPE-modelled SIF, 
extracted at 687 nm and 760 nm (Fig. 5). SVD-FL exhibited a strong dependence on the actual signal intensity, scaling the median 
RMSE almost proportional to the SCOPE-modelled SIF signal intensity. This behavior was not  observed with the other retrieval 
algorithms, which exhibited a steady error across the investigated SCOPE SIF value range. In SIF-B exhibited PLS median RMSE 
very close or slightly below median RMSE of SFM (Fig. 5a). The median RMSE of SFM was lowest in SIF-A, while RMSE of 
SFM and SVD-O2 were very similar (Fig. 5b). PLS exhibited a slightly larger error with respect to SFM, even if the median value 
did not exceed 0.1 mW m-2  sr-1  nm-1. 



 

 

 
Fig. 5. RMSE of the PLS (red), SFM (green), SVD-FL (turquois) and SVD-O2 (purple) with respect to SCOPE simulated SIF for 
SIF-B extracted at 687 nm (a) and SIF-A extracted at 760 nm (b), with respect to changing SIF intensities in five equally large 
intervals given with [including boundary and (excluding boundary marks. Interquartile range is indicated by the expand of the 
boxes in y-direction, the median RMSE by a solid line. Whiskers expand to the last member inside 1.5 x interquartile range and 
outliers are marked with dots (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.). 

3.2. Retrieving sun-induced fluorescence from field data 

The previously tested PLS models excluding telluric absorption features were transferred to measured data. Typical diurnal cycles 
out of the entire measured data set are presented in detail for each instrument (Fig. 6). Retrieval results for the entire set are 
presented in Fig. 7. Finally, PLS, SVD-O2 and SVD-FL were compared with respect to SFM retrieved SIF across the entire dataset 
for each instrument and results are reported in Fig. 8. The differences of the PLS, SVD-O2 and SVD-FL retrieval with respect to 
the SFM were tested and are reported in Table 3. 

3.2.1. Diurnal cycles and time series 

Measured up-welling radiance data from three different instruments were processed with SFM, SVD-O2, SVD-FL and PLS. A 
representative diurnal cycle was selected for each site to illustrate a typical clear-sky day for a canopy in different stages of 
development under non- stressed conditions, and aggregated to half-hour intervals for presentation clarity. At the German site, the 
diurnal pattern of SIF exhibited an inverted smile shape for PLS, SVD-O2, SVD-FL and SFM (Fig. 6 a,b). This pattern is typical 
for non-stressed vegetation. The magnitude of the SIF- B  and  SIF-A  signals  were  low  (<  1  mW  m-2   sr-1   nm-1)  across  all 
retrieval methods,  possibly because measurements were  collected  towards the end of the growing season. SVD-FL overestimated 
SIF-B with respect to all other methods and underestimated SIF-A with respect to all other methods. The standard deviation for 
SVD-FL across the diurnal course was also noticeably higher, compared to all other presented retrieval methods. For SFM and 
SVD-O2, half-hourly means and standard deviations of retrieved SIF-B and SIF-A values were almost indistinguishable. SIF 
values retrieved with PLS also agreed well with both SFM and SVD-O2 in SIF-B and SIF-A. 

At the Italian site, very high values were retrieved for SIF-B and SIF-A during the peak of the growing season (Cogliati et al., 
2019). Again, the SVD-FL retrieval of SIF-B exhibited significantly higher values compared to all other methods (Fig. 6 c,d). 
Standard deviation, and therefore the uncertainties around the diurnal trend, were very high for SIF-B and SIF-A retrieved using 
the SVD-FL. SIF-B values retrieved using PLS were slightly above those from SVD-O2 and SFM retrieval. Differences be- tween 
the SFM, the SVD-O2 and PLS were almost indistinguishable in SIF-A, except for a slight overestimation of the PLS round 
midday after 10am UTC until 12am UTC with respect to the other methods. 

Lastly, the French site exhibited very low to negative SIF from SFM and SVD-O2 retrievals, with the diurnal pattern inverted in 
SIF-A, compared to SVD-FL and PLS (Fig. 6 e,f). At this site, data collected by the FloX mounted at 100 m above the canopy 
were used without any atmospheric compensation for retrieving SIF-B and SIF-A with the SFM, SVD-O2, SVD-FL and PLS. This 
setup is known to cause errors in the SIF retrievals based on telluric absorption bands. In contrast, PLS and SVD- FL both 
exhibited positive, inverted smile patterns, typical for this kind of vegetation. Still, a difference between SVD-FL and PLS was 
noticeable in both SIF-B and SIF-A. SVD-FL predicted SIF-A values were lower and partially negative with a larger standard 
deviation around the half- hourly mean. Consequently, we retrieved only positive SIF-B and SIF- A values with lower noise using 
PLS. Differences between SVD-O2 and SFM were barely noticeable. 



