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Abstract-- This paper proposes an algorithmic approach 

constructed from a convolutional recurrent neural network 

(CRNN) iterated with examination of extracted features for partial 

discharge (PD) localisation; tests were conducted offline on 

medium voltage (MV) power cables. To evaluate the performance 

of the algorithm, a case study was performed on 7 cables 

deliberately selected to comprehensively illustrate the difficulties 

encountered in field testing. The experimental test results prove 

that the proposed concept is able to identify and localise discharges 

besmirched with significant quantities of noise. Main contribution 

of the methodology is the successful automated interpretation of 

measurements acquired under noisy challenging field constraints. 

 
Index Terms—partial discharge, neural networks, medium 

voltage cables 

I.  INTRODUCTION 

artial discharge diagnostic test in medium-voltage cables 

are commonly used in modern electrical networks to 

identify incipient faults in the material, preventing material 

degradation from prolonged PD occurrence. The typical 

problems faced during offline measurements are on-site noise 

and the large quantities of collected data – this consequently 

requires highly skilled operators and considerable amount of 

evaluation time. Automatic evaluation first and foremost 

requires a highly accurate identification procedure ensuring that 

the number of false positives (FP) and false negatives (FN) are 

as little as possible. Subsequently, a robust localisation 

procedure that is not susceptible to the unavoidable noise 

influence in order to process the discharge location with 

high accuracy is needed.  

All PD measurements systems, online or offline, are 

dependent on some form of digital mechanisation, which have 

mainly been rule-based systems. Whilst these systems provide 

a degree of automation, practitioners in the field are aware that 

relying completely on human-crafted rules do not provide the 
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dependability for noise-induced PD measurements. This is 

because given the intricate temperament of the waveforms, 

if-then rules may be inconsistent – the same antecedent may 

map to different consequents. On-site noise when combined 

with the variety seen on field measurements i.e., length of cable, 

number of joints, and mixed insulation system leads to an 

infinite possibility of arrangements that cannot be determined 

comprehensively by conventional curated rule sets. Machine 

learning (ML) and deep learning (DL), on the other hand, offers 

an alternative approach – the difference is that data-based 

design is probabilistic in nature and can resolve categorisation 

conflict raised from deterministic rules. The application of DL 

on PD is not new – the first exploration dates back to 

approximately thirty years ago [1] [2] [3]. With the exponential 

progress seen recently on computational progress and 

advancement in DL capabilities, PD recognition experiences a 

revitalisation on the topic of application with DL techniques.  

Recent research on ML/DL related PD localisation has been 

focused on all aspects of electrical equipment – transformers, 

switchgears, cables and even substation itself, however not 

much effort is focused on cables [4]. In [5], to localise PD in 

power transformers, a nonlinear neuro-fuzzy localisation 

system using unsupervised pattern recognition combined with 

feature vectors was proposed – the proposed method was based 

on a localisation system with rules created from the relationship 

of input signal features. Experimental results in the laboratory 

showed significant improvement in localising major types of 

PD when compared to techniques available then. In [6], to 

localise PD in gas insulated switchgears, time-frequency 

analysis, edge detection and support vector machine was 

proposed to identify longitudinal and circumferential position 

of PD source – the proposed method extract features from 

received signals for entry into both an algorithm and a ML 

model. Experimental results from the simulation and laboratory 

were successful, with no errors made for circumferential 
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localisation accuracy. In [7], to localise PD in substation, a 

wavelet packet transform extracted features and an ensemble 

learning method with regression tree, bootstrap, aggregating 

and random regression forest was proposed. Attention to 

corruption by noise was addressed through wavelet package 

transformation. The authors acknowledge the interference 

between an electrical substation and confines of a laboratory are 

dissimilar, but affords reasonable complexity for the purpose of 

simulation. Experimental results showed localisation accuracy 

to be high, with low variance of location error. In [8], to localise 

time resolved PD (TRPD) in cables, relevant parameters of 

events are extracted. Applying rule-based classification and 

pairing, statistical ratings are generated categorising the 

likelihood of a discharge and corresponding location. 

Evaluation here is based on the experience of field testing, 

where it was concluded that inaccurate exact localisation of key 

parameters could lead to wrong conclusions.   

As described, for localisation of PD, the combination of 

machine-driven interpretation and manual feature selection has 

proven to be successful when used in tandem. There has not 

been a DL study conducted on localising TRPD measurements 

performed on in-service MV cables from offline test. Currently, 

there is no solution to fully computerise evaluation efforts with 

a high degree of certainty on the discharge location without 

human intervention. Autonomous and confident localisation is 

essential in MV cable diagnosis, in order to reduce operator 

workload and handle large amounts of unknown data.  

Computational analysis of PD in cable measurements is in 

two distinct but correlated parts – identification and 

localisation. To address the impediment arising from noise and 

complications in field measurements, an iterative algorithm 

comprised from neural networks (NNs) and PD features are 

presented; this paper accretes on the previous work from PD 

identification performed in [9] and complements with 

localisation of the discharge positions – demonstration will be 

shown on 7 case studies of varying complexion. In [9], PD 

identification methodology was proposed with transfer learning 

and NN ensembles that differentiates between PD and noise on 

individual cables.  

Introduced in this paper is the identification and localisation 

of TRPD measurements. Expanding on the predicted PD output 

of [9], through application of a multi-output CRNN, 

localisation of one PD direct (PDD) and five first reflection 

(FR) pulse positions can be acquired. In addition to knowledge 

of the pulse locations, PD identification improvement can be 

effectuated by applying a threshold rule on the PDD pulse 

extracted features – normalised cumulative summation (CS) 

orders 2 and 3. Thereafter, one FR pulse will be selected 

through feature examination on the pulse polarity, peak and 

area of the initial five FR pulses. For PD identification, to 

corroborate the improvement, distinction is made between 

results obtained through the methodology from [9] and the 

approach from this paper – emphasis is placed on the reduction 

of FPs. For PD localisation, to evince the attributes of feature 

analysis, comparison is made between the FR localisation 

results from the standalone CRNN and from the proposed 

feature extraction and heuristics – emphasis is placed on the 

accuracy increment. For clarity, identification in this paper 

describes identification between PD and noise, localisation 

describes locating the PDD and FR discharge pulse positions.  

