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Convolutional Neural Networks (CNNs) play a crucial role in many image recognition and classification 
tasks, recommender systems, brain-computer interfaces, etc. As a consequence, there is a notable interest 
in developing high performance realizations of the convolution operators, which concentrate a significant 
portion of the computational cost of this type of neural networks.
In a previous work, we introduced a portable, high performance convolution algorithm, based on the 
BLIS realization of matrix multiplication, which eliminates most of the runtime and memory overheads 
that impair the performance of the convolution operators appearing in the forward training pass, when 
performed via explicit im2col transform. In this paper, we extend our ideas to the full training process 
of CNNs on multicore processors, proposing new high performance strategies to tackle the convolution 
operators that are present in the more complex backward pass of the training process, while maintaining 
the portability of the realizations. In addition, we conduct a full integration of these algorithms into a 
framework for distributed training of CNNs on clusters of computers, providing a complete experimental 
evaluation of the actual benefits in terms of both performance and memory consumption. Compared 
with baseline implementation, the use of the new convolution operators using pre-allocated memory can 
accelerate the training by a factor of about 6%–25%, provided there is sufficient memory available. In 
comparison, the operator variants that do not rely on persistent memory can save up to 70% of memory.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Machine learning via deep neural networks (DNNs) is being in-
creasingly adopted to tackle a large variety of applications beyond 
the traditional cubbyhole of this technology in image recognition 
and signal processing [15,5,22,28,35]. To improve their accuracy, 
many of the DNN models designed for these applications need to 
be trained over an extremely large amount of data [24]. For the 
same reason, both the dimension (number of layers) and com-
plexity of DNNs are growing rapidly, and recent models involve 
up to billions of parameters [13,27,6]. In consequence, DNN train-
ing is currently conducted using distributed algorithms on high 
performance computing (HPC) facilities, with dozens or even hun-
dreds of nodes, sometimes enhanced with fast memory modules 
(high bandwidth memory, or HBM) and high performance inter-
connection networks (e.g., Infiniband) [22]. At this initial point, we 
recognize that DNN training can significantly be accelerated using 
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hardware accelerators, such as AMD/NVIDIA’s graphics processors 
(GPUs) or Google’s tensor processing units (TPUs). However, we 
also point out the interest of companies like Facebook to exploit 
idle workload cycles in their HPC facilities, which leave a signifi-
cant number of (general-purpose) multicore CPUs to perform dis-
tributed model (re-)training during off-peak periods [15]. In this 
paper, we address how to leverage efficiently these idle resources 
to perform distributed training of CNNs.

Convolutional (deep) neural networks (CNNs) are a specialized 
type of multilayer perceptrons with application in image recog-
nition, recommender systems, image classification, medical image 
analysis, natural language processing, brain-computer interfaces, 
and financial time series, among others. CNNs exhibit an implicit 
regularization that takes advantage of the hierarchical structure of 
the data in order to avoid overfitting. This property is achieved via 
the application of convolution operators, which concentrate a signif-
icant fraction of the computational cost for CNNs.

A flexible, reliable, and, in many cases, high performance ap-
proach to realize a convolution operator consists in applying the 
im2col transform [10] to the layer activation inputs, followed by 
a general matrix multiplication (gemm) that takes advantage of 
le under the CC BY-NC-ND license 
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optimized realizations of this computational kernel in high per-
formance linear algebra libraries (e.g., Intel MKL, OpenBLAS, Go-
toBLAS2, BLIS, ATLAS, etc.). Unfortunately, there are two major 
problems with this approach: 1) a large memory workspace is re-
quired to host the intermediate matrix generated by the im2col

transform; and, especially for training, 2) the time to apply this 
transform is not negligible for complex CNNs. In [26], we presented 
a portable high performance convolution algorithm based on the 
BLIS [33] realization of gemm, named convgemm, that practically 
eliminates the memory and time cost of the im2col transform, 
while maintaining the portability and performance of the under-
lying realization of the BLIS gemm for multicore processors.

In this paper, we extend our previous work in [26] to obtain an 
efficient integration of the convolution operators in a framework 
for distributed training of DNNs on clusters of computers equipped 
with multicore processors. In particular, this work makes the fol-
lowing contributions:

• For the computation of the downstream gradients with respect 
to the inputs, we adopt an approach similar to that in [26]
to integrate a col2im operator within the BLIS realization of 
gemm, yielding a deconvgemm operator that avoids the cre-
ation of a large intermediate matrix, while maintaining the 
portability and, to a certain extent, performance.

• For the computation of the downstream gradients with respect 
to the filters, we leverage the existing convgemm algorithm via 
a novel Reindex transform that re-arranges one of the input 
matrices to avoid the explicit operation with the transposed of 
that operand. As an alternative, we also address this calcula-
tion via a transposed variant of the convgemm operator.

• We complete the general discussion of the convgemm and 
deconvgemm operators and associated transforms with a de-
tailed description using high level code that should allow to 
reproduce our implementations. In addition, we discuss several 
variations of the convolution operators that trade off memory 
consumption for performance.

• We integrate the resulting convgemm/deconvgemm algorithms 
and the Reindex transform into PyDTNN (Python Distributed 
Training of Neural Networks), a deep learning framework that 
offers a fair combination of functionality, computational per-
formance, and friendly interface, prioritizing flexibility to pro-
totype new research ideas.

• We perform a complete experimental evaluation showing the 
performance advantages and memory savings over the base-
line approach that operates with large workspaces using the 
explicit im2col and col2im transforms. This evaluation in-
cludes four popular DNNs (ResNet34, VGG16, DenseNet121, 
and GoogLeNet) and two datasets (CIFAR-10 and ImageNet), 
and targets a state-of-the-art cluster equipped with Intel Xeon 
Gold 5120 processors with the nodes connected via an Infini-
band EDR network.

The rest of the paper is structured as follows. In Section 2, we 
offer a short review of supervised iterative training for DNNs via 
the stochastic gradient descent (SGD), paying special attention to 
the convolution layers appearing in the forward-backward itera-
tion. In Section 3, we first discuss the BLIS kernel for gemm and 
explain how this was leveraged in [26] to obtain an efficient re-
alization of the convolution operator in the forward pass of the 
training process. In the same section, we next discuss how to ex-
tend that idea to the more complex backward propagation stage, 
which constitutes one of the major contributions of this work. In 
Section 4, we elaborate on the integration of the new operators 
and transforms into PyDTNN, and assess the benefits of the result 
via a complete experimental validation. In Section 5, we revisit 
some related work on gemm-based operators and compare them 
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with those presented in this work. Finally, in Section 6, we close 
the paper with a short summary and a collection of concluding 
remarks.

2. Convolutional neural networks

2.1. Overview of supervised training

Consider a collection of input vectors, denoted by x1, x2, . . . , xs ∈
Rm , with associated output vectors y1, y2, . . . , ys ∈Rn (also known 
as labels or ground truth). From the mathematical perspective, a 
DNN defines a non-linear function F : Rm → Rn so that F(xr) =
ỹr , where we expect that ỹr ≈ yr , for r = 1, 2, . . . , s; see [30,18,23].