 

 

Across the entire time series, very similar values were retrieved using the three retrieval methods SVD-O2, SFM and PLS at the 
German site (Fig. 7 a,b). Especially SFM and SVD-O2 were always consistent. SVD-FL values for both SIF-A and SIF-B were 
noisier than telluric band retrievals or the PLS retrieval. Again, SVD-FL retrieval had a tendency to overestimate SIF-B. Towards 
the end of the growing season, magnitude of SIF was quite low, with midday peaks around 0.5 mw m-2 sr-2 nm-1 in SIF- A. 

 
Fig. 6. Diurnal cycles of red SIF-B, resp. at 687 nm (left panel) and far-red SIF-A, resp. at 760 nm (right panel) retrieved with 
SVD-O2 (red), SVD-FL (blue), SFM (green) and PLS (purple). PLS models for retrieval have been trained on synthetic up-welling 
radiances data considering noise according to in-field conditions, excluding telluric absorption features. Data was measured at 
TOC in Germany over Rumex on November 6th 2020 (a, b), at TOC over Alfalfa in Italy on April 21st 2018 (c, d) and 100 m 
above oak forest canopy in France on April 25th 2018 (e, f). Measurements of one day were aggregated to half-hourly intervals; 
points indicate mean and error bars show standard deviation  (For interpretation  of  the  references  to  color  in  this  figure  
legend,  the  reader  is  referred to  the  web  version  of this article.). 

At the Italian site, very high values were retrieved in SIF-B and SIF-A across the entire time series over both maturing alfalfa and 
forage canopies (Fig. 7 c,d). The error around the diurnal trend was slightly higher for SFM and SVD-O2 retrieval compared to 
PLS, while retrieved values were very similar in SIF-A. PLS SIF-B values were slightly above the values of SFM and SVD-O2 but 
remained well below the SVD-FL values. A difference in diurnal shape as well as in magnitude of SIF-A values was observed 
between the forage and alfalfa canopies before and after May 8th (Fig. 7 c,d). In SIF-B, the difference between the canopies was 
less pronounced. 

At the French site, both, SIF-B and SIF-A showed mostly negative values across the entire time series when retrieved with SFM 



 

 

and SVD-O2 due to atmospheric distortion (Fig. 7 e,f). Notably, although PLS did not correct for atmospheric impacts, retrieval 
results were always positive. SVD-FL retrieved partially negative values with the seasonal pattern exhibiting a random jump in the 
second half of April. Furthermore, SVD- FL values in SIF-B were significantly higher in comparison with all other retrieval 
methods. The PLS results showed a gradual increase of SIF-B and SIF-A between April 18th and April 26th, which is in temporal 
agreement with the greening-up and increase of photosynthetic activity in the target canopy. This gradual increase was also present 
in the SVD- FL SIF-A values, while the diurnal pattern was barely distinguishable due to the high noise in the signal. Using the 
PLS retrieval, diurnal pattern in both SIF-B and SIF-A were exhibited with high precision. 

 

Fig. 7. Clear sky days selected for the retrieval of red SIF-B at 687 nm (left panel) and far-red SIF-A at 760 nm (right panel) with 
SVD-O2 (red), SVD- FL (blue), SFM (green) and PLS (purple). PLS models for retrieval have been trained on synthetic up-
welling radiances data considering noise ac- cording to in-field conditions, excluding telluric absorption features to exploit solar 
Fraunhofer lines. Measurements were obtained at TOC over Rumex in Germany (a, b), at TOC over Alfalfa and Forage in Italy (c, 
d) and 100 m above an oak forest canopy in France (e, f) (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.). 



 

 

Table 3. Root Mean Square Error (RMSE) of PLS retrieval excluding telluric absorption features, SVD O2 in the related 
atmospheric absorption bands and SVD FL in the solar Fraunhofer lines for SIF-B and SIF-A with respect to the SFM retrieved 
SIF, calculated in absolute values and percentage of the signal for the entire time-series. 

 

3.2.2. Comparison of the result from the different retrieval methods 

The performance of the PLS and SVD-FL for SIF retrieval based on solar Fraunhofer lines, and SVD-O2 based on telluric oxygen 
absorption bands, were evaluated against SFM retrieved SIF over 26 clear-sky days for three different instruments. 