The framework overview for the multi-step methodology is 

as follows sequentially, creation of a PD databank used to train 

the CRNN, identification between PD and noise through [9], 

data segmentation on predicted PDs via sliding window 

principle for a frame-by-frame scrutiny to localise a singular 

PDD and five FR pulses, perform PD identification by feature 

analysis on the localised PDD position therein reducing FPs, 

thereafter selection of FR location through examination of 

features within proposed sliding window. In order to exhibit the 

robustness of this algorithm, a performance evaluation is 

conducted through 7 case studies to elucidate the applicability. 

The structure of the paper is as follows – Section II 

introduces the background of the study, Section III proposes the 

algorithm of the experimental work, Section IV describes the 

results of the methodology and finally Section V summarises 

for conclusion. 

II.  BACKGROUND INFORMATION 

A.  Partial Discharge Fundamentals 

 
Fig. 1. Classical three-pulse signature of PD measurement in cable, with 

annotations for feature extractions. 

Shown in Fig. 1 is the classical signature of a TRPD 

measurement caused by a single PD source in an offline PD 

cable test. The measurements are subjected to signal 

attenuation, as illustrated with the three decaying pulses – PDD, 

FR and second reflection (SR); the time difference between 

PDD and FR informs the discharge location. The other 

annotations in Fig. 1 will be explained in the subsequent 

section. 

 
Fig. 2. PD measurements with indices for knee-point of pulses; (a) Short 

cable, (b) Long cable. 

 Due to dispersion in the frequency spectrum, the PD pulses 

tend to be wider as they travel along the cable; this is observed 

more prominently for longer cables. Shown on the left in Fig. 

2a, it can be noted that the knee-point of PDD and FR for the 

shorter cable is less than 50 samples, with FR being slightly 

wider than PDD. Shown on the right in Fig. 2b is a measurement 

on a longer cable with discharge location close to the near end. 

It can be seen that the knee-point for the FR pulse of the longer 
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cable differs significantly, PDD is narrow whereas the width of 

FR is much wider; the pulse is almost 150 samples wide. 

Undoubtfully, this has an effect during numerical processing 

which must be addressed accordingly with appropriate 

selection tools. 

 
Fig. 3. PD pulses measured with different noise influences, (a) Non-stationary 
noise, (b) High frequency noise, (c) Low frequency noise, (d) Repetitive 

noise. 

 Noise interference in field testing is unavoidable and could 

originate both internally and externally [10]. It could be non-

stationary as shown in Fig. 3a, with constant repetition as 

shown in Fig. 3d, or with high and low frequencies as shown in 

Fig. 3b and c respectively. Therefore, when utilising 

computational analysis for localisation of the PDD and FR 

pulses, it is important to consider the exposure to noise from the 

field and PD pulse behaviours exhibited under non-ideal 

conditions. Circled in dark and light blue at different points 

within Fig. 3a to d are examples of simple algorithmic approach 

which considers the largest amplitude and finds a succeeding 

pulse of a similar polarity – dark blue circle represents PDD 

pulse, light blue circle represents FR pulse. From the given 

plots in Fig. 3, it is possible to apprehend the difficulties posed 

from field measurements; Fig. 3a to d are examples of some 

waveforms which bear similarity to our case studies that will be 

presented later.  

B.  Feature Extraction for Partial Discharge 

Shown in Table I are the common feature extractions [11] 

performed on PD pulses to obtain a quantitative representation 

during computational recognition purposes – physical 

descriptions of the variables from Table I are illustrated in Fig. 

1. Typically, algorithms are designed to identify points of 

interest through consideration and correlation of numerous 

predetermined variables. However, whilst such descriptions are 

meaningful in a controlled environment i.e., laboratory 

conditions, there are difficulties when translating to field 

measurements; moreover, extraction of these features also 

depends heavily on the correct manual selection. Majority of 

the conventional factors such as magnitude and time interval of 

the pulses, rise and fall time of PDD pulse, distance of PD event 

with respect to cable ends, width at half maximum of the PDD 

and FR pulse provides little distinction when compared with 

noise signatures. Furthermore, some form of selection tool 

needs to be deployed in order to extract the features.  

 
Fig. 4. Imperfect PD field measurements, (a) Positive DC offset, (b) Negative 

DC offset. 

 Examples of other imperfect field measurements can be seen 

in Fig. 4, the zero-crossings of the PDD and FR pulses are 

dotted in red. Plotted on the left in Fig. 4a, positive non-constant 

offset caused the pulse to not have any zero-crossings; and on 

the right in Fig. 4b with a negative offset, zero-crossings which 

are not at the knee-point of the pulse. If not accounted for, these 

factors will have misleading influences during feature 

extracting calculations. In order to identify points of interest, it 

is clear that a selection tool is imperative. Addressing once 

more the aforementioned conventional factors in the previous 

paragraph, given the different amplitudes received in each 

measurement, it is apparent that certain conventional factors are 

unable to provide discrimination between PD and noise. For 

instance, the magnitude of the PDD pulse in Fig. 4a is 

equivalent to the magnitude of the FR pulse in Fig. 4b – 

noticeably, consideration of such arbitrary values without 

contextual information do not offer any definitive insight.  

C.  Sliding Window Method 

 
Fig. 5. PD measurement in cable and subsequent normalised CS of different 

orders, (a) PD measurement in short cable, (b) CS order 1 of (a), (c) CS order 
2 of (a), (d) CS order 3 of (a), (e) PD measurement in long cable, (f) CS order 

1 of (e), (g) CS order 2 of (e), (h) CS order 3 of (e). 

As stated earlier, in order to extract features of interest, some 

form of selection tool is crucial. In this paper, application of 

sliding windows is proposed, the window is fixed in length and 

slides over the array while computing statistic of the data at 

TABLE I 

Common PD Features 

Variables Physical Description 

a0 Magnitude of PD direct 
a1 Magntitude of 1st reflection 

dnear Distance of PD event to cable near end 

dfar Distance of PD event to cable far end 
r0 Rise time of PDD pulse 

f0 Fall time of PDD pulse 

s0 Area of PDD pulse 

s1 Area of FR pulse 

w0 Width at half maximum of PDD pulse 

w1 Width at half maximum of FR pulse 

CS1 𝐶𝑆1(𝑖) =  
∑ 𝑥𝑖

𝑖
1

∑ 𝑥𝑖
𝑁
1

, cumulative summation order 1 

CS2 𝐶𝑆2(𝑖) =  
∑ 𝑥𝑖

2𝑖
1

∑ 𝑥𝑖
2𝑁

1
, cumulative summation order 2 

CS3 𝐶𝑆3(𝑖) =  
∑ 𝑥𝑖

3𝑖
1

∑ 𝑥𝑖
3𝑁

1
, cumulative summation order 3 
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each step. Shown on the top in Fig. 5a and e are windows of 

two different lengths – 50 and 100 samples long, in orange and 

green respectively; the differentiation is to accommodate 

differing pulse sizes. As shown in Fig. 5a, it can be seen for the 

shorter cable, a smaller window would register only the pulse 

of interest, whereas the larger window has the likelihood of 

recording additional unwanted signals; as shown in Fig. 5e, it 

can be seen that the converse holds true for longer cables. 

