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Abstract

The increasing complexity of software systems has led to the development of so-
phisticated formal methodologies for verifying and correcting data and programs. In
general, establishing whether a program behaves correctly w.r.t. the original program-
mer’s intention or checking the consistency and the correctness of a large set of data
are not trivial tasks as witnessed by many case studies which occur in the literature.

In this dissertation, we face two challenging problems of verification and correc-
tion. Specifically, the verification and correction of declarative programs, and the
verification and correction of Web sites (i.e. large collections of semistructured data).

Firstly, we propose a general correction scheme for automatically correcting declar-
ative, rule-based programs which exploits a combination of bottom-up as well as top-
down inductive learning techniques. Our hybrid methodology is able to infer program
corrections that are hard, or even impossible, to obtain with a simpler, automatic
top-down or bottom-up learner. Moreover, the scheme will be also particularized to
some well-known declarative programming paradigm: that is, the functional logic and
the functional programming paradigm.

Secondly, we formalize a framework for the automated verification of Web sites
which can be used to specify integrity conditions for a given Web site, and then au-
tomatically check whether these conditions are fulfilled. We provide a rule-based,
formal specification language which allows us to define syntactic as well as seman-
tic properties of the Web site. Then, we formalize a verification technique which
detects both incorrect/forbidden patterns as well as lack of information, that is, in-
complete/missing Web pages. Useful information is gathered during the verification
process which can be used to repair the Web site. So, after a verification phase, one
can semi-automatically infer some possible corrections in order to fix the Web site.
The methodology is based on a novel rewriting-like technique, called partial rewriting,
in which the traditional pattern matching mechanism is replaced by a more suitable
technique (tree simulation) for recognizing patterns inside semistructured documents.





Sommario

La crescente complessità dei sistemi software ha reso necessario lo sviluppo di sofisti-
cate metodologie formali per la verifica e la correzione di dati e programmi. In gen-
erale, stabilire se un programma si comporta correttamente rispetto alle intenzioni
originali del programmatore o controllare la consistenza e la correttezza di grandi
insiemi di dati non sono compiti triviali, come è testimoniato dai numerosi casi di
studio presenti in letteratura.

In questa tesi affrontiamo due interessanti problemi di verifica e correzione: la
verifica e correzione di programmi dichiarativi e la verifica e correzione di siti Web
(i.e. collezioni di dati semistrutturati).

In primo luogo, proponiamo uno schema generale per la correzione automatica
di programmi dichiarativi rule-based, il quale sfrutta una combinazione di tecniche di
inductive learning sia top-down che bottom-up. La nostra metodologia ibrida è in grado
di inferire correzioni particolarmente ardue, o addirittura impossibili, da ottenere
con un più semplice sistema di learning puramente top-down o bottom-up. Inoltre,
istanzieremo lo schema a due ben noti paradigmi di programmazione dichiarativa: il
paradigma logico funzionale e il paradigma funzionale.

In secondo luogo, formalizzeremo un framework per la verifica automatica di siti
Web che può essere utilizzato per specificare alcune condizioni di integrità di un sito,
le quali successivamente possono essere controllate automaticamente. Forniremo un
linguaggio di specifica rule-based che ci permette di definire proprietà sia sintattiche
che semantiche di un sito Web. Quindi, formalizzeremo una tecnica di verifica in grado
di riconoscere modelli scorretti/vietati come pure pagine Web incomplete/mancanti.
Il processo di verifica permette di raccogliere informazioni che possono essere utili per
la riparazione del sito Web. Pertanto, al termine di tale fase, è possibile inferire alcune
correzioni in maniera semi-automatica. La nostra metodologia si basa su una nuova
tecnica rewriting-like, chiamata partial rewriting, la quale sostituisce il tradizionale
meccanismo di pattern matching con una tecnica di matching più conveniente (tree
simulation) che facilita il riconoscimento di modelli in un documento semistrutturato.





Resumen

La creciente complejidad de los sistemas software ha conducido al desarrollo de me-
todoloǵıas formales para la verificación y la corrección de datos y programas. Gen-
eralmente, establecer si un programa se comporta según las intenciones originales
del programador o controlar la consistencia y la corrección de grandes conjuntos de
datos no son tareas triviales, como atestiguan los numerosos casos de estudio que
encontramos en la bibliograf́ıa.

En esta tesis, abordamos dos problemas abiertos de verificación y corrección. En
concreto, la verificación y corrección de programas declarativos y la verificación y
corrección de sitios Web (es decir, conjuntos de datos semiestructurados).

En primer lugar, se ha definido un esquema general para la corrección automática
de programas declarativos basados en reglas, que explota una combinación de técnicas
de aprendizaje inductivo top-down y bottom-up. Nuestra metodoloǵıa h́ıbrida es ca-
paz de inferir correcciones que son arduas, o incluso imposibles, de conseguir con
un sistema más simple de aprendizaje automático puramente top-down o bottom-up.
Además se ha particularizado el esquema general a dos paradigmas de programación
declarativa bien conocidos: el paradigma lógico funcional y el paradigma funcional.

En segundo lugar, se ha formalizado un marco para la verificación automática de
sitios Web, que se puede usar para especificar condiciones de integridad sobre ellos,
y luego comprobar automáticamente si estas condiciones se satisfacen. Por un lado,
hemos definido un lenguaje de especificación basado en reglas, que permite definir
propiedades tanto sintácticas como semánticas de un sitio Web. Por otro lado, se ha
formalizado una técnica de verificación que detecta patrones incorrectos/prohibidos
y carencia de información, es decir pàginas Web incompletas o ausentes. Durante
el proceso de verificación, se recoge información útil, que puede ser usada para la
reparación del portal. Por lo tanto, después de la fase de verificación, también es
posible inferir algunas posibles correcciones para arreglar de manera semi-automática
el sitio Web erróneo. Nuestra metodoloǵıa se fundamenta en una nueva técnica basada
en reescritura (partial rewriting), en la cual se remplaza el tradicional mecanismo de
pattern matching con una técnica de ajuste más conveniente (tree simulation) que
facilita el reconocimiento de patrones en un documento semiestructurado.





Resum

La creixent complexitat dels sistemes software ha condüıt al desenvolupament de
metodologies formals per a la verificació i la correcció de dates y programes. Gen-
eralment, establir si un programa es comporta seguint les intencions originals del
programador o controlar la consistència i la correcció de grans conjunts de dates, no
son tarees trivials, com manifesten els numerosos casos d’estudio que trobem en la
bibliografia.

En aquesta tesi, abordem dos problemes oberts de verificació i correcció. En
concret, la verificació i correcció de programes declaratius i la verificació i correcció
de Web site (es decir, conjunts de dates semiestructurats).

En primer lloc, s’ha definit un esquema general per la correcció automàtica de
programes declaratius basats en regles, que exploten una combinació de técniques
de aprenentatge inductiu top-down i bottom-up. La nostra metodologia h́ıbrida pot
inferir correccions que son àrdues, o inclòs imposibles, de aconseguir con un sistema
més simple d’aprenentatge automàtic purament top-down o bottom-up. A més més
s’ha particularitzat l’esquema general a dos paradigmes de programació declarativa
ben coneguts: el paradigma lògic funcional i el paradigma funcional.

En segon lloc, s’ha formalitzat un marc per la verificació automàtica de Web
sites, que es pot utilitzar per la especificació de condicions de integritat d’ells, i de-
sprés comprovar automàticament si estes condicions es satisfeixen. D’una banda,
hem definit un llenguatge d’especificació basat en regles, que permeteixen la definició
de propietats sintáctiques i semàntiques de un Web site. De l’altra, s’ha formal-
itzat una tècnica de verificació que detecta patrons incorrectes/prohibits i carència
d’informació, per eixemple pàgines Web incompletes o mancants. Durant el procés
de verificació, es recol·lecteix l’informació útil, que pot ser utiltzata per la reparació
del Web site. Per tant, després de la fase de verificació, també se poden inferir al-
gunes posibles correccions per a arranjar semi-automàticament el Web site erroni. La
nostra metodologia descansa en una nova tècnica basata en rewriting, en la qual es
sustitueix el tradicional mecanisme de pattern matching con una tècnica de ajustatge
més convenient (tree simulation) que simplifica el reconeixement de patrons en un
document semiestructurat.
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Introduction

Data and programs are the basic ingredients of software systems. In order to solve
a problem, we need programs which behave in a correct way w.r.t. the programmer’s
intention and which operate on correct sets of data. This consideration has lead sev-
eral researchers to tackle the problem of verifying and correcting data and programs.
In this dissertation, we will try to give a little contribution to this area, developing
methodologies for automatically verifying and correcting programs, specifically func-
tional and functional logic programs. Moreover, we will also focus on the verification
of properties, such as integrity constraints, on large collections of data. We will for-
malize a high level language to detect and repair possible data inconsistencies within
Web sites (i.e sets of semistructured data, e.g., XML/HTML documents).

Verifying and correcting programs

Program debugging has always played an important role in software development and
much effort has been spent in formalising diagnosis and bug-locating techniques. As
a matter of fact, every programming language is nowadays equipped with debugging
facilities which can aid users to develop error-free programs at different levels of
automation. Moreover, these tools permit to avoid laborious, time-expensive proof-
reading sessions.

Especially in the context of declarative programming (functional, logic and func-
tional logic programming) a lot of diagnosis methodologies have been successfully
developed in the last thirty years, giving rise to a research area called declarative
diagnosis, whose main aim consists in trying to automate the debugging process of
declarative programs as much as possible. The diagnosis problem has been addressed
following a plethora of distinct approaches. However, a rough taxonomy of the de-
bugging methodologies might be given as follows.

• Tracing methodologies;

• Oracle-guided methodologies;

• Bottom-up, immediate consequence TR-based methodologies.

The taxonomy mentioned above provides an increasing order of automation in the
debugging process.

Roughly speaking, tracers allow us to visualize step-by-step the program execution,
which might be useful in order to locate bugs, even if —due to the complexity of the
operational semantics of declarative programs— the information obtained by tracing
is often difficult to understand. Some declarative languages (e.g. ALF [61], Babel
[84], Curry [64], and Haskell [106]) are equipped with tracing tools which are based
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on suitable extended box models which help to display the run-time execution [63, 21].
Unfortunately, these diagnosis systems do not enforce program correctness adequately
as they do not provide means for finding nor repairing bugs in the source code w.r.t.
the intended program semantics that a programmer has in mind. So, in this case
the diagnosis process is performed manually by analyzing data extrapolated from the
execution of the program.

Oracle-guided methodologies work in a semi-automatic fashion, the analysis is
carried out by means of an oracle (typically the user) being supposed to endow the
debugger with error symptoms, as well as to correctly answer questions driven by
proof trees aimed at locating the actual source of errors. The first approach of this
kind was proposed by Shapiro in his enlightening paper [102], in which is explained
an oracle-guided method to debug logic programs. This approach has had several
refinements and was implemented not only for the logic programming paradigm. For
instance, the functional logic programming language NUE-Prolog is endowed with a
declarative debugger [88] which works in the style proposed by Shapiro [102] and a
similar declarative debugger for the functional logic language Escher is proposed in
[77]. Also for the functional programming paradigm, diagnosis systems have been
developed, which are very close to the one proposed by Shapiro (e.g. [100, 88, 91]).

Finally, TR-based methodologies provide fully automatic methods for the declar-
ative diagnosis, which are able to find out bugs for a given faulty program w.r.t. an
intended semantics which is generally expressed by means of some kind of formal
specification. They are based on the immediate consequence operator that is typi-
cally used to define program semantics in a fixpoint style. In the context of pure logic
programming, [39] has defined a declarative framework for debugging which extends
the methodology in [55, 102] to diagnosis w.r.t. computed answers. The framework
does not require the determination of the symptoms in advance and is goal inde-
pendent –it is driven by a set of most general atomic goals. The immediate conse-
quences operator TR allows to identify program bugs and has the advantage of giving
a symptom–independent diagnosis method [39, 38]. In [13], a declarative diagnosis
method w.r.t. computed answers has been developed which generalizes the ideas of
[39] to the diagnosis of functional logic programs. The conditions which have been im-
posed on programs allow to define a framework for declarative debugging which works
for programs with an eager (call–by–value) as well as lazy (call–by–name) semantics.
A similar framework which exploits information given by an immediate consequence
operator and which works for functional programs has been devised in [12].

Declarative diagnosis is only concerned with the localization of bugs in a faulty
program. However another interesting problem, which is strictly related to debugging,
is the (semi-)automated correction of detected errors. The problem can be formulated
as follows.

Let R be a wrong declarative program w.r.t. a given specification (which
models the programmer’s intentions) and A be a set of buggy rules which
has been found by means of some kind of debugging methodology. Then,
we aim at finding a set of new rules which can replace A in order to
produce a corrected version of R.
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Surprisingly, such problem has not been systematically addressed by computer
science researchers and this is witnessed by the lack of results in this area. In par-
ticular, to our knowledge there is no general framework which allows to integrate a
debugging phase with an automatic bug correction. Some work in this direction was
carried out by Shapiro in [102], nonetheless his method requires a strong interaction
between the debugging system and the user, who has to provide example evidences,
answering correctness questions, establishing equivalence classes among the rules, or
manually correcting the buggy code. Consequently this framework results neither
automatic nor easy to use. A more automatic approach to the correction of faulty
programs has been investigated in the context of concurrent logic programming. In
[2, 3], a framework for the diagnosis and the correction of Moded flat GHC pro-
grams [105] has been developed. This framework exploits strong mode/typing and
constraint analysis in order to locate bugs; then, symbols which are likely sources
of error are syntactically replaced by other program symbols, so that new slightly
different programs (mutations) are produced. Finally, mutations are newly checked
for correctness. This approach is essentially able to correct near misses (i.e wrong
variable/constant occurrences), no mistakes involving predicate or function symbols
can be repaired. So, the framework has a very limited correction power and, as a
further drawback, it is designed for a too much specialized programming language.

Verifying and correcting data

The explosive development of the Internet and related information and communication
technologies has brought into focus the problems of information overload: we live in an
information-saturated environment, in which the management of the data is becoming
a non trivial task.

In this scenario, the verification and the correction of the information assume a
crucial role, which cannot be ignored. In particular, the increasing complexity of Web
sites has turned the data verification problem into a challenging problem. As a matter
of fact, it is far simpler to discover inconsistent information on the Web than to find a
well-maintained site on the Internet. Web site design, construction and maintenance
are phases which should be “engineered” in order to deliver consistent and trustable
information.

In our opinion, systematic, formal approaches can bring many benefits to solve
these problematics giving support for automated Web site verification.

Although the management of Web sites has received significant attention in recent
years [31, 45, 53], few works address the semantic verification of Web sites. In [53],
a declarative verification algorithm is developed which checks a particular class of
integrity constraints concerning the Web site’s structure, but not the contents of a
given instance of the site. In [45], a methodology to verify some semantic constraints
concerning the Web site contents is proposed, which consists of using inference rules
and axioms of natural semantics. The framework xlinkit [48, 89] allows one to check
the consistency of distributed, heterogeneous documents as well as to fix the (possibly)
inconsistent information. The specification language is a restricted form of first order
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logic combined with Xpath expressions [108] where no functions are allowed. With
respect to the correctness of web applications, a symbolic model-checking approach
is formalized in [46] which constructs a finite-state model of the system in the model
checker input language, and then checks the considered properties which are expressed
in CTL logic. For a comprehensive survey about the general problem of checking
constraints between multiple documents, we refer to [51, 47, 34].

We believe that an approach to Web site specification and verification, which is
based on rewriting-like machinery can be fruitfully employed, since it can take advan-
tage of the reasoning capabilities which are typical of the declarative programming
world. Our idea is that term rewriting techniques can support in a natural way not
only intuitive, high level Web site specification, but also efficient Web site verification
techniques. As far as we know, rewriting-based techniques have not been explored
in the context of Web site verification to date. We only know of two rewriting-based
approaches for Web site processing, but they focus on transformation rather than
verification issues: a term rewriting implementation is provided in [75] for (a frag-
ment of) XSLT, the rule-based language designed by W3C for the transformation of
XML documents, whereas rewrite rules are used in [24] to perform HTML transforma-
tions with the aim of improving Web applications by cleaning up syntax, reorganizing
frames, or updating to new standards.

Contents of the thesis

This dissertation is divided in two parts. The former is mainly devoted to formalizing
and developing some program correction methodologies, while the latter deals with the
verification and the correction of Web sites, that is, collections of semistructured data
(e.g., XHTML/XML documents). In the following, we briefly describe the contents
of each part.

Part I: Automated Program Correction

This part presents some original methodologies for the automated correction of declar-
ative programs. We propose a general correction scheme for correcting programs
which exploits the inductive learning techniques. Inductive learning is concerned
with the task of learning programs from positive and negative examples, generally
in the form of ground evidences [87]. A challenging subfield of inductive learning is
known as inductive theory revision which is close to program debugging under the
competent programmer assumption of [102]. Actually, the relation between declar-
ative debugging and inductive inference [87] has been investigated since Shapiro’s
influential work. In [102], the initial program is assumed to be written with the inten-
tion of being correct and, if it is not correct, then a close variant of it is. There exist
several approaches to declarative diagnosis which may require ([102]) or not ([13]) an
interaction with the user.