Similar RMSE values and, thus, difference with respect to SFM was found for PLS for the two instruments in Germany and Italy, 
which were both positioned relatively close to the canopy (Table 3). At  the  same time, SVD-O2 performed with very similar 
results to SFM in the two sites. This behavior was also reflected in the correlation of the SVD-O2 and PLS retrievals with respect 
to SFM, with very high R2 values (Fig. 8 a, b). The strongest correlation was observed between the telluric oxygen-line- based 
SVD-O2 and SFM with R2 0.99 and 0.98 in SIF-B and SIF-A, respectively. The slope and intercept described almost a one-to-one 
conversion from SFM to PLS with very low offset in SIF-B and a small multiplicative underestimation in SIF-A. The SVD-FL 
retrieval exhibited the highest disagreement with SFM (Table 3), poorest correlation and lowest R2 with SFM in the German site 
(Fig. 8 a, b). A multiplicative overestimation was recognized in SIF-B using SVD-FL retrieval with respect to SFM, with slope 1.7 
and offset close to zero. On the contrary, a multiplicative underestimation with slope around 0.5 and very low offset was exhibited 
for SVD-FL with respect to SFM in SIF-A. 

At the Italian site, PLS exhibited similar absolute but lower relative RMSE in SIF-A with respect to SFM, due to the higher 
absolute signal intensity compared to the German site (Table 3). The correlation with the SFM is high in SIF-B and SIF-A, with a 
small additive offset (Fig. 8 c, d). The multiplicative offset ranges around one. As with the German site, SVD-O2 exhibited strong 
agreement with SFM. SVD-O2 retrievals were highly correlated with SFM, with R2 around 0.98 in SIF-B and 0.97 in SIF-A, with 
slopes of 0.99 and offsets below 0.04. In contrast, SVD-FL retrieval in SIF-B and SIF-A exhibited the poorest correlation with 
SFM. The absolute and relative discrepancies were larger in SIF-B and SIF-A with SVD-FL in comparison to the other methods 
(Table 3), with intercept and slope deviating strongly from the one-to-one conversion (Fig. 8 c, d). 

The instrument in France was positioned at 100 m distance to canopy without atmospheric correction applied to any of the SIF 
retrievals. High disagreement of PLS with respect to SFM and SVD-O2 were observed in both SIF-B and SIF-A (Table 3). Very 
high absolute and percentage RMSE was also found for SIF values retrieved using SVD-FL with respect to SFM. The performance 
of PLS and SVD-FL, which both exploited solar Fraunhofer lines and remained in principle unaffected by atmospheric distortion, 
differed from the telluric oxygen band based SFM and SVD- O2 in this site. SVD-O2 was again highly consistent with SFM with 
high R2 values in SIF-B and SIF-A (Fig. 8 d, e). In SIF-B, all retrieval methods exhibited regression lines with positive slope, with 
SVD-O2 and PLS below one and SVD-FL even above two. While the offset for SVD-O2 was negligible, SVD-FL exhibited a high 
offset in SIF-B. A smaller offset was recognized in SIF-B using PLS retrieval. Notably, PLS retrieved SIF-A was negatively 
correlated with SFM as a result of the atmospheric influence on the signal for this site. The SVD-FL retrieval exhibited a flat, 
negative slope around -0.07. The offsets in SIF-A for the two methods PLS and SVD-FL were both positive and similar (0.16 and 
0.2, respectively). 



 

 

 

Fig. 8. Correlation of red SIF-B at 687 nm (left panel) and far-red SIF-A at 760 nm (right panel) with SVD-O2 (red), SVD-FL 
(blue) and PLS (green) with respect to SFM SIF from field measurements. PLS models were trained on synthetic up- welling 
radiances data considering noise according to in-field conditions, excluding telluric absorption features. Measurements were 
obtained from field sites located at TOC in Germany (a, b), at TOC Italy (c, d) and 100m above canopy France (e, f) (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

4. Discussion 

In the following two sections, we first discuss the results from modelling and testing with synthetic up-welling radiance data. We 
then discuss real world retrieval (i.e., observational data) results from up- welling radiance measured using FloX monitoring field 
spectrometers at three field sites. 

4.1. Testing against modelled data 

SIF was retrieved using a multivariate PLS model. We showed that the algorithm finds and exploits the covariance between SIF 
and specific spectral features in the first spectral derivative of up-welling radiance in the fitting window between 650 nm and 810 
nm. For the spectral configuration including telluric absorption, covariance is predominantly observed around the O2-B band, 



 

 

centered around 687 nm, the water absorption feature between 715 nm and 735 nm, and the O2-A absorption feature around 
760nm. Solar Fraunhofer lines are of minor contribution across the spectral range in this configuration, for they are very narrow. 
However, for training and testing data excluding telluric ab- sorption features we identified significant covariance in the solar 
Fraunhofer lines across the spectral range of the detector. This means that the first derivative of up-welling radiance varies within 
the Fraunhofer lines due to the infilling of the varying SIF contribution. 

