
Journal of Parallel and Distributed Computing 167 (2022) 240–254

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Efficient and portable GEMM-based convolution operators for deep

neural network training on multicore processors

Sergio Barrachina a, Manuel F. Dolz a,∗, Pablo San Juan b, Enrique S. Quintana-Ortí c

a Depto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I, Castellón, Spain
b Depto. de Sistemas Informáticos y Computación, Universitat Politècnica de València, Spain
c Depto. de Informática de Sistemas y Computadores, Universitat Politècnica de València, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2021
Received in revised form 4 April 2022
Accepted 21 May 2022
Available online 30 May 2022

Keywords:
Convolutional neural networks
Distributed training
High performance
Python
Clusters of multicore processors

Convolutional Neural Networks (CNNs) play a crucial role in many image recognition and classification
tasks, recommender systems, brain-computer interfaces, etc. As a consequence, there is a notable interest
in developing high performance realizations of the convolution operators, which concentrate a significant
portion of the computational cost of this type of neural networks.
In a previous work, we introduced a portable, high performance convolution algorithm, based on the
BLIS realization of matrix multiplication, which eliminates most of the runtime and memory overheads
that impair the performance of the convolution operators appearing in the forward training pass, when
performed via explicit im2col transform. In this paper, we extend our ideas to the full training process
of CNNs on multicore processors, proposing new high performance strategies to tackle the convolution
operators that are present in the more complex backward pass of the training process, while maintaining
the portability of the realizations. In addition, we conduct a full integration of these algorithms into a
framework for distributed training of CNNs on clusters of computers, providing a complete experimental
evaluation of the actual benefits in terms of both performance and memory consumption. Compared
with baseline implementation, the use of the new convolution operators using pre-allocated memory can
accelerate the training by a factor of about 6%–25%, provided there is sufficient memory available. In
comparison, the operator variants that do not rely on persistent memory can save up to 70% of memory.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Machine learning via deep neural networks (DNNs) is being in-
creasingly adopted to tackle a large variety of applications beyond
the traditional cubbyhole of this technology in image recognition
and signal processing [15,5,22,28,35]. To improve their accuracy,
many of the DNN models designed for these applications need to
be trained over an extremely large amount of data [24]. For the
same reason, both the dimension (number of layers) and com-
plexity of DNNs are growing rapidly, and recent models involve
up to billions of parameters [13,27,6]. In consequence, DNN train-
ing is currently conducted using distributed algorithms on high
performance computing (HPC) facilities, with dozens or even hun-
dreds of nodes, sometimes enhanced with fast memory modules
(high bandwidth memory, or HBM) and high performance inter-
connection networks (e.g., Infiniband) [22]. At this initial point, we
recognize that DNN training can significantly be accelerated using

* Corresponding author.
E-mail address: dolzm@uji.es (M.F. Dolz).
https://doi.org/10.1016/j.jpdc.2022.05.009
0743-7315/© 2022 The Author(s). Published by Elsevier Inc. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
hardware accelerators, such as AMD/NVIDIA’s graphics processors
(GPUs) or Google’s tensor processing units (TPUs). However, we
also point out the interest of companies like Facebook to exploit
idle workload cycles in their HPC facilities, which leave a signifi-
cant number of (general-purpose) multicore CPUs to perform dis-
tributed model (re-)training during off-peak periods [15]. In this
paper, we address how to leverage efficiently these idle resources
to perform distributed training of CNNs.

Convolutional (deep) neural networks (CNNs) are a specialized
type of multilayer perceptrons with application in image recog-
nition, recommender systems, image classification, medical image
analysis, natural language processing, brain-computer interfaces,
and financial time series, among others. CNNs exhibit an implicit
regularization that takes advantage of the hierarchical structure of
the data in order to avoid overfitting. This property is achieved via
the application of convolution operators, which concentrate a signif-
icant fraction of the computational cost for CNNs.

A flexible, reliable, and, in many cases, high performance ap-
proach to realize a convolution operator consists in applying the
im2col transform [10] to the layer activation inputs, followed by
a general matrix multiplication (gemm) that takes advantage of
le under the CC BY-NC-ND license

https://doi.org/10.1016/j.jpdc.2022.05.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.05.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dolzm@uji.es
https://doi.org/10.1016/j.jpdc.2022.05.009
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254
optimized realizations of this computational kernel in high per-
formance linear algebra libraries (e.g., Intel MKL, OpenBLAS, Go-
toBLAS2, BLIS, ATLAS, etc.). Unfortunately, there are two major
problems with this approach: 1) a large memory workspace is re-
quired to host the intermediate matrix generated by the im2col

transform; and, especially for training, 2) the time to apply this
transform is not negligible for complex CNNs. In [26], we presented
a portable high performance convolution algorithm based on the
BLIS [33] realization of gemm, named convgemm, that practically
eliminates the memory and time cost of the im2col transform,
while maintaining the portability and performance of the under-
lying realization of the BLIS gemm for multicore processors.

In this paper, we extend our previous work in [26] to obtain an
efficient integration of the convolution operators in a framework
for distributed training of DNNs on clusters of computers equipped
with multicore processors. In particular, this work makes the fol-
lowing contributions:

• For the computation of the downstream gradients with respect
to the inputs, we adopt an approach similar to that in [26]
to integrate a col2im operator within the BLIS realization of
gemm, yielding a deconvgemm operator that avoids the cre-
ation of a large intermediate matrix, while maintaining the
portability and, to a certain extent, performance.

• For the computation of the downstream gradients with respect
to the filters, we leverage the existing convgemm algorithm via
a novel Reindex transform that re-arranges one of the input
matrices to avoid the explicit operation with the transposed of
that operand. As an alternative, we also address this calcula-
tion via a transposed variant of the convgemm operator.

• We complete the general discussion of the convgemm and
deconvgemm operators and associated transforms with a de-
tailed description using high level code that should allow to
reproduce our implementations. In addition, we discuss several
variations of the convolution operators that trade off memory
consumption for performance.

• We integrate the resulting convgemm/deconvgemm algorithms
and the Reindex transform into PyDTNN (Python Distributed
Training of Neural Networks), a deep learning framework that
offers a fair combination of functionality, computational per-
formance, and friendly interface, prioritizing flexibility to pro-
totype new research ideas.

• We perform a complete experimental evaluation showing the
performance advantages and memory savings over the base-
line approach that operates with large workspaces using the
explicit im2col and col2im transforms. This evaluation in-
cludes four popular DNNs (ResNet34, VGG16, DenseNet121,
and GoogLeNet) and two datasets (CIFAR-10 and ImageNet),
and targets a state-of-the-art cluster equipped with Intel Xeon
Gold 5120 processors with the nodes connected via an Infini-
band EDR network.

The rest of the paper is structured as follows. In Section 2, we
offer a short review of supervised iterative training for DNNs via
the stochastic gradient descent (SGD), paying special attention to
the convolution layers appearing in the forward-backward itera-
tion. In Section 3, we first discuss the BLIS kernel for gemm and
explain how this was leveraged in [26] to obtain an efficient re-
alization of the convolution operator in the forward pass of the
training process. In the same section, we next discuss how to ex-
tend that idea to the more complex backward propagation stage,
which constitutes one of the major contributions of this work. In
Section 4, we elaborate on the integration of the new operators
and transforms into PyDTNN, and assess the benefits of the result
via a complete experimental validation. In Section 5, we revisit
some related work on gemm-based operators and compare them
241
with those presented in this work. Finally, in Section 6, we close
the paper with a short summary and a collection of concluding
remarks.

2. Convolutional neural networks

2.1. Overview of supervised training

Consider a collection of input vectors, denoted by x1, x2, . . . , xs ∈
Rm , with associated output vectors y1, y2, . . . , ys ∈Rn (also known
as labels or ground truth). From the mathematical perspective, a
DNN defines a non-linear function F : Rm → Rn so that F(xr) =
ỹr , where we expect that ỹr ≈ yr , for r = 1, 2, . . . , s; see [30,18,23].

In supervised training, the DNN “learns” from the labeled data,
adjusting its model parameters (that is, weights and biases) to
diminish the difference (deviation or error) between the ground
truth and the output computed by the DNN as part of the for-
ward pass (FP); that is, reduces the “error” ‖yr − ỹr‖ (for all r).
This learning process is usually conducted via the SGD method (or
some related variant) [18], which is an iterative “back-propagation”
(BP) procedure that, given an output-label pair, computes the gra-
dients for the DNN parameters that minimize this difference. The
gradients are then used to update the DNN parameters, in prepa-
ration for the next FP-BP iteration, with a new input sample; see,
e.g. [18]. These two stages of BP are referred to in our work as
gradient computation (BP-GC) and weight updates (BP-WU).

The convergence of the training process is accelerated in prac-
tice by applying the FP-BP iteration in batches of t samples at a
time, for a moderate value t in the order of few hundreds. This
also helps to overcome the memory bandwidth constraints of cur-
rent computer architectures, by turning training into a compute-
bound process. On the negative side, augmenting the batch size
may affect the convergence and accuracy of the training process,
often requiring a complex and application-dependent tuning of the
learning rate, which needs to be dynamically adjusted as the train-
ing process evolves [36].

2.2. Convolutional neural networks

A DNN is composed of a number of “neurons” organized into
layers, with each neuron contributing to the output with a partic-
ular intermediate computation. In CNNs, the FP stage for a convo-
lution layer (conv) comprises a convolution operator that applies
a collection of filters F to an input I to produce the output O :

O = conv(F , I).