The automatic search for a new rule in an induction process can be performed
either bottom-up (i.e. from an overly specific rule to a more general one) or top-
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down (i.e. from an overly general rule to a more specific one). In [67, 68, 57, 85, 86],
bottom–up frameworks for synthesizing correct programs in the logic and functional
logic paradigm are presented. These methods induce declarative programs from sets
of evidences (ground atoms, ground equations) which are respectively incorrect and
correct w.r.t. the pursued program. Their methodology, however, is not particularly
tailored for theory revision, and the uncontrolled application of the method produces
much speculation in our framework. There are some reasons to prefer the top-down,
or backward reasoning process to the bottom-up, or forward reasoning process [29].
On the one hand, it eliminates the need for navigating through all possible logical
consequences of the program. On the other hand, it integrates inductive reasoning
with the deductive process, so that the derived programs are guaranteed to be correct.
Unfortunately, it is known that the deductive process alone is inadequate for coming
up with the intended correction, and inductive generalization techniques are necessary
[44, 99].

Our methodology is based on the combination, in a single framework, of a di-
agnoser which identifies those parts of the code containing errors, together with an
inductive (as well as deductive) program learner which, once the bug has been lo-
cated in the program, tries to repair it starting from examples which are essentially
obtained as an outcome of the diagnoser. Thus, to fully profit from the advantages
of top-down as well as bottom-up synthesis, a hybrid approach is taken which is able
to infer program corrections that are hard, or even impossible, to obtain with a sim-
pler, automatic deductive learner. The scheme will also be particularized to some
well-known declarative programming paradigm: that is, the functional logic and the
functional programming paradigm. Moreover, in order to test its effectiveness and
practicability, the method has been implemented for the functional logic setting.

Part II: Web Site Verification

In this part, we formalize a framework for the automated verification of Web sites
which can be used to specify integrity conditions for a given Web site, and then auto-
matically check whether these conditions are fulfilled. First, we provide a rewriting-
based, formal specification language which allows us to define syntactic as well as
semantic properties of the Web site. Then, we formalize a verification technique
which detects both incorrect/forbidden patterns as well as lack of information, that
is, incomplete/missing Web pages, inside the Web site. Useful information is gathered
during the verification process which can be used to repair the Web site. So, after
a verification/debugging phase, one can also infer semi-automatically some possible
corrections in order to fix the Web site.

Our rule specification language does offer the expressiveness and computational
power of functions and is simpler than formalizations of XML schemata based on tree
automata often used in the literature such as, e.g. the regular expression types [71].

The methodology is based on a novel rewriting-based technique, called partial
rewriting, in which the traditional pattern matching mechanism is replaced by tree
simulation [66], which is a suitable technique for recognizing patterns inside semistruc-
tured documents. Besides, the framework has been implemented in the prototype
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Verdi (Verification and Rewriting for Debugging Internet sites) [11] —which is pub-
licly available— in order to test its effectiveness and efficiency.

Thesis overview

The thesis is organized as follows.
Chapter 1 presents a generic, multiparadigm correction scheme [4], which can

be instantiated to several declarative programming paradigms, e.g., the functional,
logic, and functional logic programming paradigm. It is based on a hybrid inductive
learning technique which can infer corrections starting from evidences of correct and
wrong computations.

In Chapter 2, we introduce the basic notions and terminologies which are used
throughout this dissertation.

In Chapter 3, we particularize the generic correction scheme of Chapter 1 to
the functional logic programming paradigm. Specifically, we provide an inductive
learning, example-guided correction methodology for eager as well as lazy functional
logic languages. Besides, an experimental evaluation of the proposed methodology is
presented. This chapter extends our previous work [6].

Chapter 4 describes an automated correction methodology for the correction of
first-order functional programs (i.e., term rewriting systems), which can be seen as
an instance of the scheme of Chapter 1. The method can be applied to a wide class of
term rewriting systems which can also be non-confluent. This chapter describes the
results we have presented in [7, 8].

In Chapter 5, we formalize a rewriting-like language for the specification of prop-
erties (e.g., integrity conditions) on Web sites and a verification technique which
exploits a rewriting technology in order to detect those properties which are not ful-
filled by a given input Web site. Our technique is able to detect incorrect as well as
missing information and to provide suggestions to fix the site. The chapter describes
the results we achieved in [10, 9]. The chapter also gives some information about the
VERDI system [11], which implements the verification framework.

Then, in Chapter 6, some conclusions are drawn.
Finally, Appendix A describes context sensitive rewriting and how to apply it in

order to prove the over-generality condition for the functional logic setting (see Chap-
ter 3). Appendix B includes the proofs of the technical results which are presented
in this thesis.
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1
A Multiparadigm Correction

Scheme

Declarative programming is supported both by functional and by logic programming.
However, each of these programming styles has different advantages w.r.t. practical
applications. Functional languages provide sophisticated abstraction facilities, module
systems and clean solutions for integrating I/O into declarative programming as well
as for efficient program execution. Logic languages allow for computing with partial
information and provide built-in search facilities which have strong applications for
knowledge-based systems and operations research. However, recent results show that
the advantages of these styles can be efficiently and usefully combined into a single
language. Modern functional logic languages offer features from both styles.

All these declarative paradigms are now very mature, and each of them has appli-
cations to several different fields. There exist programming environments for each of
these paradigms in order to assist the user in the process of design, development and
debugging. However, to our knowledge there is no general framework which allows
to integrate a debugging phase with an automatic correction of the bugs. We believe
that such an integration can be quite important and draw new techniques and useful
results for the process of synthesis of correct programs in all these paradigms.

Our goal: a generic, multiparadigm correction scheme

In this chapter, we outline a general correction scheme for synthesizing correct pro-
grams. Our methodology is based on the combination, in a single framework, of a
diagnoser which identifies those parts of the code which contain errors, together with
an inductive as well as deductive program learner which, once the bug has been lo-
cated in the program, tries to repair it starting from evidence examples which are
essentially obtained as an outcome of the diagnoser. Thus, to fully profit from the
advantages of top-down as well as bottom-up synthesis, a hybrid approach is taken
which is able to infer program corrections that are hard, if not at all impossible, to
obtain with a simpler, automatic deductive learner.

Our correction scheme can be applied to every declarative paradigm for which
declarative diagnosis methodologies as well as bottom-up and top-down inductive
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learning techniques driven by examples have been developed. In the next chapters,
we will see how it can be easily adapted in the case of functional logic and functional
programming paradigms.

Structure of the chapter

Section 1.1 remarks how to infer some useful information to guide the correction
process. In Section 1.2, we introduce the general problem of inductive learning and the
bottom-up and top-down inductive synthesis techniques. Finally, Section 1.3 describes
the generic, mutiparadigm scheme for the correction of declarative programs, which
defines a hybrid inductive learning technique.

1.1 Exploiting debugger outcomes

In order to detect bugs, declarative diagnosis tools produce a lot of auxiliary in-
formation which can be fruitfully collected for driving the synthesis and correction
processes. Particularly, they are able —as in the case of the functional logic debugger
Buggy[15]— to automatically find out incorrectness and incompleteness symptoms
which are responsible for bugs, that is, wrong computed values and missing values.
These data can be used as example evidences in inductive learning processes in order
to infer correct declarative programs as illustrated in Fig. 1.1. For instance the latest

Debugging of

specification I

program R w.r.t.

Synthesis of a correct program

by means of inductive learning

methodologies

Incorrect examples (E−)

Uncovered examples (E+)

Figure 1.1: Automated generation of incorrectness and incompleteness symptoms.

release of the debugger Buggy, which is available at

http://www.dsic.upv.es/users/elp/soft.html,
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is able to produce sets of uncovered (incorrect) equations, given a functional logic
program R and a specification I of the intended semantics (also expressed by a
functional logic program). Here we present an example.

Example 1.1.1 Consider the functional logic program

R = {sum(0, X)→ X, sum(s(X), Y )→ sum(X, Y ), double(X)→ sum(X, X)}

and the specification of the intended semantics

I = { sum(0, X)→ X, sum(s(X), Y )→ s(sum(X, Y )), double(0)→ 0,
double(s(X))→ s(s(double(X)))}.

By executing Buggy on program R and specification I, we discover that there exists
an incorrect rule. Besides, the final outcome produces the following sets of uncovered
and incorrect equations

E+ = { double(s3(0)) = s6(0), sum(s3(0), s(0)) = s4(0),
sum(s3(0), 0) = s3(0), sum(s2(0), 0) = s2(0),
sum(s2(0), s(0)) = s3(0),
sum(s(0), s(0)) = s2(0), sum(s(0), 0) = s(0),
double(0) = 0, double(s2(0)) = s4(0), double(s(0)) = s2(0)}

E− = { sum(s(0), s(0)) = s(0), sum(s(0), 0) = 0,
sum(s2(0), 0) = 0, sum(s2(0), s(0)) = s(0)
double(s(0)) = s(0)}.

1.2 Inductive learning

Inductive learning allows us to infer theories from evidences and to synthesize knowl-
edge from experience. Several approaches have been proposed in the literature and
different techniques have been developed for each declarative programming paradigm.
More formally, inductive learning allows us to solve the following problem. Consider

• a set of positive examples E+, which models the pursued behavior of the program
to be inferred;

• a set of negative examples E−, which models the unwanted behavior of the
program to be inferred;

• a background knowledge theory B, i.e. a program which expresses the informa-
tion we know a priori.

Then, the inductive learning goal is to synthesize a program R such that

• the positive examples are derivable in (or covered by) R∪ B,
in symbols, R∪ B ⊢ E+;
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• the negative examples are not derivable in (or covered by) R∪ B,
in symbols, R∪ B 6⊢ E−.

In order to synthesize the program R, we can follow a top-down as well as a
bottom-up approach.

The former concerns the refinement of an overly general program (that is, a pro-
gram that derives all the positive examples), in order to get a specialized version R
of the original program which does not cover any negative example and, still, covers
the positive examples. In logic programming, this has been done by means of spe-
cialization techniques such as those illustrated in Boström’s works [29, 30, 28]. These
methodologies transform the original program into a “purified” version by using rule
unfolding as well as rule deletion. An adaptation to functional and functional logic
programs will be presented in the next chapters.

The latter method simply starts from evidences and tries to infer programs by
using background theories and some kind of operator which reverses the concept of
deduction. For instance, in [87], Muggleton et al. discuss a bottom-up technique for
the induction of logic programs based on an inverse resolution operator which permits
to navigate among all the possible hypotheses of a given set of evidences (i.e., ground
atoms). A functional logic learner, which exploits the inversion of the narrowing
relation, has also been presented in [67, 68, 57] and it will be described in detail later
on.

1.3 Correction scheme

In this section, we describe a hybrid correction scheme [4], which is based on the
top-down and the bottom-up synthesis techniques. Our methodology is general and
it can be applied to each declarative programming paradigm, since bottom-up as
well as top-down learners have been successfully studied and developed in several
declarative paradigms, [67, 57, 87, 29, 28, 5].

The goal we plan to pursue is explained in the following. Let us consider a program
R and a specification I of the intended semantics, that is, the semantics expressing
the programmer’s intentions. Let R′ ⊆ R be a set of rules such that each rule r ∈ R′

is incorrect w.r.t. the given specification I. We aim at synthesizing a set of rules
which replace R′ in order to produce a suitable correction.

More formally, we want

• to generate a pair (E+, E−) such that E+ is a set of positive examples and E−

is a set of negative examples;

• to infer a set of rules X such that

1. Rc ≡ (R \R′) ∪ X covers E+;

2. Rc does not cover E−.

Program Rc is called the correct program. We will call R− = R \ R′ diminished
program. Therefore, in our framework, the correction problem can be considered as
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a particular instance of the inductive learning problem which has been illustrated in
section 1.2.

Our method is mainly based on the top-down synthesis methodology, which allows
to produce specializations of the original program which cover positive examples and
fail on the negative ones. Anyway using this method is a little bit restrictive for the
correction issue, since it is only able to correct overly-general program by purifying
them from wrong answers. Top-down learning methods cannot infer missing answers.
Hence, only wrong programs, which entirely cover E+, have a chance to get a correc-
tion, as witnessed by the following example expressed in the functional programming
paradigm.

Example 1.3.1 Consider program R = {zero(0)→ 1, zero(s(X))→ 0} and specifi-
cation I = {zero(X) → 0}. R is incorrect w.r.t. I. Suppose the following example
sets have been generated

E+={zero(0) = 0, zero(s(0)) = 0, zero(s(s(0))) = 0}
E−={zero(0) = 1}.

Program R cannot cover E+ entirely, thus no specializations of R will be able to cover
E+ entirely and, therefore, no corrections of R can be obtained.

Hence a sole top-down algorithm is not enough for our objectives, we have to
improve it in order to achieve better corrections. A possibility concerns augmenting
the original program with new rules, so that the entire set E+ succeeds w.r.t. the
augmented program, and thus the top-down algorithm can still be applied without
information loss.

The augmentation method is based on the bottom-up synthesis technique. Basi-
cally the augmentation algorithm works in this way: first, the set E of all the positive
examples that are not covered by R is computed, then —by using the bottom-up
methodology— we calculate a program A such that every example in E succeeds.
Finally the resulting program is added to the original program in order to obtain an
overly general hypothesis Raug ≡ R ∪ A to which the top-down algorithm can be
applied. The correction scheme is presented in Fig. 1.2.

of A

Bottom-up synthesis

R R

A

Top-down correction

Rc
of Raug ≡ R∪A

Figure 1.2: Hybrid correction scheme.
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In the rest of this section, we present a possible hybrid correction algorithm, which
could be tailored to different declarative paradigms.

We suppose that function GenerateExampleSets (R, I) is a generic method to pro-
duce example sets, it might be based on an automatic procedure which exploits de-
bugger outcomes or it might simply interact with the user in a more traditional
way (for instance, the user could provide example sets manually). Function BU-
Learner(E,B) is the function that computes, by means of the background theory
B, a program covering the example set E. This function implements a simplified
bottom-up synthesis technique, as it does not deal with negative examples. Func-
tion TD-Corrector(R, E+, E−) is a top-down algorithm which specializes program R
w.r.t. sets of positive and negative examples E+ and E−.

Finally, notice that in order to exploit all the available information during the
bottom-up induction process, we set the background theory B to the diminished
program R−. By doing so, also the rules in R− could be used for synthesizing
corrections, allowing us to achieve better results.

Algorithm 1 Hybrid Correction Algorithm.

procedure Hybrid-Corrector(R, I)
(E+, E−)← GenerateExampleSets(R, I)
E ← {e | R 6⊢ e, e ∈ E+}
B ← R−

A ← BU-Learner(E,B)
Raug ←R∪A
Rc ← TD-Corrector(Raug , E+, E−)

end procedure

As the reader can figure out, the presented correction algorithm does not generally
imply that a correction for the wrong program R, which is correct w.r.t. the intended
semantics, is obtained as the outcome of the corrector (that is, a program Rc such
thatRc has the same semantics of I, up to the extra auxiliary function symbols which
might appear in I). It might happen that the outcome program is correct w.r.t. E+

and E−, but it is not a correction w.r.t. I. Several factors could influence the be-
haviour of the synthesis process. For instance the lack of good example patterns might
not permit to drive the algorithm towards corrections. Besides, since the bottom-up
method is generally guided by some heuristics, we do not always achieve the best
inferred programs. Finally, top-down learners might lead to several specializations
[30]. The resulting specializations are always correct w.r.t. finite example sets, but
not always correct w.r.t. the specification of the intended semantics.



2
Preliminaries

In this chapter, we recall the basics of term rewriting systems and functional logic
programming, we need in this thesis. For the sake of simplicity, definitions are given
in the one-sorted case. The extension to many-sorted signatures is straightforward,
see [97]. For more information about these topics, you can consult [22, 76] for term
rewriting systems, and the extended surveys [62, 69] for functional logic programming.

Structure of the chapter

First of all, we give some basic definitions about terms, equations, and substitutions.
Then, Section 2.2 introduces the term rewriting system framework, we use for defining
first-order functional programs as well as functional logic programs. In Section 2.3,
we describe the narrowing relation (and some variants of it), which is the evaluation
mechanism used in functional logic programming. Finally, Section 2.4 concludes by
giving some details about conditional term rewriting systems and conditional narrow-
ing.

2.1 Foundations

2.1.1 Terms and equations

Let V denote a countably infinite set of variables and Σ be a set of function symbols,
or signature, each of which has a fixed associated arity. By notation f/n, we denote a
function symbol f of arity n. τ(Σ,V) and τ(Σ) denote the non-ground term algebra
and the term algebra built over Σ ∪ V , and Σ, respectively.

τ(Σ) is usually called the Herbrand universe (HΣ) over Σ and it will be denoted
by H.

An equation s = t is a pair of terms s, t ∈ τ(Σ,V) or true. B denotes the Herbrand
base, namely the set of all ground equations which can be built with the elements of
H. Syntactic equality of terms is represented by ≡. By abuse of notation, we will
extend ≡ to represent the identity relation between any syntactic object.

Terms are viewed as labelled trees in the usual way. We denote any sequence of
equations true, . . . , true by ⊤.
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Term positions (p, q, . . .) are represented by sequences of natural numbers, where
Λ denotes the empty sequence. Given two positions p and q, we represent the con-
catenation of p and q by p.q. Positions are ordered w.r.t. the prefix ordering ≤, that
is, p ≤ q iff there exists a position w such that p.w = q.

O(t) denotes the set of positions of a term t and is inductively defined as follows

O(t) =

{
Λ if t ∈ V
Λ ∪ {i.p | 1 ≤ i ≤ n ∧ p ∈ O(ti)} if t ≡ f(t1, . . . , tn)

Moreover, given S ⊆ Σ ∪ V , OS(t) denotes the set of positions of a term t which are
rooted by symbols in S. In particular, OΣ(t) represents the set of all non-variable
positions in t, we will also denote it by O(t). t|u is the subterm at the position u of t.
t[r]u is the term t with the subterm at the position u replaced by r. Let we denote the
symbol labeling the root of a term t by root(t). These notions extend to sequences of
equations and/or terms in a natural way.