Noise in the synthetic training and testing data significantly influenced the retrieval RMSEP in synthetic testing data. The retrieval 
error increased on a logarithmic scale by more than an order of magnitude when scaling noise was added to the ideal, noise-free, 
synthetic detector. In order to represent the expected characteristics of the FloX instruments in the field, noise must be included in 
the training data with respect to the automatic optimization at 80% signal of the total dynamic range of the detector. In operational 
scenarios were SNRs around 390 in the red and around 800 in the NIR shoulder region reported. SNR depends on the signal level 
at the detector and therefore changes with respect to wavelength depending on the spectral shape of the target. In effect, high noise 
and spectral drift affect the depicted shape and, thus, the accurate approximation of the infilling in the small solar Fraunhofer lines. 
Thus, instrumental noise is considered as an important limiting factor to the performance of the approach. This will be especially 
relevant when using the retrieval with different ground-based and air-borne SIF systems with varying SNR because of their various 
optical configurations. Therefore, we recommend a minimum operational SNR of around 150 in the NIR shoulder spectral region 
for the application of PLS retrieval based on the presented results. 

In addition to the SNR, the spectral resolution (FWHM) of the spectrometer limits the maximum depth of the absorption bands 
which can be effectively exploited for SIF retrieval (Julitta et al., 2016; Pacheco-- Labrador et al., 2019a). The investigated FloX 
sensors featured a spectral resolution around 0.3 nm FWHM. Further research should investigate the PLS retrieval with other 
optical configurations, especially with different FWHM and SNR, to reproduce other instruments currently used in the community. 
The challenge of the PLS approach resides in the composition of the synthetic training and testing dataset with respect to the 
optimal level of added noise to model real conditions as closely as possible. Many other factors superimpose the fluorescence 
signal in remote measurements and require consideration to provide comparable readings (Damm et al., 2010b). One has to cover 
enough variance of these superimposed factors and instrumental noise for to identify these as components that are not correlated 
with the signal. At the same time, the synthetic data has to cover enough variance of fluorescence in the continuum so that the 
algorithm can correlate the components related to the actual signal. However, if the modelled data is very noisy, instances can 
potentially fall on multiple components at the same time and, thus introduce artifacts into the retrieved values. These artifacts are 
rather tricky to identify with common statistical error measures, as they often still represent the solution of best fit. In the retrieval 
of real measured SIF appear artifacts often as singular outliers, sudden jumps or shape in- versions. However, since we cannot 
assume continuous trends in un- known data, contingency in real measurements must be respected. Thus, we strongly recommend 
to strive for an instrumental solution with op- tical specifications, accordingly. The performance of the algorithm is severely  
limited by the detector’s  capability to accurately measure the depth and infilling in relatively small spectral features. This was 
especially obvious when using the SVD-FL retrieval for SIF-B in this study. Other sensors, such as FLORIS and HyPlant, 
designed for SIF retrieval, exceed FloX-similar optical requirements (Drusch et al., 2017; Sieg- mann et al., 2019). 

We investigated the model training and testing performance for two different configurations of the synthetic up-welling radiance 
data with noise to resemble in-field measurements: (1) including the full spectrum between 650 nm and 810 nm, (2) excluding 
spectral regions of major telluric absorption features. In all configurations, we observe for each model an increasing uncertainty of 
prediction with increasing number of components. This is known as overfitting, where the model increasingly tracks noise instead 
of the real signal. Conversely, the uncertainty of prediction also increases for a very low number of components. This is due to the 
model not tracking enough of the signal at low complexity (under-fitting). We identified the optimum where the mean error is 
lowest and the variation in the error is small. As demonstrated in Wagner et al. (2018), the first minimum of absolute RMSEP and 
smallest standard deviation indicate the optimal number of components for prediction for each model. No significant difference in 
mean RMSEP of the two configurations, i.e. either including or excluding the spectral regions of major telluric absorption features, 
was found in the PLS model testing with synthetic data. In particular, the variability attributed to changing detector noise or model 
complexity was significantly larger than the variability attributed to spectral configurations. The full spectral configuration 
performed slightly less retrieval error than the configuration   excluding   telluric   absorption.   Due   to   the   higher complexity of 
spectral information available from the full spectrum, this difference in performance was anticipated. However, an RMSE around 
0.1  mW  m-2  sr-1  nm-1  for  the  PLS  configuration  excluding  telluric absorption is still very similar to the SFM (Cogliati et 
al., 2015b). Atmospheric absorption is known to distort telluric retrievals of the SIF signal with increasing distance over the 
canopy, which requires correction using complex atmospheric compensation (Aasen et al., 2019). Therefore, we further 
investigated the PLS model configuration, which excludes the telluric absorption features and only exploits the solar Fraunhofer 
lines, thereby circumventing atmospheric reabsorption (Guanter et al., 2013). 