Compared to Fig. 5a, the FR pulse in Fig. 5e is much wider and 

requires a larger window; smaller window would not 

encapsulate the entire pulse. In this paper, the decision between 

using a smaller or a larger sliding window size depends on the 

number of samples in each waveform. For waveforms with less 

than 1000 samples a smaller window is used, whereas for 

waveforms with more than 1000 samples a larger window 

is used. 

Parameters of potential suitability from application of sliding 

windows are area of pulses and the CS of the waveforms in 

different orders – as these elements indirectly relate to the 

change in energy witnessed during a PD event. Shown in the 

preceding three waveforms of Fig. 5a and e are increasing 

orders of normalised CS for the respective waveforms. It can be 

observed from the first order in Fig. 5b and f, which indirectly 

relates to the integral of the waveform, that noise segments are 

relatively constant, whereas the PD pulse will cause an increase 

in area as discharges contain charge. It can be observed from 

the second and third orders in Fig. 5c, d, g and h, while certain 

noise perturbation also causes some fluctuation, there is a 

prominent change at the position of a discharge.  

For further identification of PD, the normalised CS of order 

2 and 3 is examined on the suggested location of the PDD pulse. 

For selection of the FR pulse, the integral of the waveform is 

examined on the suggested locations of FR positions.   

 It is evident that the success for feature extraction is highly 

dependent on the correctly chosen window size. While such a 

task is elementary for a human operator, it is challenging for 

conventional rule-based systems due to the convoluted nature 

of field measurements. Therefore, highly accurate NN is 

employed to propose sliding windows of interest in order to 

perform feature extraction for identification and localisation. 

D.  Neural Network Fundamentals 

Detailed description of various relevant NNs and working 

principles [12] [13] [14] has been written in previous works 

[15] [16]. In this paper, only two NNs will be used in different 

arrangements for the identification of PD and localisation of 

pulse position – convolutional neural network (CNN) and 

recurrent neural network with either long short-term memory 

(LSTM) cells or bidirectional long short-term memory 

(BILSTM) cells. For the identification of PD and noise, CNN 

and BILSTM is used in an ensemble as described in [9]. For the 

localisation of pulse position, the CNN and LSTM are used in 

a multi-output CRNN architecture. 

Shown in Fig. 6 is a CRNN architecture, where the input 

consists of several arbitrary channels, these channels are 

processed by two-dimension convolution window of fixed size. 

The sliding window moves in steps and outputs the convolution 

of the input data. Max pooling followed by average pooling is 

performed, to initially pick up the strongest features followed 

by smoothing out the values. The data is cascaded to LSTM 

cells, where the temporal dependencies are captured, and finally 

sent to two separate dense layers.  

 
Fig. 6. CRNN model architecture. 

For a multi-output classification network, two sets of fully-

connected dense layers need to be present for the respective 

outputs – in this case, the PDD and FR; each dense layer is 

responsible for localisation of the respective discharge position.  

In totality, the input of the multi-output CRNN proposed in 

this paper accepts an arbitrary number of inputs and outputs the 

location of the PDD and FR; the architecture of the CRNN will 

be detailed in the following chapter. 

E.  Data Set for Partial Discharge Identification and 

Localisation 

The PD localisation data set, as shown on the right of 

Table II, used for training the NN is a subset of the data set 

derived from [9] – detailed description for the original data set 

has been given therein. The original data set, which have all 

been manually labelled, is composed solely of offline MV cable 

measurements obtained from in-service cables. Data set 

from [9] was evenly distributed between PD and noise, while 

the localisation data set is only made up of PD. The data set size 

in the localisation data set is not half of the original data 

set – this is because further curation was done with the purpose 

of only using distinct and diverse PD signatures with a balanced 

bias for more advantageous training. The localisation data set 

was divided between training and validation samples by a 9:1 

ratio. As the training of a NN is a stochastic process, training 

and validation results were the average of ten iterations, with 

each iteration consisting of 50 epochs.  

Similar to [9], the NNs were then tested on individual case 

studies that are not included in the database. They were 

deliberately selected to illustrate a range of different conditions 

faced in the field for demonstration capability of the 

proposed method.  

III.  METHODOLOGY 

A.  Proposed Algorithm 

Shown in Fig. 7 is the formulation for the proposed 

algorithm of this paper. Development of the CRNN model is as 

shown above the dotted line of Fig. 7, with results of the 

designed model discussed subsequently in Subsection IV.B. 

TABLE II 

Data Set Size and Distribution 

 [9] Localisation 

Data Set Size 47852 16710 

PD vs Noise 50%-50% 100%-0% 
Max. Waveform Length 2560 samples 
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The localisation and identification process are as represented 

below the dotted line of Fig. 7. 

 
Fig. 7. Proposed algorithm flowchart, with according explanation in the 

respective subsections. 

The case study measurements are inputted to the algorithm 

of [9] which outputs predicted PD and noise. Predicted noise 

samples are discarded, while predicted PD – containing both 

true and false positives, are cascaded to the localisation and 

identification process; small amounts of unwanted FPs are 

resultant from the transfer learning process introduced in [9]. 

Normalised CS of orders 1, 2 and 3 are performed on each 

waveform and along with the original waveform are inputted to 

the multi-output CRNN. The convolutional section of the 

CRNN processes the input with the sliding window method, 

concatenating to the LSTM cells after, which then outputs the 

location of the PDD and FR pulses. Further identification of PD 

is effectuated on the predicted PD data through feature analysis 

at the PDD location – this sieves out FPs. Thereafter, selection 

of FR location is made through conditions imposed on features 

from multiple suggested FR locations. Succeeding subsection 

will explain the concept of the intended objectives for further 

PD localisation and identification.  