In supervised training, the DNN “learns” from the labeled data, 
adjusting its model parameters (that is, weights and biases) to 
diminish the difference (deviation or error) between the ground 
truth and the output computed by the DNN as part of the for-
ward pass (FP); that is, reduces the “error” ‖yr − ỹr‖ (for all r). 
This learning process is usually conducted via the SGD method (or 
some related variant) [18], which is an iterative “back-propagation” 
(BP) procedure that, given an output-label pair, computes the gra-
dients for the DNN parameters that minimize this difference. The 
gradients are then used to update the DNN parameters, in prepa-
ration for the next FP-BP iteration, with a new input sample; see, 
e.g. [18]. These two stages of BP are referred to in our work as 
gradient computation (BP-GC) and weight updates (BP-WU).

The convergence of the training process is accelerated in prac-
tice by applying the FP-BP iteration in batches of t samples at a 
time, for a moderate value t in the order of few hundreds. This 
also helps to overcome the memory bandwidth constraints of cur-
rent computer architectures, by turning training into a compute-
bound process. On the negative side, augmenting the batch size 
may affect the convergence and accuracy of the training process, 
often requiring a complex and application-dependent tuning of the 
learning rate, which needs to be dynamically adjusted as the train-
ing process evolves [36].

2.2. Convolutional neural networks

A DNN is composed of a number of “neurons” organized into 
layers, with each neuron contributing to the output with a partic-
ular intermediate computation. In CNNs, the FP stage for a convo-
lution layer (conv) comprises a convolution operator that applies 
a collection of filters F to an input I to produce the output O :

O = conv(F , I).

Let us consider that F consists of kn filters (or kernels) of dimen-
sion kh × kw × ci , where kh × kw specify the dimensions of the 
(2D) filter and ci stands for the number of input channels.1 Fur-
thermore, assume the layer receives an input tensor I composed of 
t samples of dimension hi × wi × ci each; and produces an output 
tensor O with t outputs of size ho × wo × kn each. Then, each of 
the kn individual filters in this layer combines a (sub)tensor of the 
inputs, with the same dimension as the filter, to produce a single 
scalar value (entry) in one of the kn outputs. By repeatedly apply-
ing the filter to the whole input in a sliding window manner (and 
with a certain vertical/horizontal stride sv and sh), the convolu-
tion operator produces the complete entries of this single output; 
see [30]. Assuming vertical/horizontal paddings given by pv and 
ph , the output dimensions become ho = �(hi − kh + 2pv )/sv + 1�

1 Unless otherwise explicitly stated, in the following algorithms and data struc-
tures we adopt a generalization of the Fortran memory storage convention for mul-
tidimensional arrays (tensors) where the entries are stored in consecutive positions 
in memory starting from the leftmost indices.
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Table 1
Dimensions of tensor operands for the convolution O  = conv(F , I) without and with the im2col transform (top and bottom, respectively). In the 
latter case, the convolution is performed as the gemm C = A · B , where C ≡ O , A ≡ F , and B = im2col(I). In this table, for simplicity we assume that 
sv = sh = 1 and pv = ph = 0.

Stage O F I

FP ho × wo × kn × t kh × kw × ci × kn hi × wi × ci × t
BP (∂ O/∂ I) hi × wi × ci × t kh × kw × ci × kn ho × wo × kn × t
BP (∂ O/∂ F ) kh × kw × ci × kn ho × wo × kn × t hi × wi × ci × t

Stage C A B

FP kn × (ho · wo · t) kn × (kh · kw · ci) (kh · kw · ci) × (ho · wo · t)
BP (∂ O/∂ I) (kh · kw · ci) × (ho · wo · t) kn × (kh · kw · ci) kn × (ho · wo · t)
BP (∂ O/∂ F ) kn × (kh · kw · ci) kn × (ho · wo · t) (kh · kw · ci) × (ho · wo · t)
L1: for it = 0, . . . , t − 1
L2: for ic = 0, . . . , ci − 1
L3: for iw = 0, . . . , wo − 1
L4: for ih = 0, . . . ,ho − 1

c = ih + iw · hi + it · wi · hi

L5: for ikw = 0, . . . ,kw − 1
L6: for ikh = 0, . . . ,kh − 1

r = ikh + ikw · kh + ic · kw · kh

B[r][c] = I[ih · s + ikh][iw · s + ikw ][ic ][it ]

Fig. 1. Algorithm for the im2col transform. The actual implementation eliminates 
some of the loop invariants inside Loops L4 and L6 to reduce the indexing arith-
metic overhead.

and wo = �(wi −kw +2ph)/sh +1�. The top part of Table 1 displays 
the dimensions of the tensor operands involved in a convolution 
operator in the three stages of DNN training: FP, BP-GC and BP-
WU; see [7] for details.

2.3. Convolution operators via gemm: the im2col in FP

In modern computer architectures, the performance of a direct 
realization of the convolution operator is constrained by the mem-
ory bandwidth, delivering only a fraction of the processor peak 
floating-point throughput. In practice, higher performance can be 
attained via an indirect (or gemm-based) approach that casts this 
operator in terms of a matrix multiplication, as explained next. 
Concretely, the im2col transform [10], applied to the convolution 
operator appearing in the FP stage, transforms the input tensor I
into an augmented matrix B so that the output of the applica-
tion of the convolution O  = conv(F , I) can be obtained from the 
gemm:

C = A · B = A · im2col(I),

where C ≡ O  → kn × (ho · wo · t) is the output tensor viewed as an 
m × n matrix, with m = kn and n = ho · wo · t; A ≡ F → kn × (kh ·
kw · ci) = m × k contains the filters; and B → (kh · kw · ci) × (ho ·
wo · t) = k × n results from applying the im2col transform to the 
input tensor I according to the filter dimensions and strides (kh , 
kw , sv , sh). Fig. 1 shows the algorithmic realization of the im2col

transform.
Fig. 2 depicts graphically the transformation of the convolution 

operator into a gemm realized via the im2col transform. The use 
of the “reshape” operator A ≡ Reshape(F ) there re-arranges the 
input 4D filter tensor F as the 2D matrix A. In addition, the re-
shape followed by a transpose O  ≡ Reshape(C)T (1,2,0,3) , where the 
superindex (1, 2, 0, 3) specifies the permutation applied to the di-
mensions of Reshape(C), re-organizes the resulting C matrix back 
into the 4D output tensor O .

In general, the FP stage of a convolution layer using the im2col

transform can be represented as the computational graph in (the 
blue parts of) Fig. 3. The nodes in that graph represent the kernels 
(gemm and element-wise addition), while the edges are tagged 
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with the corresponding transforms (im2col, Reshape, and trans-
pose). We also include the model biases (b), as a vector of length 
kn .

2.4. The col2im/im2col in BP

The operations in BP for a convolution layer include the com-
putation of gradients of the output with respect to the inputs 
(∂ O/∂ I), filters (∂ O/∂ F ), and biases (∂ O/∂b), as explained next:

• To compute the downstream gradient with respect to the in-
puts (∂ O/∂ I), it is necessary to “reverse” the operations in 
the FP stage using the upstream gradient (∂ O/∂ O ), as shown 
in (red in) the top left branch of the computational graph in 
Fig. 3. This computation can be realized using a gemm involv-
ing AT and ∂ O/∂C , followed by a col2im operator applied to 
the result:

∂ O/∂ I = col2im(AT · ∂ O/∂C),

where ∂ O/∂ I → (hi × wi × ci × t) is the tensor resulting 
from the application of col2im (considering the parameters 
kh, kw , sv , sh) to the result of the matrix multiplication of 
the transposed filters AT ≡ F T → (kh · kw · ci) × kn with the 
upstream gradient ∂ O/∂C → kn × (ho · wo · t). Basically, the 
col2im transform, given in Fig. 4, reverses the effect of im2col, 
except for the fact that col2im accumulates several partial re-
sults on the same 4D output coordinates.