We emphasize that the PLS regression model is a data driven approach similar in some aspects to SVD, nevertheless with some 



 

 

important differences. Both SVD and PLS employ dimensionality reduction. SVD uses a forward model and residuals to estimate 
the SIF signal, whereas PLS utilizes a direct regression between SIF and the deflated first spectral derivative of up-welling 
radiance spectra. SVD decomposes the variable space into principal components which are identified and ordered according to the 
amount of variance covered (Mardia et al., 1979). In contrast, PLS determines the response variable SIF through the projection of 
latent variables in such a way that scores and loadings explain as much covariance between predictor and response variable as 
possible (Mevik and Wehrens, 2007). Typically, the first latent variables represent highly correlated components of the predictor 
data space with respect to the response variable. However, it is possible that latent variables are equally weighted with respect to 
explained covariance between predictor and response variable (de Jong, 1993). Note that neither SVD nor PLS can model 
variations in the measurements which they were not trained for. The PLS algorithm has been specifically optimized for detection 
of signals in mixture in general and relies on a considerate construction of synthetic training and testing data to accurately 
resemble real measurements with modelled SIF contribution in this study. 

We assumed that the modelled synthetic up-welling radiance data can resemble in-field conditions and, thus, can be transferred to 
a SIF retrievals applied to the real measurements (Pacheco-Labrador et al., 2019b). This assumption was further investigated with 
a comparison of the SFM, SVD-O2, SVD-FL and PLS retrieval against SCOPE simulated SIF as a reference. The results suggest a 
strong dependency of the SVD-FL retrieval error on the signal levels in both SIF-B and SIF-A. Thus, the spectral shape of the SIF 
signal is affecting this retrieval significantly. The spectral resolution of 0.3nm FWHM of the FloX, compared with 0.13nm in the 
literature is another limiting factor for the SVD-FL retrieval (Guanter et al., 2013). SFM was the most stable retrieval in this regard 
and therefore SFM was considered the reference to evaluate the other retrieval methods with field measurements. SVD-O2 and 
PLS showed similar errors compared with the SFM. Only very low SIF values were retrieved with an increased number of outliers. 
Note that SVD requires information about the fluorescence shape for precise retrieval, which can introduce error if the assumed 
fluorescence shape is incorrect (Chang et al., 2020a). PLS avoids this issue as no forward model is fitted to the up-welling radiance 
spectrum. Instead, the algorithm computes regression coefficients in each waveband across the fitting window by rotating the input 
matrix of spectral derivatives in such a way that covariance with the SIF variable is maximized. 

4.2. Real world retrieval 

SIF-B and SIF-A were retrieved with a PLS regression model approach configured to exploit solar Fraunhofer lines, considering 
instrumental noise according to in-field conditions from measured data from three different sites. Speeding up the measurement 
can be beneficial, especially for experiments aimed at investigating fast dynamics in fluorescence. However, simultaneous (or 
near-simultaneous) down-welling measurements are of great benefit for computing fluorescence yield and light use efficiency, 
even if more time consuming (Damm et al., 2010a; Rascher et al., 2010). The retrieval with SFM also required continuous down-
welling light measurements, which are included together with automatic signal level optimization in each FloX measurement 
cycle. 

We were able to retrieve positive and meaningful values both in SIF- B and SIF-A from FloX measurements with the PLS 
configuration in all sites. In close distance to canopy, PLS results agreed well with the oxygen-band-based retrieval methods SFM 
and SVD-O2. The most striking differences were found between retrievals based on telluric oxygen absorption lines and PLS 
retrieval at the 100 m tall tower in France. Complex atmospheric correction methods are required for SFM and SVD-O2 retrievals 
to achieve meaningful results with increasing distance to canopy (Sabater et al., 2018). With no atmospheric correc- tion in place, 
SFM and SVD-O2, both based on telluric oxygen absorption, retrieved negative SIF from the French site and were therefore 
unusable for further analysis. The German and Italian setups were both in relatively close proximity to their target canopies, and 
both sites exhibited similar agreement across PLS, SVD-O2 and SFM. In particular, SVD-O2 and SFM based on telluric 
absorption performed equally well with almost identical results. PLS slightly overestimated SIF with respect to SVD-O2 and SFM 
in the Italian site but exhibited very good agreement in the German site. Similar tendencies were observed comparing the retrieval 
methods against SCOPE simulated SIF in synthetic data. By exclusively exploiting solar Fraunhofer lines, the PLS retrieval is in 
principle unaffected by atmospheric distortion and clouds (Sun et al., 2018b). Furthermore, by using large fitting windows and 
exploiting multiple solar Fraunhofer lines between 650 nm and 810 nm, retrieval noise is kept very low and good robustness 
against atmospheric reabsorption is achieved with PLS. At the French site PLS also captured a gradual increase in SIF-B and SIF-
A over time, which was related to the onset of photosynthesis during the greening-up of the forest canopy. This increase in 
fluorescence was also observed through SVD-FL but was not sufficiently resolved on a diurnal scale due to the high retrieval 
noise. 