Let us consider that F consists of kn filters (or kernels) of dimen-
sion kh × kw × ci , where kh × kw specify the dimensions of the
(2D) filter and ci stands for the number of input channels.1 Fur-
thermore, assume the layer receives an input tensor I composed of
t samples of dimension hi × wi × ci each; and produces an output
tensor O with t outputs of size ho × wo × kn each. Then, each of
the kn individual filters in this layer combines a (sub)tensor of the
inputs, with the same dimension as the filter, to produce a single
scalar value (entry) in one of the kn outputs. By repeatedly apply-
ing the filter to the whole input in a sliding window manner (and
with a certain vertical/horizontal stride sv and sh), the convolu-
tion operator produces the complete entries of this single output;
see [30]. Assuming vertical/horizontal paddings given by pv and
ph , the output dimensions become ho = �(hi − kh + 2pv)/sv + 1�

1 Unless otherwise explicitly stated, in the following algorithms and data struc-
tures we adopt a generalization of the Fortran memory storage convention for mul-
tidimensional arrays (tensors) where the entries are stored in consecutive positions
in memory starting from the leftmost indices.

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254

Table 1
Dimensions of tensor operands for the convolution O = conv(F , I) without and with the im2col transform (top and bottom, respectively). In the
latter case, the convolution is performed as the gemm C = A · B , where C ≡ O , A ≡ F , and B = im2col(I). In this table, for simplicity we assume that
sv = sh = 1 and pv = ph = 0.

Stage O F I

FP ho × wo × kn × t kh × kw × ci × kn hi × wi × ci × t
BP (∂ O/∂ I) hi × wi × ci × t kh × kw × ci × kn ho × wo × kn × t
BP (∂ O/∂ F) kh × kw × ci × kn ho × wo × kn × t hi × wi × ci × t

Stage C A B

FP kn × (ho · wo · t) kn × (kh · kw · ci) (kh · kw · ci) × (ho · wo · t)
BP (∂ O/∂ I) (kh · kw · ci) × (ho · wo · t) kn × (kh · kw · ci) kn × (ho · wo · t)
BP (∂ O/∂ F) kn × (kh · kw · ci) kn × (ho · wo · t) (kh · kw · ci) × (ho · wo · t)
L1: for it = 0, . . . , t − 1
L2: for ic = 0, . . . , ci − 1
L3: for iw = 0, . . . , wo − 1
L4: for ih = 0, . . . ,ho − 1

c = ih + iw · hi + it · wi · hi

L5: for ikw = 0, . . . ,kw − 1
L6: for ikh = 0, . . . ,kh − 1

r = ikh + ikw · kh + ic · kw · kh

B[r][c] = I[ih · s + ikh][iw · s + ikw][ic][it]

Fig. 1. Algorithm for the im2col transform. The actual implementation eliminates
some of the loop invariants inside Loops L4 and L6 to reduce the indexing arith-
metic overhead.

and wo = �(wi −kw +2ph)/sh +1�. The top part of Table 1 displays
the dimensions of the tensor operands involved in a convolution
operator in the three stages of DNN training: FP, BP-GC and BP-
WU; see [7] for details.

2.3. Convolution operators via gemm: the im2col in FP

In modern computer architectures, the performance of a direct
realization of the convolution operator is constrained by the mem-
ory bandwidth, delivering only a fraction of the processor peak
floating-point throughput. In practice, higher performance can be
attained via an indirect (or gemm-based) approach that casts this
operator in terms of a matrix multiplication, as explained next.
Concretely, the im2col transform [10], applied to the convolution
operator appearing in the FP stage, transforms the input tensor I
into an augmented matrix B so that the output of the applica-
tion of the convolution O = conv(F , I) can be obtained from the
gemm:

C = A · B = A · im2col(I),

where C ≡ O → kn × (ho · wo · t) is the output tensor viewed as an
m × n matrix, with m = kn and n = ho · wo · t; A ≡ F → kn × (kh ·
kw · ci) = m × k contains the filters; and B → (kh · kw · ci) × (ho ·
wo · t) = k × n results from applying the im2col transform to the
input tensor I according to the filter dimensions and strides (kh ,
kw , sv , sh). Fig. 1 shows the algorithmic realization of the im2col

transform.
Fig. 2 depicts graphically the transformation of the convolution

operator into a gemm realized via the im2col transform. The use
of the “reshape” operator A ≡ Reshape(F) there re-arranges the
input 4D filter tensor F as the 2D matrix A. In addition, the re-
shape followed by a transpose O ≡ Reshape(C)T (1,2,0,3) , where the
superindex (1, 2, 0, 3) specifies the permutation applied to the di-
mensions of Reshape(C), re-organizes the resulting C matrix back
into the 4D output tensor O .

In general, the FP stage of a convolution layer using the im2col

transform can be represented as the computational graph in (the
blue parts of) Fig. 3. The nodes in that graph represent the kernels
(gemm and element-wise addition), while the edges are tagged
242
with the corresponding transforms (im2col, Reshape, and trans-
pose). We also include the model biases (b), as a vector of length
kn .

2.4. The col2im/im2col in BP

The operations in BP for a convolution layer include the com-
putation of gradients of the output with respect to the inputs
(∂ O/∂ I), filters (∂ O/∂ F), and biases (∂ O/∂b), as explained next:

• To compute the downstream gradient with respect to the in-
puts (∂ O/∂ I), it is necessary to “reverse” the operations in
the FP stage using the upstream gradient (∂ O/∂ O), as shown
in (red in) the top left branch of the computational graph in
Fig. 3. This computation can be realized using a gemm involv-
ing AT and ∂ O/∂C , followed by a col2im operator applied to
the result:

∂ O/∂ I = col2im(AT · ∂ O/∂C),

where ∂ O/∂ I → (hi × wi × ci × t) is the tensor resulting
from the application of col2im (considering the parameters
kh, kw , sv , sh) to the result of the matrix multiplication of
the transposed filters AT ≡ F T → (kh · kw · ci) × kn with the
upstream gradient ∂ O/∂C → kn × (ho · wo · t). Basically, the
col2im transform, given in Fig. 4, reverses the effect of im2col,
except for the fact that col2im accumulates several partial re-
sults on the same 4D output coordinates.

• The downstream gradient with respect to the filters (∂ O/∂ I)
is computed via the gemm:

∂ O/∂ F = Reshape(∂ O/∂C · BT),

where ∂ O/∂ F → (kh × kw × ci × kn) is the 4D reshaped ten-
sor resulting from the output 2D tensor from the gemm on
the upstream gradient ∂ O/∂C → kn × (ho · wo · t), and BT ≡
im2col(I)T → (ho · wo · t) × (kh · kw · ci); see middle left graph
branch in (red in) Fig. 3. Here B is the same augmented matrix
that resulted from applying the im2col transform with respect
to the inputs in the FP stage. In consequence, provided all the
augmented matrices assembled in the convolution layers (one
per layer) during FP were stored, they can be re-used at this
point by operating on their transpose. However, this requires a
large amount of memory, which can easily exceed the memory
capacity of a computer node for CNNs with many layers.

• Finally, the downstream gradient with respect to the biases
(∂ O/∂b) is straight-forward to compute by summing the rows
of the (2D tensor) transformed upstream gradient ∂ O/∂C (see
bottom left graph branch in red in Fig. 3), yielding a bias up-
date vector of length kn .

3. Efficient realization of convolution operators via BLIS GEMM

The previous section exposes that the gemm is a key kernel for
the efficient realization of the convolution. In this section, we re-

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254

Fig. 2. Convolution operator via the im2col transform for FP.

Fig. 3. Computational graph of the convolution layer using the im2col transform. From left to right, the flow denoted in blue corresponds to the FP stage. The inputs are
the activations from the previous layer (I), the filters (F), and the biases (b). From right to left, the flow in red specifies the operations for the BP stage that distribute the
upstream gradient (∂ O/∂ O) back to the inputs (∂ O/∂ I), filters (∂ O/∂ F), and biases (∂ O/∂b).

L1: for it = 0, . . . , t − 1
L2: for ic = 0, . . . , ci − 1
L3: for iw = 0, . . . , wo − 1
L4: for ih = 0, . . . ,ho − 1

c = ih + iw · hi + it · wi · hi

L5: for ikw = 0, . . . ,kw − 1
L6: for ikh = 0, . . . , wh − 1

r = ikh + ikw · kh + ic · kw · kh

∂ O/∂ I[ih · s + ikh][iw · s + ikw][ic][it] += (AT · ∂ O/∂C)[r][c]

Fig. 4. Algorithm for the col2im transform. The actual implementation eliminates some of the loop invariants inside Loops L4 and L6 to reduce the indexing arithmetic
overhead; for simplicity, this is not shown in the algorithm.

L1: for jc = 0, . . . ,n − 1 in steps of nc

L2: for pc = 0, . . . ,k − 1 in steps of kc

B(pc : pc + kc − 1, jc : jc + nc − 1) → Bc // Pack into Bc

L3: for ic = 0, . . . ,m − 1 in steps of mc

A(ic : ic + mc − 1, pc : pc + kc − 1) → Ac // Pack into Ac

C(ic : ic + mc − 1, jc : jc + nc − 1) += Ac · Bc // Macro-kernel

Fig. 5. High performance implementation of gemm in BLIS. Ac , Bc denote buffers that are involved in data copies. For simplicity, we consider that m, n, k are integer multiples
of mc , nc , kc , respectively.
view in some detail the open implementation of this kernel in the
BLIS framework, as a preliminary step to illustrate how to inte-
grate the convolution operators appearing in the FP-BP iteration
inside the BLIS gemm.