• The downstream gradient with respect to the filters (∂ O/∂ I) 
is computed via the gemm:

∂ O/∂ F = Reshape(∂ O/∂C · BT ),

where ∂ O/∂ F → (kh × kw × ci × kn) is the 4D reshaped ten-
sor resulting from the output 2D tensor from the gemm on 
the upstream gradient ∂ O/∂C → kn × (ho · wo · t), and BT ≡
im2col(I)T → (ho · wo · t) × (kh · kw · ci); see middle left graph 
branch in (red in) Fig. 3. Here B is the same augmented matrix 
that resulted from applying the im2col transform with respect 
to the inputs in the FP stage. In consequence, provided all the 
augmented matrices assembled in the convolution layers (one 
per layer) during FP were stored, they can be re-used at this 
point by operating on their transpose. However, this requires a 
large amount of memory, which can easily exceed the memory 
capacity of a computer node for CNNs with many layers.

• Finally, the downstream gradient with respect to the biases 
(∂ O/∂b) is straight-forward to compute by summing the rows 
of the (2D tensor) transformed upstream gradient ∂ O/∂C (see 
bottom left graph branch in red in Fig. 3), yielding a bias up-
date vector of length kn .

3. Efficient realization of convolution operators via BLIS GEMM

The previous section exposes that the gemm is a key kernel for 
the efficient realization of the convolution. In this section, we re-
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Fig. 2. Convolution operator via the im2col transform for FP.

Fig. 3. Computational graph of the convolution layer using the im2col transform. From left to right, the flow denoted in blue corresponds to the FP stage. The inputs are 
the activations from the previous layer (I), the filters (F ), and the biases (b). From right to left, the flow in red specifies the operations for the BP stage that distribute the 
upstream gradient (∂ O/∂ O ) back to the inputs (∂ O/∂ I), filters (∂ O/∂ F ), and biases (∂ O/∂b).

L1: for it = 0, . . . , t − 1
L2: for ic = 0, . . . , ci − 1
L3: for iw = 0, . . . , wo − 1
L4: for ih = 0, . . . ,ho − 1

c = ih + iw · hi + it · wi · hi

L5: for ikw = 0, . . . ,kw − 1
L6: for ikh = 0, . . . , wh − 1

r = ikh + ikw · kh + ic · kw · kh

∂ O/∂ I[ih · s + ikh][iw · s + ikw ][ic ][it ] += (AT · ∂ O/∂C)[r][c]

Fig. 4. Algorithm for the col2im transform. The actual implementation eliminates some of the loop invariants inside Loops L4 and L6 to reduce the indexing arithmetic 
overhead; for simplicity, this is not shown in the algorithm.

L1: for jc = 0, . . . ,n − 1 in steps of nc

L2: for pc = 0, . . . ,k − 1 in steps of kc

B(pc : pc + kc − 1, jc : jc + nc − 1) → Bc // Pack into Bc

L3: for ic = 0, . . . ,m − 1 in steps of mc

A(ic : ic + mc − 1, pc : pc + kc − 1) → Ac // Pack into Ac

C(ic : ic + mc − 1, jc : jc + nc − 1) += Ac · Bc // Macro-kernel

Fig. 5. High performance implementation of gemm in BLIS. Ac , Bc denote buffers that are involved in data copies. For simplicity, we consider that m, n, k are integer multiples 
of mc , nc , kc , respectively.
view in some detail the open implementation of this kernel in the 
BLIS framework, as a preliminary step to illustrate how to inte-
grate the convolution operators appearing in the FP-BP iteration 
inside the BLIS gemm.

3.1. BLIS: open and portable kernels for dense linear algebra

Consider the gemm operation C += A · B , where C → m × n, 
A → m × k, and B → k × n. BLIS implements this kernel (as well 
as any variant with transposed A and/or B) as three nested loops 
around a macro-kernel plus two packing routines; see Fig. 5. BLIS 
decomposes the macro-kernel into two-three additional loops plus 
a micro-kernel; see [26] for details.
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There are a few key points in BLIS gemm that are worthy of 
being highlighted:

• The loop ordering, together with the packing routines and a 
proper selection of the loop strides nc , kc , mc that matches the 
processor cache configuration, orchestrates a regular pattern of 
data transfers through the memory hierarchy [33,21].

• All routines are encoded in plain C except for a small com-
ponent inside the macro-kernel, known as the micro-kernel, 
which is vectorized using either architecture-dependent as-
sembly instructions or vector intrinsics [33]. This enhances 
portability as porting all the BLIS library to a particular proces-
sor architecture only needs to develop an efficient realization 
of that component for the target processor, and to adjust the 
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values for nc , kc , and mc , to the processor cache/memory con-
figuration.

• The loops of the gemm kernel to be parallelized can be se-
lected at execution time. The multi-threaded parallelization of 
the BLIS gemm kernel has been previously analyzed for con-
ventional multicore processors [34], modern many-threaded 
architectures [29], and low-power (asymmetric) ARM-based 
processors in [8].

• The purpose of the packing routines is to arrange the elements 
of A and B into Ac and Bc , respectively, so that the elements 
of these buffers are accessed with unit stride when executing 
the micro-kernel [17]. In practice, provided m is large enough, 
the cost of the packing for Bc is negligible compared with the 
number of flops performed inside Loop L3. (A similar reason-
ing applies to the overhead due to the packing for Ac .)

As we argue in the following, the packing routines are particu-
larly important for our implementation of the convolution opera-
tor.

3.2. Integration of the im2col transform in FP inside BLIS gemm

In [26], we proposed to integrate the im2col transform into the 
packing of B onto the buffer Bc that occurs within BLIS.2 For this 
purpose, during the execution of the gemm kernel, the buffer Bc

is directly constructed from the contents of the input tensor I , in-
stead of using the augmented matrix B , which is never explicitly 
assembled. In the following, we will refer to our solution as an indirect 
convolution via the convgemm operator:

O = convgemm(F , I).

This solution presents three key advantages:

• Reduced workspace: We avoid the use of the large workspace 
associated with the explicit assembly of the large augmented 
matrix B → (kh · kw · ci) × (ho · wo · t), as the only “addition-
al” storage that is needed is the relatively small buffer for Bc

→ kc × nc , which in any case was already necessary in the 
gemm kernel. (In case the augmented matrices are explicitly 
assembled and preserved for the BP stage, the requirements 
grow linearly with the number of convolution layers.) This is 
especially important for DNN inference, which only involves 
the FP stage and is often performed in memory-constrained 
devices, but not so much for DNN training.

• High performance: As argued earlier, the memory access cost 
associated with the packing of Bc is well amortized with 
the flops that are performed in the innermost loops of the 
BLIS gemm. Therefore, the overhead of implicitly applying the 
im2col transform can be expected to be low.