B.  Partial Discharge Direct and First Reflection Localisation 

 
Fig. 8. PDD and FR localisation, with feature extraction before NN analysis. 

The PD localisation algorithm used in this paper utilises 

feature extraction before and after NN analysis. The segment 

concerned with the PDD and FR pulse localisation is expanded 

in Fig. 8. The original signal, along with the normalised CS of 

orders 1, 2 and 3 are entered to the multi-output CRNN, as 

shown in Fig. 8 – the multiple waveforms are inputted to the 

proposed CRNN architecture as shown in Table III. 

Four inputs are entered into the CRNN and two-dimension 

convolution is performed through a sliding window, which 

moves in steps to process the data. Batch normalisation is 

performed to stablise the NN by re-centering and re-scaling, 

followed by max pooling, which reduces the dimensionality and 

focuses on key features. Average pooling merges all the four 

inputs to be processed by LSTM cells, which have long-term 

dependencies learning properties. Experiments between both 

LSTM and BILSTM cells have been made and it was 

discovered that while the latter is more computationally 

intensive, it is not advantageous. Dropout layer prevents 

overfitting through regularisation. Finally, the output is decided 

through a softmax function from the dense layer. The two dense 

layers are not connected together, but instead receives the input 

in parallel from the flatten layer as can be seen from 

Table III – the two different layers correspond to the 

localisation of the PDD and FR pulse positions respectively. 

Trainable parameters refer to parameters that optimises itself 

with the training data, whereas non-trainable parameters are 

parameters that will not be updated during the training, i.e., the 

moving mean and moving variance parameters within 

batch normalisation. 

For the algorithm in this paper, the output of the CRNN 

results in a singular PDD location and five FR locations. The 

PDD localisation has been found to be highly accurate and is 

accepted; it can also be used for further identification purposes 

to reduce the amount of FPs, as will be explained in the 

following subsection. Five FR locations are further analysed 

and compared with various features and conditions, as it has 

been found that a high percentage of the correct location is not 

from the largest valued suggestion of the softmax output but 

instead within the first five largest valued suggestions. The 

objective in this segment is to localise the PDD position and 

also five FR pulse positions. 

C.  Partial Discharge Identification 

 
Fig. 9. Analysis of PDD pulse features for increasing identification accuracy. 

The algorithm used in the initial PD analysis stages is 

explained thoroughly in [9], difficulty in PD and noise 

separation from field measurements are well described in the 

entry. In this paper, only the CNN and BILSTM NNs in 

Ensemble 2 will be used, as it had the best fully automated 

result. Introduction of transfer learning at the initial analysis 

stage in [9] was able to reduce the amount of FNs but at the 

expense of increased FP.  

TABLE III 

Topology of CRNN 

Layers Output shape Parameter  Connected to 

Input (4, 2560) 0  

Reshape_1 (4, 2560, 1) 0 Input 

Conv2d (4, 247, 128) 12928 Reshape_1 

Batch normalisation (4, 247, 128) 512 Conv2d 

Max pooling  (4, 123, 128) 0 Batch normalisation 

Average Pooling (1, 123, 128) 0 Max pooling 

Reshape_2 (123, 128) 0 Average Pooling 

LSTM_1 (123, 64) 49408 Reshape_2 

LSTM_2 (123, 64) 33024 LSTM_1 

Dropout (123, 64) 0 LSTM_2 

Flatten (7872) 0 Dropout 

Dense (PDD output) (256) 2015488 Flatten 

Dense (FR output) (256) 2015488 Flatten 

Total parameters: 4,126,848 

Trainable parameters: 4,126,592 

Non-trainable parameters: 256 
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The segment concerned with PD identification from Fig. 7 is 

expanded in Fig. 9. During the experimental stages of the 

localisation algorithm, it was discovered that the accuracy for 

locating the PDD pulse is generally close to 100%. This gave 

the confidence to rely on the predicted PDD location, and 

numerically observe stepwise changes for presence of discharge 

in the normalised CS orders 2 (which indirectly indicates 

energy) and 3, as explained earlier in Fig. 5. Waveforms with 

normalised CS orders 2 or 3 exceeding a threshold in the given 

sliding window location are accepted as PD; the converse 

holds true. The threshold was set at 0.25. 

The objective in this segment is to reduce FPs from the initial 

identification process through scrutiny of the PDD pulse – the 

output is predicted PDs with reduced FPs and the subsequent 

location of the PDD pulse. Result observation for this 

introduction focuses on the reduction of FPs. 

D.  First Reflection Selection 

 
Fig. 10. Analysis of FR pulse features with conditions to select position. 

Not all waveforms from the output of Fig. 8 are conveyed 

for analysis in Fig. 10 as some FPs are excluded due to the PD 

identification procedure performed in Fig. 9. Through the 

previous assay in Fig. 8 and Fig. 9, the resultant input to Fig. 10 

is a set of predicted PDs with reduced FPs, and a confirmed 

PDD location – which is important as it acts as a mainstay for 

conditional selection of the FR pulse. 

The features and conditions for selecting the correct FR 

location are as given below, 

1. Remove predictions in vicinity of PDD location. 

2. Remove predictions if polarity for PDD and FR peak 

value and area are dissimilar. 

3. Select largest area from remaining predictions. 

4. In the event there is no remaining predictions due to 

mismatched conditions, reinstate first original 

prediction. 

The validity and success of the imposed conditions is vastly 

contingent on the PDD pulse; which alludes that if the PDD 

localisation is incorrect, there will be a cascading effect. 

 
Fig. 11. Localisation of PD and FR pulses through CRNN, (a) Example of 

outputs, (b) Example of anomaly. 

An example of the proposed evaluation through the 

conditions is as shown in Fig. 11a. The CRNN indicates several 

probable FR discharge locations, it can be recognised that 

through the appropriate selection of features and imposed 

conditions to analyse, it is achievable to localise the correct FR 

pulse, which is slightly after 2 us.  

In principle, the aforementioned first three conditions should 

suffice. However, shown in Fig. 11b is an example of an 

anomaly, where due to the irregularities of field measurement, 

abnormalities occurred and required invoking condition 4. The 

PDD peak was 37.8 units in amplitude, whereas the absolute 

largest FR value within the sliding window was not 3.8 units in 

amplitude at the peak of the FR pulse, but is -4.2 units in 

amplitude at the left knee-point of the pulse, due to a mild offset 

of the waveform – this resulted in a positive area but a negative 

peak value, violating condition 2 when comparing with the 

PDD pulse. In this rare situation (four waveforms within all the 

case studies), selection of the original prediction will be made.   