3.1. BLIS: open and portable kernels for dense linear algebra

Consider the gemm operation C += A · B , where C → m × n,
A → m × k, and B → k × n. BLIS implements this kernel (as well
as any variant with transposed A and/or B) as three nested loops
around a macro-kernel plus two packing routines; see Fig. 5. BLIS
decomposes the macro-kernel into two-three additional loops plus
a micro-kernel; see [26] for details.
243
There are a few key points in BLIS gemm that are worthy of
being highlighted:

• The loop ordering, together with the packing routines and a
proper selection of the loop strides nc , kc , mc that matches the
processor cache configuration, orchestrates a regular pattern of
data transfers through the memory hierarchy [33,21].

• All routines are encoded in plain C except for a small com-
ponent inside the macro-kernel, known as the micro-kernel,
which is vectorized using either architecture-dependent as-
sembly instructions or vector intrinsics [33]. This enhances
portability as porting all the BLIS library to a particular proces-
sor architecture only needs to develop an efficient realization
of that component for the target processor, and to adjust the

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254
values for nc , kc , and mc , to the processor cache/memory con-
figuration.

• The loops of the gemm kernel to be parallelized can be se-
lected at execution time. The multi-threaded parallelization of
the BLIS gemm kernel has been previously analyzed for con-
ventional multicore processors [34], modern many-threaded
architectures [29], and low-power (asymmetric) ARM-based
processors in [8].

• The purpose of the packing routines is to arrange the elements
of A and B into Ac and Bc , respectively, so that the elements
of these buffers are accessed with unit stride when executing
the micro-kernel [17]. In practice, provided m is large enough,
the cost of the packing for Bc is negligible compared with the
number of flops performed inside Loop L3. (A similar reason-
ing applies to the overhead due to the packing for Ac .)

As we argue in the following, the packing routines are particu-
larly important for our implementation of the convolution opera-
tor.

3.2. Integration of the im2col transform in FP inside BLIS gemm

In [26], we proposed to integrate the im2col transform into the
packing of B onto the buffer Bc that occurs within BLIS.2 For this
purpose, during the execution of the gemm kernel, the buffer Bc

is directly constructed from the contents of the input tensor I , in-
stead of using the augmented matrix B , which is never explicitly
assembled. In the following, we will refer to our solution as an indirect
convolution via the convgemm operator:

O = convgemm(F , I).

This solution presents three key advantages:

• Reduced workspace: We avoid the use of the large workspace
associated with the explicit assembly of the large augmented
matrix B → (kh · kw · ci) × (ho · wo · t), as the only “addition-
al” storage that is needed is the relatively small buffer for Bc

→ kc × nc , which in any case was already necessary in the
gemm kernel. (In case the augmented matrices are explicitly
assembled and preserved for the BP stage, the requirements
grow linearly with the number of convolution layers.) This is
especially important for DNN inference, which only involves
the FP stage and is often performed in memory-constrained
devices, but not so much for DNN training.

• High performance: As argued earlier, the memory access cost
associated with the packing of Bc is well amortized with
the flops that are performed in the innermost loops of the
BLIS gemm. Therefore, the overhead of implicitly applying the
im2col transform can be expected to be low.

• Portability: The approach has the additional advantage that
the only change that is needed in the BLIS gemm is to re-
place the original packing routine for Bc with a procedure
that reads (and packs) the second input operand for the ma-
trix multiplication directly from the input tensor. There is no
need to modify the routine that performs the packing onto
Ac . More importantly, there is no need to change the micro-
kernel, which enhances the portability of our solution: the
only part that is modified is encoded in C and depends on
a small number of architecture-dependent parameters that are
adjusted during the process of porting BLIS. The parameters
that define the filter dimensions are “embedded” within the

2 The BLIS-based convgemm operators are available at https://gitlab .com /
comtacts /convgemm, under a GNU General Public License v3.0.
244
L1: for jr = 0, . . . ,nc − 1 in steps of nr

i = 0
L2: for ps = 0, . . . ,kc − 1

ic = (pc + ps)/(kh · kw)

ikw = ((pc + ps) mod (kh · kw))/kh

ikh = ((pc + ps) mod (kh · kw)) mod kh

L3: for js = 0, . . . ,nr − 1
it = (jc + jr + js)/(ho · wo)

iw = ((jc + jr + js) mod (ho · wo))/ho

ih = ((jc + jr + js) mod (ho · wo)) mod ho

Bc [i][jr] = I[ikh + ih · s][ikw + iw · s][ic][it]
i = i + 1

Fig. 6. Algorithm for packing I into Bc while simultaneously applying the im2col

transform. The indices (pc, jc) correspond to the coordinates of the top-left entry
for the block of matrix B = im2col(I) that is packed; see Fig. 5. as well as paral-
lelizes the outermost loop using an OpenMP parallel for construct.

dimensions of the resulting matrix and, therefore, require no
specific optimization.

The algorithm in Fig. 6 illustrates how to pack the correspond-
ing entries of the input tensor I into the buffer Bc during the
execution of the BLIS gemm kernel in Fig. 5, while simultaneously
performing the im2col transform. The algorithm packs the kc × nc

block of matrix B starting at row pc and column jc into the buffer
Bc , reading the corresponding entries directly from the input ten-
sor I .

3.3. Integration of the col2im transform in BP inside BLIS gemm

The downstream gradient with respect to the inputs, ∂ O/∂ I ,
can be obtained by applying the col2im transform to the result of
multiplying AT with ∂ O/∂C :

∂ O/∂ I = col2im(AT · ∂ O/∂C).

Therefore, if explicitly built, the result of this matrix multiplication,
C ′ = AT · ∂ O/∂C → (kh · kw · ci) × (ho · wo · t), would consume the
same amount of memory as the augmented matrix B produced by
the im2col transform.

To tackle this, we have designed a deconvgemm operator that
integrates the col2im transform into the BLIS realization of gemm

while accumulating the results in the actual output matrix:

∂ O/∂ I = deconvgemm(AT , ∂ O/∂C),

without explicitly building the intermediate matrix C ′ .
Unfortunately, for the col2im case we cannot leverage the strat-

egy proposed for the convgemm operator, which integrated the
transform inside one of the existing packing routines. The reason
is that the realization of gemm in BLIS writes its output matrix
directly into memory from the microkernel, without any pack-
ing/unpacking of the data; see subsection 3.1. Therefore, to perform
the col2im transform inside the BLIS gemm, we had to modify this
kernel to operate with an actual buffer Cc , of size m × nc , as well
as develop an unpacking procedure that stores the data from Cc

onto the output 4D tensor ∂ O/∂ I while simultaneously perform-
ing the col2im transform during this process. This unpacking takes
place at the end of each iteration of loop L1 in Fig. 5, once the
corresponding m × nc panel of the gemm output matrix has been
computed. The algorithm in Fig. 7 illustrates the unpacking proce-
dure.

The main advantage of the deconvgemm operator lies in the
memory savings that result from avoiding the explicit creation of
the intermediate matrix C ′ . Concretely, the memory needed to per-
form this operation decreases from (kh ·kw · ci) × (ho · wo · t), when
using gemm followed by col2im, to the workspace Cc → m × nc =

https://gitlab.com/comtacts/convgemm
https://gitlab.com/comtacts/convgemm

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254
L1: for r = 0, . . . ,nc − 1
i = 0
it = (jc + r)/(ho · wo)

iw = ((jc + r) mod (ho · wo))/ho

ih = ((jc + r) mod (ho · wo)) mod ho

L2: for s = 0, . . . ,m − 1
ic = s/(kh · kw)

ikw = (s mod (kh · kw))/kh

ikh = (s mod (kh · kw)) mod kh

∂ O/∂ I[ikh + ih · s][ikw + iw · s][ic][it]+ = Cc[i][r]
i = i + 1

Fig. 7. Algorithm for unpacking Cc into ∂ O/∂ I while simultaneously applying the
col2im transform. The index jc corresponds to the first column of the block of
matrix C that is unpacked; see Fig. 5.

(kh · kw · ci) × nc for deconvgemm. In addition, the unpacking al-
gorithm is encoded in C, depends only on the cache parameter nc ,
and does not affect the coding of the micro-kernel, having thus no
impact on the portability of the solution.

Regarding performance, the unpacking can introduce some
overhead, depending on the convolution parameters, as this mech-
anism may evict some data for Ac and/or Bc from the cache
hierarchy. A second source of performance inefficiency appears
for the deconvgemm operator because the unpacking of Cc into
∂ O/∂ I cannot be parallelized due to data dependencies between
iterations, as different positions of Cc may need to be accumulated
into the same entries of ∂ O/∂ I .3 In summary, the utilization of the
deconvgemm operator poses a trade-off between performance and
memory consumption.

3.4. Integration of the im2col transform in BP inside BLIS gemm

The computation of the downstream gradient with respect to
the filters, ∂ O/∂ F , requires a gemm where the second matrix
operand corresponds to the transposed result of the im2col trans-
form on the input tensor I , that is,

∂ O/∂ F = Reshape(∂ O/∂C · BT) = Reshape(∂ O/∂C ·im2col(I)T).

Although this operation resembles that performed by the
convgemm operator in FP, it differs in the fact that the result of
im2col transform appears transposed in the gemm operation. In
the next two subsections, we describe two options or alternatives
to deal with this.