• Portability: The approach has the additional advantage that 
the only change that is needed in the BLIS gemm is to re-
place the original packing routine for Bc with a procedure 
that reads (and packs) the second input operand for the ma-
trix multiplication directly from the input tensor. There is no 
need to modify the routine that performs the packing onto 
Ac . More importantly, there is no need to change the micro-
kernel, which enhances the portability of our solution: the 
only part that is modified is encoded in C and depends on 
a small number of architecture-dependent parameters that are 
adjusted during the process of porting BLIS. The parameters 
that define the filter dimensions are “embedded” within the 

2 The BLIS-based convgemm operators are available at https://gitlab .com /
comtacts /convgemm, under a GNU General Public License v3.0.
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L1: for jr = 0, . . . ,nc − 1 in steps of nr

i = 0
L2: for ps = 0, . . . ,kc − 1

ic = (pc + ps)/(kh · kw )

ikw = ((pc + ps) mod (kh · kw ))/kh

ikh = ((pc + ps) mod (kh · kw )) mod kh

L3: for js = 0, . . . ,nr − 1
it = ( jc + jr + js)/(ho · wo)

iw = (( jc + jr + js) mod (ho · wo))/ho

ih = (( jc + jr + js) mod (ho · wo)) mod ho

Bc [i][ jr ] = I[ikh + ih · s][ikw + iw · s][ic ][it ]
i = i + 1

Fig. 6. Algorithm for packing I into Bc while simultaneously applying the im2col

transform. The indices (pc, jc) correspond to the coordinates of the top-left entry 
for the block of matrix B = im2col(I) that is packed; see Fig. 5. as well as paral-
lelizes the outermost loop using an OpenMP parallel for construct.

dimensions of the resulting matrix and, therefore, require no 
specific optimization.

The algorithm in Fig. 6 illustrates how to pack the correspond-
ing entries of the input tensor I into the buffer Bc during the 
execution of the BLIS gemm kernel in Fig. 5, while simultaneously 
performing the im2col transform. The algorithm packs the kc × nc

block of matrix B starting at row pc and column jc into the buffer 
Bc , reading the corresponding entries directly from the input ten-
sor I .

3.3. Integration of the col2im transform in BP inside BLIS gemm

The downstream gradient with respect to the inputs, ∂ O/∂ I , 
can be obtained by applying the col2im transform to the result of 
multiplying AT with ∂ O/∂C :

∂ O/∂ I = col2im(AT · ∂ O/∂C).

Therefore, if explicitly built, the result of this matrix multiplication, 
C ′ = AT · ∂ O/∂C → (kh · kw · ci) × (ho · wo · t), would consume the 
same amount of memory as the augmented matrix B produced by 
the im2col transform.

To tackle this, we have designed a deconvgemm operator that 
integrates the col2im transform into the BLIS realization of gemm

while accumulating the results in the actual output matrix:

∂ O/∂ I = deconvgemm(AT , ∂ O/∂C),

without explicitly building the intermediate matrix C ′ .
Unfortunately, for the col2im case we cannot leverage the strat-

egy proposed for the convgemm operator, which integrated the 
transform inside one of the existing packing routines. The reason 
is that the realization of gemm in BLIS writes its output matrix 
directly into memory from the microkernel, without any pack-
ing/unpacking of the data; see subsection 3.1. Therefore, to perform 
the col2im transform inside the BLIS gemm, we had to modify this 
kernel to operate with an actual buffer Cc , of size m × nc , as well 
as develop an unpacking procedure that stores the data from Cc

onto the output 4D tensor ∂ O/∂ I while simultaneously perform-
ing the col2im transform during this process. This unpacking takes 
place at the end of each iteration of loop L1 in Fig. 5, once the 
corresponding m × nc panel of the gemm output matrix has been 
computed. The algorithm in Fig. 7 illustrates the unpacking proce-
dure.

The main advantage of the deconvgemm operator lies in the 
memory savings that result from avoiding the explicit creation of 
the intermediate matrix C ′ . Concretely, the memory needed to per-
form this operation decreases from (kh ·kw · ci) × (ho · wo · t), when 
using gemm followed by col2im, to the workspace Cc → m × nc =

https://gitlab.com/comtacts/convgemm
https://gitlab.com/comtacts/convgemm
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L1: for r = 0, . . . ,nc − 1
i = 0
it = ( jc + r)/(ho · wo)

iw = (( jc + r) mod (ho · wo))/ho

ih = (( jc + r) mod (ho · wo)) mod ho

L2: for s = 0, . . . ,m − 1
ic = s/(kh · kw )

ikw = (s mod (kh · kw ))/kh

ikh = (s mod (kh · kw )) mod kh

∂ O/∂ I[ikh + ih · s][ikw + iw · s][ic ][it ]+ = Cc[i][r]
i = i + 1

Fig. 7. Algorithm for unpacking Cc into ∂ O/∂ I while simultaneously applying the 
col2im transform. The index jc corresponds to the first column of the block of 
matrix C that is unpacked; see Fig. 5.

(kh · kw · ci) × nc for deconvgemm. In addition, the unpacking al-
gorithm is encoded in C, depends only on the cache parameter nc , 
and does not affect the coding of the micro-kernel, having thus no 
impact on the portability of the solution.

Regarding performance, the unpacking can introduce some 
overhead, depending on the convolution parameters, as this mech-
anism may evict some data for Ac and/or Bc from the cache 
hierarchy. A second source of performance inefficiency appears 
for the deconvgemm operator because the unpacking of Cc into 
∂ O/∂ I cannot be parallelized due to data dependencies between 
iterations, as different positions of Cc may need to be accumulated 
into the same entries of ∂ O/∂ I .3 In summary, the utilization of the 
deconvgemm operator poses a trade-off between performance and 
memory consumption.

3.4. Integration of the im2col transform in BP inside BLIS gemm

The computation of the downstream gradient with respect to 
the filters, ∂ O/∂ F , requires a gemm where the second matrix 
operand corresponds to the transposed result of the im2col trans-
form on the input tensor I , that is,

∂ O/∂ F = Reshape(∂ O/∂C · BT ) = Reshape(∂ O/∂C ·im2col(I)T ).

Although this operation resembles that performed by the
convgemm operator in FP, it differs in the fact that the result of 
im2col transform appears transposed in the gemm operation. In 
the next two subsections, we describe two options or alternatives 
to deal with this.

3.4.1. Re-indexing
To tackle the aforementioned variant of the convgemm oper-

ator, we propose a novel “re-indexing” algorithm (Reindex) that 
transforms the input 4D-tensor I into I ′ so that

im2col(kh,kw ,sv ,sh)(I)T ≡ im2col(kh=ho,kw=wo,sv=ho,sh=wo)(I ′).