By Var(s) we denote the set of variables occurring in the syntactic object s, while
[s] denotes the set of ground instances of s. The symbol ˜ represents a finite sequence
of symbols.

2.1.2 Substitutions and syntactic unification

A substitution σ ≡ {X1/t1, . . . , Xn/tn} is a mapping from the set of variables V into
the set of terms τ(Σ,V) such that

(i) Xi 6= Xj , whenever i 6= j;

(ii) Xiσ = ti, i = 1, ..n;

(iii) Xσ = X , for any X ∈ V \ {X1, . . . , Xn}.

The set Dom(σ) = {X ∈ V | Xσ 6= X} denotes the domain of the substitution σ.
The empty substitution ǫ is the substitution such that Dom(ǫ) = ∅.

We write θ|̀s to denote the restriction of the substitution θ to the set of variables
in the syntactic object s.

Substitutions can be extended to morphisms over terms in τ(Σ,V), i.e., f(t̃)σ =
f(t̃σ), for each f(t̃) ∈ τ(Σ,V).

A substitution θ is more general than σ, which is denoted by θ ≤ σ, if σ = θγ for
some substitution γ. It is easy to show that ≤ is a preorder over substitutions. The
preorder ≤ induces a preorder over terms (called relative generality), that is, t ≤ t′ iff
there exists a substitution σ such that tσ ≡ t′. ≤ for terms is extended to equations
in the obvious way, i.e. s = t ≤ s′ = t′ iff there exists σ s.t. σ(s) = σ(t) ≡ s′ = t′.

A renaming is a substitution ρ for which there exists the inverse ρ−1, such that
ρρ−1 = ρ−1ρ = ǫ. A term t′ is a variant of a term t iff tρ = t′ for some renaming ρ.

An equation set E is unifiable, if there exists θ such that, for all s = t in E, we
have sθ ≡ tθ, and θ is called a unifier of E. A goal is any finite sequence of equations.

We let mgu(E) denote the most general unifier of an equation set E iff θ ≡ mgu(E)
is a unifier of E and θ ≤ σ for each substitution σ that is another unifier of E [80].
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2.1.3 V-Herbrand base and program semantics

In order to formulate the program semantics we will use later on, the usual Herbrand
base is extended to the set of all (possibly) non-ground equations [49, 50]. HV denotes
the V-Herbrand universe which allows variables in its elements, and is defined as
τ(Σ,V)/≃, where ≃ is the equivalence relation induced by the preorder of relative
generality ≤ over terms.

For the sake of simplicity, the elements of HV (equivalence classes) have the same
representation as the elements of τ(Σ,V) and are also called terms. BV denotes the V-
Herbrand base, namely, the set of all equations s = t modulo variance, where s, t ∈ HV .
A subset of BV is called V-Herbrand interpretation. We assume that the equations in
a V-Herbrand interpretation are renamed apart. For us, a program semantics will be
a suitable V-Herbrand interpretation.

2.2 Programs as term rewriting systems

A term rewriting system (TRS for short) is a pair (Σ,R), where R is a finite set of
reduction (or rewrite) rules of the form λ → ρ, λ, ρ ∈ τ(Σ,V), λ 6∈ V and Var(ρ) ⊆
Var(λ). Term λ is called the left-hand side (lhs) of the rule and ρ is called the
right-hand side (rhs). We will often write just R instead of (Σ,R) and call R the
program.

Given a rule λ → ρ, a rule λ′ → ρ′ is a variant of λ → ρ iff λ′ is a variant of λ
and ρ′ is a variant of ρ via the same renaming. By r << R, we denote that r is a new
variant of a rule in R such that r contains only fresh (“standardized apart”) variables
.

Given a TRS (Σ,R), we assume that the signature Σ is partitioned into two
disjoint sets Σ = C ⊎ D, where D = {f | f(t1, . . . , tn) → r ∈ R} and C = Σ \ D.
Symbols in C are called constructors and symbols in D are called defined functions.
The elements of τ(C,V) are called constructor terms, while elements in τ(C) are called
values. A pattern is a term of the form f(d̄) where f/n ∈ D and d̄ is an n-tuple of
constructor terms.

A TRS R is a constructor system (CS), if all lhs’s of R are patterns. A TRS R is
left-linear (LL), if no variable appears more than once in the lhs of any rule of R.

A rewrite step is the application of a rewrite rule to an expression. A term s
rewrites to a term t via r << R, s →r t (or s →R t), if there exist u ∈ OΣ(s),
r ≡ λ → ρ, and substitution σ such that s|u ≡ λσ and t ≡ s[ρσ]u. The subterm s|u
of the term s is called redex.

We say that S := t0 →r0
t1 →r1

t2 . . .→rn−1
tn is a rewrite sequence from term t0

to term tn. When no confusion can arise, we will omit any subscript (i.e. s→ t). We
call the relation → reduction (or rewriting) relation. By means of →+ and →∗, we
denote the transitive closure, and the transitive and reflexive closure of the relation
→, respectively. We say that relation → is terminating iff there exists no infinite
rewrite sequence t1 → t2 → . . .. Besides, relation → is called confluent, iff, for all
terms s, t1, t2 ∈ τ(Σ,V), s→∗ t1 and s→∗ t2 imply that there exists t ∈ τ(Σ,V) such
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that t1 →∗ t and t2 →∗ t.
A term s is a normal form (or an irreducible form) w.r.t. R, if there is no term

t such that s →R t. t is the normal form of s w.r.t. R, if s →∗
R t and t is a normal

form (in symbols s →!
R t). We say that a TRS R is terminating, if relation →R is

terminating, while a TRS R is confluent, whenever →R is confluent. A terminating
and confluent TRS is called canonical .

A TRS R is completely defined, iff for each term f(t̃), where f ∈ D, there exists a
term s such that f(t̃)→R s.

Term rewriting systems provide an adequate computational model we will employ
in Chapter 4 in order to formalize a framework for the automated correction of first-
order functional programs. In the sequel, we describe the narrowing relation, which
is the needed ingredient to formalize the functional logic programming paradigm and,
also, the program transformations we will use in the next chapters.

2.3 The narrowing relation

The standard operational semantics of functional logic programs is based on nar-
rowing [52, 101], a combination of unification for parameter passing and reduction
as evaluation mechanism which subsumes rewriting and SLD-resolution. Essentially,
narrowing consists of the instantiation of goal variables, followed by a rewrite step on
the instantiated goal. Hence, narrowing allows to evaluate function calls, which are
not completely instantiated. We define a goal as a sequence of terms or equations.

More formally, the narrowing relation can be defined as follows.

Definition 2.3.1 (Narrowing) Let (Σ,R) be a TRS and g be a goal. The narrowing
relation is defined as the smallest relation ; satisfying

u ∈ OΣ(g), (λ→ ρ) << R, σ = mgu({g|u = λ})

g
σ,u
; (g[ρ]u)σ

.

The subterm g|u of g is called narrowing redex.

Sometimes, when it is clear from the context, we disregard information about position

and/or substitution from the narrowing relation
σ,u
; .

A narrowing derivation from goal g to goal g′ is defined as g
θ ∗
; g′ iff there

exist θ1, . . . , θn such that g
θ1
; . . .

θn
; g′ and θ = θ1 . . . θn. Let R+ be the TRS

R∪ {X = X → true}. Rule X = X → true is added to a TRS R to treat syntactic

unification as a narrowing step; that is, (s1 = t1, . . . , sn = tn)
σ
; ⊤ iff σ = mgu({s1 =

t1, . . . , sn = tn}). Rule X = X → true is also called standard equality axiom.

Given a goal g, a successful narrowing derivation for g is g
θ ∗
; ⊤ in R+; θ|̀e is

also called computed answer substitution of e.
When TRS are not terminating, it is frequent to consider the strict equality ≈

instead of standard equality, which gives to equality the weak meaning of identity on
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finite objects (e.g., see [84]). The semantics of strict equality is given by the following
set of confluent rules (strict equality axioms):

c ≈ c → true ∀ c/0 ∈ C
c(x1, . . . , xn) ≈ c(y1, . . . , yn) → (x1 ≈ y1) ∧ . . . ∧ (xn ≈ yn) ∀ c/n ∈ C

true ∧ true → true

Narrowing is complete in the sense of functional programming (computation of
normal forms) as well as logic programming (computation of answers) for interesting
classes of TRSs. In the following, we briefly recall the notion of completeness. Any
TRS (or, equivalently, equational Horn theory) E together with its equality axioms
generates a congruence relation =E over τ(Σ,V), which is called E-equality, represent-
ing the smallest equational theory which is closed under the entailment relation |=.
Given a set of equations E, we say that E is E-unifiable iff there exists a substitution
σ such that, for each s = t ∈ E, sσ =E tσ. The substitution σ is called E-unifier (or
simply solution) of E. Given a set of variables W ⊆ V , the relation =E is naturally
extended to substitutions: σ =E θ[W ] iff Xσ =E Xθ, for each X ∈ W . A substi-
tution σ′ is an E-instance of a substitution σ w.r.t. W (in symbols, σ ≤E σ′[W ]) iff
there exists a substitution γ such that σγ =E σ′[W ]. a set of E-unifiers S of a set of
equations E is complete iff, for each E-unifier σ of E, σ =E θγ[Var(E)], where θ ∈ S.

A narrowing algorithm is complete iff it generates a complete set of E-unifiers for
each equations set provided as input. More formally, let g be a goal.

if E |= gσ, then there exists a successful narrowing derivation g
θ ∗
; ⊤

such that θ ≤E σ[Var(g)].

It has been shown that narrowing is complete for the class of canonical TRSs [62, 69].
Due to the huge search space of narrowing, steadily improved strategies have been
proposed. In the literature, an impressive variety of strategies has been developed
([62] cites 18 distinct narrowing strategies!), which are complete for distinct classes
of TRSs. However, we can classify narrowing strategies in two broad classes:

• eager narrowing strategies, which give priority to the reduction of innermost
narrowing redexes.

• lazy narrowing strategies, which give priority to the reduction of outermost
narrowing redexes.

A narrowing strategy (or position constraint) ϕ is any well-defined criterion that
obtains a smaller search space by permitting narrowing to reduce only some chosen
positions. We denote by ;ϕ the narrowing relation with strategy ϕ (see [62] for
a survey on narrowing strategies). IRϕ denotes the class of TRSs which satisfy the
conditions for the completeness of the strategy ϕ.

In this dissertation, we will mainly consider two narrowing strategies: leftmost-
innermost narrowing strategy (ϕ = inn) and needed narrowing strategy (ϕ = needed).

The former is an eager strategy, which —given a goal g— reduces the leftmost-
innermost narrowing redex of g. More formally, an innermost narrowing redex of
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a term t is a narrowing redex t|u for which there does not exist a position w such
that t|u.w is a narrowing redex of t. So, strategy inn(g) computes the position of
the leftmost-innermost narrowing redex of g. Completeness for strategy ϕ = inn is
ensured for the class of confluent, terminating, completely defined CS.

The latter is a lazy strategy, which is optimal w.r.t. the length of the derivations
and the number of computed solutions in inductively sequential (IS) programs, that
is, programs such that all its defined functions have a definitional tree.

Roughly speaking, a definitional tree for a function symbol f is a tree whose
leaves (rule nodes) contain all (and only) the rules used to define f and whose inner
nodes (branch nodes) contain information to guide the (optimal) pattern matching
during the evaluation of expressions. Each inner node contains a pattern and a variable
position in this pattern (the inductive position) which is further refined in the patterns
of its immediate children by using different constructor symbols. The pattern of
the root node is simply f(X̃), where X̃ is a tuple of different variables. Informally,
inductive sequentiality [19] amounts to the existence of discriminating left-hand sides,
i.e. typical functional programs. A precise definition of this class of programs and the
needed narrowing strategy is provided in [20].

For the completeness of needed narrowing, strict equality ≈ is considered, since
inductively sequential TRS can be non-terminating. Therefore, equations will be of
the form s ≈ t. Moreover, whenever we consider “eager strategies” such as leftmost-
innermost, we will use standard equality.

By notation =ϕ, we will distinguish standard and strict equality according to the
chosen narrowing strategy ϕ ∈ {needed, inn}.

2.4 Conditional programs and narrowing

The notions we presented in this chapter can be extended to conditional programs by
taking advantage of the formalism of conditional term rewriting systems.

A conditional term rewriting system (CTRS for short) is a pair (Σ,R), where R
is a finite set of reduction (or rewrite) rule schemes of the form (λ → ρ ⇐ C), λ,
ρ ∈ τ(Σ ∪ V ), λ 6∈ V and Var(ρ) ⊆ Var(λ). Variables in C that do not occur in λ
are called extra-variables. The condition C is a (possibly empty) sequence e1, . . . , en,
n ≥ 0, of equations which we handle as a set (conjunction) when we find it convenient.
We will often write just R instead of (Σ,R). If a rewrite rule has no condition, we
write λ→ ρ.

Also for CTRSs, we assume that the signature Σ is partitioned into two disjoint
sets Σ = C ⊎ D, where D = {f | (f(t̃)→ r ⇐ C) ∈ R} and C = Σ \ D. Symbols in C
are called constructors and symbols in D are called defined functions. The elements
of τ(C,V) are constructor terms. A pattern is a term f(l1, . . . , ln) such that f ∈ D
and l1, . . . , ln are constructor terms.

Given a CTRS (Σ,R), a term s conditionally rewrites to a term t, in symbols
s →R t or s → t, iff there exist a rule λ → ρ ⇐ s1 = t1, . . . , sn = tn, a position
p ∈ OΣ(s), a substitution σ such that s|p = λσ, t = s[ρσ]p and, for each i = 1, . . . , n,
there exists a term qi such that siσ →∗

R qi and tiσ →∗
R qi, where →∗

R denotes the
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transitive and reflexive closure of →R.
The notions of normal form, terminating and confluent CTRS are trivial extensions

of the unconditional case (for more details, see [76]). Moreover, a CTRS R is called
decreasing iff for each conditional rule λ → ρ ⇐ t1 = t′1, . . . , tn = t′n ∈ R, we have
that ∀σ, σ(ti) and σ(t′i) are smaller than σ(λ) w.r.t. some termination ordering [74].

Conditional narrowing

Narrowing can be lifted to CTRS’s framework in an obvious way. Let R be a CTRS,
then we define R+ as R∪ {X = X → true}.

Definition 2.4.1 (Conditional narrowing) Let (Σ,R) be a CTRS and g be a goal.
The conditional narrowing relation is defined as the smallest relation ; satisfying

u ∈ OΣ(g), (λ→ ρ⇐ C) << R, σ = mgu({g|u = λ})

g
σ,u
; (C, g[ρ]u)σ

.

We denote the transitive closure and the transitive and reflexive closure of ; by
;

+ and ;
∗, respectively. A successful narrowing derivation for a goal g is of the

form g
θ ∗
; ⊤ in R+, and θ|̀g is usually called computed answer substitution. We can

also define conditional narrowing w.r.t. some strategy ϕ in a way similar to the one
presented in Section 2.3. By abuse of notation, IRϕ denotes the class of CTRSs which
satisfy the conditions for the completeness of conditional narrowing with strategy ϕ.
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3
Correction of Functional Logic

Programs

In this chapter, we provide a methodology for developing advanced debugging and
correction tools for functional logic languages. Functional logic programming is now
a mature paradigm and as such there exist modern environments which assist in the
design, development and debugging of integrated programs. However, there is no
theoretical foundation for integrating debugging and synthesis into a single unified
framework.

In a previous work [13], a generic diagnosis method w.r.t. computed answers which
generalizes the ideas of [39] to the diagnosis of functional logic programs has been
proposed. The method works for eager (call–by–value) as well as for lazy (call–by–
name) integrated languages. Given the intended specification I of a program R, we
can check the correctness of R w.r.t. I by a single step of a (continuous) immediate
consequence operator which we associate to our programs. This specification I may be
partial or complete, and can be expressed in several ways: for instance, by (another)
functional logic program [13, 14], by an assertion language [37] or by equation sets (in
the case when it is finite). Our methodology is based on abstract interpretation: we
construct over and under specifications I+ and I− to correctly over- (resp. under-)
approximate the intended semantics I. We then use these two sets respectively for
the functions in the premises and the consequences of the immediate consequence
operator, and by a simple static test we can determine whether some of the clauses
are wrong. The debugging system Buggy [15] is an experimental implementation of
the method which allows the user to specify the (concrete) semantics by means of a
functional logic program. In [14], we also presented a preliminary correction algorithm
based on the deductive synthesis methodology known as example-guided unfolding
[29]. This methodology uses unfolding in order to discriminate positive from negative
examples (resp. uncovered and incorrect equations) which are essentially obtained as
an outcome by the diagnoser.

However, this pure deductive learner cannot be applied when the original wrong
program is overspecialized (that is, it does not cover all the (positive) examples chosen
to describe the pursued behavior).

In this chapter, we develop a new program corrector based on, and integrated with,
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the declarative debugger of [13, 14], which integrates top–down as well as bottom–
up synthesis techniques, following the correction scheme we presented in Chapter
1. Furthermore, our method is parametric w.r.t. the chosen bottom-up learner. As
an instance of such parameter, we consider for the bottom-up part of the algorithm
the functional logic inductive framework of [57, 68, 67]. Informally, our correction
procedure works as follows. Starting from an overly general program (that is, a
program which covers all positive examples as well as some negative ones), the top–
down algorithm unfolds the program until a set of rules which only occur in the
refutation of the negative examples is identified, and then they are removed from
the program. When the original wrong program does not initially cover all positive
examples, we first invoke the bottom–up procedure, which “generalizes” the program
as to fulfil the applicability conditions. After introducing the new method we prove
its correctness and completeness w.r.t. the considered example sets. Finally we present
a prototypical implementation of our system.