3.4.1. Re-indexing
To tackle the aforementioned variant of the convgemm oper-

ator, we propose a novel “re-indexing” algorithm (Reindex) that
transforms the input 4D-tensor I into I ′ so that

im2col(kh,kw ,sv ,sh)(I)T ≡ im2col(kh=ho,kw=wo,sv=ho,sh=wo)(I ′).

Concretely, the Reindex transform re-orders the dimensions hi

and wi of I (that is, the rows and columns of all image chan-
nels in the batch) taking into account sv , sh, ho , and wo to obtain
I ′; see the algorithm in Fig. 8. Fig. 9 illustrates the details of this
transform using the re-indexing of an example image I of size
hi = wi = 7 padded with pv = ph = 1, which has to be convolved
with a filter of size kh = kw = 3 using a stride of sv = sh = 2 in

3 The overhead due to the unpacking operation depends on the convolution pa-
rameters, which are different depending on the layer and model. For many CNNs,
these parameters vary significantly, and so are the case for the overheads. To quan-
tify this overhead, we have measured the execution time of the unpack operation
on the ResNet34 with Imagenet on 1 node with 1, 4, 8, and 16 threads. These over-
heads were 3.88%, 4.04%, 4.81%, and 5.66% of the total time, respectively.
245
L1: for it = 0, . . . , t − 1
L2: for ic = 0, . . . , ci − 1
L3: for ih = 0, . . . ,h′

o − 1
i′h = ih/ho + (ih mod ho) · sv

L4: for iw = 0, . . . , w ′
o − 1

i′w = iw/wo + (iw mod wo) · sh

I ′[it][ic][ih][iw] = I[it][ic][i′h][i′w]

Fig. 8. Algorithm for the Reindex of I to obtain I ′ according to sv , sh , ho , and wo

in a conv layer. This transform results into a memory-bound operation which can
be accelerated using an OpenMP parallel for construct in loop L1, provided
the batch size is large enough. This algorithm uses the C convention for multidi-
mensional arrays: the entries of the tensors are stored in consecutive positions in
memory starting from the rightmost indices.

the FP stage. As illustrated by the colored cells, the coordinates in
I that are two units apart (sv = sh = 2), are unraveled (and re-
peated) in I ′ such that there appear 3 × 3 clusters of size 4 × 4. In
consequence, this matches the number of clusters with the filter
size kw = kw = 3 and the cluster size with the output dimen-
sions ho = wo = 4. Furthermore, this allows us to leverage our
convgemm operator using ∂ O/∂C as a filter that is convolved on
the strides sv = ho = 4 and sh = wo = 4 with the transformed I ′ to
obtain ∂ O/∂ F . In sum, the Reindex transform combined with the
convgemm operator becomes:

∂ O/∂ F

= Reshape(convgemm(sv=ho,sh=wo)(∂ O/∂C, I ′))
= Reshape(convgemm(sv=ho,sh=wo)(∂ O/∂C,Reindex(I))).

It is important to note that, even though both the re-indexed
tensor I ′ and the augmented matrix BT ≡ im2col(I)T require a
workspace of size (ho · wo · t) × (kh · kw · ci), the re-index al-
gorithm has a more favorable memory access pattern than the
im2col transform, which helps in reducing the cost of calculat-
ing ∂ O/∂ F . Also, this solution inherits the high performance and
portability advantages derived from the use of the convgemm op-
erator.

At this point, it is also worth reminding that the augmented
matrices appearing in the convolution layers of the FP stage are
never assembled thanks to the integration of the im2col transform
within the BLIS realization of gemm. In contrast, in this first option
we assemble explicitly the augmented tensor I ′ involved in the BP
stage. Unlike the scenario in FP though, this matrix does not partic-
ipate in subsequent layers during the BP stage and, therefore, the
corresponding workspace can be re-utilized (for subsequent lay-
ers) after the gemm operation. In practice, a single workspace of
this size is affordable for most current computer nodes, especially
in a training scenario using a large HPC facility.

3.4.2. Transpose operand in gemm

As an alternative option to carry out the computation of the
downstream gradient with respect to the filters, ∂ O/∂ F , we im-
plemented a transposed version of the convgemm operator such
that:

∂ O/∂ F = Reshape(∂ O/∂C · im2col(I)T)

= convgemm_trans(∂ O/∂C, I).

To achieve this, we developed a packing routine for the gemm

input matrix that packs im2col(I)T directly into Bc , reading the
corresponding entries directly without ever assembling (or trans-
forming) I explicitly. Fig. 10 shows a simplified pseudocode of the
packing routine. The algorithm packs the corresponding nc × kc
block of matrix B starting at row jc and column pc .

This alternative approach based on a “transposed” convgemm

operator maintains all the advantages of the convgemm operator

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254

Fig. 9. Example of re-index of I to obtain I ′ assuming a conv layer with hi = wi = 7, ho = wo = 4, kh = kw = 3, pv = ph = 1 and sv = sh = 2. In this example, I is padded
with pv = ph = 1 (see border cells) prior applying Reindex (as these padding values were used in the FP).
L1: for jr = 0, . . . ,nc − 1 in steps of nr

i = 0
L2: for ps = 0, . . . ,kc − 1

it = (pc + ps)/(ho · wo)

iw = ((pc + ps) mod (ho · wo))/ho

ih = ((pc + ps) mod (ho · wo)) mod ho

L3: for js = 0, . . . ,nr − 1
ic = (jc + jr + js)/(kh · kw)

ikw = ((jc + jr + js) mod (kh · kw))/kh

ikh = ((jc + jr + js) mod (kh · kw)) mod kh

Bc [i][jr] = I[ikh + ih · s][ikw + iw · s][ic][it]
i = i + 1

Fig. 10. Algorithm for packing I into Bc while simultaneously applying the im2col

transform and transposing the input matrix I . The indices (jc, pc) correspond to
the coordinates of the top-left entry for the block of matrix B = im2col(I)T that
is packed; see Fig. 5. The actual realization of this algorithm eliminates some loop
invariants and integer arithmetic to reduce the overhead, as well as parallelizes the
outermost loop using an OpenMP parallel for construct.

described in Section 3.2: reduced workspace, high performance,
and portability.

4. Integration with PyDTNN and experimental validation

In this section, we describe the integration of our new
convgemm-based realizations of the convolution operators in Py-
DTNN, a framework for distributed training of DNNs on clusters of
computers. In addition, we demonstrate the benefits of the pro-
posed approach, in comparison with one based on the explicit
im2col/col2im transforms, for the distributed training of repre-
sentative CNNs and datasets.

4.1. Overview of PyDTNN

PyDTNN4 is a lightweight framework for distributed training
of DNNs on clusters of computers that has been designed as a
research-oriented tool with a low learning curve. PyDTNN presents
the following appealing properties:

• Flexible: PyDTNN considers extensibility (and, to a certain
extent, simplicity) as a first-class citizen to facilitate that
users can customize the framework to prototype their research
ideas.

• Ample functionality: PyDTNN covers DL training (and infer-
ence) for a significant part of the most common DNN models:
multi-layer perceptrons (MLPs), convolutional neural networks
(CNNs), residual networks (ResNets), and transformers for nat-
ural language processing. In practice, PyDTNN provides train-
ing and validation accuracies on par with those attained by
Google’s TensorFlow [2].

4 The PyDTNN framework is available at https://github .com /hpca -uji /PyDTNN/,
under a GNU General Public License v3.0.
246
• High performance: PyDTNN exploits data parallelism (DP) [4],
relying on specialized message-passing libraries for efficient
communication, and kernels from high performance multi-
threaded libraries for the major computational operations
in CPU and GPUs. In particular, when the target cluster is
equipped with NVIDIA’s GPUs, PyDTNN leverages cuDNN,
cuBLAS, and NCCL to deliver parallel performance that is
competitive with that of TensorFlow.

• User-amiable interface: PyDTNN is developed in Python and
offers an interface akin to that exposed by popular DL pack-
ages such as Keras.

While we recognize that PyDTNN lacks the level of maturity
and the complete functionality of production-level frameworks,
such as TensorFlow or PyTorch, we honestly believe that PyDTNN
offers a more accessible and easier-to-customize solution, which
allows us to integrate and validate the benefits of our proposed
approach in the distributed training of some state-of-the-art CNNs.
In any case, the proposed algorithms are orthogonal to the training
framework and, as part of future work, we plan to integrate them
in more sophisticated frameworks.

In a previous work [2], we demonstrated that PyDTNN delivers
training/validation accuracy as well as convergence rates similar to
those attained by TensorFlow. The techniques, operators, and trans-
forms introduced in this paper do not modify the arithmetic op-
erations performed by the convolution operators when performed
via the explicit im2col/col2im transforms, only the order in which
they are carried out. The small differences in the rounding errors
of individual convolutions, due to this distinct order, may render
slight variations in the training/validation accuracy and the conver-
gence rate for an iterative process based on SGD (especially when
combined with non-linear functions such as ReLU). We note, how-
ever, that these differences do not imply that the accuracy/conver-
gence metrics offer necessarily worse (nor better) results.

4.2. Distributed training of DNNs

Training a DNN is a costly process that is usually performed
on distributed high performance platforms. In practice, this tun-
ing is often carried out on a cluster of computer nodes, each
equipped with one or more multi-core processors (in some cases
enhanced with graphics accelerators). Most distributed DNN train-
ing frameworks exploit DP, distributing the input data among the
cluster nodes across the batch dimension, while replicating the
DNN model in all nodes [4]. The DP scheme exhibits linear scal-
ability with the number of nodes provided 1) the batch size can
be increased linearly with the number of nodes; and 2) the full
model fits in the node memory.