Concretely, the Reindex transform re-orders the dimensions hi

and wi of I (that is, the rows and columns of all image chan-
nels in the batch) taking into account sv , sh, ho , and wo to obtain 
I ′; see the algorithm in Fig. 8. Fig. 9 illustrates the details of this 
transform using the re-indexing of an example image I of size 
hi = wi = 7 padded with pv = ph = 1, which has to be convolved 
with a filter of size kh = kw = 3 using a stride of sv = sh = 2 in 

3 The overhead due to the unpacking operation depends on the convolution pa-
rameters, which are different depending on the layer and model. For many CNNs, 
these parameters vary significantly, and so are the case for the overheads. To quan-
tify this overhead, we have measured the execution time of the unpack operation 
on the ResNet34 with Imagenet on 1 node with 1, 4, 8, and 16 threads. These over-
heads were 3.88%, 4.04%, 4.81%, and 5.66% of the total time, respectively.
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L1: for it = 0, . . . , t − 1
L2: for ic = 0, . . . , ci − 1
L3: for ih = 0, . . . ,h′

o − 1
i′h = ih/ho + (ih mod ho) · sv

L4: for iw = 0, . . . , w ′
o − 1

i′w = iw/wo + (iw mod wo) · sh

I ′[it ][ic ][ih][iw ] = I[it ][ic ][i′h][i′w ]

Fig. 8. Algorithm for the Reindex of I to obtain I ′ according to sv , sh , ho , and wo

in a conv layer. This transform results into a memory-bound operation which can 
be accelerated using an OpenMP parallel for construct in loop L1, provided 
the batch size is large enough. This algorithm uses the C convention for multidi-
mensional arrays: the entries of the tensors are stored in consecutive positions in 
memory starting from the rightmost indices.

the FP stage. As illustrated by the colored cells, the coordinates in 
I that are two units apart (sv = sh = 2), are unraveled (and re-
peated) in I ′ such that there appear 3 × 3 clusters of size 4 × 4. In 
consequence, this matches the number of clusters with the filter 
size kw = kw = 3 and the cluster size with the output dimen-
sions ho = wo = 4. Furthermore, this allows us to leverage our 
convgemm operator using ∂ O/∂C as a filter that is convolved on 
the strides sv = ho = 4 and sh = wo = 4 with the transformed I ′ to 
obtain ∂ O/∂ F . In sum, the Reindex transform combined with the 
convgemm operator becomes:

∂ O/∂ F

= Reshape(convgemm(sv=ho,sh=wo)(∂ O/∂C, I ′))
= Reshape(convgemm(sv=ho,sh=wo)(∂ O/∂C,Reindex(I))).

It is important to note that, even though both the re-indexed 
tensor I ′ and the augmented matrix BT ≡ im2col(I)T require a 
workspace of size (ho · wo · t) × (kh · kw · ci), the re-index al-
gorithm has a more favorable memory access pattern than the 
im2col transform, which helps in reducing the cost of calculat-
ing ∂ O/∂ F . Also, this solution inherits the high performance and 
portability advantages derived from the use of the convgemm op-
erator.

At this point, it is also worth reminding that the augmented 
matrices appearing in the convolution layers of the FP stage are 
never assembled thanks to the integration of the im2col transform 
within the BLIS realization of gemm. In contrast, in this first option 
we assemble explicitly the augmented tensor I ′ involved in the BP 
stage. Unlike the scenario in FP though, this matrix does not partic-
ipate in subsequent layers during the BP stage and, therefore, the 
corresponding workspace can be re-utilized (for subsequent lay-
ers) after the gemm operation. In practice, a single workspace of 
this size is affordable for most current computer nodes, especially 
in a training scenario using a large HPC facility.

3.4.2. Transpose operand in gemm

As an alternative option to carry out the computation of the 
downstream gradient with respect to the filters, ∂ O/∂ F , we im-
plemented a transposed version of the convgemm operator such 
that:

∂ O/∂ F = Reshape(∂ O/∂C · im2col(I)T )

= convgemm_trans(∂ O/∂C, I).

To achieve this, we developed a packing routine for the gemm

input matrix that packs im2col(I)T directly into Bc , reading the 
corresponding entries directly without ever assembling (or trans-
forming) I explicitly. Fig. 10 shows a simplified pseudocode of the 
packing routine. The algorithm packs the corresponding nc × kc
block of matrix B starting at row jc and column pc .

This alternative approach based on a “transposed” convgemm

operator maintains all the advantages of the convgemm operator 
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Fig. 9. Example of re-index of I to obtain I ′ assuming a conv layer with hi = wi = 7, ho = wo = 4, kh = kw = 3, pv = ph = 1 and sv = sh = 2. In this example, I is padded 
with pv = ph = 1 (see border cells) prior applying Reindex (as these padding values were used in the FP).
L1: for jr = 0, . . . ,nc − 1 in steps of nr

i = 0
L2: for ps = 0, . . . ,kc − 1

it = (pc + ps)/(ho · wo)

iw = ((pc + ps) mod (ho · wo))/ho

ih = ((pc + ps) mod (ho · wo)) mod ho

L3: for js = 0, . . . ,nr − 1
ic = ( jc + jr + js)/(kh · kw )

ikw = (( jc + jr + js) mod (kh · kw ))/kh

ikh = (( jc + jr + js) mod (kh · kw )) mod kh

Bc [i][ jr ] = I[ikh + ih · s][ikw + iw · s][ic ][it ]
i = i + 1

Fig. 10. Algorithm for packing I into Bc while simultaneously applying the im2col

transform and transposing the input matrix I . The indices ( jc, pc) correspond to 
the coordinates of the top-left entry for the block of matrix B = im2col(I)T that 
is packed; see Fig. 5. The actual realization of this algorithm eliminates some loop 
invariants and integer arithmetic to reduce the overhead, as well as parallelizes the 
outermost loop using an OpenMP parallel for construct.

described in Section 3.2: reduced workspace, high performance, 
and portability.

4. Integration with PyDTNN and experimental validation

In this section, we describe the integration of our new
convgemm-based realizations of the convolution operators in Py-
DTNN, a framework for distributed training of DNNs on clusters of 
computers. In addition, we demonstrate the benefits of the pro-
posed approach, in comparison with one based on the explicit 
im2col/col2im transforms, for the distributed training of repre-
sentative CNNs and datasets.

4.1. Overview of PyDTNN

PyDTNN4 is a lightweight framework for distributed training 
of DNNs on clusters of computers that has been designed as a 
research-oriented tool with a low learning curve. PyDTNN presents 
the following appealing properties:

• Flexible: PyDTNN considers extensibility (and, to a certain 
extent, simplicity) as a first-class citizen to facilitate that 
users can customize the framework to prototype their research 
ideas.

• Ample functionality: PyDTNN covers DL training (and infer-
ence) for a significant part of the most common DNN models: 
multi-layer perceptrons (MLPs), convolutional neural networks 
(CNNs), residual networks (ResNets), and transformers for nat-
ural language processing. In practice, PyDTNN provides train-
ing and validation accuracies on par with those attained by 
Google’s TensorFlow [2].

4 The PyDTNN framework is available at https://github .com /hpca -uji /PyDTNN/, 
under a GNU General Public License v3.0.
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• High performance: PyDTNN exploits data parallelism (DP) [4], 
relying on specialized message-passing libraries for efficient 
communication, and kernels from high performance multi-
threaded libraries for the major computational operations 
in CPU and GPUs. In particular, when the target cluster is 
equipped with NVIDIA’s GPUs, PyDTNN leverages cuDNN,
cuBLAS, and NCCL to deliver parallel performance that is 
competitive with that of TensorFlow.

• User-amiable interface: PyDTNN is developed in Python and 
offers an interface akin to that exposed by popular DL pack-
ages such as Keras.

While we recognize that PyDTNN lacks the level of maturity 
and the complete functionality of production-level frameworks, 
such as TensorFlow or PyTorch, we honestly believe that PyDTNN
offers a more accessible and easier-to-customize solution, which 
allows us to integrate and validate the benefits of our proposed 
approach in the distributed training of some state-of-the-art CNNs. 
In any case, the proposed algorithms are orthogonal to the training 
framework and, as part of future work, we plan to integrate them 
in more sophisticated frameworks.