The following example illustrates our method.

Example 3.0.2 Let us consider the program:

R = { od(0)→ true, od(s(X))→ od(X), z(0)→ 1, z(s(X))→ z(X) }

which is wrong w.r.t. the following specification of the intended semantics (mistakes
in R are marked in bold):

I = { ev(0)→ true, ev(s(s(X)))→ ev(X), od(s(X))→ true⇐ ev(X) = true,
z(X)→ 0 }.

By running the diagnosis system Buggy, we are able to isolate the wrong rules of R
w.r.t. the given specification. By exploiting the debugger outcome as described later,
the following positive and negative example sets are automatically produced (the user
is allowed to fix the cardinality of the example sets by tuning some system parameters):

E+ = {od(s3(0)) = true, od(s(0)) = true, z(s2(0)) = 0, z(s(0)) = 0, z(0) = 0 }
E− = {od(s2(0)) = true, od(0) = true, z(0) = 1, z(s(0)) = 1, z(s2(0)) = 1 }.

We observe that unfolding the rule r ≡ od(s(X))→ od(X) w.r.t. R results in replacing
r by two new rules r1 ≡ od(s(0)) → true and r2 ≡ od(s2(X)) → od(X). Now, by
getting rid of rule od(0)→ true, we obtain a new recursive definition for function od
covering the positive examples while no negative example can be proven, which corrects
the bug on function od.

However, note that this approach cannot be used for correcting function z: un-
folding the rules defining z does not contribute to prove the positive examples since
the original program is overspecialized and unfolding can only specialize it further.
Nevertheless, by generalizing function z as in the bottom-up inductive framework of
[67], we get the new rule z(X) → 0. Now, by eliminating rule z(0) → 1, which does
not contribute to any positive example, we obtain the final outcome

Rc = { od(s(0))→ true, od(s(s(X)))→ od(X), z(X)→ 0, z(s(X))→ z(X) }

which is correct w.r.t. the computed example sets.
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Structure of the chapter

The chapter is organized as follows. In Section 3.1, we introduce some basics about
the denotation of functional logic programs. Section 3.2 recalls the framework for the
declarative debugging of functional logic programs defined in [14]. In Section 3.3, we
present the basic, top-down automatic correction procedure. Section 3.4 integrates
this algorithm with a bottom-up inductive learner which allows us to apply the cor-
rection methodology when the original program is overly specialized. In Section 3.5,
we present an experimental evaluation of the method on a set of benchmarks.

3.1 Denotation of functional logic programs

In the following we recall two useful semantics for functional logic programs (we refer
to [13] for details). Basically, the semantics we consider are suitable V-interpretations
contained in a given V-Herbrand base.

Observe that, in non-strict languages, if the compositional character of meaning
has to be preserved in presence of infinite data structures and partial functions, then
non-normalizable terms (i.e., terms without a normal form), which may occur as
subterms within normalizable expressions, also have to be assigned a denotation.
Following [59, 84], we introduce a fresh constant symbol ⊥ into Σ to represent the
value of expressions which would otherwise be undefined.

Operational semantics

The operational success set semantics Oca
ϕ (R) of a program R w.r.t. narrowing strat-

egy ϕ is defined by considering the answers computed for “most general calls”. Let
ℑϕ

R denotes the set of identical equations c(x1, . . . , xn) =ϕ c(x1, . . . , xn), where c is a
constructor symbol occurring in R.

Oca
ϕ (R) = ℑϕ

R ∪ {(f(x1, . . . , xn) = xn+1)θ | (f(x1, . . . , xn) =ϕ xn+1)
θ ∗

;ϕ ⊤
s.t. f/n ∈ D, xn+1 and xi, i = 1, . . . , n,
are distinct variables }.

Fixpoint semantics

The (bottom-up) fixpoint semantics Fca
ϕ (R), modeling computed answers w.r.t. a

narrowing strategy ϕ, is defined as the least fixpoint

Fca
ϕ (R) = T ϕ

R ↑ω

of a parametric immediate consequence operator T ϕ
R : 2BV → 2BV which general-

izes the ground immediate consequence operator of [69] in order to model computed
answers.

The relationship between the operational and fixpoint semantics are established
in [14] .
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For the sake of clarity, let us summarize the relationship among the two differ-
ent program denotations Fca

ϕ (R) and Oca
ϕ (R) introduced above. The compositional,

fixpoint semantics Fca
ϕ (R) which models successful as well as partial (nonterminat-

ing as well as intermediate computations, i.e. those equations f(t̄) = s where s “has
not reached its value”) is obtained by computing the least fixpoint of the immediate
consequence operator T ϕ

R. On the other hand, the operational success set semantics
Oca

ϕ (R) only catches successful derivations, that is, it models the observable computed
answers.

3.2 Diagnosis of declarative programs

First we recall some basic definitions on the diagnosis of declarative programs [39].

Definition 3.2.1 Let Ica be the specification of the intended success set semantics
for R. An incorrectness symptom is an equation e such that e ∈ Oca

ϕ (R) and e 6∈ Ica.
An incompleteness symptom is an equation e such that e ∈ Ica and e 6∈ Oca

ϕ (R).

In case of errors, in order to determine the faulty rules, we make use of the following
definitions. We need to consider a fixpoint intended semantics IF , that models both
successful and “in progress” computations. The relation between IF and the intended
operational meaning is given by Ica = IF \ inprogress(IF ), where, for an equation
set S, inprogress(S) = {λ = ρ ∈ S | ⊥ occurs in ρ or ρ contains a defined function
symbol of Σ}.

Definition 3.2.2 Let IF be the specification of the intended fixpoint semantics for R.
If there exists an equation e ∈ T ϕ

{r}(IF ) and e 6∈ IF , then the rule r ∈ R is incorrect

on e. We also say that e is incorrect. Reciprocally, the equation e is uncovered if
e ∈ IF and e 6∈ T ϕ

R(IF ).

Since program denotations generally consist of an infinite number of equations,
the conditions above for correctness and completeness of a program w.r.t. to a given
specification cannot be effectively computed. In [14], an abstract diagnosis method-
ology based on the abstract interpretation theory [42] was proposed. Abstract di-
agnosis is a correct approximation of the diagnosis technique presented so far where
the semantic domains and operators are replaced by abstract ones. First, we build
a suitable abstract immediate consequences operator (T ♯ϕ

R ), which uses an abstrac-
tion of the program rules where all infinite computations have been removed and is
also parametric w.r.t. the narrowing strategy. The approximation is done by using a
loop-checker which replaces the calls which could be responsible for the infinite deriva-
tions by a fresh irreducible symbol ♯. The fixpoint of T ♯ϕ

R correctly approximates the
fixpoint semantics of R and can be computed finitely. The abstract diagnosis pro-
cess is performed w.r.t. two abstract (finite) semantics I− and I+ which under- and
over-approximate the intended semantics I.
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3.3 Correction method

In this section, we present an inductive learning methodology which is able to repair
a functional logic program containing buggy rules. As we explained in Chapter 1,
the correction problem can be stated as follows. Let R be a CTRS, I the intended
specification, R′ ⊆ R a set of incorrect rules w.r.t. I, and E = E+ ∪ E− two dis-
joint (ground) example sets which model the pursued (not pursued) computational
behaviour. We denote by R ⊢ E the fact that the (ground) equation set E can be
reduced to ⊤ by using the rules of R. Then, we want to determine a set of rules
X such that Rc = (R \ R′) ∪ X , Rc ⊢ E+ and Rc 6⊢ E−. Program Rc will be
called correct program (w.r.t. E+ and E−). We will call R− = R\R′ the diminished
program. We note that R ⊢ E can be checked, even in the case that R is not termi-
nating, by using the “normalization via µ–normalization” method of [78] to compute,
by levels, the ‘maximal contexts’ of the lhs’s of the examples, and then comparing
them with the ground constructor term in the corresponding rhs. By this technique,
normal forms can be obtained by successively computing µ-normal forms and shifting
computations to maximal non-replacing subterms when a µ-normal form has been
obtained. The conditions for the completeness of this technique (csr–conditions) es-
sentially amount to the termination of “context–sensitive rewriting” (csr) [79], which
is much easier than the termination of rewriting. For more information, see Appendix
A. A practical tool for proving termination of context sensitive rewriting is available
at http://www.dsic.upv.es/users/elp/slucas/muterm.

In order to infer program corrections, our methodology is based on the hybrid,
top-down as well as bottom-up approach, which we proposed in Chapter 1. We
believe that the resulting blend of top-down and bottom-up synthesis is conceptually
cleaner than more sophisticated, purely top-down or bottom-up ones and combines
the advantages of both techniques.

First, we present the basic, top-down specialization method. We follow the de-
ductive approach known as example guided unfolding [29], which is able to specialize
an overly general program by applying unfolding and deletion of program rules until
coming up with a correct program. The top-down correction process is “guided” by
the examples, in the sense that transformation steps focus on discriminating positive
from negative examples.

3.3.1 Automatic generation of positive and negative example
sets

Let us present a simple method for automatically generating the example sets which
exploits the debugger outcome so that the user does not need to provide error symp-
toms, evidences or other kind of information .

Consider the diminished program R−. Due to the absence of faulty rules in R−,
R− is already partially correct; however R− might be incomplete, as there can be
equations which are covered in I, but not in R−.

By applying the diagnosis method presented in Section 3.2, we are able to find
out the sets of uncovered and incorrect equations w.r.t. an abstraction of the intended
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semantics, respectively E1 and E2. Considering equations in E1 seems a sensible
way for yielding positive examples (missing proofs which should be achieved by R).
Instead, set E2 contains equations modeling erroneous behaviours, thus we can take
them as negative examples.

Since E1 and E2 might contain non-ground equations, we find it useful to instanti-
ate (a subset of) them in order to get ground positive/negative example sets E+ and
E−. This allows us to perform some standard optimizations based on term rewriting
which are very satisfactory in practice. On the other hand, since program R and
specification I might use different auxiliary functions, we only consider ground exam-
ples of the form l = d where l is a pattern and d is a constructor term. In this way,
the inductive process becomes independent from the extra functions contained in I,
since we start synthesizing directly from data structures d. In order to achieve this,
we normalize the term in the rhs of (the instantiated) examples w.r.t. I. Finally, we
disregard those examples which, after normalization, do not have a constructor term
at the rhs.

3.3.2 Specialization operators

Definition 3.3.1 (Unfolding) Let R be a CTRS and r ≡ (λ → ρ ⇐ C) << R be a

rule. Let {g
θi
;ϕ (C′

i, ρ
′
i = y)}ni=1 be the set of all one-step narrowing derivations with

strategy ϕ that perform an effective narrowing step for the goal g ≡ (C, ρ = y) in R.
Then, Unf ϕ

R(r) = {(λθi → ρ′i ⇐ C′
i)|i = 1 . . . n} (that is, the derived goal (C′

i, ρ
′
i = y)

is different from g).

Roughly speaking, unfolding a program R w.r.t. a rule r delivers a new specialized
version ofR in which the rule r is replaced by new rules obtained from r by performing
a narrowing step on the rhs or the conditional part of r.

Definition 3.3.2 (Unfolding operator) Let R be a CTRS, r ≡ λ → ρ ⇐ C be a
rule in R. The Rule Unfolding operator U

ϕ
r (R) on R w.r.t. r is defined by Uϕ

r (R) =
R \ {r} ∪Unf ϕ

R(r).

As it has been proven in [17, 18], for ϕ = inn, needed, unfolding using strategy ϕ
preserves the semantics (even for the observable computed answers) in IRϕ programs.
In the case when needed narrowing is considered, completeness is only guaranteed
under the condition that expressions in the rule are not unfolded beyond their head
normal form [18]. On the other hand, the absence of narrowable positions in the rule
to be unfolded yields no specialization of r. We just get the removal of r from R. In
the sequel, we use the following notion of “unfoldable rule.”

Definition 3.3.3 Let R be a CTRS, r be a rule in R. The rule r is unfoldable w.r.t.
R if Uϕ

r (R) 6= R \ {r}. If ϕ = needed, we also require that r is not unfolded beyond
its head normal form.

For the sake of simplicity, in the following we omit ϕ whenever this does not
compromise readability.
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An unfolding succession S(R) ≡ R0,R1, . . . of program R is defined as follows:
R0 = R, Ri+1 = Ur(Ri) where r ∈ Ri is unfoldable.

3.3.3 Top-down correction algorithm

Following [30], the algorithm in the next page works in two phases: the unfolding
phase and the deletion phase. Roughly speaking, we first perform unfolding upon
(arbitrarily selected) unfoldable rules, until we get a specialized version of the program
R where no negative example can be proven by applying only rules used in proofs of
positive examples. The following definition is auxiliary.

Definition 3.3.4 Given D : g ≡ g1
r1→ g2

r2→ . . .
rn→ gn, the sequence 〈r1, r2, . . . , rn〉

is called the rewriting rule sequence of D. The set OR(D) = {r1, r2, . . . , rn} is called
the set of occurring rules of D.

Given an equation e, let Dϕ
R(e) denote the successful rewrite sequence which proves

e in program R (if it exists) by using a normalizing, deterministic, rewriting strategy
for the class IRϕ. We also call Dϕ

R(e) proof of e.

The key idea of the algorithm is thus applying unfolding until we get a specialized
program Ri satisfying that, for each e− ∈ E− there exists a rule r ∈ OR(Dϕ

Ri
(e−))

such that, for each example e+ ∈ E+, r 6∈ OR(Dϕ
Ri

(e+)). Now, since the rules which
only contribute to the proof of negative examples are useless, in the subsequent phase
we just remove these rules from the specialized program Ri. By discriminable rule
of Ri we mean an unfoldable rule of Ri which occurs in the proof of, at least, one
positive and one negative example.

Example 3.3.5 Consider again the program R and specification I of example 3.0.2,
with the example sets for learning function od. Since the rewriting proof for the
negative example od(s2(0)) = true ∈ E− uses the rule od(s(X)) → od(X) (either
with ϕ = inn or ϕ = needed), which is also used in the proofs of positive examples,
we enter the main loop. By unfolding od(s(X)) → od(X) we get R1 = {od(0) →
true, od(s(0)) → true, od(s2(X)) → od(X) }. Now we enter the deletion phase which
purifies R1 by removing the rule od(0) → true that only occurs in the proof of a
negative example, thus producing the expected correction.

Example 3.3.5 allows us to clarify the differences between the preliminary correction
algorithm in [14] and the one we propose here. The algorithm in [14] was based on
unfolding the rules which incorrectly cover the negative examples. In our example,
this could result in trying to unfold the rule od(0)→ true, which is fruitless, whereas
the new correction procedure does consider any discriminable rule for unfolding, which
is generally needed in order to achieve the desired specialization (correction).
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Algorithm 2 The top-down correction algorithm.

1: procedure TD-CorrectorFL(R, I)
2: (E+, E−)←GenerateExampleSets(R, I)
3: if R 6⊢ E+ then Halt
4: end if
5: i← 0 ⊲ Unfolding phase
6: R0 ←R
7: while ∃ e− ∈ E− s.t. ∀r(r ∈ OR(DRi

(e−)) ⇒ ∃e+ ∈ E+ s.t. r ∈
OR(DRi

(e+))) do
8: Select a discriminable rule r ∈ OR(DRi

(e−)) of Ri

9: Ri+1 ← Ur(Ri)
10: i← i + 1
11: for all e− ∈ E− do ⊲ Deletion phase
12: Ri+1 ←Ri\{r}, where r ∈ OR(DRi

(e−))∧∀e+ ∈ E+ r 6∈ OR(DRi
(e+))

13: i = i + 1
14: end for
15: Rc ←Ri

16: end while
17: end procedure

3.3.4 Correctness of the algorithm

We prove the correctness of the top-down correction algorithm in two steps: first we
show that, provided that R covers E+, the unfolding phase produces a specialized
version R′ of R (still covering E+) such that, for each negative example, there is a
rule occurring in the corresponding proof which is not used in the proof of any of the
positive examples. Next, we prove that the deletion phase yields a corrected version
of R which covers E+ and does not cover E−.

The following proposition states our first result: by a suitable finite number of
applications of the unfolding operator to a program in lRϕ, we get a specialized ver-
sion such that, in any successful rewriting derivation of a negative example, there
occurs a rule that is not applied in any successful rewriting derivation for the positive
examples under the same strategy. A condition is necessary for proving this result:
no negative/positive couple of the considered examples can have the same rewriting
rule sequence, as shown in the following counterexample.

Example 3.3.6 Consider the program R = {f(X)→ g(X), g(X)→ 0} with example
sets E+ = {f(a) = 0}, E− = {f(b) = 0}. Then f(a) = 0 and f(b) = 0 are
proven by using the same rewriting rule sequence (using any of the considered rewriting
strategies). By applying the top-down algorithm, we unfold rule f(X)→ g(X), which
produces the outcome R1 = {f(X)→ 0, g(X)→ 0} which cannot be purified (by using
the rule deletion operator) as removing rule f(X)→ 0 in order to get rid of E− would
cause losing E+.
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Proposition 3.3.7 Let ϕ be a normalizing rewriting strategy for lRϕ and R be a
program in lRϕ. Let E+ (resp. E−) be a set of positive (resp. negative) examples.
If there are no e+ ∈ E+ and e− ∈ E− which can be proven in R by using the
same rule sequence, then, for each unfolding succession S(R), there exists k such that
∀e− ∈ E−∃r ∈ OR(DRk

(e−)) s.t. r is not discriminable

We note that Proposition 3.3.7 holds for every unfolding succession of the original
program; this implies that the rule to be unfolded at each unfolding step can be
arbitrarily selected, provided that it is discriminable. Moreover, the termination of
the unfolding phase is granted by the finite number k of applications of the unfolding
operator that we need to obtain specialization Rk.