Distributed DP training requires a few types of (message-
passing) collective communications [9,32]: First, the initial model
has to be replicated in all nodes (Broadcast) before the train-
ing commences. Second, each FP-BP iteration requires a batch of

https://github.com/hpca-uji/PyDTNN/

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254
Fig. 11. Dependencies in the DP distributed training scheme. The colored boxes cor-
respond to the computational stages: FP, (BP-)GC, and (BP-)WU; the circles denote
the AR exchanges; and the arrows indicate data dependencies. The dashed lines of
different colors identify groups of operations that can be overlapped.

samples to be distributed (Scatter) among the nodes. Third, dur-
ing the BP stage, all nodes need to perform a global reduction
(Allreduce or AR) of their local weights/biases onto the parameters
that define the DNN model [4,7]. Given the large number of FP-BP
iterations that are required to train a DNN model and the pos-
sibility of overlapping the distribution of the future batches with
the FP-BP processing of the current one, the major communication
bottleneck lies in the AR operation.

Fig. 11 illustrates the data dependencies and AR exchanges ap-
pearing in the DP scheme. Note the strict dependencies between
adjacent layers of the FP and BP-GC stages, but the possibility of
overlapping the latter with the reductions and the BP-WU compu-
tations.

4.3. Integration in PyDTNN

The efficient integration in PyDTNN of the convgemm operator
for the FP (and BP) stage(s) required the implementation of a new
module for interfacing the convgemm BLIS-based shared-library,
developed in C, from Python using the ctypes library. This module
allows passing Numpy arrays directly to the convgemm routine so
that it can be seamlessly invoked from the methods for the FP (and
BP) stage(s) (for conv layers) in PyDTNN. The versions of PyDTNN
that integrate convgemm also parallelize the pad and transpose
methods in Numpy by means of Cython OpenMP-parallel routines,
which helps to accelerate the execution. The integration of the
convgemm operator in the BP stage leverages the same module
used for FP with extended support for the Reindex + convgemm

approach, in addition to the convgemm_trans and deconvgemm

operators.
We note that PyDTNN uses a row-major (or C style) memory

layout for multidimensional arrays while the convgemm library
follows the BLAS convention for column-major (or Fortran style)
memory layout. Due to this, the integration also includes the nec-
essary memory layout rearrangements to allow full compatibility
between PyDTNN and the convgemm library.

4.4. Experimental validation

4.4.1. Setup
The experimental evaluation in this section has been carried

out on a cluster platform consisting of 8 nodes, each equipped
with two Intel Xeon Gold 5120 processors (14 cores with a nomi-
nal frequency of 2.20 GHz), and 190 GiB DDR4 non-uniform mem-
ory access (NUMA) RAM, giving each processor 95 GiB of “local”
247
memory. The nodes are interconnected via an Infiniband EDR net-
work with a bandwidth of 100 Gbps. Regarding the software layer,
we use Intel Python 3.7.4 to run PyDTNN configured to use Numpy
on top of BLIS (version 0.8.0) along with the novel convgemm and
deconvgemm routines for the Convolution proposed in this paper.
The communication layer used to exploit DP is provided by In-
tel MPI (version 2019) configured to use the Infiniband network.
For the experiments, we consider two configurations: 1) execution
on a single node, exploiting multicore parallelism using multiple
threads; and 2) execution using several cluster nodes with a sin-
gle MPI rank and 14 threads per node. The reason to include the
multi-node configurations is that varying the number of nodes
modifies the relationship between computational and communica-
tion costs, which may impact the benefits of our new Convolution
operators.

Training a DNN is a costly iterative procedure that often re-
quires several epochs, each involving enough “batched” FP-BP
passes to process the complete training dataset. To reduce the cost
of our tests, we trained the DNN models for a fixed number of
60 FP–BP iterations, and computed the training throughput as the
number of samples per batch, multiplied by 60, and divided by
the time to perform the test. The fact that we perform the train-
ing for several batches, using the same FP-BP process per batch,
which does not depend on the numerical values of the batch sam-
ples, has an averaging effect on the measurements. In general, for
any number of nodes and threads, we observed that the through-
put increased from the beginning till it stabilizes after a few sec-
onds (iterations) due to the impact of initialization overhead. To
avoid this effect, we measure the first 60 iterations to render this
overhead negligible. Raising the batch size can be expected to in-
crease linearly the execution time and memory requirements. At
the same time, augmenting the batch size affects the convergence
of training, often asking for an application-dependent tuning of the
learning rate, which needs to be dynamically varied as the training
process evolves. This is a complex technique that requires spe-
cial knowledge and care, but it is out-of-scope for our work [36].
In general, we set the batch size to t = 64 per cluster node. We
consider this is a reasonable value that offers a good balance be-
tween multi-threaded performance and small numerical distortion
of the convergence rate. Increasing the batch size in general raises
the cost of the explicit im2col/col2im transforms, and therefore
should augment the advantage of our convgemm/deconvgemm al-
ternative. Also, in those cases where the memory requirements of
the baseline approach exceeded the node capacity, affecting per-
formance (due to disk swapping), the batch size was accordingly
decreased. Concretely, for Resnet34 with ImageNet, the batch size
was set to 24, and for DenseNet121 and GoogLeNet with ImageNet,
to 16.

To analyze the parallel scalability of the proposed solutions
with respect to the naive im2col approach, we train four rep-
resentative CNN models (VGG16, ResNet34, DenseNet121, and
GoogLeNet) on two datasets (CIFAR-10 and ImageNet), using the
SGD optimizer and a learning rate of 0.01 for VGG16, DenseNet121,
and GoogLeNet, and 0.1 for ResNet34. VGG16 is a CNN that fea-
tures a 16-layer network architecture where the convolutional
layer depth (number of filters) is gradually increased on a set of
small (3 × 3) filters [28]. ResNet34 is a 34-layer CNN belonging to
the residual-based network family proposed by He et al., which
introduces residual layer functions intending to ease the training
of very deep CNNs [16]. Similarly, DenseNet121 is a 121-layer CNN
that uses direct connections between any two layers with the same
feature-map size, yielding to consistent improvements in accuracy
with growing number of parameters, without signs of performance
degradation or overfitting [19]. Finally, the GoogLeNet model is a
22-layer CNN that is carefully crafted to allow increasing the depth
and width of the network while keeping the computational bud-

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254
Table 2
PyDTNN variants for the computation of O in the FP stage, and ∂ O/∂ F , ∂ O/∂ I in
the BP stage of a conv layer relying on the Reindex, convgemm/convgemm_trans,
and deconvgemm operators.

Variant FP (O) BP (∂ O/∂ F) BP (∂ O/∂ I)

base im2col + gemm im2col + transposed gemm

gemm + col2im
rdx

convgemm

Reindex + convgemm

cgt

convgemm_transcgt+pm

cgt+dg deconvgemm

get constant [31]. The input conv layer in these CNNs is adapted
to operate on two different datasets: i) the CIFAR-10 dataset, con-
sisting of 60,000 32 × 32 color images in 10 classes with 50,000
and 10,000 training and test images, respectively [20]; and ii) Im-
ageNet, a dataset comprised of 1.4 M of human-annotated color
photographs grouped into 1,000 classes and designed for develop-
ing computer vision algorithms [25]. In the second case, the input
image size for all the networks has been downscaled to 224 × 224
pixels.

4.4.2. Experiments
In this subsection, we assess the performance of the train-

ing process using the baseline approach that explicitly builds all
augmented matrices via im2col and col2im (referred to hereafter
as base) versus four new variants that rely on the convgemm/
deconvgemm operators. All these variants leverage the convgemm

routine to compute O in the FP stage. Furthermore, except for the
last variant, they compute ∂ O/∂ I by invoking the BLIS gemm fol-
lowed by a call to a multi-threaded routine for col2im written
in Cython and parallelized with OpenMP. They differ as described
next:

RDX This implementation leverages the Reindex transform to
calculate ∂ O/∂ F in the BP stage; see subsection 3.4.1.

CGT This implementation replaces the Reindex transform
with an operator based on convgemm_trans; see sub-
section 3.4.2.

CGT+PM This variant uses the same routines as cgt in addition
to persistent memory for storing the intermediate ma-
trices required to interface PyDTNN with the external
convgemm routines. This implementation aims at reduc-
ing the overhead for memory allocation/release time that
are intrinsically incurred by the Python runtime (garbage
collector), at the expense of yielding a higher memory
footprint.

CGT+DG This variant leverages the same routines as cgt except
that it replaces the indirect gemm + col2im approach to
compute ∂ O/∂ I by the BLIS-based deconvgemm routine.
This alternative prevents the allocation of the augmented
matrix that has to be passed to col2im, though it might
impact performance due to the deconvgemm packing in-
efficiencies discussed in subsection 3.3.

Table 2 identifies the specific procedure to calculate O , ∂ O/∂ F ,
∂ O/∂ I for base and each of the four variants.

In Figs. 12 and 13, we report the performance of the train-
ing procedure using the previous realizations on a single node
and on a cluster, respectively, and measured in samples/s for the
selected CNNs and the two datasets. The number at the top of
each bar in the performance plots specifies the speedup of the
new convgemm-based variants with respect to the base reference.
Furthermore, the horizontal line and the number above the base

bar respectively represent the peak throughput and speedup that
could be achieved if the time costs related to the im2col transform
were negligible. Both im2col followed by gemm and convgemm

perform the same number of floating-point operations. Given that
248
gemm is a highly optimized operation, its execution without the
overhead imposed by the im2col transform offers a practical theo-
retical bound for what we could expect to achieve with convgemm

if we can totally hide the overhead of the intrinsic re-organization
of the data during the implicit (blocked) im2col that is done dur-
ing packing.