In a previous work [2], we demonstrated that PyDTNN delivers 
training/validation accuracy as well as convergence rates similar to 
those attained by TensorFlow. The techniques, operators, and trans-
forms introduced in this paper do not modify the arithmetic op-
erations performed by the convolution operators when performed 
via the explicit im2col/col2im transforms, only the order in which 
they are carried out. The small differences in the rounding errors 
of individual convolutions, due to this distinct order, may render 
slight variations in the training/validation accuracy and the conver-
gence rate for an iterative process based on SGD (especially when 
combined with non-linear functions such as ReLU). We note, how-
ever, that these differences do not imply that the accuracy/conver-
gence metrics offer necessarily worse (nor better) results.

4.2. Distributed training of DNNs

Training a DNN is a costly process that is usually performed 
on distributed high performance platforms. In practice, this tun-
ing is often carried out on a cluster of computer nodes, each 
equipped with one or more multi-core processors (in some cases 
enhanced with graphics accelerators). Most distributed DNN train-
ing frameworks exploit DP, distributing the input data among the 
cluster nodes across the batch dimension, while replicating the 
DNN model in all nodes [4]. The DP scheme exhibits linear scal-
ability with the number of nodes provided 1) the batch size can 
be increased linearly with the number of nodes; and 2) the full 
model fits in the node memory.

Distributed DP training requires a few types of (message-
passing) collective communications [9,32]: First, the initial model 
has to be replicated in all nodes (Broadcast) before the train-
ing commences. Second, each FP-BP iteration requires a batch of 

https://github.com/hpca-uji/PyDTNN/
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Fig. 11. Dependencies in the DP distributed training scheme. The colored boxes cor-
respond to the computational stages: FP, (BP-)GC, and (BP-)WU; the circles denote 
the AR exchanges; and the arrows indicate data dependencies. The dashed lines of 
different colors identify groups of operations that can be overlapped.

samples to be distributed (Scatter) among the nodes. Third, dur-
ing the BP stage, all nodes need to perform a global reduction 
(Allreduce or AR) of their local weights/biases onto the parameters 
that define the DNN model [4,7]. Given the large number of FP-BP 
iterations that are required to train a DNN model and the pos-
sibility of overlapping the distribution of the future batches with 
the FP-BP processing of the current one, the major communication 
bottleneck lies in the AR operation.

Fig. 11 illustrates the data dependencies and AR exchanges ap-
pearing in the DP scheme. Note the strict dependencies between 
adjacent layers of the FP and BP-GC stages, but the possibility of 
overlapping the latter with the reductions and the BP-WU compu-
tations.

4.3. Integration in PyDTNN

The efficient integration in PyDTNN of the convgemm operator 
for the FP (and BP) stage(s) required the implementation of a new 
module for interfacing the convgemm BLIS-based shared-library, 
developed in C, from Python using the ctypes library. This module 
allows passing Numpy arrays directly to the convgemm routine so 
that it can be seamlessly invoked from the methods for the FP (and 
BP) stage(s) (for conv layers) in PyDTNN. The versions of PyDTNN
that integrate convgemm also parallelize the pad and transpose
methods in Numpy by means of Cython OpenMP-parallel routines, 
which helps to accelerate the execution. The integration of the 
convgemm operator in the BP stage leverages the same module 
used for FP with extended support for the Reindex + convgemm

approach, in addition to the convgemm_trans and deconvgemm

operators.
We note that PyDTNN uses a row-major (or C style) memory 

layout for multidimensional arrays while the convgemm library 
follows the BLAS convention for column-major (or Fortran style) 
memory layout. Due to this, the integration also includes the nec-
essary memory layout rearrangements to allow full compatibility 
between PyDTNN and the convgemm library.

4.4. Experimental validation

4.4.1. Setup
The experimental evaluation in this section has been carried 

out on a cluster platform consisting of 8 nodes, each equipped 
with two Intel Xeon Gold 5120 processors (14 cores with a nomi-
nal frequency of 2.20 GHz), and 190 GiB DDR4 non-uniform mem-
ory access (NUMA) RAM, giving each processor 95 GiB of “local” 
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memory. The nodes are interconnected via an Infiniband EDR net-
work with a bandwidth of 100 Gbps. Regarding the software layer, 
we use Intel Python 3.7.4 to run PyDTNN configured to use Numpy 
on top of BLIS (version 0.8.0) along with the novel convgemm and 
deconvgemm routines for the Convolution proposed in this paper. 
The communication layer used to exploit DP is provided by In-
tel MPI (version 2019) configured to use the Infiniband network. 
For the experiments, we consider two configurations: 1) execution 
on a single node, exploiting multicore parallelism using multiple 
threads; and 2) execution using several cluster nodes with a sin-
gle MPI rank and 14 threads per node. The reason to include the 
multi-node configurations is that varying the number of nodes 
modifies the relationship between computational and communica-
tion costs, which may impact the benefits of our new Convolution 
operators.

Training a DNN is a costly iterative procedure that often re-
quires several epochs, each involving enough “batched” FP-BP 
passes to process the complete training dataset. To reduce the cost 
of our tests, we trained the DNN models for a fixed number of 
60 FP–BP iterations, and computed the training throughput as the 
number of samples per batch, multiplied by 60, and divided by 
the time to perform the test. The fact that we perform the train-
ing for several batches, using the same FP-BP process per batch, 
which does not depend on the numerical values of the batch sam-
ples, has an averaging effect on the measurements. In general, for 
any number of nodes and threads, we observed that the through-
put increased from the beginning till it stabilizes after a few sec-
onds (iterations) due to the impact of initialization overhead. To 
avoid this effect, we measure the first 60 iterations to render this 
overhead negligible. Raising the batch size can be expected to in-
crease linearly the execution time and memory requirements. At 
the same time, augmenting the batch size affects the convergence 
of training, often asking for an application-dependent tuning of the 
learning rate, which needs to be dynamically varied as the training 
process evolves. This is a complex technique that requires spe-
cial knowledge and care, but it is out-of-scope for our work [36]. 
In general, we set the batch size to t = 64 per cluster node. We 
consider this is a reasonable value that offers a good balance be-
tween multi-threaded performance and small numerical distortion 
of the convergence rate. Increasing the batch size in general raises 
the cost of the explicit im2col/col2im transforms, and therefore 
should augment the advantage of our convgemm/deconvgemm al-
ternative. Also, in those cases where the memory requirements of 
the baseline approach exceeded the node capacity, affecting per-
formance (due to disk swapping), the batch size was accordingly 
decreased. Concretely, for Resnet34 with ImageNet, the batch size 
was set to 24, and for DenseNet121 and GoogLeNet with ImageNet, 
to 16.

To analyze the parallel scalability of the proposed solutions 
with respect to the naive im2col approach, we train four rep-
resentative CNN models (VGG16, ResNet34, DenseNet121, and 
GoogLeNet) on two datasets (CIFAR-10 and ImageNet), using the 
SGD optimizer and a learning rate of 0.01 for VGG16, DenseNet121, 
and GoogLeNet, and 0.1 for ResNet34. VGG16 is a CNN that fea-
tures a 16-layer network architecture where the convolutional 
layer depth (number of filters) is gradually increased on a set of 
small (3 × 3) filters [28]. ResNet34 is a 34-layer CNN belonging to 
the residual-based network family proposed by He et al., which 
introduces residual layer functions intending to ease the training 
of very deep CNNs [16]. Similarly, DenseNet121 is a 121-layer CNN 
that uses direct connections between any two layers with the same 
feature-map size, yielding to consistent improvements in accuracy 
with growing number of parameters, without signs of performance 
degradation or overfitting [19]. Finally, the GoogLeNet model is a 
22-layer CNN that is carefully crafted to allow increasing the depth 
and width of the network while keeping the computational bud-
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Table 2
PyDTNN variants for the computation of O in the FP stage, and ∂ O/∂ F , ∂ O/∂ I in 
the BP stage of a conv layer relying on the Reindex, convgemm/convgemm_trans, 
and deconvgemm operators.