After the unfolding phase, the refutation of every negative example contains a
rule from Rk which does not occur in the proof of any positive example, thus we can
safely remove this rule without jeopardizing completeness. Therefore, the deletion
phase purifies Rk and yields correctness w.r.t. both positive and negative examples.

Theorem 3.3.8 (Correctness) Let R ∈ IRϕ be a CTRS which satisfies the csr
conditions, E+ and E− be two sets of examples such that R ⊢ E+. If the rewriting
rule sequences for e+ ∈ E+ and e− ∈ E− are different, then the TD-CorrectorFL
algorithm yields a correct specialization of R w.r.t. E+ and E−.

As in other approaches for example-guided program correction, the above result
does not generally imply that a correction for the wrong programR w.r.t. the intended
semantics is obtained as the outcome of the top-down correction algorithm (that is, a
program R with the same semantics of I, up to the extra auxiliary function symbols
which might appear in I), under the conditions required for the correctness of the
algorithm, but it might happen that the output program is only correct w.r.t. E+

and E−. Therefore, derived programs would be newly diagnosed for correctness at
the end.

3.4 Improving the algorithm

In the following, we propose a bottom-up correction methodology which we smoothly
combine with the deductive one in order to correct programs which do not fulfil the
applicability condition (over–generality). Therefore, the methodology just consists
of applying a bottom-up pre–processing to “generalize” the initial wrong program,
before proceeding to the top-down correction.

A näıve solution for overcoming the restriction to overly general programs con-
sists of restraining E+ to the set E′ of examples covered by the program, that is
E′ = {e ∈ E+ | R ⊢ e}. Clearly, R is an overly general program w.r.t. E′ and
E−. Unfortunately, this does not generally work, since E′ might lack the examples
necessary to drive the specialization process towards a correction of the faulty rules.

Let us propose a different methodology which is based on extending the original
program with new rules so that the entire set E+ succeeds w.r.t. the generalized
program, and hence the top-down corrector can be effectively applied.
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Our generalization method is based on a simplified version of the bottom-up tech-
nique for the inductive learning of functional logic programs developed by Ferri,
Hernández and Ramı́rez [57] which is able to produce an intensional description (ex-
pressed by a functional logic program) of a set of ground examples. The algorithm
is also able to introduce functions, defined as a background theory, in the inferred
intensional description (see [57, 67] for details).

In the following we recall the definitions of restricted generalization and inverse
narrowing which are the heart of the bottom-up procedure of [57, 67]. The former
allows to generalize program rules, the latter is needed to introduce defined symbols
in the right hand sides of the synthesized rules.

Definition 3.4.1 (Generalization operator) The rule r′ ≡ (s′ → t′ ⇐ C′) is a
restricted generalization of r ≡ (s→ t⇐ C) if there exists a substitution θ such that
(i) θ(r′) ≡ r; (ii) Var(t′) ⊆ Var(s′). The generalization operator RG(r) is defined as
follows:

RG(r) = {r′|r′ is a restricted generalization of r}.

Definition 3.4.2 (Inverse narrowing operator) The rule r ≡ s → t ⇐ C re-

versely narrows into r′ ≡ s→ t′ ⇐ C′ (in symbols r
u,r′′,θ
←֓ r′) iff there exist a position

u ∈ O(t) and a rule r′′ ≡ λ→ ρ⇐ C′′ such that (i) θ = mgu(t|u, ρ); (ii) t′ = (t[λ]u)θ;
(iii) C′ = (C′′, C)θ.
The inverse narrowing operator INV(r, r′′) is given by:

INV(r, r′′) = {r′ | r
u,r′′,θ
←֓ r′ and extra-variables in the rhs of r′

are instantiated to variables in the rhs of r}.

The extra instantiation of variables in the rhs of the derived rule is necessary since
inverse narrowing considers the rules oriented reversely (that is, from right to left)
and hence extra-variables (that is, variables which occur in the rhs of a rule but not
in its lhs) might be introduced in the synthesized rules, which are not allowed.

The following definitions are helpful for discerning the overspecialized program
rules. DefR(f ) is the set of rules in R needed to define the function f . This might
be computed by constructing a functional dependency graph of the program R and
by statically analyzing it. Given a set E of positive examples, Resf(E) denotes
the restriction of E to the set of f -rooted examples (that is, examples of the form
f(t̃) = d). We say that a function definition DefR(f ) is overspecialized w.r.t. the
set of positive examples E+, if there exists e ∈ Resf (E

+) which is not covered by
DefR(f ). An incorrect rule belonging to an overspecialized function definition is
called overspecialized rule.

Basically, the generalization algorithm works in this way: at an initial stage, we
discover all function definitions which are overspecialized, by computing the subset of
f -examples not provable in R (and hence not provable by the corresponding function
definition). Then, overspecialized rules are deleted from R. At this point, applying
generalization and inverse narrowing operators, starting from the positive examples,
we try to reconstruct the missing part of the code, that is, we synthesize a functional
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logic program A such that R ∪A \ {r ∈ R | r is overspecialized} allows us to derive
the entire E+. At the end, we get an overly general hypothesis to which the top-
down corrector can be applied for repairing (incorrectness) bugs on the derived overly
general faulty rules.

Formally, the bottom-up synthesis consists of the following steps. The algorithm
firstly generates a set PH (Program Hypothesis set) which consists of unary programs
associated with the restricted generalizations of E+, that is, PH = {{r} | r ∈ RG(s→
t), s = t ∈ E+}. Then it enters a loop in which, by means of INV and RG operators,
new programs in PH are produced. The algorithm leaves the loop when an “optimal”
solution, which covers E+ entirely, has been found in PH , or a maximal number of
iterations is reached. In the latter case no solution might be found.

Due to the huge search space which that method generates, some heuristics must
be implemented to guide the search. Following [67], Minimum Description Length1

(MDL) and Covering Factor2 criteria could be taken into consideration, so that inverse
narrowing steps are only performed among the best programs and equations w.r.t.
these criteria. Moreover, by means of MDL and Covering Factor, only the most
concise programs are selected during the induction process. The notion of Optimality
w.r.t. programs and equations could be defined as a linear combination of these two
criteria. For a full discussion on this topic consult [67].

Algorithm Generalize(R, E+) takes as input a program R and an example set
E+ such thatR just covers a proper subset E of E+. It returns as output a generalized
program Rgen in which the entire E+ succeeds or—in the case the algorithm fails—a
“No solution found” warning is delivered.

To exploit all the information at hand, we set the background theory B to the
diminished program R− 3 . By doing so, inverse narrowing steps among rules in R−

and rules in programs belonging to PH are allowed.

The function SelectBest(PH) returns the best program in PH (w.r.t. the optimality
criterion), variable Opt represents the desired optimality threshold for the inferred
program.

Notice that the termination of the algorithm is not guaranteed by the sole upper
bound on the number of iterations, since the inverse narrowing operator might yield
non-terminating rules (e.g. f(X, Y ) → f(Y, X)), and hence the test R ⊢ E+ could
not terminate. This is the reason why a concrete implementation of the algorithm
also needs an upper bound n on the narrowing steps. Programs in PH , using more
than n narrowing steps to prove some positive example, are disregarded.

Let us present a final example which illustrates the method. For the sake of clarity,
we do not consider optimality issues. Also, we only pinpoint the relevant outcomes.

1length(e) = 1 + nv/2 + nf , where nv and nf are the number of variables and functors in the rhs
of e.

2CovF(E) = card({e ∈ E | R ⊢ e})/card(E).
3Actually, we might consider only those function definitions in the diminished program which are

necessary to reconstruct the faulty overly specialized part.
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Algorithm 3 A bottom-up inductive learner for generalizing programs.

1: procedure Generalize(R, E+)
2: S ← {R′ | R′ = DefR(f ), f ∈ D}
3: Raux ←R
4: for all overspecialized R′ in S do
5: if r ∈ R′ ∧ r is incorrect then
6: Raux ←Raux \ {r}
7: end if
8: end for
9: PH ← {{r} | r ∈ RG(s→ t), s = t ∈ E+}

10: B ← R−

11: it← 0
12: while ¬(SelectBest(PH) ⊢ E+∧ SelectBest(PH) > Opt) ∧ it < itmax

do
13: Select the best R′ ∈ PH and R′′ ∈ PH ∪ {B}
14: Select the best r′ ∈ R′ and r′′ ∈ R′′

15: for all r ∈ INV(r′, r′′) do
16: for all rg ∈ RG(r) do
17: PH ← PH ∪ {(R′ ∪R′′ \ {r′}) ∪ {rg}}
18: end for
19: end for
20: it← it + 1
21: end while
22: A ← SelectBest(PH)
23: if A ⊢ E+ ∧ A > Opt then
24: Rgen ←Raux ∪ A
25: else
26: output(’No solution found’)
27: end if
28: end procedure
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Example 3.4.3 Consider the following (wrong) program and the specification

R = { playdice(X)→ double(winface(X)), dd(0)→ 0,dd(s(X))→ dd(X)),
winface(s(X))→ s(winface(X)),winface(0)→ 0 }

I = { playdice(X)→ dd(winface(X)), dd(X)→ sum(X, X),
sum(X, 0)→ X, sum(X, s(Y ))→ s(sum(X, Y )),
winface(s(0))→ s(0),winface(s(s(0)))→ s(s(0)) }.

Program rules marked in boldface are signaled as incorrect by the diagnosis system.
The automated example generation procedure described in Section 3.3.1 produces the
positive example set:

E+ = { playdice(s2(0)) = s4(0), playdice(s(0)) = s2(0), dd(s4(0)) = s8(0),
dd(s3(0)) = s6(0), dd(s2(0)) = s4(0), dd(s(0)) = s2(0)
dd(0) = 0,winface(s2(0)) = s2(0),winface(s(0)) = s(0) }

The analysis of the functions dd and winface determines that the former one is over-
specialized. Now, the generalization algorithm removes the rule dd(s(X)) → dd(X).
Note that rule dd(s(0)) → s2(0) inversely narrows to rule dd(s(0)) → s2(dd(0))
by using rule dd(0) → 0. The following restricted generalizations are computed:
dd(s(0)) → s2(dd(0)), dd(s(X)) → s2(dd(0)), dd(s(X)) → s2(dd(X)). Now,
when the third rule is added to the background knowledge, all examples in E+ are
covered. Thus, the following overly general definition is delivered:

R = { playdice(X)→ dd(winface(X)), dd(0)→ 0, dd(s(X))→ s(s(dd(X)))),
winface(s(X))→ s(winface(X)),winface(0)→ 0 }

which can finally be fed to the top-down corrector in order to repair the remaining
wrong definition.

3.5 Automated correction system

A prototypical implementation of our correction methodology, written in SICStus
Prolog, and a set of benchmarks are available at

http://www.dimi.uniud.it/~demis/nobug/nobug.html.

We have improved the preliminary debugging system Buggy by adding new “cor-
rection” features. The new implementation, called Nobug, is now able to compute
sets of positive and negative examples by using the methodology described in Sec-
tion 3.3.1. Our system includes a parser for the language, a module for computing
the program approximation (based on loop-checking), an automatic debugger which
allows the user to fix some parameters, such as the number n of iterations for approx-
imating the fixpoint semantics. The module for generating the positive and negative
example sets allows the user to provide a list of ground constructor terms for the
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generation of the ground example sets. We have also developed a full implementa-
tion of the top-down correction method based on example-guided unfolding for the
leftmost-innermost narrowing strategy. We are currently implementing the lazy ver-
sion of the algorithm. The bottom-up synthesis method has not been integrated into
the Nobug system yet. Hence, in order to compute our benchmarks also for initially
overspecialized programs, we used the inductive functional logic system FLIP[56].

3.5.1 Experimental evaluation

We have performed some tests by means of our top-down corrector and the bottom-up
learner FLIP, in order to repair overly general as well as overspecialized functional
logic programs. We have taken into account programs on several domains: naturals,
lists and finite domains. In order to systematize the generation of the benchmarks, we
have slightly modified correct programs in order to obtain wrong program mutations.
We have introduced bugs in the left-hand sides, as well as the right-hand sides, of the
program rules, and errors that affect the recursive definitions and the non-recursive
ones. We were able to successfully repair incorrect mutations, achieving, in many
cases, a correction w.r.t. both the example sets and the intended program semantics.
We have noticed that small example sets generally suffice to get a satisfactory correc-
tion. In particular, all experiments required less than 20 positive examples and less
than 10 negative examples.

A detailed description of our benchmarks, which includes example set generation,
overly general transformation and a system execution, can be retrieved at the URL
link mentioned above.



4
Correction of First-Order

Functional Programs

The debugging support for functional languages in current systems is poor [106], and
there are no general purpose, good semantics-based debugging tools available. Tradi-
tional debugging tools for functional programming languages consist of tracers which
help to display the execution [35, 58, 93, 95] but which do not enforce program cor-
rectness adequately as they do not provide means for finding nor repairing bugs in the
source code w.r.t. the intended program semantics. This is particularly dramatic for
equational languages such as those in the OBJ family, which includes OBJ3, CafeOBJ

and Maude.
Abstract diagnosis of (first-order) functional programs (that is, TRSs) [12] is a

declarative diagnosis framework extending the methodology of [38], which relies on
(an approximation of) the immediate consequence operator TR, to identify bugs in
functional programs. Given the intended specification I of the semantics of a program
R, the debugger checks the correctness ofR by a single step of the abstract immediate
consequence operator T κ

R, where the abstraction function κ refers to the depth(k)
cut abstraction [38]. Then, by a simple static test, the system can determine all
the rules which are wrong w.r.t. a particular abstract property. The framework is
goal independent and does not require the determination of symptoms in advance.
This is in contrast with traditional, semi-automatic debugging of functional programs
[92, 94, 104], where the debugger tries to locate the node in an execution tree, which is
ultimately responsible for a visible bug symptom, by making questions to the oracle
(typically the user). When debugging real code, the questions are often textually
large and may be difficult to answer.

In this chapter, we endow the functional debugging method of [12] with a bug-
correction program synthesis methodology which, after diagnosing the buggy program,
tries to correct the erroneous components of the wrong code automatically. In this
framework, we will consider first-order functional programs which are modeled by
term rewriting systems (TRSs).

As in Chapter 3, the method uses unfolding in order to discriminate positive from
negative examples (resp. uncovered and incorrect equations) which are automatically
produced as an outcome by the diagnoser. Informally, our correction procedure works
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as follows. Starting from an overly general program (that is, a program which covers
all the positive examples as well as some negative ones), the algorithm unfolds the
program and deletes program rules until reaching a suitable specialization of the
original program which still covers all the positive examples and does not cover any
negative one. Both, the example generation and the top-down correction processes,
exploit some properties of the abstract interpretation framework of [12] which they
rely on. Let us emphasize that we do not require any demanding condition on the class
of the programs which we consider. This is particularly convenient in this context,
since it should be undesirable to require strong properties, such as termination or
confluence, for a buggy program which is known to contain errors.

In Chapter 3, following the hybrid correction scheme which we illustrated at the
beginning of this dissertation, we presented a general bottom-up inductive general-
ization methodology along with a top-down inductive correction method. The former
transforms a given program into a program which is “overly general” w.r.t. an exam-
ple set, so that the latter can be applied. Since this bottom-up, inductive learning
methodology can also be employed in the functional setting, in this chapter, we will
only focus on the formalization of the functional top-down corrector.

We would like to clarify the contributions of this correction method w.r.t. the one
presented in the previous chapter, where a different unfolding-based technique was de-
veloped which applies to synthetizing multiparadigm, functional-logic programs from
a set of positive and negative examples. First, the method for automatically gener-
ating the example sets is new. In Chapter 3, (abstract) non-ground examples were
computed as the outcome of an abstract debugger based on the loop-check techniques
of [16], whereas now we compute (concrete) ground examples after a depth-k abstract
diagnosis phase [38] which is conceptually much simpler and allows us to compute
the example sets more efficiently. Regarding the top-down correction algorithm, the
one proposed in this chapter significantly improves the previous method. We have
been able to devise an abstract technique for testing the “overgenerality” applicability
condition, which saves us from requiring program termination or the slightly weaker
condition of µ-termination (termination of context-sensitive rewriting [79]). Finally,
we have been able to prove the correctness of the new algorithm for a much larger
class of programs, since we do not even need confluence whereas the previous method
applies only to inductively sequential programs or canonical, completely defined sys-
tems (depending on the lazy/eager narrowing strategy chosen, i.e., ϕ = needed or
ϕ = inn).

The debugging methodology which we consider can be very useful for a functional
programmer who wants to debug a program w.r.t. a preliminary version which was
written with no efficiency concern. Actually, in software development a specification
may be seen as the starting point for the subsequent program development, and as
the criterion for judging the correctness of the final software product. Therefore, a
debugging tool which is able to locate bugs in the user’s program and correct the
wrong code becomes also important in this context. In general, it also happens that
some parts of the software need to be improved during the software life cycle, e.g.
for getting a better performance. Then the old programs (or large parts of them)
can be usefully (and automatically) used as a specification of the new ones. For in-
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stance, the executability of OBJ specifications supports prototype-driven incremental
development methods [60].

Structure of the chapter

The rest of the chapter is organized as follows. Section 4.1 recalls the abstract di-
agnosis framework for functional programs of [12]. Section 4.2 formalizes the cor-
rection problem in this framework. Section 4.3 illustrates the example generation
methodology. Section 4.4 presents the top-down correction method together with
some examples and correctness results.

4.1 Denotation of functional programs

In this section we first recall the semantic framework introduced in [12]. We will pro-
vide a finite/angelic relational semantics [41], given in fixpoint style, which associates
an input-output relation to a program, while intermediate computation steps are ig-
nored. Then, we formulate an abstract semantics which approximates the evaluation
semantics of the program.