Focusing on the performance results on a single node (see
Fig. 12), we note that the rdx, cgt, and cgt+pm variants outper-
form, in most cases, the base approach. For ResNet34 on Ima-
genet with 14 threads, and for GoogLeNet on Imagenet with 8 and
14 threads, there is not enough work for all the threads, which
negatively affects the performance of the base approach. Thus, to
keep the comparison fair, we do not report the gains of the other
variants for these scenarios in the next discussion. By hiding the
costs of the im2col transform within the gemm realization, the
rdx variant improves the throughput by a factor that ranges from
1% to 11%, in most of the cases being close to the peak accelera-
tion indicated by the horizontal line on the top of the base base-
line. For CIFAR-10, we also detect that the cgt variant is slightly
more competitive than rdx. We explain this effect due to the
different loop orderings in the convgemm and convgemm_trans

operators used in rdx and cgt respectively, which affect the per-
formance depending on the input operand sizes. On the other
hand, higher performance benefits can be attained by adding the
persistent memory mechanism (variant cgt+pm) that prevents the
Python runtime from releasing memory at execution time. In this
case, the speedups range from 7% to 24%, yet they are far from
yielding good strong scalability with the number of threads. (We
remind that the batch size remains constant per node.) In particu-
lar, in a NUMA system, cgt+pm is only effective if the processor
can access sufficient local RAM. Unfortunately, the memory re-
quirements of DenseNet121 and GoogLeNet on ImageNet exceed
the available local RAM in the target platform. In contrast, the
cgt+dg variant outperforms base on single-threaded executions
but, given the sequential unpacking (due to data dependencies)
in the deconvgemm routine, it is only competitive on large mod-
els/datasets. However, in such cases rdx/cgt are still the recom-
mended options.

Regarding the results in multi-node scenarios (see Fig. 13), we
detect similar trends for the new convgemm-based variants, with
cgt+pm being the most efficient option except for DenseNet121
and GoogLeNet on ImageNet, where the highest throughput is de-
livered by rdx. It is also important to remark that the throughput
scaling attained in the multi-node scenario is more favorable than
in a single node. This is due to the linear scaling of the workload
(local batch) with the number of processes/nodes (weak-scaling).
In the multi-threaded scenario, the batch size remains constant
while increasing the number of threads (strong-scaling), so in-
creasing the parallel resources reports speedups (with respect to
a single thread) that are in the range [1.39, 2.79] for 4 threads,
[1.48, 3.72] for 8 threads, and [1.51, 4.34] for 14 threads.

Fig. 14 shows the maximum training memory consumption of
the convgemm-based variants on a single node and distinct num-
bers of threads.5 (The memory consumption per node for the
multi-node configurations should show no differences.) For CIFAR-
10, we find that rdx, cgt and cgt+dg produce memory savings
ranging between 10% and 40% with respect to base, and that cgt is
the most favorable variant. Contrarily, the use of persistent mem-
ory (cg+pm) largely exceeds the memory requirements of the base

5 The memory consumption measurements were retrieved via the getrusage
function from the resource Python module, which internally performs the
getrusage POSIX system call. The routine getrusage was invoked twice, pass-
ing the RUSAGE_SELF and RUSAGE_CHILDREN arguments, respectively, and sum-
ming up the ru_maxrss statistic to account for the largest amount of physical
memory occupied by the process and its children.

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254

Fig. 12. Performance of training using a single node for the baseline approach (base) and the convgemm-based variants with the CIFAR-10 (left) and a ImageNet (right)
datasets.
reference. The savings attained by the former three variants (rdx,
cgt and cgt+dg) are more evident on the dataset with the largest
input size (i.e., ImageNet), though we detect larger reductions with
the use of cgt+dg in nearly all the cases, with memory savings
ranging between 24% and 70%. The reason for cgt+dg producing a
larger memory footprint than cgt on CIFAR-10 is the memory al-
249
location patterns appearing in the former, which lead the Python
memory manager to generate a higher heap fragmentation. This
effect causes the Python process to consume higher amounts of
memory that are in fact not released to the OS.

All in all, we observe that the cgt+pm provides the highest
speedups except when the combination of model and dataset does

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254

Fig. 13. Performance of training using a cluster for the baseline approach (base) and the convgemm-based variants with the CIFAR-10 (left) and a ImageNet (right) datasets.
not fit into the node RAM, in which case the preferred variants are
either rdx or cgt. With regards to memory consumption, cgt and
cgt+dg exhibit a much lower footprint compared with base. Thus,
we can conclude that cgt is a fair option in memory-constrained
scenarios while cgt+pm guarantees higher performance at the ex-
pense of a larger memory footprint.
250
4.4.3. Comparison with Tensorflow+Horovod

To put in perspective our results, we next review two previ-

ous works where we compared the training results achieved by
PyDTNN using CPUs and GPUs against Tensorflow+Horovod.

In [2], the distributed training performance of PyDTNN was
compared against TensorFlow+Horovod using the CPUs from the

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254

Fig. 14. Memory consumption of training using a single node for the baseline approach (base) and the convgemm-based variants.
same cluster leveraged in this work. The results there illus-

trated that the data-parallel schema adopted by PyDTNN, with
the batch size being increased linearly with the number of pro-

cesses, lead to a fair weak scaling, comparable with that from
TensorFlow+Horovod. The PyDTNN convolution layers in [2] were
realized using the baseline algorithm described in this work, that
251
is, using im2col (performed via an OpenMP-parallelized external
Cython module) followed by the gemm operation.

A second article on PyDTNN [3] provided practical evidence
that the distributed training on GPUs using PyDTNN attains similar
accuracy and parallel performance to those achieved by Tensor-

Flow+Horovod on GPUs. In that case, the GPU backend of PyDTNN

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254
was used, which internally calls the NVIDIA cuDNN library to per-
form the model layers related operations.

The experiments in [3] also allow a comparison between the
performance on training when performed on CPUs and GPUs. Our
experiments in that paper with VGG16 show a throughput differ-
ence between 60× (1 node) and 100× (8 nodes) in favor of the
GPUs. This difference is not only due to the massively-parallel ar-
chitecture of the GPU but also to the fact that, in the case of a
cluster with GPUs, it is possible to use NVIDIA NCCL for communi-
cation between the nodes, which is more efficient than MPI.

5. Related work

The optimal implementation of convolution operators is an ac-
tive area of research where, depending on how these operators are
internally implemented, they can be classified into three groups: 1)
direct convolutions; 2) indirect or gemm-based convolutions based
on the im2col/im2row transforms; and 3) transform-based convo-
lutions. In this section, we only review some of the solutions of
the second class, as they use the same strategy as the operators
proposed in this work.

With regards to solutions targeting CPUs, M. Dukhan [14] pro-
poses an indirect convolution algorithm that avoids the overheads
related to the im2col transform by introducing an indirection
buffer, mimicking the im2col augmented matrix on a tailored
gemm kernel which reduces memory consumption by up to 62%
according to the results. As remarked by the author, however, this
solution cannot be used to perform the convolutions appearing
in the backward pass and it only works for the NHWC format.
Similarly, Anderson et al. [1] introduce a collection of indirect
low-memory convolutions for the inference stage which match
the performance of the best-known approaches, though in some
cases, they require a small fraction of the additional memory. The
authors in [12] present MEC, a memory-efficient convolution algo-
rithm for deep learning, which leverages a lowering scheme to im-
prove memory efficiency and computational efficiency for reduced
memory footprint. The experimental results on different mobile
and server platforms show that MEC reduces memory consump-
tion significantly and speeds up the performance compared with
other state-of-the-art solutions.

gemm-based convolutions have also been developed for accel-
erators. For instance, the work by Chetlur et al. [11] lays the foun-
dations of the cuDNN convolution routines on GPUs. Their gemm-
based convolutions use sub-tiles of the column matrix in on-chip
memory, matching the sub-matrix tile size to the tile size used by
the underlying gemm implementation. They find that this strategy
achieves speedups over Caffe’s standard im2col between 0% and
30%. Other works, such as that by Zhou et al. [37], propose the
memory-efficient and hardware-friendly implicit im2col algorithm
for the Google’s TPU, which dynamically converts a convolution
into a gemm with practically zero performance and memory over-
head, showing as well that the algorithm can also be generally
applied to NVIDIA’s Tensor Cores.

Although all these proposals have the same goals as the oper-
ators presented in this work, none of them integrates the im2col

transform within the internals of a high-performance open source
realization of gemm. By integrating them with BLIS, we inherit the
performance benefits of the packing/tiling strategies for the real-
ization of the gemm kernel, while ensuring their portability due to
the availability of BLIS micro-kernels optimized for several proces-
sor architectures.

In addition, most of the previously-cited works only target the
inference stage, while our approach extends the convolution oper-
ators to the training phase as well.
252
6. Concluding remarks

In this work, we have introduced several new convgemm-based
operators, as well as a Reindex transform, to compute the outputs
and the downstream gradients associated with convolutional lay-
ers that are necessary to train a CNN. These operators integrate the
im2col/col2im transforms within the BLIS realization of the gemm,
avoiding the creation of large intermediate matrices and a sig-
nificant fraction of the time overhead. Furthermore the proposed
Reindex transform allows re-using the convgemm operator in the
computation of the gradient with respect to the filters. Thirdly, we
have demonstrated the benefits of these new operators/transform
by integrated them into PyDTNN, a simple yet efficient Python
framework for distributed training of DNNs.