Overall, SVD-FL results were much noisier than PLS, SFM or SVD-O2. This could be due to instrumental limitations, mainly 
FWHM, and the small fitting window of the algorithm. The performance of the SVD algorithm also relies on accurate fits of a SIF-
free model with measured up-welling radiance data (Du et al., 2018). Previous studies indicate that the exploitation of solar 
Fraunhofer lines using SVD was superior with a spectral resolution around 0.13 nm FWHM (Chang et al., 2020a; Guanter et al., 



 

 

2013). FWHM and SNR affect the accurate exploitation of the SIF infilling and thus limiting retrieval accuracy further (Franken- 
berg and Berry, 2018; Liu et al., 2015). The FloX is commonly configured with 0.3 FWHM. Evidently, Frankenberg and Berry 
(2018) show the influence of spectral resolution affecting the apparent depth of the measured solar Fraunhofer lines in the same 
spectral window, which is also used for the SVD-FL retrieval in this work. As FWHM increases, the difficulty of accurately 
measuring the line depth increases, and the effect of atmospheric scattering on the infilling becomes more noticeable. When 
applied to the telluric oxygen absorption features, SVD exhibits similar retrieval noise as SFM, but loses the benefit of 
independence from atmospheric conditions. When exploiting narrow solar Fraunhofer lines, the SVD-FL is considered more 
sensitive to instrument noise, spectral resolution or drift due to the low SIF signal and narrow spectral features from field 
measurements (Chang et al., 2020a). Scattering and hotspot effects related to canopy structure and BRDF depending on the angle 
of incident light can  substantially influence up-welling  radiance and retrieved SIF (Pacheco-Labrador et al., 2016). Furthermore, 
SIF signals are known to be angle-dependent and directed in complex canopies (Rautiainen et al., 2018; Van Wittenberghe et al., 
2015). Thus it is necessary to clarify that only at-sensor fluorescence can be directly measured without any inference of target 
canopy structure or scattering in the atmospheric path (Damm et al., 2014). Bearing this consideration in mind, a slight 
disagreement in absolute values between the different retrieval methods is expected due to the different physical principles on 
which they are based. Still, the diurnal shape of all retrievals should still produce similar patterns, unless the physical principle is 
obstructed by independent factors, e.g., atmospheric distortion. PLS outperformed SVD-FL in terms of retrieval noise and 
precision based on the presented results. Hence, the PLS algorithm appears more robust and suitable for SIF-retrieval based on 
solar Fraunhofer lines with a spectrometer of lower resolution (around 0.3 nm FWHM), as it exploits many more solar Fraunhofer 
lines in a wider fitting window. 

Since PLS is a data driven approach, it requires training. A limiting factor to the retrieval of real-world data is the composition of 
the syn- thetic data for the PLS model training process. The employed SCOPE modelled vegetation data is based on actual in-field 
measurements over a grassland to allow for realistic variances of the signal covered in the synthetic dataset. We are aware that the 
vegetation spectra modelled with SCOPE do not represent all possible variations in canopy characteristics. Therefore, uncertainties 
in SIF retrieval can vary with other canopy characteristics, especially for complex structures. We assumed in this work that the 
modelled spectral fluorescence based on grassland can be extrapolated and transferred to other canopies. This assumption is based 
on the findings that the presented PLS algorithm exploits covariance between the pure SIF signal and first spectral derivative of 
up-welling radiance in the solar Fraunhofer lines. Furthermore, the assumption is supported by the results from comparing SFM, 
SVD-O2, SVD-FL and PLS against SCOPE simulated SIF, following the approach of Cogliati et al. (2015b) and achieving 
comparable retrieval errors. Finally, our retrieval results of PLS were similar to SVD-O2 and SFM in TOC settings. However, we 
anticipate increased uncertainty of prediction in structurally complex canopies. To address this limitation and account for 
structurally more complex canopies, a strong permutation of SCOPE modelled SIF and reflectance spectra is used in the training of 
the PLS models. Thus, each simulated SIF spectrum was combined with each simulated reflectance spectrum. This strong 
permutation by over- sampling increases the distinct instances in the training data and pro- vided larger variation of canopy 
characteristics. Thus, the PLS model becomes more capable of disentangling SIF from more diverse measured data, and improves 
the transferability of the PLS retrieval. At the same time, ambivalence and retrieval noise is reduced. However, this trick does not 
account for all variability in the spectral continuum of SIF and reflectance which can be affected by multiple factors in natural 
canopies in the field (Verrelst et al., 2016a, 2015). A thorough investigation optimizing a SCOPE dataset, specifically modelled for 
the training of statistical retrievals, could improve the robustness and transferability of machine-learning-algorithm-based retrieval 
approaches into specific canopy characteristics. However, this was beyond the scope of this study. 