4.1.1 Concrete semantics

The considered concrete domain C is the lattice of V-Herbrand interpretations, i.e.,
the powerset of BV ordered by set inclusion.

In the sequel, a semantics for program R is a V-Herbrand interpretation. Since
in functional programming, programmers are generally concerned with computing
values (ground constructor normal forms), the semantics which is usually considered
is Sem

val
(R) := {s = t | s→!

R t, t ∈ τ(C)}. Sometimes, we will call proof of equation
s = t, a rewrite sequence from term s to value t.

Following [41], in order to formalize our evaluation semantics via fixpoint compu-
tation, we consider the following immediate consequence operator.

Definition 4.1.1 [12] Let I be a Herbrand interpretation, R be a TRS. Then,

TR(I ) = {t = t | t ∈ τ(C)} ∪ {s = t | r = t ∈ I , s→R r}.

The following proposition is immediate.

Proposition 4.1.2 [12] Let R be a TRS. The TR operator is continuous on C.

Definition 4.1.3 [12] The least fixpoint semantics of a program R is defined as

F
val

(R) = TR ↑ ω.
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obj GAMESPEC is

sorts Nat Reward .

op 0 : -> Nat .

op s : Nat -> Nat .

op prize : -> Reward .

op sorry-no-prize : -> Reward .

op coinflip : Nat -> Reward .

op win? : Nat -> Reward .

var X : Nat .

eq coinflip(X) = win?(X) .

eq win?(s(s(X))) = sorry-no-prize .

eq win?(s(0)) = prize .

eq win?(0) = sorry-no-prize .

endo

Figure 4.1: Coin-flip specification.

Example 4.1.4 Suppose you toss a coin after having chosen one of its faces. If the
face revealed after the coin flip is the predicted one, you win a prize. The problem can
be modeled by the specification I (written in OBJ syntax) depicted in Figure 4.1.

Face values are expressed by natural numbers 0 and s(0); besides, specification
I tells us that we win the prize at stake (expressed by the constructor prize), if the
revealed face is s(0), while we get no prize whenever the revealed face is equal to 0.

The associated least fixpoint semantics is

F
val

(I) = { prize = prize, sorry-no-prize= sorry-no-prize,
win?(0) = sorry-no-prize, win?(s(0)) = prize,
win?(s(s(X)) = sorry-no-prize,
coinflip(0) = sorry-no-prize,
coinflip(s(0)) = prize,
coinflip(s(s(X))= sorry-no-prize }.

The following result establishes the equivalence between the (fixpoint) semantics
computed by the TR operator and the evaluation semantics Semval(R).

Theorem 4.1.5 (soundness and completeness) [12] Let R be a TRS. Then,

Sem
val

(R) = F
val

(R).

Note that if e ≡ (l = c) belongs to the (fixpoint) semantics S of R, then for each
proof e → e1 → e2 . . . en → (c = c) of e in R, ei belongs to S, i = 1, . . . , n. That is,
the semantics models all partial computations of equations in R.
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4.1.2 Abstract semantics

Starting from the concrete fixpoint semantics of Definition 4.1.3, we give an abstract
semantics which approximates the concrete one by means of abstract interpretation
techniques. In particular, we will focus our attention on abstract interpretations
achieved by means of a depth(k) cut [38], which allows to finitely approximate an
infinite set of computed equations.

First of all we define a term abstraction as a function

/k : (τ(Σ,V),≤)→ (T (Σ,V ∪ V̂),≤)

which cuts terms having a depth greater than k. Terms are cut by replacing each
subterm rooted at depth k with a new variable taken from the set V̂ (disjoint from
V). depth(k) terms represent all the terms which are obtained by instantiating the
variables of V̂ with terms built over τ(Σ,V). Note that /k is finite. We denote by
T/k the set of depth(k) terms (T (Σ,V ∪ V̂)/k). We choose as abstract domain A the
set P({a = a′ | a, a′ ∈ T/k}) ordered by the Smyth’s extension of ordering ≤ to sets,
i.e. X ≤S Y iff ∀ y ∈ Y ∃ x ∈ X : x ≤ y. Thus, we can lift the term abstraction /k to
a Galois Insertion of A into C by defining

κ(E) := {s/k = t/k | s = t ∈ E}
γ(A) := {s = t | s/k = t/k ∈ A}

Now we can derive the optimal abstract version of TR simply as T κ
R := κ ◦ TR ◦ γ

and define the abstract semantics of programR as the least fixpoint of this (obviously)
continuous operator, i.e. Fκ

val
(R) := T κ

R ↑ ω. Since /k is finite, we are guaranteed to
reach the fixpoint in a finite number of steps, that is, there exists a finite natural
number h such that T κ

R ↑ ω = T κ
R ↑ h. Abstract interpretation theory assures that

T κ
R ↑ ω is the best correct approximation of Semval(R), where correct means

Fκ
val(R) ≤S κ(Semval(R))

and best means that it is the maximum w.r.t. ≤S.
By the following proposition, we provide a simple and effective mechanism to

compute the abstract fixpoint semantics.

Proposition 4.1.6 [12] For k > 0, the operator T κ
R : T/k × T/k → T/k × T/k holds

the property T̃ κ
R(X) ≤S T κ

R(X) w.r.t. the following operator:

T̃ κ
R(X) = κ(B) ∪ {σ(u[l]p)/k = t | u = t ∈ X, p ∈ OΣ∪V(u),

l → r << R, σ = mgu({u|p = r})}

where B = {t = t | t ∈ τ(C)}.

Definition 4.1.7 [12] The abstract least fixpoint semantics of a program R is defined

as F̃κ
val

(R) = T̃ κ
R ↑ ω.
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Proposition 4.1.8 (Correctness) [12] Let R be a TRS and k > 0.

1. F̃κ
val

(R) ≤S κ(F
val

(R)) ≤S Fval
(R).

2. For every e ∈ F̃κ
val

(R) such that Var(e) ∩ V̂ = ∅, e ∈ F
val

(R).

Example 4.1.9 Consider again the specification in Example 4.1.4. Its abstract least
fixpoint semantics for κ = 2 (without considering symbol win?) becomes

F̃2
val

(I) = { prize = prize, sorry-no-prize= sorry-no-prize,
coinflip(0) = sorry-no-prize, coinflip(s(0))= prize,
coinflip(s(s(X̂))) = sorry-no-prize }.

4.2 The correction problem

The problem of repairing a faulty functional program can be addressed by using induc-
tive learning techniques guided by appropriate examples. Roughly speaking, given a
wrong program and two example sets specifying positive (pursued) and negative (not
pursued) computations respectively, our correction scheme aims at synthesizing a set
of program rules that replaces the wrong ones in order to deliver a corrected program
which is “consistent” w.r.t. the example sets [29].

More formally, we can reformulate the correction problem which we stated in
Chapter 1 in an equivalent way as follows.

Let R be a TRS, I be a specification of the intended semantics of R, E+ and E−

be two finite sets of equations such that

1. E+ ⊆ Semval(I);

2. E− ∩ (Sem
val

(R) \ Sem
val

(I)) 6= ∅.

The correction problem consists in constructing a TRS Rc satisfying the following
requirements

1. E+ ⊆ Semval(R
c);

2. E− ∩ Sem
val

(Rc) = ∅.

Equations in E+ (resp. E−) are called positive (resp. negative) examples. The TRS
Rc is called correct program w.r.t. E+ and E−. Note that, by construction, positive
and negative example sets are disjoint, which permits to drive the correction process
towards a discrimination between E+ and E−.

4.3 How to generate example sets automatically

Before giving a constructive method to derive a correct program, we present a simple
methodology for automatically generating example sets, so that the user does not
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need to provide error symptoms, evidences or other kind of information which would
require a good knowledge of the program semantics.

In the following, we observe that we can easily compute “positive” equations,
i.e. equations which appear in the concrete evaluation semantics Sem

val
(I), since all

equations in F̃κ
val

(I) not containing variables in V̂ belong to the concrete evaluation
semantics Semval(I), as stated in the following lemma.

Lemma 4.3.1 Let I be a TRS and EP := {e|e ∈ F̃κ
val

(I) ∧ Var(e) ∩ V̂ = ∅}. Then,
EP ⊆ Sem

val
(I).

Now, by exploiting the information in F̃κ
val

(I) and F̃κ
val

(R), we can also gener-
ate a set of “negative” equations which belong to the concrete evaluation semantics
Semval(R) of the wrong program R but not to the concrete evaluation semantics
Sem

val
(I) of the specification I.

Lemma 4.3.2 Let R be a TRS, I be a specification of the intended semantics and
EN := {e|e ∈ F̃κ

val
(R) ∧ Var(e) ∩ V̂ = ∅ ∧ F̃κ

val
(I) 6≤S {e}}. Then,

EN ⊆ (Semval(R) \ Semval(I)).

Starting from sets EP and EN , we construct the positive and negative example sets
E+ and E− which we use for the correctness process, by considering the restriction
of EP and EN to examples of the form l = c where l is a pattern and c is a value. By
considering these “data” examples, the inductive process becomes independent from
the extra auxiliary functions which might appear in I, since we start synthesizing
directly from data structures.

The sets E+ and E− are defined as follows.

E+ = {l = c | f(t1, . . . , tn) = c ∈ EP ∧ f(t1, . . . , tn) ≡ l is a pattern ∧
∧ c ∈ τ(C) ∧ f ∈ ΣR}

E− = {l = c | l = c ∈ EN ∧ l is a pattern ∧ c ∈ τ(C)}

where ΣR is the signature of program R.
In the sequel, the function which computes the sets E+ and E−, according to the

above description, is called ExGen(R, I).

4.4 Example-guided unfolding

In this section we present a basic top-down correction method based on the so-called
example-guided unfolding [29], which is able to specialize a program by applying un-
folding and deletion of program rules until coming up with a correction. The top-down
correction process is “guided” by the examples, in the sense that transformation steps
focus on discriminating positive from negative examples. The accuracy of the cor-
rection improves as the number of positive and negative examples increase as it is
common to the learning from examples approach.
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In order to successfully apply the method, the semantics of the program to be
specialized must include the positive example set E+ (that is, E+ ⊆ Semval(R)).
Programs satisfying this condition are called overly general (w.r.t. E+).

The over-generality condition is not generally decidable, as we do not impose pro-
gram termination [6]. Fortunately, when we consider the abstract semantics frame-
work of [12] we are able to ascertain a useful sufficient condition to decide whether
a program is overly general, even if it does not terminate. The following proposition
formalizes our method.

Proposition 4.4.1 Let R be a TRS and E+ be a set of positive examples. If, for
each e ∈ E+, there exists e′ ∈ F̃κ

val
(R) s.t.

1. e′ ≤ e;

2. Var(e′) ∩ V̂ = ∅;

then, R is overly general w.r.t. E+.

Now, by exploiting Proposition 4.4.1, it is not difficult to figure out a procedure
OverlyGeneral(R, E) testing this condition w.r.t. a program R and a set of ex-
amples E, e.g. a boolean function returning true if program R is overly general w.r.t.
E and false otherwise.

4.4.1 The unfolding operator

Informally, unfolding a program R w.r.t. a rule r delivers a new specialized version
of R in which the rule r is replaced with new rules obtained from r by performing a
narrowing step on the rhs of r.

Definition 4.4.2 Given two rules r1 ≡ λ1 → ρ1 and r2, we define the rule unfolding
of r1 w.r.t. r2 as

Ur2
(r1) = {λ1σ → ρ′ | ρ1

σ
;r2

ρ′}.

Definition 4.4.3 Given a TRS R and a rule r << R, we define the program unfolding
of r w.r.t. R as follows

UR(r) =

(
R∪

⋃

r′∈R

Ur′(r)

)
\ {r}.

Note that, by Definition 4.4.3, for any TRS R and rule r << R, r is never in UR(r).

Definition 4.4.4 Let R be a TRS, r be a rule in R. The rule r is unfoldable w.r.t.
R if UR(r) 6= R \ {r}.
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Now, we are ready to prove that the “transformed” semantics, obtained after
applying the unfolding operator to a given program R, still contains the semantics of
R. In symbols, Semval(R) ⊆ Semval(UR(r)), where r is an unfoldable rule. We call
this property unfolding correctness.

The following definitions are auxiliary.

Definition 4.4.5 Let t ∈ τ(Σ,V) and ⊥ be a symbol not in Σ. The shell of t, in
symbols shell(t), is defined as follows

shell(t) =

{
f(shell(t1), . . . , shell(tn)) if t ≡ f(t1, . . . , tn), where f ∈ D
⊥ otherwise

Definition 4.4.6 Let (Σ,R) be a TRS where Σ = C ∪ D. R is well-framed, if for
each λ→ ρ ∈ R, OD(shell(ρ)) = OD(ρ).

The following theorem establishes the correctness of unfolding even for non-confluent
programs, provided that they are well-framed. Note that well-framedness is much less
demanding and easy to check.

Theorem 4.4.7 (unfolding correctness) Let R be a well-framed left-linear CS,
r << R be an unfoldable rule and R′ = UR(r). Let e ≡ (l = c) be an equation such
that l ∈ τ(Σ,V) and c ∈ τ(C). Then, Sem

val
(R) ⊆ Sem

val
(R′).

Finally, some important program properties such as well-framedness and program
termination are preserved through unfolding.

4.4.2 The top-down correction algorithm

Basically, the idea behind the basic correction algorithm is to eliminate rules from the
program in order to get rid of the negative examples without losing the derivations
for the positive ones. Clearly, this cannot be done by näıvely removing program rules,
since sometimes a rule is used to prove both a positive and a negative example. So,
before applying deletion, we need to specialize programs in order to ensure that the
deletion phase only affects those program rules which are not necessary for proving
the positive examples. This specialization process is carried out by means of the
unfolding operator of Definition 4.4.3. Considering this operator for specialization
purposes has important advantages. First, positive examples are not lost by repeat-
edly applying the unfolding operator, since unfolding preserves the proper semantics
(see Theorem 4.4.7). Moreover, the nature of unfolding is to “compile” rewrite steps
into the program, which allows us to shorten and distinguish the rewrite rules which
occur in the proofs of the positive and negative examples.

Algorithm 4 formalizes the correction procedure, called TDCorrectorF, which
takes as input a program R and a specification of the intended semantics I, also
expressed as a program. First, TDCorrectorF computes the example sets E+

and E− by means of ExGen, following the method presented in Section 4.3. Then,
it checks whether program R is overly general following the scheme of Proposition
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4.4.1, and finally it enters the main correction process. In order to ensure correctness
of the algorithm, we require k to be greater than or equal to the maximum depth of
the terms occurring in E+.

This last phase consists of a main loop, in which we perform an unfolding step
followed by a rule deletion until no negative example is covered (approximated) by the
abstract semantics of the current transformed program Rn. This amounts to saying
that no negative example belongs to the concrete semantics of Rn. We note that the
while loop guard is easy to check, as the abstract semantics is finitely computable.
Note the difference w.r.t. the algorithm in the previous chapter, where decidability is
ensured by requiring both confluence and (µ-termination) of the program.

During the unfolding phase, we select a rule upon which performing a program
unfolding step. In order to specialize the program w.r.t. the example sets, we pick
up an unfoldable rule which occurs in some proof of a positive example by using a
fair selection strategy. More precisely, we choose rules which appear first in proofs
of positive examples. Those rules can be easily computed retrieving them from the
fixpoint semantics F̃κ

val
by a further step of the T̃ κ operator by means of the auxiliary

function first , which is formally defined as follows.

Definition 4.4.8 Let R be a TRS and E be an example set. Then, we define

first(E) :=
⋃

e∈E

{r | e ∈ T̃ κ
{r}(F̃

κ
val

(R))}.

Once unfolding has been accomplished, we proceed to remove the “redundant” rules,
that is, all the rules which are not needed to prove the positive example set E+. This
can be done by repeatedly testing the overgenerality of the specialized program w.r.t.
E+ and removing one rule at each iteration of the inner for loop. Roughly speaking,
if program Rk \ {r} is overly general w.r.t. E+, then rule r can be safely eliminated
without losing E+. Then, we can repeat the test on another rule.

Let us consider the coin-flip game to illustrate our algorithm.

Example 4.4.9 The OBJ program R of Figure 4.2 is wrong w.r.t. the specification
I of Example 4.1.4. Note that program R is non-confluent and computes both values
prize and sorry-no-prize for any natural sn(0), n > 0.

By fixing κ = 2, we compute the following least fixpoint abstract semantics for R.

F̃2
val

(R) = { prize = prize,
sorry-no-prize= sorry-no-prize,
coinflip(0) = prize,
coinflip(0) = sorry-no-prize,
coinflip(s(0))= prize,
coinflip(s(0))= sorry-no-prize,
coinflip(s(s(X̂))) = prize,
coinflip(s(s(X̂))) = sorry-no-prize }.
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Algorithm 4 The top-down correction algorithm.