The objective in this segment is to select a FR pulse 

location – to demonstrate the accuracy of our proposed 

algorithm, comparison of results between the algorithm and 

solely the multi-output CRNN will be made. 

E.  Data Processing 

Given a limited data set, data augmentation is performed to 

increase the amount of data through modifying existing copies. 

For the context of our data structure and principle, reversing of 

the waveform polarity is the only applicable transformation.  

As the input to the NN must be similar, waveforms are 

commonly extended using various approaches – zero, repeated 

or mean padding. For the context of PD measurements, 

zero-padding is the only applicable modification. 

 
Fig. 12. Normalisation of waveform, (a) Positive offset, (b) Negative Offset. 

 Explained in earlier sections, field tests are susceptible to 

erratic conditions resulting in unpredictable measurements. 

Normalisation of the waveform is required due to compounding 

effect it causes otherwise during feature extraction; in this 

paper, the offset is compensated through the mean value of the 

first ten samples. As shown in Fig. 12a, the positive offset in 

Fig. 4a is reduced, and shown in Fig. 12b, the negative offset in 

Fig. 4b is neutralised. Noticeable in both plots from Fig. 12, this 

compensation is possible even for non-constant gain values and 

presents a good approximation.  

In the context of feature extraction, as shown previously in 

Fig. 5a, for a short cable, if a larger sliding window is used, 

excessive considerations are made, as shown in Fig. 5e, for a 

long cable, if a smaller sliding window is used, incomplete 

capture of the pulse is made – it can be understood that 

consideration of the wrong sliding window length will result in 

the incorrect misinterpretation for the points of interest. 
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IV.  EXPERIMENTAL RESULTS 

A.  Case Study 

The 7 cable case studies will be described next, with the 

x-axis of the plots in samples instead of time, for correlation to 

the length of the sliding window – orange windows are 50 

samples long, whilst green windows are 100 samples long; 

waveforms lesser than 1000 samples use a smaller window, 

whilst waveforms greater than 1000 samples use a larger one. 

The description for presentation is as follows – amount of total 

recording, distribution between PD and noise, number of 

discharge spots on the cable, length of samples in the TRPD 

waveforms, selected size of sliding window, location for end of 

cable, information on the FR location, and a characterisation of 

the case study. As mentioned earlier, the 7 case studies 

constitute of in-service cables taken offline and tested at various 

voltage levels, selection of the cables were deliberate to 

comprehensively delineate the difficulties encountered in field 

testing. The compilation consists of short and long cables, 

between two to four pulses, which were besmirched with 

fluctuating and irregular noise patterns. All the files have been 

manually labelled to distinguish between PD and noise – within 

each PD waveform manual labelling has also been performed 

for the location of the PDD and FR pulse; this is drawn 

accordingly on the plots with sliding window of the appropriate 

size. 

 
Fig. 13. Cable 1, uncomplicated three-pulse measurement from short cable, 
(a) First discharge location before sample no. 300, (b) Second discharge 

location after sample no. 300. 

Cable 1 had 387 recordings, composed of 385 PD and 2 

noise waveforms, had 2 discharge spots, recorded waveforms 

were 659 samples long as shown in Fig. 13. As shown on the 

plot, window of 50 samples long would be more suitable to 

contain the pulse instead of a larger window; the end of the 

cable is as denoted with the dotted vertical line. The first 

discharge spot can be seen from Fig. 13a positioned before 

sample no. 300, and the second can be seen from Fig. 13b 

positioned after sample no. 300. This is a typical three-pulse 

measurement and is uncomplicated as the signal-to-noise 

(SNR) ratio for the FR pulse was large. 

Cable 2 had 407 recordings, composed of 277 PD and 130 

noise waveforms, had 3 discharge spots, recorded waveforms 

were 1045 samples long as shown in Fig. 14, with a sliding 

window of 100 samples long being used; the end of the cable is 

as denoted with the dotted vertical line. Due to the close 

proximity of the 3 discharge spots, the discharge location is 

denoted on the plots in Fig. 14 for demarcation – the first 

discharge has the peak centered approximately at sample 

no. 555, as shown in Fig. 14a and c, the second and third 

discharge is around sample no. 496 and 634, as shown in Fig. 

14b and d respectively.  This is a three-pulse measurement for 

a longer cable, with the FR attenuated and dispersed. The FR 

pulse is much smaller in amplitude compared to the PDD pulse 

and the measurement contains high frequency noise. 

 
Fig. 14. Cable 2, three-pulse measurement from long cable, (a) and (c) First 

discharge location at approximately sample no. 555, (b) Second discharge 

location at sample no. 496, (d) Third discharge location at sample no. 635. 

 
Fig. 15. Cable 3, two-pulse measurement from short cable, (a) Correctly 
triggered recording, (b) Incorrect triggered recording result in excessive pre-

trigger measurement. 

Cable 3 had 228 recordings, composed of 173 PD and 55 

noise waveforms, had 1 discharge spot, recorded waveforms 

were 470 samples long as shown in Fig. 15, with a sliding 

window of 50 samples long used here; the end of the cable is as 

denoted with the dotted vertical line. This is a discharge located 

on the far end of the cable, evident firstly from the closeness 

between the two pulses, and also through the increase in pulse 

width – indicative of dispersion as the pulse travels along the 

cable. This is a two-pulse measurement, with a large FR pulse, 

and consisted of low and high frequency noise. The 

measurement also suffered from occasional wrong triggering, 

with excessive pre-trigger measurements, which caused the 

PDD pulse to be shifted later in samples to an uncommon 

position – this unusual PDD position is a good assessment to 

validate the generalisation behaviour of the CRNN, to see if the 

NN is able to recognise an unexpected PDD position. 

 
Fig. 16. Cable 4, two-pulse measurement from long cable, (a) and (c) First 

discharge location, (b) and (d) Second discharge location. 

Cable 4 had 551 recordings, composed of 78 PD and 473 

noise waveforms, had 2 discharge spots, recorded waveforms 

were 2147 samples long as shown in Fig. 16, with a sliding 
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window of 100 samples long being used; the end of the cable is 

as denoted with the dotted vertical line. As shown in Fig. 16a 

for the first discharge location, with relatively no noise 

disturbance, it is clear that the attenuated FR pulse poses some 

challenge in recognition. In Fig. 16c, with increased presence 

of noise disturbance, the FR pulse is almost indistinguishable 

amidst the larger surrounding interference. Similar sequence of 

events is observed for the second discharge location with Fig. 