5. Conclusion 
PLS models trained with SCOPE modelled SIF and reflectance transfer well to real measurements and retrieve values in agreement 
with other mechanistic (SFM) and statistical (SVD) telluric retrieval methods in TOC settings. As PLS is a supervised approach, 
its main limitations are identified in the model training and testing with SCOPE modelled up-welling radiance data of known SIF 
contribution. Further research is recommended to improve the performance of the PLS model in various and more complex 
canopies. We partially addressed this issue with a robust permutation approach, which oversamples the SCOPE modelled data to 
increase the number of possible SIF and canopy reflectance combinations. In addition, PLS models are sensitive to instrumental 
noise. The retrieval error increases with poorer SNR in a logarithmic relationship. For the retrieval of SIF in very noisy data, for 
example due to low-light conditions in which automatic signal optimization of the FloX is not possible, the PLS method is not very 
well suited. Furthermore, PLS and SVD retrieval methods require measurements of down-welling light for the model training 
process. Thus, it is recommended to acquire the measurements of down-welling light preferably with a white panel through the up-
welling channel to accurately include the instrument’s optical response. The instrumental configuration with a spectral resolution 
of 0.3nm FWHM provides a further limitation to the exploitation of the solar Fraunhofer lines with the FloX, especially recognized 
in the SVD-FL retrieval in combination with narrow fitting windows. In this context, the PLS approach was found more robust. 
For the first time, we have been able to retrieve positive and meaningful SIF- B and SIF-A values without any atmospheric 
correction from measured up-welling radiances on a 100m tower above ground, regardless of the reabsorption of signal in the 



 

 

atmospheric column, using PLS. The exploitation of solar Fraunhofer lines for SIF retrieval is very promising for  being  in  
principle  independent  of  changing  atmospheric disturbances. Since the solar Fraunhofer lines are distributed across the entire 
spectrum of SIF, more spectral information is available for the detection of SIF using the PLS regression. This additional spectral 
information reduces retrieval noise and could open a way to unveil the full spectral shape of fluorescence using PLS in the future. 
We consider the PLS regression model for SIF retrieval from solar Fraunhofer lines particularly promising under conditions for 
which retrieval methods based on telluric oxygen absorption require complex and computationally costly data correction. In 
consequence, PLS does not account for atmospheric correction but simply bypasses atmospheric reabsorption. Future research is 
encouraged to investigate also the performance of SIF retrievals under diffuse light conditions. On an ordinary consumer-grade 
laptop, PLS models were computed for an entire diurnal  dataset  within 6.62 s. Compared to the SFM method, this is 37.25 times 
faster. This is also superior to five other machine learning algorithms tested with and without dimensionality reduction in advance 
of this study. 

In summary, we investigated the potential of PLS as an approach for SIF retrieval in modelled data and real measurements from 
autonomous field-spectrometers with promising results. Our results suggest that PLS is superior, compared with other machine 
learning algorithms, in retrieving SIF signals in the mixture of hyperspectral, up-welling radiance. The fast computation time 
makes the approach especially appealing for fast processing to overview large datasets for which complex atmospheric correction 
was required otherwise and for future application of PLS with imaging high-resolution hyperspectral data. Furthermore, PLS 
exhibits very high precision compared with solar Fraunhofer line-based SVD. At the same time, PLS based on exploiting the 
infilling of solar Fraunhofer lines is highly robust against atmospheric reabsorption, compared with telluric oxygen-based methods. 
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Appendix A1. Assessment of machine learning for SIF retrieval 
Machine learning algorithms (MLA) are tools from data science, which provide methods to extract useful information from a 
number of input variables. Emulators and toolboxes have been developed to aid model inversion and retrieval of biophysical 
parameters from SCOPE using a variety of MLA (Berger et al., 2020; Rivera-Caicedo et al., 2014; Rivera et al., 2015; Verrelst et 
al., 2012). Typically, supervised MLA models are trained to predict the variable Y in the predictor space of X. Redundant 
information in a high-dimensional, hyperspectral predictor spaces are identified and eliminated using dimensionality reduction in a 
pre-processing step (Verrelst et al., 2017). Principal component analysis (PCA) decomposes the hyperspectral predictor space into 
components in such a way, that most of the variance in the data is explained by the first few components. 