In more detail, our experimental evaluation using two rep-
resentative CNNs and datasets reports the performance advan-
tages and memory savings that the proposed operators bring
to the PyDTNN framework over the baseline approach that re-
lies on the explicit im2col and col2im transforms. This evalua-
tion includes single-node and multi-node configurations, exploiting
multi-threaded parallelism inside each node via the BLIS gemm in
both cases, in addition to distributed data parallelism in the sec-
ond scenario. For the new convgemm-based variants, on the one
hand the results demonstrate that the use of pre-allocated mem-
ory along with the parallelization of some memory-bound Numpy
routines accelerates training by a factor of about 6%–25% with re-
spect to the baseline implementation. On the other hand, the use
of persistent memory leads to higher memory footprints, but this
is avoided by the variants using the convgemm (+deconvgemm),
which report memory savings of up to 70% (with respect to the
baseline implementation). These configurations, however, produce
smaller performance advantages given the intrinsic sequential na-
ture of the deconvgemm operator while carrying out the col2im

transform.
As future work, we plan to test our operators using mixed pre-

cision (FP16+FP32) for the DNN weight/bias parameters. We also
plan to improve the performance of the convgemm-based opera-
tors via multi-level parallelism across the gemm-related loops, as
implemented in the native BLIS gemm.

CRediT authorship contribution statement

Sergio Barrachina: Methodology, Software. Manuel F. Dolz:
Data curation, Writing – original draft. Pablo San Juan: Software,
Validation. Enrique S. Quintana-Ortí: Conceptualization, Supervi-
sion, Writing – review & editing.

Declaration of competing interest

We declare no conflicts of interest.

Acknowledgments

This research was funded by Project PID2020-113656RB-C21/
C22 supported by MCIN/AEI/10.13039/501100011033 and Prome-
teo/2019/109 of the Generalitat Valenciana. Manuel F. Dolz was also
supported by the Plan Gen–T grant CDEIGENT/2018/014 of the
Generalitat Valenciana.

References

[1] A. Anderson, A. Vasudevan, C. Keane, D. Gregg, High-performance low-memory
lowering: Gemm-based algorithms for dnn convolution, in: 2020 IEEE 32nd In-
ternational Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD), 2020, pp. 99–106.

http://refhub.elsevier.com/S0743-7315(22)00124-1/bib46660742FA6C5E89686061989F2CE1C0s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib46660742FA6C5E89686061989F2CE1C0s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib46660742FA6C5E89686061989F2CE1C0s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib46660742FA6C5E89686061989F2CE1C0s1

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254
[2] S. Barrachina, A. Castelló, M. Catalán, M.F. Dolz, J.I. Mestre, PyDTNN: a user-
friendly and extensible framework for distributed deep learning, J. Supercom-
put. (2021), https://doi .org /10 .1007 /s11227 -021 -03673 -z.

[3] S. Barrachina, A. Castelló, M. Catalán, M.F. Dolz, J.I. Mestre, A flexible research-
oriented framework for distributed training of deep neural networks, in: IEEE
International Parallel and Distributed Processing Symposium Workshops, IPDPS
Workshops 2021, Portland, OR, USA, June 17-21, 2021, IEEE, 2021, pp. 730–739.

[4] T. Ben-Nun, T. Hoefler, Demystifying parallel and distributed deep learning: an
in-depth concurrency analysis, ACM Comput. Surv. 52 (4) (2019) 65, https://
doi .org /10 .1145 /3320060.

[5] OpenAI: C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J.
Pachocki, M. Petrov, H.P. de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J.
Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, S. Zhang, Dota 2 with large
scale deep reinforcement learning, arXiv:1912 .06680, 2019.

[6] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T.
Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M.
Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, D. Amodei, Language models are few-shot learners,
arXiv:2005 .14165, 2020.

[7] A. Castelló, M.F. Dolz, E.S. Quintana-Ortí, J. Duato, Theoretical scalability analy-
sis of distributed deep convolutional neural networks, in: 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2019, pp. 534–541.

[8] S. Catalán, F.D. Igual, R. Mayo, R. Rodríguez-Sánchez, E.S. Quintana-Ortí,
Architecture-aware configuration and scheduling of matrix multiplication on
asymmetric multicore processors, Clust. Comput. 19 (3) (2016) 1037–1051.

[9] E. Chan, M. Heimlich, A. Purkayastha, R. van de Geijn, Collective communica-
tion: theory, practice, and experience, Concurr. Comput., Pract. Exp. 19 (13)
(2007) 1749–1783, https://doi .org /10 .1002 /cpe .v19 :13.

[10] K. Chellapilla, S. Puri, P. Simard, High performance convolutional neural net-
works for document processing, in: International Workshop on Frontiers in
Handwriting Recognition, 2006, available as INRIA report INRIA-00112631 from
https://hal .inria .fr /inria -001126.

[11] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shel-
hamer, cudnn: Efficient primitives for deep learning, CoRR, arXiv:1410 .0759,
2014, http://arxiv.org /abs /1410 .0759.

[12] M. Cho, D. Brand, MEC: memory-efficient convolution for deep neural network,
in: Proceedings of 34th Int. Conference on Machine Learning – PMLR, Vol. 70
of ICML’17, JMLR.org, 2017, pp. 815–824.

[13] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidi-
rectional transformers for language understanding, arXiv:1810 .04805, 2019.

[14] M. Dukhan, The indirect convolution algorithm, CoRR, arXiv:1907.02129, 2019,
http://arxiv.org /abs /1907.02129.

[15] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,
B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L.
Xiong, X. Wang, Applied machine learning at Facebook: a datacenter infrastruc-
ture perspective, in: 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2018, pp. 620–629.

[16] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
arXiv:1512 .03385, 2015.

[17] G. Henry, BLAS based on block data structures, Theory Center Technical Report
CTC92TR89, Advanced Computing Research Institute, Cornell University, 1992.

[18] C.F. Higham, D.J. Higham, Deep learning: an introduction for applied mathe-
maticians, arXiv:1801.05894, 2018.

[19] G. Huang, Z. Liu, K.Q. Weinberger, Densely connected convolutional networks,
CoRR, arXiv:1608 .06993, 2016, http://arxiv.org /abs /1608 .06993.

[20] A. Krizhevsky, Learning multiple layers of features from tiny images, Tech.
rep, Canadian Institute for Advanced Research, 2009, http://www.cs .toronto .
edu /~kriz /cifar.html.

[21] T.M. Low, F.D. Igual, T.M. Smith, E.S. Quintana-Ortí, Analytical modeling is
enough for high-performance BLIS, ACM Trans. Math. Softw. 43 (2) (2016) 12.

[22] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law, P. Malani, A.
Malevich, S. Nadathur, J. Pino, M. Schatz, A. Sidorov, V. Sivakumar, A. Tulloch,
X. Wang, Y. Wu, H. Yuen, U. Diril, D. Dzhulgakov, K. Hazelwood, B. Jia, Y. Jia, L.
Qiao, V. Rao, N. Rotem, S. Yoo, M. Smelyanskiy, Deep learning inference in Face-
book data centers: characterization, performance optimizations and hardware
implications, arXiv:1811.09886, 2018.

[23] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M.P. Reyes, M.-L. Shyu, S.-C. Chen,
S.S. Iyengar, A survey on deep learning: algorithms, techniques, and applica-
tions, ACM Comput. Surv. 51 (5) (2018) 92, https://doi .org /10 .1145 /3234150.

[24] B. Pudipeddi, M. Mesmakhosroshahi, J. Xi, S. Bharadwaj, Training large neural
networks with constant memory using a new execution algorithm, arXiv:2002 .
05645, 2020.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale visual
recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252, https://
doi .org /10 .1007 /s11263 -015 -0816 -y.
253
[26] P. San Juan, A. Castelló, M.F. Dolz, P. Alonso-Jordá, E.S. Quintana-Ortí, High per-
formance and portable convolution operators for multicore processors, in: 2020
IEEE 32nd Int. Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2020, pp. 91–98.

[27] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, B. Catanzaro, Megatron-
LM: training multi-billion parameter language models using model parallelism,
arXiv:1909 .08053, 2020.

[28] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv:1409 .1556, 2015.

[29] T.M. Smith, R. van de Geijn, M. Smelyanskiy, J.R. Hammond, F.G.V. Zee, Anatomy
of high-performance many-threaded matrix multiplication, in: Proc. IEEE 28th
Int. Parallel and Distributed Processing Symp., IPDPS’14, 2014, pp. 1049–1059.

[30] V. Sze, Y.-H. Chen, T.-J. Yang, J.S. Emer, Efficient processing of deep neural net-
works: a tutorial and survey, Proc. IEEE 105 (12) (2017) 2295–2329, https://
doi .org /10 .1109 /JPROC .2017.2761740.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, A. Rabinovich, Going deeper with convolutions, CoRR, arXiv:1409 .4842,
2014, http://arxiv.org /abs /1409 .4842.

[32] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective communication
operations in MPICH, Int. J. High Perform. Comput. Appl. 19 (1) (2005) 49–66,
https://doi .org /10 .1177 /1094342005051521.