16b and d; with Fig. 16d almost unrecognisable when 

superimposed by an external noise influence. This is a two-

pulse measurement from a long cable, and a complicated file as 

there is poor SNR; it is a file of interest for analysis. 

 
Fig. 17. Cable 5, two-pulse noisy measurement from short cable, (a) External 
noise larger than PD signal, (b) Excessive pre-trigger and large external noise, 

(c) Slight time-shifted recording, (d) Multiple fused discharges. 

Cable 5 had 304 recording, composed of 113 PD and 191 

noise waveforms, had 1 discharge spot, recorded waveforms 

were 740 samples long as shown in Fig. 17, with a sliding 

window of 50 samples long being used; the end of the cable is 

as denoted with the dotted vertical line. Shown in Fig. 17a to d, 

it can be observed that the PDD pulse does not keep to a regular 

position, but instead is traversing along the measurement due to 

erroneous triggering of the recording. Evident in Fig. 17a to c, 

the measurement is polluted with repetitive noise of amplitudes 

larger than the PD pulses; in Fig. 17a some noise oscillations 

bear resemblance to PD signatures. Occasionally, as plotted in 

Fig. 17d, there are discharge pulses fused together – an 

infrequent albeit noteworthy manifestation. Similar to Cable 3, 

this unusual roving PDD pulse is a good assessment of the 

CRNN generalisation behaviour. This is a two-pulse 

measurement in a short cable with large external noise 

disturbance; a complicated file which is of interest for analysis. 

 
Fig. 18. Cable 6, two-pulse noisy measurement from long cable, (a) to (c) 

Examples of 3 different discharge locations, (d) Similar discharge location 

compared to (b) but shifted in time. 

Cable 6 has 193 recording, composed of 177 PD and 16 

noise waveforms, had 5 discharge spots, recorded waveforms 

were 1854 samples long as shown in Fig. 18, with a sliding 

window of 100 samples long being used; the end of the cable is 

as denoted with the dotted vertical line. Shown in Fig. 18a to c 

are 3 examples of the discharge locations; Fig. 18d is the same 

discharge location as Fig. 18b, but shifted in samples due to an 

erroneous trigger on the large noise spike before the PDD pulse. 

Comparable to Cable 4 and 5, this measurement is also polluted 

with repetitive noise of amplitudes larger than the FR pulse, and 

the FR pulse greatly attenuated and almost unrecognisable. This 

is a two-pulse measurement in a long cable with large external 

noise disturbance, and a complicated file which is of interest for 

analysis. 

 
Fig. 19. Cable 7, four-pulse measurement, (a) First discharge location, (b) 

Second discharge location. 

Cable 7 has 239 recording, composed of 217 PD and 22 

noise waveforms, had 2 discharge spots, recorded waveforms 

were 228 samples long as shown in Fig. 19, with a sliding 

window of 50 samples long being used; the end of the cable is 

as denoted with the dotted vertical line. This is an unusual four-

pulse measurement, caused by incorrect input cable length 

value during initial testing stage, resulting in excessive 

recording. The measurement contains a non-constant offset as 

shown in Fig. 19b, which presents difficulties in conventional 

interpretation. Shown in Fig. 19a is the first discharge location 

and in Fig. 19b is the second discharge location. Given known 

details about end of the cable it is presumed the source of the 

discharge for Fig. 19b to be close to the terminations. This file 

is of interest for analysis. 

A summary of the case studies is as described in Table IV. 

As illustrated, the selection is considerable and extensive, it 

contained cables of short and long lengths, with small and large 

amounts of noise, and made up of two, three and four pulses. 

While the goal of the algorithm is to generalise well to unseen 

data, it is neither possible nor the purpose of the paper to present 

an exhaustive demonstration. Instead, common and unique 

measurements are shown, with multiple discharge locations and 

cable lengths, to expound the versatility of the algorithm 

performance. 

TABLE IV 

Case Study Summary.  

Cable Recordings 
Discharge 

Spots 

Sample 

Length 

Sliding 

Window Size 

1 387 2 659 50 

2 407 3 1045 100 

3 228 1 470 50 

4 551 2 2147 100 

5 304 1 740 50 

6 193 5 1854 100 

7 239 2 228 50 
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B.  Training and Validation Accuracy 

 
Fig. 20. Training and validation accuracy of PDD and FR pulses. 

Shown in the Fig. 20 is the training and validation accuracy 

of the CRNN for both the PDD and FR pulse. This is the result 

for 10 iterations of 50 epochs. It can be seen that the stability of 

the results is reached by 40 epochs and therefore 50 epoch is 

sufficient. The validation accuracy of the PDD is slightly above 

95%, while the FR is at approximately 90%. However, of 

importance is the performance of the NNs on unseen data. 

C.  Partial Discharge Identification 

Shown in Table V is the PD identification result before and 

after proposed feature consideration on the PDD pulse – the 

intention is to address the PD identification improvement 

between [9] against the proposed method of Section III.B and 

Section III.C. For each respective case study, results before are 

on the top row and results after are on the bottom row. Accuracy 

(Acc), precision (Pre) and recall (Rec) are the standard 

statistical evaluation parameters derived from the confusion 

matrix values – true positive (TP), true negative (TN), FP and 

FN; these values are written to visibly portray the 

improvements.  

As mentioned earlier, application of transfer learning in [9] 

has the advantage of increasing the accuracy and recall at the 

expense of reducing the precision – increase in FPs. Through 

the review on the CS of either the second or third order, it is 

propounded that the FPs can be reduced. Observation is made 

for the decrement in FPs, negative implication of unwanted 

increase in FNs, and overall accuracy performance. 

Shown for Cables 2, 3, 4, 5, and 7, deliberation of the 

features generated an overall reduction of the FPs, as 

highlighted in dark grey, and enhanced the accuracy and 

precision scores – all identification accuracies are greater than 

92%. Cable 1 was not affected by the procedure, whereas a 

slight increase in FNs for Cables 5 and 6 are visible as 

highlighted in light grey. Although Cable 5 had an increase in 

FN, the accuracy was not affected as the improvement 

was greater.  

Shown earlier in Fig. 5 are two waveforms, which contained 

visible change in amplitude at suggested PDD location, the 

changes corresponded to locations where there were discharges. 