1: procedure TDCorrectorF(R.I)
2: (E+, E−)← ExGen(R, I)
3: if not OverlyGeneral(R, E+) then Halt
4: k ← 0; Rk ←R
5: while ∃ e− ∈ E− : F̃κ

val
(Rk) ≤S {e−} do

6: R← {r ∈ Rk | r is unfoldable ∧ r ∈ first(E+)}
7: if R 6= ∅ then
8: Select(r, R)
9: Rk+1 ← URk

(r); k ← k + 1
10: end if
11: for each r ∈ Rk do
12: if OverlyGeneral(Rk\{r}, E

+) then
13: Rk←Rk\{r}
14: end if
15: end for
16: end while
17: Rc ← Rk

18: end procedure

obj GAME is

sorts Nat Reward .

op 0 : -> Nat .

op s : Nat -> Nat .

op prize : -> Reward .

op sorry-no-prize : -> Reward .

op coinflip : Nat -> Reward .

var X : Nat .

eq coinflip(s(X)) = coinflip(X) . (1)

eq coinflip(0) = prize . (2)

eq coinflip(0) = sorry-no-prize . (3)

endo

Figure 4.2: Wrong coinflip OBJ program.
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obj GAME is

sorts Nat Reward .

op 0 : -> Nat .

op s : Nat -> Nat .

op prize : -> Reward .

op sorry-no-prize : -> Reward .

op coinflip : Nat -> Reward .

var X : Nat .

eq coinflip(s(s(X))) = coinflip(X) . (4)

eq coinflip(s(0)) = prize . (5)

eq coinflip(s(0)) = sorry-no-prize . (6)

eq coinflip(0) = prize . (7)

eq coinflip(0) = sorry-no-prize . (8)

endo

Figure 4.3: Unfolded coinflip program.

Considering the abstract fixpoint semantics F̃2
val

(I) which is computed in Example
4.1.9 and following the methodology of Section 4.3, we obtain the example sets below:

E+ = {coinflip(s(0))= prize, coinflip(0) = sorry-no-prize}
E− = {coinflip(s(0))= sorry-no-prize, coinflip(0) = prize}.

Now, since program R fulfills the condition for overgenerality expressed by Proposition
4.4.1, the algorithm proceeds and enters the main loop. Here, program rule (1) is
unfolded, because (1) is unfoldable and belongs to first(E+). So, the transformed
program is the one depicted in Figure 4.3.

Subsequently, a deletion phase is executed in order to check whether there are rules
which are not needed to cover the positive example set E+. The algorithm discovers
that rules (4), (6), (7) are not necessary, and therefore are removed producing the
correct program which consists of rules (5) and (8).

Note that the above example cannot be repaired by using either the correction
method of [6] or the method proposed in the previous chapter, since the wrong TRS
is not confluent.

4.4.3 Correctness of algorithm TDCorrectorF

In this section, we prove the correctness of the top-down correction algorithm TD-
CorrectorF, i.e., we show that it produces a specialized version of R which is a
correct program w.r.t. E+ and E−, provided that R is overly general w.r.t. E+. A
condition is necessary for establishing this result: no negative/positive couple of the
considered examples must be proven by using the same sequence of rules.

Let us start by giving an auxiliary definition and some technical lemmata.
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Definition 4.4.10 Let R be a TRS and E be a set of examples. The unfolding
succession US(R) ≡ R0,R1, . . . of program R w.r.t. E is defined as follows:

R0 = R, Ri+1 =

{
URi

(r) where r ∈ Ri is unfoldable and r ∈ first(E)
Ri otherwise

The next results state that we are always able to transform a program R into a
program R′ by a suitable number of unfolding steps, in such a way that any given
proof of an example in R can be mimicked by a one-step proof in R′. In the following
we denote the length of a rewrite sequence S by |S|.

Lemma 4.4.11 Let R be a well-framed, left-linear CS, E be a set of examples and
r ∈ first(E) be an unfoldable rule such that R′ = UR(r). Let t = c ∈ E, where t is a
pattern and c is a value. Then,

1. if S is a rewrite sequence from t to c in R, then there exists a rewrite sequence
S′ from t to c in R′;

2. if r occurs in S, then |S′| < |S|.

Lemma 4.4.12 Let R be a well-framed, left-linear CS, E be an example set and
t = c ∈ E, where t is a pattern and c is a value. Let t →r1

. . .→rn
c, n ≥ 1. Then,

for each unfolding succession US(R) w.r.t. E, there exists Rk occurring in US(R)
such that t→r∗ c, r∗ ∈ Rk.

The following result immediately derives from Claim (i) of Proposition 4.1.8 .

Lemma 4.4.13 Let R be a TRS and e an equation. Then, if F̃κ
val

(R) 6≤S {e}, then
e 6∈ Sem

val
(R).

The following definition is auxiliary. We say that the pair of positive an negative
example sets (E+, E−) is discriminable in R [29], if there are no e+ ∈ E+ and
e− ∈ E− which can be proven by using the same sequence of rules of R. This
property can be checked by using standard tools for proving program termination.

Now we are ready to prove the partial correctness and the termination of the
algorithm.

Theorem 4.4.14 Let R be a well-framed, left-linear CS and I be a specification
of the intended semantics of R. Let E+ and E− be the example sets generated by
ExGen(R, I).

1. If (E+, E−) is discriminable in R, then the algorithm TDCorrectorF(R, I)
terminates.

2. If R is overly general w.r.t. E+ and TDCorrectorF(R, I) terminates, then
the computed program Rc is correct w.r.t. E+ and E−.
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We note that well-framedness can be dispensed in exchange for requiring complete
definedness (CD), i.e the property that functions are defined on all possible values
of their arguments, as in [18] by simply delaying the deletion phase and performing
a virtual deletion instead. This suffices to ensure that the CD property is preserved
during the transformation.
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5
A Language for Verifying

Web sites

In this chapter, we first provide a rewriting-based, formal specification language which
allows us to define conditions on both the structure and the contents of Web sites in a
simple and concise way. For instance, it allows us to recognize erroneous information
inside the Web site and, additionally, to enforce that some information is available
at a given Web page, some links between pages do exist or even the existence of the
Web pages themselves. In our formalism, web pages (XHTML/XML documents) are
modeled as Herbrand terms, and, consequently, Web sites are finite sets of terms.
Then, we formalize a verification technique in which a Web site is checked w.r.t.
a given Web specification in order to detect incorrect data and incomplete and/or
missing Web pages. Moreover, by analyzing the error symptoms gathered during the
verification process, we are also able to

• exactly localize the incorrect/forbidden information;

• find out the missing information which should be provided to repair the Web
site.

Since reasoning on the Web calls for formal methods specifically fitting the Web con-
text, we combine a standard regular expression methodology with a novel, rewriting-
based technique called partial rewriting, in which the traditional pattern matching
mechanism is replaced by tree simulation [66] in order to provide a suitable mecha-
nism for recognizing patterns inside semistructured documents. The notion of simu-
lation has been already used before for dealing with semistructured data in a number
of query and transformation languages [31, 33, 54, 40]. The reason is twofold: on the
one hand, it provides a powerful method to extract information from semistructured
data; on the other hand, there exist efficient algorithms for computing simulations
[66]. To assess the feasibility and efficiency of our approach, we have implemented the
preliminary prototype system GVerdi (VErification and Rewriting for Debugging In-
ternet sites), which is based on the verification methodology that we propose and is
publicly available online. Following the “tolerant” approach of xlinkit [48, 89], we
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do not force the immediate repairing of the Web site, but simply provide the diagnosis
information that enables document owners to decide on further actions.

Structure of the chapter

Section 5.1 summarizes some preliminary definitions and terminologies. In Section
5.2, a term representation of Web sites is provided together with a simple method for
translating XHTML/XML documents into Herbrand terms. Section 5.3 is devoted
to formalizing the specification language, whereas Section 5.4 formalizes the partial
rewriting mechanism, which is based on page simulation. Section 5.5 introduces our
verification technique for detecting incorrect as well as missing/incomplete Web pages.
Some notes regarding the implementation of the system GVerdi are given in Section
5.6.

5.1 Basic notions

In this section, we will recall some basic definitions which are needed for understanding
the rest of the chapter. For the sake of clarity, we will redefine the notion of term
(and, consequently, of some related notions), given in Chapter 2, by means of an
equivalent formalization, which is more convenient in this context.

We call a finite set of symbols alphabet. Given the alphabet A, A∗ denotes the
set of all finite sequences of elements over A. Syntactic equality between objects is
represented by ≡.

By V we denote a countably infinite set of variables and Σ denotes a set of function
symbols, or signature. We consider varyadic signatures as in [43] (i.e., signatures in
which symbols have an unbounded arity, that is, they may be followed by an arbitrary
number of arguments). τ(Σ,V) and τ(Σ) denote the non-ground term algebra and the
term algebra built on Σ ∪ V and Σ, respectively.

Terms are viewed as labelled trees in the following (non-standard) way: a term in
τ(Σ) is a tree (V, E, r, label), where V is a set of vertices, E is a set of edges (i.e. pairs
of vertices), r ∈ V is the root vertex and label is a labeling function V → Σ ∪ V . Let
us see a small example.

Example 5.1.1 Consider the term t ≡ f(h(a), X) in τ({f, h, a}, {X}), which is il-
lustrated in Figure 5.1. Term t can be represented by the structure (V, E, r, label),
where

V ≡ {v0, v1, v2, v3}, E ≡ {(v0, v1), (v0, v2), (v1, v3)}, r ≡ v0

and function label is defined as follows: label(v0) = f , label(v1) = h, label(v2) = X,
label(v3) = a.

Given two vertices v, v′ ∈ V of a term t ≡ (V, E, r, label), by v ≥ v′ we mean that v
is a descendant of v′ in t. By t|v we mean the subterm rooted at vertex v of t. t[r]v
is the term t with the subterm rooted at vertex v replaced by term r.
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Figure 5.1: Term representation of f(h(a), X).

We denote the depth of a vertex v in a term t, that is the number of edges between
r and v in t, as depth(t, v). A substitution σ ≡ {X1/t1, X2/t2, . . .} is a mapping from
the set of variables V into the set of terms τ(Σ,V) satisfying the conditions given in
Section 2.1.2. By Var(s) we denote the set of variables occurring in the syntactic
object s.

In the following, we consider marked terms. Given Σ and V , we denote the marked
version of Σ (V , respectively) as Σ (V , respectively). A syntactic object o ∈ Σ ∪ V is
called the marked version of o ∈ Σ ∪ V . Given a term t ≡ (V, E, r, label) ∈ τ(Σ,V), a
marking for t is a (boolean) function µ: V → {yes, no}. The empty marking ε for t is
a marking for t, such that ε(v) = no, for each v ∈ V . We define the marked part of a
term t as

mark(t, µ) ≡ ({v ∈ V | µ(v) = yes}, {(v1, v2) ∈ E | µ(v1) = µ(v2) = yes}, r, label ).

A valid marking µ for a term t ≡ (V, E, r, label) is the empty marking for t or a
marking for t such that the two following conditions hold:

1. µ(r) = yes;

2. mark(t, µ) is a term in τ(Σ,V).

Given a term t ≡ (V, E, r, label) and a valid marking µ for t, by slightly abusing
notation, a marked term µ(t) is a term in τ(Σ ∪ Σ,V ∪ V) such that, for each vertex
v ∈ V , the label associated with v in t is replaced by its marked version in µ(t),
whenever µ(v) = yes.

When no confusion can arise, we simply denote the marked term ε(t) by t.

Example 5.1.2 Consider again term t ≡ (f(h(a), X)) of Example 5.1.1. Let µ1 be a
marking for t defined as µ1(v0) = µ1(v2) = µ1(v3) = yes, µ1(v1) = no. Additionally,
let µ2 be a marking for t such that µ2(v0) = µ2(v1) = yes, µ2(v2) = µ2(v3) = no.
Note that µ1 is not a valid marking for t as the marked part of t is not a term in
τ({f, h, a}, {X}) (see Figure 5.2 (a)) , whereas µ2 is valid for t and µ2(t) = f(h(a), X)
is a marked term (see Figure 5.2 (b)).
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Figure 5.2: Examples of valid and non valid markings for the term f(h(a), X).

In order to formalize our specification language, we will take advantage of the com-
putational model, provided by term rewrting systems, which we explained in Section
2.2. Specifically, we will consider the class of the canonical TRSs. In this context,
an equation s = t holds in a canonical TRS R, if there exists z ∈ τ(Σ,V) such that
s→!

R z and t→!
R z.

Example 5.1.3 Let R be the following canonical TRS

sum(X, 0) → X

sum(s(X), Y) → s(sum(X, Y))

append(L1, [ ]) → L1

append([X|L1], L2) → [X|append(L1, L2)]

≤ (0, X) → true

≤ (s(X), 0) → false

≤ (s(X), s(Y)) → ≤ (X, Y)

By means of TRS R we define three functions. The function sum computes the sum of
two natural numbers, the function append concatenates two lists, and the function ≤
defines the “less or equal to” relation between natural numbers. Natural numbers are
represented in Peano’s notation by means of the constant 0 and the unary operator s.
By abuse, we will write n ∈ N as a shorthand for sn(0). We use the standard notation
for lists with [ ] being the empty list. Strings are viewed as lists of characters as usual.
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5.2 Denotation of Web sites

In our framework, a Web page is either an XML [107] or an XHTML [109] document,
which we assume to be well-formed, as there are already programs and online services
such as Tidy [90] which are able to validate and correct the XHTML/XML syntax,
or Doctor HTML [73], which also performs link-checking.

Let us consider two alphabets T and Tag. We denote the set T ∗ by Text . An
object t ∈ Tag is called tag element, while an element w ∈ Text is called text element.
Since Web pages are provided with a tree-like structure, they can be straightforwardly
translated into ordinary terms of a given term algebra τ(Text∪Tag) as shown in Figure
5.3. Note that XML/XHTML tag attributes can be considered as common tagged
elements, and hence translated in the same way.

<members> members(

<member status="professor"> member(status(professor),

<name> mario </name> name(mario),

<surname> rossi </surname> surname(rossi)

</member> ),

<member status="technician"> member(status(technician),

<name> franca </name> name(franca),

<surname> bianchi </surname> surname(bianchi)

</member> )

<member status="student"> member(status(student),

<name> giulio </name> name(giulio),

<surname> verdi </surname> surname(verdi)

</member> )

</members> )

Figure 5.3: An XML document and its corresponding encoding as a ground term p.

A marked Web page is defined as µ(p), where p ∈ τ(Text ∪ Tag) and µ is a valid
marking for p. A Web site is a finite collection of marked Web pages {ε(p1) . . . ε(pn)}.
In the following, we will also consider terms of the non-ground term algebra τ(Text ∪
Tag,V), which may contain variables. An element s ∈ τ(Text ∪Tag,V) is called Web
page template. µ(s) is a marked Web page template, when s ∈ τ(Text ∪ Tag,V) and
µ is a valid marking for s. In our methodology, (marked) Web page templates are
used for specifying properties on Web sites as described in the following section.

Example 5.2.1 In Figure 5.4, we present a Web site W of a research group, which
contains information about group members affiliation, scientific publications, research
projects, teaching and personal data.
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{(1) members(member(name(mario),surname(rossi),status(professor)),

member(name(franca),surname(bianchi),status(technician)),

member(name(giulio),surname(verdi),status(student)),

member(name(mario),surname(rossi),status(professor))

),

(2) hpage(fullname(mariorossi),phone(3333),status(professor),

hobbies(hobby(reading),hobby(gardening))),

(3) hpage(fullname(francabianchi),status(technician),phone(5555),

links(link(url(www.google.com),urlname(google)),

link(url(www.sexycalculus.com),urlname(FormalMethods))),

(4) hpage(fullname(annagialli),status(professor),blink(phone(4444)),

teaching(courselink(url(http://www.algebra.math),

urlname(Algebra)))),

(5) pubs(pub(name(mario),surname(rossi),title(blah1),year(2003)),

pub(name(anna),surname(gialli),title(blah2),year(2002))),

(6) projects(project(pname(A1),grant1(1000),grant2(200),

total(1200),cordinator(fullname(mariorossi))),

project(pname(B1),grant1(800),grant2(300),

projectleader(surname(gialli),name(anna)),

total(1000)))}

Figure 5.4: An example of Web site
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5.3 Web specification language

In the following, we present a term rewriting specification language, which is helpful to
express properties about the content and the structure of a given Web site. Roughly
speaking, a Web specification is a pair of finite sets of rules. The first set of rules
describes constraints for detecting erroneous Web pages (correctNess rules) as well
as for discovering incomplete/missing Web pages (coMpleteness rules). Diagnoses are
carried out by running Web specifications on Web sites. The operational mechanism,
formalized in Section 5.4, is based on a novel rewriting-based technique, which is able
to extract partial structure from a term, and then rewrite it.

The second set of rules R contains the definition of some auxiliary functions which
the user would like to provide, such as string processing, arithmetic, boolean oper-
ators, etc. It is formalized as a canonical term rewriting system which is handled
by standard rewriting [76]. This implies that each input term t can be univocally
reduced to an irreducible form.

Correctness rules allow us to recognize incorrect/forbidden patterns in the Web
site and to locate the wrong Web pages containing these errors. We address the
problem by following the nature of semistructured documents, that is, we combine
a structured pattern search technique with a more standard text search, which is
based on regular expression detection. For this purpose, we will consider an intuitive
Unix-like regular expression syntax [96]. Our definition of correctness rule also em-
beds functions in order to check whether the values included in the semistructured
documents are correctly computed.

The verification process is carried out by first extracting a partial structure of a
(possibly incorrect) Web page, and then checking whether some constraints are ful-
filled. These constraints are expressed by means of equations and regular expressions.
Correctness rules are formalized as follows.

Definition 5.3.1 (Correctness rule) Let (Σ, R) be a canonical TRS. A correctness
rule has the following form l ⇀ error | C, where

1. l ∈ τ(Text ∪ Tag,V) is a Web page template and error 6∈ (Text ∪ Tag ∪ Σ) is
a new fresh constant;

2. C is a (possibly empty) sequence

X1 in rexp1, . . . , Xn in rexpn, Γ

with Var(C) ⊆ Var(l), rexpi a regular expression over (Text ∪ Tag),
i = 1, . . . , n, and Γ a sequence of equations over τ(Σ,V).

When C is empty, we simply write l ⇀ error.