Variant FP (O ) BP (∂ O/∂ F ) BP (∂ O/∂ I)

base im2col + gemm im2col + transposed gemm

gemm + col2im
rdx

convgemm

Reindex + convgemm

cgt

convgemm_transcgt+pm

cgt+dg deconvgemm

get constant [31]. The input conv layer in these CNNs is adapted 
to operate on two different datasets: i) the CIFAR-10 dataset, con-
sisting of 60,000 32 × 32 color images in 10 classes with 50,000 
and 10,000 training and test images, respectively [20]; and ii) Im-
ageNet, a dataset comprised of 1.4 M of human-annotated color 
photographs grouped into 1,000 classes and designed for develop-
ing computer vision algorithms [25]. In the second case, the input 
image size for all the networks has been downscaled to 224 × 224
pixels.

4.4.2. Experiments
In this subsection, we assess the performance of the train-

ing process using the baseline approach that explicitly builds all 
augmented matrices via im2col and col2im (referred to hereafter 
as base) versus four new variants that rely on the convgemm/
deconvgemm operators. All these variants leverage the convgemm

routine to compute O in the FP stage. Furthermore, except for the 
last variant, they compute ∂ O/∂ I by invoking the BLIS gemm fol-
lowed by a call to a multi-threaded routine for col2im written 
in Cython and parallelized with OpenMP. They differ as described 
next:

RDX This implementation leverages the Reindex transform to 
calculate ∂ O/∂ F in the BP stage; see subsection 3.4.1.

CGT This implementation replaces the Reindex transform 
with an operator based on convgemm_trans; see sub-
section 3.4.2.

CGT+PM This variant uses the same routines as cgt in addition 
to persistent memory for storing the intermediate ma-
trices required to interface PyDTNN with the external 
convgemm routines. This implementation aims at reduc-
ing the overhead for memory allocation/release time that 
are intrinsically incurred by the Python runtime (garbage 
collector), at the expense of yielding a higher memory 
footprint.

CGT+DG This variant leverages the same routines as cgt except 
that it replaces the indirect gemm + col2im approach to 
compute ∂ O/∂ I by the BLIS-based deconvgemm routine. 
This alternative prevents the allocation of the augmented 
matrix that has to be passed to col2im, though it might 
impact performance due to the deconvgemm packing in-
efficiencies discussed in subsection 3.3.

Table 2 identifies the specific procedure to calculate O , ∂ O/∂ F , 
∂ O/∂ I for base and each of the four variants.

In Figs. 12 and 13, we report the performance of the train-
ing procedure using the previous realizations on a single node 
and on a cluster, respectively, and measured in samples/s for the 
selected CNNs and the two datasets. The number at the top of 
each bar in the performance plots specifies the speedup of the 
new convgemm-based variants with respect to the base reference. 
Furthermore, the horizontal line and the number above the base

bar respectively represent the peak throughput and speedup that 
could be achieved if the time costs related to the im2col transform 
were negligible. Both im2col followed by gemm and convgemm

perform the same number of floating-point operations. Given that 
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gemm is a highly optimized operation, its execution without the 
overhead imposed by the im2col transform offers a practical theo-
retical bound for what we could expect to achieve with convgemm

if we can totally hide the overhead of the intrinsic re-organization 
of the data during the implicit (blocked) im2col that is done dur-
ing packing.

Focusing on the performance results on a single node (see 
Fig. 12), we note that the rdx, cgt, and cgt+pm variants outper-
form, in most cases, the base approach. For ResNet34 on Ima-
genet with 14 threads, and for GoogLeNet on Imagenet with 8 and 
14 threads, there is not enough work for all the threads, which 
negatively affects the performance of the base approach. Thus, to 
keep the comparison fair, we do not report the gains of the other 
variants for these scenarios in the next discussion. By hiding the 
costs of the im2col transform within the gemm realization, the 
rdx variant improves the throughput by a factor that ranges from 
1% to 11%, in most of the cases being close to the peak accelera-
tion indicated by the horizontal line on the top of the base base-
line. For CIFAR-10, we also detect that the cgt variant is slightly 
more competitive than rdx. We explain this effect due to the 
different loop orderings in the convgemm and convgemm_trans

operators used in rdx and cgt respectively, which affect the per-
formance depending on the input operand sizes. On the other 
hand, higher performance benefits can be attained by adding the 
persistent memory mechanism (variant cgt+pm) that prevents the 
Python runtime from releasing memory at execution time. In this 
case, the speedups range from 7% to 24%, yet they are far from 
yielding good strong scalability with the number of threads. (We 
remind that the batch size remains constant per node.) In particu-
lar, in a NUMA system, cgt+pm is only effective if the processor 
can access sufficient local RAM. Unfortunately, the memory re-
quirements of DenseNet121 and GoogLeNet on ImageNet exceed 
the available local RAM in the target platform. In contrast, the 
cgt+dg variant outperforms base on single-threaded executions 
but, given the sequential unpacking (due to data dependencies) 
in the deconvgemm routine, it is only competitive on large mod-
els/datasets. However, in such cases rdx/cgt are still the recom-
mended options.

Regarding the results in multi-node scenarios (see Fig. 13), we 
detect similar trends for the new convgemm-based variants, with 
cgt+pm being the most efficient option except for DenseNet121 
and GoogLeNet on ImageNet, where the highest throughput is de-
livered by rdx. It is also important to remark that the throughput 
scaling attained in the multi-node scenario is more favorable than 
in a single node. This is due to the linear scaling of the workload 
(local batch) with the number of processes/nodes (weak-scaling). 
In the multi-threaded scenario, the batch size remains constant 
while increasing the number of threads (strong-scaling), so in-
creasing the parallel resources reports speedups (with respect to 
a single thread) that are in the range [1.39, 2.79] for 4 threads, 
[1.48, 3.72] for 8 threads, and [1.51, 4.34] for 14 threads.

Fig. 14 shows the maximum training memory consumption of 
the convgemm-based variants on a single node and distinct num-
bers of threads.5 (The memory consumption per node for the 
multi-node configurations should show no differences.) For CIFAR-
10, we find that rdx, cgt and cgt+dg produce memory savings 
ranging between 10% and 40% with respect to base, and that cgt is 
the most favorable variant. Contrarily, the use of persistent mem-
ory (cg+pm) largely exceeds the memory requirements of the base

5 The memory consumption measurements were retrieved via the getrusage
function from the resource Python module, which internally performs the
getrusage POSIX system call. The routine getrusage was invoked twice, pass-
ing the RUSAGE_SELF and RUSAGE_CHILDREN arguments, respectively, and sum-
ming up the ru_maxrss statistic to account for the largest amount of physical 
memory occupied by the process and its children.
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Fig. 12. Performance of training using a single node for the baseline approach (base) and the convgemm-based variants with the CIFAR-10 (left) and a ImageNet (right) 
datasets.
reference. The savings attained by the former three variants (rdx, 
cgt and cgt+dg) are more evident on the dataset with the largest 
input size (i.e., ImageNet), though we detect larger reductions with 
the use of cgt+dg in nearly all the cases, with memory savings 
ranging between 24% and 70%. The reason for cgt+dg producing a 
larger memory footprint than cgt on CIFAR-10 is the memory al-
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location patterns appearing in the former, which lead the Python 
memory manager to generate a higher heap fragmentation. This 
effect causes the Python process to consume higher amounts of 
memory that are in fact not released to the OS.