Shown here in Fig. 21a and e are noise waveforms but were 

both wrongly identified as PD by the analysis from [9].  

 
Fig. 21. FP waveforms in (a) and (e), Normalised CS order 2 and 3 in (b), (c), 

(f) and (g), DWT plot in (d) and (h). 

The suggested PDD position is as given, and both contained 

a change in amplitude in normalised CS order 2 and 3 within 

the frame. Shown on Fig. 21a is a noise measurement from 

Cable 2, from a theoretical point of view, it would be difficult 

to say this is a PD; performing manual assessment via discrete 

wavelet transform (DWT) [17] as shown in Fig. 21d with 

wavelet Daubechies 16 at a threshold of four decomposition 

levels do not reproduce any palpable content. As the normalised 

CS order 2 and 3 exceeded the threshold of 0.25, as shown in 

Fig. 21b and c, this waveform remained mistakenly identified 

as PD after both the analysis from [9] and feature consideration 

on the PDD pulse – for any methodology it is expected that 

there will be outliers to the results. Shown on Fig. 21e is a noise 

measurement from Cable 5, whilst it comprised of questionable 

peaks and troughs, there are no absolute factors that would 

confidently allow an operator to affirm this waveform as a PD. 

Given the complexity of the waveform, performing DWT with 

the same wavelet as before with similar four decomposition 

levels on the waveform do not show any prominent PD pulses 

as plotted in Fig. 21h. As neither the normalised CS order 2 or 

3, as shown in Fig. 21f and g, exceeded the threshold of 0.25, 

whilst the waveform was mistakenly identified as PD during the 

analysis from [9], feature consideration on the PDD pulse 

successfully corrected the FP to a TN.  

Overall performance of the proposed enhancement is 

notable – in context of the number of reduced FPs and increased 

accuracy and precision scores; only Cable 6 suffered slightly 

in performance. 

TABLE V 

PD Identification Results Before and After Feature Consideration. 

Cable Acc (%) Pre (%) Rec (%) TP TN FP FN 

1 
98.97 100 98.96 381 2 0 4 

98.97 100 98.96 381 2 0 4 

2 
97.05 95.85 100 277 118 12 0 

98.28 97.54 100 277 123 7 0 

3 
86.84 87.43 96.53 167 31 24 6 

92.54 93.82 96.53 167 44 11 6 

4 
99.64 97.5 100 78 471 2 0 

100 100 100 78 473 0 0 

5 
90.46 80 99.12 112 163 28 1 

95.72 93.86 94.69 107 184 7 6 

6 
100 100 100 177 16 0 0 

97.41 100 97.18 172 16 0 5 

7 
95.4 95.58 99.54 216 12 10 1 

99.58 100 99.54 216 22 0 1 
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D.  Partial Discharge Localisation 

 
Fig. 22. Tolerance for localisation of PDD and FR pulses, (a) Short cable with 

sliding window 50 samples long, (b) Long cable with sliding window 100 

samples long. 

Shown in Fig. 22 is the tolerance for accepting the correct 

predicted PDD and FR position; the solid line box in both plots 

is the labelled pulse position, centered around the peak. The 

maximum tolerance for a short cable with sliding window 50 

samples long is +/- 20 samples, and for a long cable with sliding 

window 100 samples long is +/- 40 samples. Shown in Fig. 22a 

with the dotted box is an illustration of the tolerance at the 

maximum of +/-20 samples for both the PDD and FR pulse – it 

can be seen that the selected tolerance is not inordinate. 

Similarly for Fig. 22b with the dotted box is the illustration of 

the tolerance at the maximum of +/-40 samples; it can be seen 

that the increased tolerance for a longer cable is felicitous and 

not disproportionate. 

Shown in Table VI is the localisation accuracy addressing the 

improvement between the standalone CRNN against the 

complete algorithm, which includes the feature extraction and 

Section III.D heuristic – the purpose of the comparison is to 

exemplify the efficacy of the supplementary arithmetic. The 

accuracy scores are shown for the PDD and FR pulses, noise 

represents the amount of FPs that were cascaded wrongly to the 

localisation algorithm alongside the TPs; the localisation 

algorithm takes in all predicted PDs – this comprises of both 

TPs and FPs. Similar to Table V, for Table VI highlighted in 

dark grey is improvement, while light grey is deterioration. Of 

interest, as mentioned earlier during the description of the case 

studies, are Cables 4, 5, 6 and 7 due to the complicated and 

convoluted nature of disruptions in field measurements. 

It is evident from the PDD pulse results that the CRNN can 

localise the position on its own accord; this was expected as 

primarily the PDD pulse is distinctive enough and thus usually 

unmistakable even if polluted by noise disturbance. 

Localisation for TRPD pulses in cables has always been 

focused on the accuracy for recognising the FR pulse. For 

Cables 1, 2 and 3, during relatively uncomplicated 

measurements, the NN is competent to recognise the position 

unassisted as proven from the high accuracies. For the 

remaining complicated measurements, the NN is still able to 

accomplish exceptional results on Cables 5 and 7. From the 

introduction of supplementary features and imposed conditions, 

Cables 2, 4, 5, 6 and 7 displayed improvements. Considerable 

advancement was achieved for Cables 2, 4, 5 and 6, whereas 

Cable 7 had marginal improvement.  

For Cable 4, the conglomerate of an almost diminished FR 

pulse adjacent with noise spikes caused ineffective recognition. 

However, approximately 25% increase in accuracy was gained 

through the additional feature considerations. For Cable 5, the 

NN independently performed well against this measurement 

that contained multiple complications i.e., small PD amplitude, 

incorrect recordings, low signal to noise ratio; further 

refinement to the evaluation elevated the accuracy. Cable 6 was 

a longer cable with identical surrounding circumstances to 

Cable 5, using the additional feature considerations, almost 

15% increase in accuracy was acquired.  

Cables 1 and 3 did not show any improvement, with Cable 1 

decreasing slightly in FR localisation accuracy. 

Validation scores for PDD and FR pulses were initially at 

approximately 95% and 90% respectively. The NN was capable 

of localising the PDD position autonomously, as proven with 

the accuracies consistently greater than 99%. Heuristics from 

the proposed algorithm was able to improve and generalised 

well on unseen data, with FR localisation accuracies between 

94% to 100%. As seen from the overall results of Table VI, it 

can be concluded that the multi-output CRNN is competent, and 

that additional features and conditions is efficacious. 