[33] F.G. Van Zee, R.A. van de Geijn, BLIS: a framework for rapidly instantiating BLAS
functionality, ACM Trans. Math. Softw. 41 (3) (2015) 14.

[34] F.G. Van Zee, R.A. van de Geijn, The BLIS framework: experiments in portability,
ACM Trans. Math. Softw. 42 (2) (2016) 12.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,
I. Polosukhin, Attention is all you need, arXiv:1706 .03762, 2017.

[36] Y. You, et al., Large-batch training for LSTM and beyond, Tech. Rep. UCB/EECS-
2018-138, Electrical Engineering and Computer Sciences, University of Califor-
nia at Berkeley, 2018.

[37] Y. Zhou, M. Yang, C. Guo, J. Leng, Y. Liang, Q. Chen, M. Guo, Y. Zhu, Charac-
terizing and demystifying the implicit convolution algorithm on commercial
matrix-multiplication accelerators, arXiv:2110 .03901, 2021.

Sergio Barrachina graduated in Telecommunica-
tions Engineering (major in Electronics) from the
Technical University of Valencia in 1995 and earned
his PhD in Computer Engineering at Jaume I Uni-
versity in 2003, where he has been an Associate
Professor in Computer Architecture and Technology
since 2012. He has been teaching mainly first- and
second-year courses of the former Computing degree
and the current Computer Engineering and Compu-

tational Mathematics degrees. He is a member of the High Performance
Computing & Architectures (HPC&A) research group, with which he has
participated in numerous projects related to high-performance computing
and architectures.

Manuel F. Dolz received his PhD in Advanced
Computer Systems at the Universitat Jaume I (Spain)
in 2014 and he currently is a distinguished researcher
at the same university. During his career, he worked
as a pre and postdoctoral researcher at the Univer-
sity of Hamburg and University of Carlos III Madrid
for the EU projects Exa2Green and RePhrase, respec-
tively. Manuel has also participated in other research
projects at national and regional levels. His main re-

search interests are parallel programming environments, energy efficiency,
and deep learning for the highperformance parallel computing domain.
Manuel has participated in different international conferences and work-
shops program committees and acted as a reviewer in international con-
ferences and scientific journals. In total, he has coauthored 80+ articles in
conferences and national and international journals, 28 of them indexed
in JCR.

Pablo San Juan is a postdoctoral researcher at the
Technical University of Valencia. He finished his doc-
toral studies in computer science in 2018 and has
been working in several research projects related to
HPC since then. His PhD thesis was centered in an
HPC view of the NonNegative Matrix Factorization and
his latest works have been focused in low-level opti-
mization for Deep Learning.

https://doi.org/10.1007/s11227-021-03673-z
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib7FD4A391E17E6ACA975842FE4725346Ds1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib7FD4A391E17E6ACA975842FE4725346Ds1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib7FD4A391E17E6ACA975842FE4725346Ds1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib7FD4A391E17E6ACA975842FE4725346Ds1
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib837B6064894C876BC0C8B3637E06C81Bs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib837B6064894C876BC0C8B3637E06C81Bs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib837B6064894C876BC0C8B3637E06C81Bs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib837B6064894C876BC0C8B3637E06C81Bs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib837B6064894C876BC0C8B3637E06C81Bs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib908C0B0FA087E1AEF027E95A151CDF36s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib908C0B0FA087E1AEF027E95A151CDF36s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib908C0B0FA087E1AEF027E95A151CDF36s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib908C0B0FA087E1AEF027E95A151CDF36s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib0B95A36FB39B70DFBFBEA4545C780CB5s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib0B95A36FB39B70DFBFBEA4545C780CB5s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib0B95A36FB39B70DFBFBEA4545C780CB5s1
https://doi.org/10.1002/cpe.v19:13
https://hal.inria.fr/inria-001126
http://arxiv.org/abs/1410.0759
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibE575825E52925DACF3DFFAF90F1DDC72s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibE575825E52925DACF3DFFAF90F1DDC72s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibE575825E52925DACF3DFFAF90F1DDC72s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib8C1F7B72C9EA2CE13A92BFA42FD953F1s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib8C1F7B72C9EA2CE13A92BFA42FD953F1s1
http://arxiv.org/abs/1907.02129
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib1B3AB1C88B2F42FB73120C5D1FCC0B59s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib1B3AB1C88B2F42FB73120C5D1FCC0B59s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib1B3AB1C88B2F42FB73120C5D1FCC0B59s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib1B3AB1C88B2F42FB73120C5D1FCC0B59s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib1B3AB1C88B2F42FB73120C5D1FCC0B59s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibA1DB1758E93E0A02AB5F909E847DEDADs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibA1DB1758E93E0A02AB5F909E847DEDADs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib2619B0092BE9F0E678FF5772F00C37E8s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib2619B0092BE9F0E678FF5772F00C37E8s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib736B16E3795E8DE088933F07321F14DAs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib736B16E3795E8DE088933F07321F14DAs1
http://arxiv.org/abs/1608.06993
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibDC0FD9B2908656D5F019A25017CC3E45s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibDC0FD9B2908656D5F019A25017CC3E45s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibAA01A10B8AF176059F8D351D8D924739s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibAA01A10B8AF176059F8D351D8D924739s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibAA01A10B8AF176059F8D351D8D924739s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibAA01A10B8AF176059F8D351D8D924739s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibAA01A10B8AF176059F8D351D8D924739s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bibAA01A10B8AF176059F8D351D8D924739s1
https://doi.org/10.1145/3234150
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib13EEF47EB9428A4AF65C4EB60E8E6448s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib13EEF47EB9428A4AF65C4EB60E8E6448s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib13EEF47EB9428A4AF65C4EB60E8E6448s1
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib863515B2EB2E23C4AF9DEAC3EC64D6C5s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib863515B2EB2E23C4AF9DEAC3EC64D6C5s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib863515B2EB2E23C4AF9DEAC3EC64D6C5s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib863515B2EB2E23C4AF9DEAC3EC64D6C5s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib77B561C438A0DB376271CE201E6E52F8s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib77B561C438A0DB376271CE201E6E52F8s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib77B561C438A0DB376271CE201E6E52F8s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib908E47CF8F4539BA9D596F04ADE44831s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib908E47CF8F4539BA9D596F04ADE44831s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib21922BF150281037B6DF48BF8F2ACE4Fs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib21922BF150281037B6DF48BF8F2ACE4Fs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib21922BF150281037B6DF48BF8F2ACE4Fs1
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
http://arxiv.org/abs/1409.4842
https://doi.org/10.1177/1094342005051521
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib11716F54DB1D6B47B4E8304FC32869EEs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib11716F54DB1D6B47B4E8304FC32869EEs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib95ACE4A8E9C83ADCC998BA2C8909C69Bs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib95ACE4A8E9C83ADCC998BA2C8909C69Bs1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib3C9C86C515F5DC8EBA73C23AF23E5678s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib3C9C86C515F5DC8EBA73C23AF23E5678s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib3C9C86C515F5DC8EBA73C23AF23E5678s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib9006905E302993628E3B8C21031996B1s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib9006905E302993628E3B8C21031996B1s1
http://refhub.elsevier.com/S0743-7315(22)00124-1/bib9006905E302993628E3B8C21031996B1s1

S. Barrachina, M.F. Dolz, P.S. San Juan et al. Journal of Parallel and Distributed Computing 167 (2022) 240–254
Enrique S. Quintana-Orti is Professor of Computer
Architecture at Technical University of Valencia. En-
rique’s research pursues the optimization of numer-
ical algorithms and deep learning frameworks for
general-purpose processors as well as hardware accel-
erators. During the past 22 years, he has coauthored
100+ papers in peer-reviewed scientific journals and
200+ in international conferences. He has also partic-
ipated in international projects funded by European

organizations (EU FP7 TEXT and Exa2GREEN, EU H2020 INTERTWinE and
OPRECOMP), as well as in USA projects from DoE and NSF. Enrique’s re-
search on fault-tolerance has been recognized in by USA NASA with two
awards, and his contributions to the acceleration of linear algebra algo-
rithms received the 2008 NVIDIA Professor Partnership Award. Finally, he
has served as member of the scientific committee of 80+ international
conferences; he is area editor for Elsevier’s Parallel Computing journal and
he is Associate Editor for ACM Trans. on Mathematical Software.
254

	Efficient and portable GEMM-based convolution operators for deep neural network training on multicore processors
	1 Introduction
	2 Convolutional neural networks
	2.1 Overview of supervised training
	2.2 Convolutional neural networks
	2.3 Convolution operators via gemm: the im2col in FP
	2.4 The col2im/im2col in BP

	3 Efficient realization of convolution operators via BLIS GEMM
	3.1 BLIS: open and portable kernels for dense linear algebra
	3.2 Integration of the im2col transform in FP inside BLIS gemm
	3.3 Integration of the col2im transform in BP inside BLIS gemm
	3.4 Integration of the im2col transform in BP inside BLIS gemm
	3.4.1 Re-indexing
	3.4.2 Transpose operand in gemm

	4 Integration with PyDTNN and experimental validation
	4.1 Overview of PyDTNN
	4.2 Distributed training of DNNs
	4.3 Integration in PyDTNN
	4.4 Experimental validation
	4.4.1 Setup
	4.4.2 Experiments
	4.4.3 Comparison with Tensorflow+Horovod

	5 Related work
	6 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