All in all, we observe that the cgt+pm provides the highest 
speedups except when the combination of model and dataset does 
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Fig. 13. Performance of training using a cluster for the baseline approach (base) and the convgemm-based variants with the CIFAR-10 (left) and a ImageNet (right) datasets.
not fit into the node RAM, in which case the preferred variants are 
either rdx or cgt. With regards to memory consumption, cgt and 
cgt+dg exhibit a much lower footprint compared with base. Thus, 
we can conclude that cgt is a fair option in memory-constrained 
scenarios while cgt+pm guarantees higher performance at the ex-
pense of a larger memory footprint.
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4.4.3. Comparison with Tensorflow+Horovod

To put in perspective our results, we next review two previ-

ous works where we compared the training results achieved by
PyDTNN using CPUs and GPUs against Tensorflow+Horovod.

In [2], the distributed training performance of PyDTNN was 
compared against TensorFlow+Horovod using the CPUs from the 
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Fig. 14. Memory consumption of training using a single node for the baseline approach (base) and the convgemm-based variants.
same cluster leveraged in this work. The results there illus-

trated that the data-parallel schema adopted by PyDTNN, with 
the batch size being increased linearly with the number of pro-

cesses, lead to a fair weak scaling, comparable with that from 
TensorFlow+Horovod. The PyDTNN convolution layers in [2] were 
realized using the baseline algorithm described in this work, that 
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is, using im2col (performed via an OpenMP-parallelized external 
Cython module) followed by the gemm operation.

A second article on PyDTNN [3] provided practical evidence 
that the distributed training on GPUs using PyDTNN attains similar 
accuracy and parallel performance to those achieved by Tensor-

Flow+Horovod on GPUs. In that case, the GPU backend of PyDTNN
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was used, which internally calls the NVIDIA cuDNN library to per-
form the model layers related operations.

The experiments in [3] also allow a comparison between the 
performance on training when performed on CPUs and GPUs. Our 
experiments in that paper with VGG16 show a throughput differ-
ence between 60× (1 node) and 100× (8 nodes) in favor of the 
GPUs. This difference is not only due to the massively-parallel ar-
chitecture of the GPU but also to the fact that, in the case of a 
cluster with GPUs, it is possible to use NVIDIA NCCL for communi-
cation between the nodes, which is more efficient than MPI.

5. Related work

The optimal implementation of convolution operators is an ac-
tive area of research where, depending on how these operators are 
internally implemented, they can be classified into three groups: 1) 
direct convolutions; 2) indirect or gemm-based convolutions based 
on the im2col/im2row transforms; and 3) transform-based convo-
lutions. In this section, we only review some of the solutions of 
the second class, as they use the same strategy as the operators 
proposed in this work.

With regards to solutions targeting CPUs, M. Dukhan [14] pro-
poses an indirect convolution algorithm that avoids the overheads 
related to the im2col transform by introducing an indirection 
buffer, mimicking the im2col augmented matrix on a tailored 
gemm kernel which reduces memory consumption by up to 62% 
according to the results. As remarked by the author, however, this 
solution cannot be used to perform the convolutions appearing 
in the backward pass and it only works for the NHWC format. 
Similarly, Anderson et al. [1] introduce a collection of indirect 
low-memory convolutions for the inference stage which match 
the performance of the best-known approaches, though in some 
cases, they require a small fraction of the additional memory. The 
authors in [12] present MEC, a memory-efficient convolution algo-
rithm for deep learning, which leverages a lowering scheme to im-
prove memory efficiency and computational efficiency for reduced 
memory footprint. The experimental results on different mobile 
and server platforms show that MEC reduces memory consump-
tion significantly and speeds up the performance compared with 
other state-of-the-art solutions.

gemm-based convolutions have also been developed for accel-
erators. For instance, the work by Chetlur et al. [11] lays the foun-
dations of the cuDNN convolution routines on GPUs. Their gemm-
based convolutions use sub-tiles of the column matrix in on-chip 
memory, matching the sub-matrix tile size to the tile size used by 
the underlying gemm implementation. They find that this strategy 
achieves speedups over Caffe’s standard im2col between 0% and 
30%. Other works, such as that by Zhou et al. [37], propose the 
memory-efficient and hardware-friendly implicit im2col algorithm 
for the Google’s TPU, which dynamically converts a convolution 
into a gemm with practically zero performance and memory over-
head, showing as well that the algorithm can also be generally 
applied to NVIDIA’s Tensor Cores.

Although all these proposals have the same goals as the oper-
ators presented in this work, none of them integrates the im2col

transform within the internals of a high-performance open source 
realization of gemm. By integrating them with BLIS, we inherit the 
performance benefits of the packing/tiling strategies for the real-
ization of the gemm kernel, while ensuring their portability due to 
the availability of BLIS micro-kernels optimized for several proces-
sor architectures.

In addition, most of the previously-cited works only target the 
inference stage, while our approach extends the convolution oper-
ators to the training phase as well.
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6. Concluding remarks

In this work, we have introduced several new convgemm-based 
operators, as well as a Reindex transform, to compute the outputs 
and the downstream gradients associated with convolutional lay-
ers that are necessary to train a CNN. These operators integrate the 
im2col/col2im transforms within the BLIS realization of the gemm, 
avoiding the creation of large intermediate matrices and a sig-
nificant fraction of the time overhead. Furthermore the proposed 
Reindex transform allows re-using the convgemm operator in the 
computation of the gradient with respect to the filters. Thirdly, we 
have demonstrated the benefits of these new operators/transform 
by integrated them into PyDTNN, a simple yet efficient Python 
framework for distributed training of DNNs.

In more detail, our experimental evaluation using two rep-
resentative CNNs and datasets reports the performance advan-
tages and memory savings that the proposed operators bring 
to the PyDTNN framework over the baseline approach that re-
lies on the explicit im2col and col2im transforms. This evalua-
tion includes single-node and multi-node configurations, exploiting 
multi-threaded parallelism inside each node via the BLIS gemm in 
both cases, in addition to distributed data parallelism in the sec-
ond scenario. For the new convgemm-based variants, on the one 
hand the results demonstrate that the use of pre-allocated mem-
ory along with the parallelization of some memory-bound Numpy 
routines accelerates training by a factor of about 6%–25% with re-
spect to the baseline implementation. On the other hand, the use 
of persistent memory leads to higher memory footprints, but this 
is avoided by the variants using the convgemm (+deconvgemm), 
which report memory savings of up to 70% (with respect to the 
baseline implementation). These configurations, however, produce 
smaller performance advantages given the intrinsic sequential na-
ture of the deconvgemm operator while carrying out the col2im

transform.
As future work, we plan to test our operators using mixed pre-

cision (FP16+FP32) for the DNN weight/bias parameters. We also 
plan to improve the performance of the convgemm-based opera-
tors via multi-level parallelism across the gemm-related loops, as 
implemented in the native BLIS gemm.
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