E.  Further Analysis I – Discharge Localisation in Complex 

Waveforms 

 
Fig. 23. Examples of complicated waveforms, (a) Cable 6, (b) Cable 5, 

(c) Cable 4, (d) Cable 5. 

Shown in Fig. 23 are four correctly localised measurements 

that present difficulty in conventional analysis – time-shifted 

PDD pulse, noise perturbations being larger in amplitude than 

PD pulses, diminutive FR pulse, noise events that appear 

similar to PD events, and general poor overall SNR. Predictions 

from the NN are given in sliding windows of the dimensions 

proposed earlier; the PDD and FR pulses are as circumscribed 

accordingly within each plot. As mentioned earlier, there is the 

TABLE VI 

FR Localisation Results Before and After Feature Consideration 

Cable PDD (%) FR (%) Noise 

Before After  

1 100 100 99.47 0 

2 100 97.47 99.64 7 
3 100 100 100 11 

4 100 71.79 96.15 0 

5 100 96.46 99.12 7 
6 99.43 81.35 94.35 0 

7 99.53 99.53 100 0 

 



 11 

possibility that the predictions for the FR pulse could fall in the 

position of the PDD and hence must be discarded – shown Fig. 

23b and d are such examples. 

For Fig. 23a, despite being hindered by noise that is larger in 

amplitude and earlier in time-axis, the NN is fully capable of 

localising both the PDD and FR position. Through the multiple 

FR predictions, it can be evidenced that with the proposed 

features and conditions, it is possible to select the right location 

even though the pulse is minuscule. 

For Fig. 23b, the waveforms contained a DC offset, which 

coupled to noise events caused excessive pre-trigger recording 

and magnitudes larger than the PD pulses. Despite these 

hinderances, the NN is still able to localise the PDD pulse. 

There were several suggestions of the FR location in the 

vicinity of the PDD pulse which were incorrect and excluded 

through condition 1. Thereafter, correct localisation of the 

discharge position was made, despite an unremarkable pulse 

signature.  

For Fig. 23c, the waveform has a prominent PDD pulse but 

consequently contained noise events that can easily be mistaken 

as FR pulses. Whilst the correct FR pulse is visible to the human 

eye, numerically the amplitude is comparable to the noise 

disturbances – this confusion can be seen through the multiple 

predictions made on the other positions containing spikes. 

Nonetheless, through the conditions imposed on the features, it 

is possible to select the correct FR location.  

For Fig. 23d, the received signal is weak in magnitude and 

corrupted with large amounts of noise. The FR pulse is 

positioned adjacent to a sizeable noise event, which makes for 

an interesting investigation. Incorrect FR suggestion at the 

vicinity of the PDD pulse is algorithmically removed through 

invoking condition 1, with the remaining predictions assessed 

by conditions 2 and 3. Here, the functionality of the proposed 

extracted features can be witnessed. Given the multiple 

selections, it is clear that the FR pulse before the 3 us mark will 

be chosen, as neither the large noise perturbation on the left nor 

the small crest on the right will be larger in area.  

All four waveforms were correctly localised, this 

unequivocally ascertains that proper consideration of the PD 

signature properties will enable correct recognition. 

F.  Further Analysis II – Incorrect Localisation of PDD Pulse 

 
Fig. 24. Examples of incorrect localisation of PDD pulse position, (a) Cable 6, 

(b) Cable 7. 

Shown in Fig. 24a and b are incorrect localisation of the PDD 

pulse position. In general, as seen from the accuracy of the 

algorithm, such occurrences are rare due to the inherent highly 

accurate PDD pulse localisation. In Fig. 24a, the recording was 

wrongly triggered on the noise spike denoted T, which had a 

positive peak of slightly over 50 units – this recorded an 

incomplete PDD pulse; there is also an offset seen constantly 

throughout the waveform of nearly 20 units large. The five FR 

outputs from the NN in Fig. 24a did not contain the correct 

position of the FR pulse, so imposed conditions on the features 

will not yield consequential results – this FR pulse localisation 

was incorrect. In Fig. 24b, the NN predicted the wrong PDD 

position, placing it on the FR location; this then nullified all the 

suggested FR positions through condition 2. Invoking condition 

4, the first suggestion of the FR is reinstated, which was the 

correct location of the FR pulse; the PDD pulse was 

wrongly localised. 

V.  CONCLUSION 

This paper investigates into identification and localisation of 

TRPD measurements from in-service MV cables and proposes 

an algorithm that iterates between feature extraction and NN. 

The presented methodology is able to identify and localise 

highly challenging PD waveforms found in field measurements. 

Comprehensive demonstration was performed on seven case 

studies, which were of different lengths and complexities. 

Success of the algorithm builds on highly accurate NNs to 

further enhance the generalisation capabilities on unseen data 

through deliberation of several relevant PD characteristics.  

In consideration of the attenuation and dispersion the PD 

pulse suffers when travelling along the cable, appropriately 

sized sliding windows are essential for localisation of discharge 

positions. Inadequately sized windows do not allow full capture 

of the pulse, and on the other hand, excessively framed 

windows capture undue information. Therefore, when incorrect 

window size is applied, subsequent feature extraction do not 

produce meaningful results.  

Selective conventional PD features has found to be 

effective – mainly parameters which are resilient to noise; a 

common predicament in field measurements. Normalised CS of 

different orders have found to be useful in both training of NNs 

and assisting evaluation thereafter. Both normalised CS order 1 

and 2 are effective information as it indirectly relates to the 

charge and energy of a PD pulse. 

For PD identification, through the combination of both 

feature extraction and NNs, identification accuracy and 

precision of the model have been increased, evaluation 

parameters which were diminished slightly by transfer learning 

from [9]. For PD localisation, the polarity and peak of the FR 

pulse value, along with the approximated area through integral 

of the data within the sliding window provided valuable 

navigation to the correct FR position, improving results 

compared to a standalone CRNN. 

 Through the proposed methodology it has been 

substantiated that identification and localisation of PDs are 

achievable and undeterred in noisy circumstances. The 

proposed algorithm exemplifies a logical, iterative, and 

uncomplicated DL approach towards identification and 

localisation of PD pulses. This approach is considered to be an 

instrumental and effective contribution to the topic of 

automated evaluation for TRPD in offline MV cable tests. With 

the results in this paper showing promise, future work will 

revolve around verifying the effectiveness in real world 

deployment. 
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