We tested six MLA and a linear regression model with and without applying PCA during the preprocessing. Neural Network (NN), 
Gaussian Process Regression (GPR), Elastic Net regression (ENet), Conditional Inference Random forest (CForest), Support 
Vector Machine (SVM) and a Linear Model (LM) were assessed in addition to the Partial Least Squares regression (PLS). 
Training and testing data were composed in the same fashion as presented above and the first spectral derivative was computed. 
Likewise, 60% training data and 40% testing data were split with a total number of 718 variables in the predictor space. A PCA 
was performed in the preprocessing and the principal components were tested for significance with the randomization procedure  
(Dray, 2008). For that  purpose, axis in  the  training  data were  randomized in  900 repetitions. According  to Eq. (A1),  the 
cumulative proportion of variance explained σ2 for n components was computed from the standard deviation σ2 of each 
component i, with respect to the total variance of all m=718 components, expressed by the Eigenvalues of the rotated matrix using 
PCA: 

   (A1) 



 

 

We identified no components, which were significant on a 95% confidence interval. Thus, 95% explained variance is statistically 
not missing any important information from the original dataset. In consequence, the number of reduced dimensions from the PCA 
was selected to explain 95% of the variance in the total predictor space, which resulted in using the first five components (see Fig. 
A1). 

A k-fold, random, segmented (k=4) cross-validation approach with four repeats was used during the training. Training and testing 
procedures were repeated 30 times for each algorithm in SIF-A and SIF-B, respectively. The RMSE was computed in each run 
using k-fold cross-validation for the training fraction of the dataset during the training and for the predicted SIF values using the 
testing fraction of the dataset during the testing with respect the actual SCOPE SIF. 

The mean errors and standard deviation are reported for each MLA with and without dimensionality reduction in Fig. A2. The 
associated mean computing time and standard deviation for one training are reported in Fig. A3. Our results suggest that PLS 
exhibited similar prediction errors to GPR, ENet or SVM without applying PCA during the preprocessing. The MLAs exhibited a 
significantly increased training and testing error in SIF retrieval when combined with PCA. Only in terms of computing time 
benefit CForest, Enet and SVM from dimensionality reduction slightly, while GPR, NN and LM need even more time to converge 
the internal optimization. However, PLS outperformed all other MLA significantly in terms of computing time. The results are 
explained since the SIF signal contributes only about 2% to the variance of the total spectral continuum of up-welling light. PCA 
compresses the components in such a way, to maximize the total variance of the predictor space within the first components. 
However, due to this compression is the information lost, which has only a small contribution to the continuum. Thus, PCA is 
limiting the MLAs in performing the internal optimization to find and exploit the fluorescence contribution. Note that differences 
in implementation of the MLAs between different environments (e.g. MATLAB, R, Python.) should also be considered when 
comparing the results with different studies. Given the high dimensionality of the hyperspectral data with 718 bands and the 
computed PCA explaining 95% of its variance within the first five components, we consider the results meaningful. In contrast, 
PLS exploits covariance between the predicted parameter (SIF in this case) and the predictor space (entity of first spectral 
derivatives of up-welling radiance in this case) by reducing the number of variables into correlated orthogonal scores. The PLS 
algorithm has been optimized to find and to obtain quantitative information, which contribute only small covariance to the spectra 
in hyperspectral near-infrared spectroscopy (Biancolillo and Marini, 2018; Jiang et al., 2020; Jin and Wang, 2019). PLS 
outperformed all other tested MLAs with and without PCA preprocessing in our study. The drawback of PCA, losing small 
covariance when compressing the data into principal components, was critical. We showed that PLS, by design, is superior in 
finding and exploiting small signals in mixture and, thus, is considered superior for the retrieval of SIF. 

 

Fig. A1. Cumulative proportion of variance of the total predictor space explained in the training data by the first 30 principal 
components, computed by PCA in the preprocessing of training the different MLAs. 



 

 

 

Fig. A2. Error of SIF prediction from six different MLA and linear regression with and without using PCA in the preprocessing 
with respect to SCOPE simulated SIF. RMSE was calculated separately for training and testing in 30 repetitions, with SIF-A or 
SIF-B as response variable, respectively. Whiskers show standard deviation. 

 

Fig. A3. Computing time in seconds from six different MLA and linear regression with and without using PCA in the 
preprocessing. Mean runtime was calculated separately for training with SIF-A or SIF-B as response variable, respectively. 
Whiskers show standard deviation. 

Appendix A2. SCOPE simulated data 
Following the approach of Cogliati et al. (2015b), SCOPE simulated SIF and reflectance spectra were used to assess the retrieval 
performance of the SFM, SVD-FL and SVD-O2 retrievals. The simulated spectra were used to compute up-welling radiance which 
resembles the optical configuration of the FloX. The range of SIF and reflectance is given for 212 different instances in Fig. A4. 



 

 

 

Fig. A4. Range of SCOPE simulated reflectance (a) and SIF (b) of the 212 different cases used for the composition of the 
combined training and testing datasets. 
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