Given a correctness rule r ≡ (l ⇀ error | C), we call l ⇀ error the unconditional
part of r and we denote it by ru. For the sake of expressiveness, we also allow to write
inequalities of the form s 6= t in the conditional part of the correctness rules. Such
inequalities are just syntactic sugar for (s = t) = false.
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Informally, the meaning of a correctness rule l ⇀ error | C is the following. When-
ever an instance lσ of l is recognized in some Web page p, and

(i) each structured text Xiσ, i = 1, . . . , n, is contained in the language of the
corresponding regular expression rexpi;

(ii) each instantiated equality (s = t)σ in Γ holds in the canonical TRS R;

Web page p is signaled as an incorrect page.
Completeness rules of a Web specification formalize the requirement that some

information must be included in all or some pages of the Web site. We use attributes
〈A〉 and 〈E〉 to distinguish “universal” from “existential” rules. Right-hand sides
of completeness rules may contain functions, which are defined by the user via a
canonical TRS.

Definition 5.3.2 (Completeness rule) Let (Σ, R) be a canonical TRS. A com-
pleteness rule is either a universal rule of the form l ⇀ µ(r) 〈A〉 or an existential
rule of the form l ⇀ µ(r) 〈E〉, where l ∈ τ(Text ∪ Tag,V), r ∈ τ(Text ∪ Tag ∪Σ,V),
Var(r) ⊆ Var(l) and µ is a valid marking for r.

Intuitively, the interpretation of a universal rule l ⇀ µ(r) 〈A〉 (respectively, an ex-
istential rule l ⇀ µ(r) 〈E〉) w.r.t. a Web site W is as follows: if (an instance of) l

is recognized in W , also (an instance of) the irreducible form of r must be recog-
nized in all (respectively, some) of the Web pages which embed (an instance of) the
marked part of r. Somehow marking information provides the “scope” of the uni-
versal/existential quantifiers of the rule, since it allows to compute the subset of the
Web site on which the quantifiers act.

Example 5.3.3 Consider the Web site

{f(h(g(a), t)), h(t, s(m, n), g(p)), h(n, p(r, q)), w(s(m, n))}

and the rule r ≡ (w(X) ⇀ h(t, X)〈q〉), q ∈ {E, A}. Then, the marked part of the right-
hand side of r is h(t).

Thus, the rule will be checked only on the set {f(h(g(a), t)), h(t, s(m, n), g(p))},
which contains all and only the Web pages of W embedding the term h(t).

Formally, Web specifications are as follows.

Definition 5.3.4 (Web specification) A Web specification is a pair (I, R), where
I ≡ IN ⊎ IM is a finite set of rules such that IN (respectively, IM) is a set of correctness
(respectively, completeness) rules, and R is a canonical TRS.

Given a set of completeness rules IM, we denote the set of all left-hand sides (right-
hand sides without marks, respectively) of rules in IM by LhsM (RhsM, respectively). In
symbols, LhsM = {l | l ⇀ µ(r) ∈ IM} and RhsM = {r | l ⇀ µ(r) ∈ IM}.

Note that, by using the traditional encoding of boolean operations by means of
rewrite rules [83, 65], and by introducing non-deterministic rewriting [72], it would
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be also possible to extend our framework to a richer specification language providing
non-confluent functions such as those that express disjunctive conditions (of the form
that the presence of information of kind A requires information of kind B or C to be
represented also). For the sake of simplicity, we do not deal with non-confluent TRSs
in this work.

The following example illustrates the definition of a Web specification. Marks are
introduced by the user to select those Web pages for which we want to check the
specified integrity conditions.

Example 5.3.5 Consider the Web specification which consists of the canonical TRS
R of Example 5.1.3 joint with the built-in definition of function Nat(X), which con-
verts a string X to a natural number in Peano’s notation, and the following complete-
ness and correctness rules.

member(name(X), surname(Y)) ⇀ hpage(fullname(append(X, Y)),status) 〈E〉
hpage(status(professor)) ⇀ hpage(status(professor), teaching)) 〈A〉
pubs(pub(name(X), surname(Y))) ⇀ member(name(X),surname(Y)) 〈E〉
courselink(url(X), urlname(Y)) ⇀ cpage(title(Y)) 〈E〉
hpage(X) ⇀ error | X in [:TextTag:]* sex [:TextTag:]*
blink(X) ⇀ error

project(grant1(X), grant2(Y), total(Z)) ⇀ error | sum(Nat(X), Nat(Y)) 6= Nat(Z)
pub(year(X)) ⇀ error | X in [0-9]*, ≤ (Nat(X), s1999(0)) = true

members(member(name(X), surname(Y)), member(name(X), surname(Y))) ⇀ error

The given Web specification models some required properties for the Web site of
Example 5.2.1.

The first four rules are completeness rules, while the remaining ones are correct-
ness rules. The first rule formalizes the following property: if there is a Web page
containing a member list, then for each member, a home page should exist which
contains (at least) the full name and the status of this member. The full name is
computed by appending the name and the surname strings by means of the standard
append function whose definition is given in TRS R. The marking information es-
tablishes that the property must be checked only on home pages (i.e., pages containing
the tag “hpage”). The second rule states that, whenever a home page of a professor is
recognized, that page must also include some teaching information. The rule is univer-
sal, since it must hold for each professor home page. Such home pages are selected by
exploiting the mark given on the tag “status”. The third rule specifies that, whenever
there exists a Web page containing information about scientific publications, each au-
thor of a publication should be a member of the research group. In this case, we must
check the property only in the Web page containing the group member list. The fourth
rule formalizes that, for each link to a course, a page describing that course must
exist. The verification process is carried out only on Web pages containing course
information as described by marks.

The fifth rule forbids sexual contents from being published in the home pages of
the group members. Precisely, we check that the word sex does not occur in any
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home page by using the regular expression [:TextTag:]* sex [:TextTag:]*, which
identifies the regular language of all the strings built over (Text ∪ Tag) containing
that word. The sixth rule is provided with the aim of improving accessibility for people
with disabilities. It simply states that blinking text is forbidden in the whole Web site.
The seventh rule states that, for each research project, the total project budget must
be equal to the sum of the funds, which has been granted for the first and the second
research periods. The eighth rule formalizes the condition that only recent publications
are referred to in the Web site (5 last years). Finally, the last rule forbids repetitions
of the same member entry in the group member list.

The verification of both kinds of rules is mechanized by means of partial rewriting.

5.4 Partial rewriting

In order to mechanize the intended semantics of Web specification rules, we first
devise a mechanism which is able to recognize the structure and the labeling of a
given Web page template inside a particular page of the Web site. This is provided
by page simulation. In this section we disregard the conditional part of correctness
rules and the existential/universal quantification of completeness rules, since they do
not play any role in the definition of partial rewriting. In other words, a rule is just
a pair of (possibly) marked terms l ⇀ µ(r).

5.4.1 Page simulations

The notion of page simulation for Web pages allows us to analyze and extract the
partial structure of the Web site which is subject to verification.

Roughly speaking, a Web page p1 is simulated by a Web page p2, if the tree-
structure of p1 is “embedded” into the tree-structure of p2. In other words, a sim-
ulation of a Web page (i.e. a labelled tree) p1 in a Web page p2 can be seen as a
relation among the nodes of p1 and the nodes of p2 which preserves the edges and the
labelings. Before formalizing the idea, we illustrate it by means of a rather intuitive
example.

Example 5.4.1 Consider the following Web pages (called p1 and p2, respectively):

hpage(name,surname,status(professor),teaching)

hpage(name(mario),surname(rossi),status(professor),

teaching(course(logic1),course(logic2)),

hobbies(hobby(reading),hobby(gardening)))

Looking at Figure 5.5, we observe that the structure of p1 can be recognized inside
the structure of p2 by considering the relation among nodes of p1 and nodes of p2 which
is described by the dashed arrows in the figure. This relation essentially provides the
so-called simulation of p1 in p2. Note that vice-versa does not hold: no relations can
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Figure 5.5: Page simulation between p1 and p2.

be found among nodes of p2 and nodes of p1, which “embed” the structure of p2 into
p1. In other words, there does not exist a simulation of p2 in p1.

Simulations have been used in a number of works dealing with querying and trans-
formation of semistructured data. For instance, [1, 54] propose some techniques based
on simulation for analyzing semistructured data w.r.t. a given schema. The language
Xcerpt [32, 31] is a (logic) query language for XML and semistructured documents
which implements a sort of unification by exploiting the notion of graph simulation.
Other approaches involving simulation, or closely related notions, have been employed
to measure similarity among semistructured documents [25]. To keep our framework
simple, we do not consider a semantic change/load for labels; this would require to
introduce ontologies, which are outside the scope of the work.

In the following, we provide our notion of simulation which is a slight adaptation
of the one given in [31] to consider Web page templates: we generalize the usual
label relation to cope with the case when variables are used as labels, in the following
definition.

Definition 5.4.2 Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) be two Web
page templates in τ(Text ∪ Tag,V). The label relation ∼⊆ V1 × V2 is defined as
follows:

v1 ∼ v2 iff label1(v1) = label2(v2) or label1(v1) ∈ V .

Definition 5.4.3 Let s1 ≡ (r1, V1, E1, label1), s2 ≡ (r2, V2, E2, label2) be two Web
page templates in τ(Text ∪Tag,V) and ∼⊆ V1×V2 be the corresponding label relation.
A page simulation of s1 in s2 w.r.t. ∼ is a relation S ⊆ V1 × V2 such that, for each
v1 ∈ V1, v2 ∈ V2

1. r1 S r2;

2. v1 S v2 ⇒ v1 ∼ v2;
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3. v1 S v2 ∧ (v1, v
′
1) ∈ E1 ⇒ ∃ v′2 ∈ V2, v′1 S v′2 ∧ (v2, v

′
2) ∈ E2.

We define the projection of a simulation S of s1 in s2 w.r.t ∼ as π(S) = {v2 | (v1, v2) ∈
S}.

Roughly speaking, Definition 5.4.3 ensures two degrees of similarity between Web
page templates, not only w.r.t. the labelings but also w.r.t. the structures of the
templates. On the one hand, Condition (2) of Definition 5.4.3 formalizes the similarity
w.r.t labelings, that is, any pair of nodes (v, v′) in a page simulation S of s1 in s2

have the same label, otherwise node v must be labelled by a variable, which somehow
means that the label of v can be seen as a generalization of any concrete label of v′.
Finally, Condition (1) and Condition (3) provide a relation between the tree structure
of s1 and the tree structure of s2.

Note that simulations are just relations among nodes of two given Web page tem-
plates. For our purposes, we are interested in simulations which are injective mappings
from nodes of a given Web page template to nodes of another Web page template. As
it will be apparent later, those simulations allow us to project the structure of a Web
page template into another one, thus performing a sort of “partial” pattern matching
between templates, which will be exploited to formulate our verification technique.
So, we first define a subclass of simulations called minimal simulations.

Definition 5.4.4 Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) be two Web
page templates in τ(Text ∪ Tag,V). A page simulation S of s1 in s2 w.r.t. ∼ is
minimal if there are no page simulations S′ of s1 in s2 w.r.t. ∼ such that S′ ⊆ S.

It is straightforward to prove that minimal simulations are mappings.

Proposition 5.4.5 Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) be two Web
page templates in τ(Text ∪ Tag,V). A minimal page simulation S of s1 in s2 w.r.t.
∼ is a mapping S : V1 → V2 .

Let us see an example which illustrates the notion of minimal simulation.

Example 5.4.6 Let us consider the following Web page templates s1 and s2:

hobbies(hobby(X)) hobbies(hobby(reading),hobby(gardening)).

In Figure 5.6(a), the dashed arrows represent a non-minimal simulation of s1 in s2,
while in Figures 5.6(b) and 5.6(c) two minimal simulations of s1 in s2 are depicted.
Note that the last two simulations are mappings.

However, minimal simulations do not guarantee that the tree structure of a given
Web page template is recognized inside another template. Consider, for instance, the
page simulation of f(X, Y ) in f(a) depicted in Figure 5.7: it is minimal, but the tree
structures of f(X, Y ) and f(a) are distinct.

For this purpose, we need a one-to-one correspondence between edges of considered
Web page templates. Therefore, we only consider minimal and injective simulations.
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hobbies hobbies

hobbyhobbyhobby
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hobbies hobbies
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hobbyhobbyhobby
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reading gardening

Figure 5.6: Non-minimal and minimal simulations.
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Figure 5.7: Minimal non-injective simulation

Given two Web page templates s and t, we denote by s ∼= t, the fact that there exists
a minimal, injective simulation of s in t w.r.t. ∼.

It is not difficult to prove that minimal injective simulations are particular in-
stances of Kruskal’s embeddings [26] w.r.t. the relation ∼. In other words, a minimal
injective page simulation of s1 in s2 w.r.t. ∼ exists iff s1 is embedded into s2 w.r.t.
∼, i.e., we are able to find out the structure and the labeling of s1 inside s2.

5.4.2 Rewriting Web page templates

Definition 5.4.7 Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) ∈ τ(Text ∪
Tag,V). We say that s2 partially matches s1 via substitution σ iff

1. there exists a minimal, injective page simulation S of s1 in s2 w.r.t. ∼;

2. for each (v, v′) ∈ S such that label(v) = X ∈ V, σ(X) = (s2|v′).

In Definition 5.4.7, we consider only minimal, injective simulations between Web
page templates s1 and s2 to easily compute a substitution σ such that there exists
a simulation of s1σ in s2 w.r.t. ∼; in other words, s1σ is embedded into s2. It is
worth noting that non-minimal simulations not always ensure the existence of such a
substitution. This is the reason why the minimal simulations are also required to be
injective. Let us see an example.

Example 5.4.8 Consider again Example 5.4.6. We have that s2 partially matches s1

via {X/reading} (see Figure 5.6(b)) and s2 partially matches s1 via {X/gardening}
(see Figure 5.6(c)). Note that performing partial matching by the non-minimal sim-
ulation of Figure 5.6(a) would produce σ ≡ {X/reading, X/gardening}, which is not
a substitution.
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Now we are ready to define a partial rewrite relation between marked Web page
templates, which includes a simplification stage using the user functions in R.

Definition 5.4.9 Let R be a canonical TRS. Let s ≡ (V, E, r, label), t ∈ τ(Text ∪
Tag,V). Let µ1 and µ2 be two valid markings for s and t, respectively. Then, µ1(s)
partially rewrites to µ2(t) via rule r ≡ l ⇀ µ(r) and substitution σ (in symbols,
µ1(s) ⇀σ

r µ2(t)) iff there exists v ∈ V such that

1. s|v partially matches l via σ;

2. Let r ≡ (Vr, Er, r, labelr) and rσ ≡ (Vrσ, Erσ, r, labelrσ). For each v ∈ Vrσ,

µ2(v) =

{
µ(v) if v ∈ (Vr ∩ Vrσ)
µ(v′) if v ∈ (Vrσ \ Vr) ∧ (∃ v′ ∈ Vr, v ≥ v′, labelr(v

′) ∈ Var(r))

3. t = Reduce(rσ,R), where function Reduce(x ,R) computes, by standard term
rewriting, the irreducible form of x in R ignoring the eventual marks for the
functions in R.

When rule r and substitution σ are understood, we simply write µ1(s) ⇀ µ2(t).

It is worth noting that we provide a notion of partial rewriting in which the context
of the selected reducible expression s|v of the Web page template which is rewritten
is disregarded after the rewrite step (see point (3) of Definition 5.4.9). Roughly
speaking, given a Web specification rule l ⇀ µ(r), partial rewriting allows us to
extract a subpart of a given Web page (template) s, which partially matches l, and
to replace s by a reduced instance of r; namely, Reduce(rσ, R) (see points (1) and (3)
of Definition 5.4.9). Point (2) of Definition 5.4.9 establishes that rewritten templates
inherit marks from the right-hand sides of the applied rules. More precisely,

• each vertex of rσ, which is not affected by substitution σ, maintains the same
marking of r;

• each vertex, which belongs to a subterm of rσ replacing a variable X of r, is
marked yes;

• each vertex, which belongs to a subterm of rσ replacing a variable X of r, is
marked no.

A partial rewrite sequence is of the form µ0(s0) ⇀σ0
r0

µ1(s1) ⇀σ1
r1

. . . Moreover,
we denote the transitive closure (resp., the transitive and reflexive closure) of ⇀ by
⇀+ (resp., ⇀∗). With the notation µ0(s0) ⇀n µ1(s1) we denote a partial rewrite
sequence of length n (that is, a partial rewrite sequence which is made up of n partial
rewrite steps).

Example 5.4.10 Consider the Web page p of Figure 5.3 and the first rule r1 of the
Web specification of Example 5.3.5. Let us suppose that TRS R defines the standard
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function append for concatenating strings. Then, Web page template ε(p) partially
rewrites to the following Web pages by applying r1.

ε(p) ⇀r1 Reduce(hpage(fullname(append(mario, rossi)), status), R) =

hpage(fullname(mariorossi), status)

ε(p) ⇀r1 Reduce(hpage(fullname(append(franca, bianchi)), status), R) =

hpage(fullname(francabianchi), status)

ε(p) ⇀r1 Reduce(hpage(fullname(append(giulio, verdi)), status), R) =

hpage(fullname(giulioverdi), status)

Roughly speaking, markings in the right-hand sides of the rules allow us to find sets
of Web pages, which might be incomplete or missing. Then, real buggy pages are
detected inside these sets. We formalize the idea in the following section.

5.5 The verification framework

In the following, we show how simulation and partial rewriting can be applied to
verify a given Web site w.r.t. a Web specification. As we have seen in Section
5.4.1, simulation allows us to identify the structure of a given Web page (possibly,
a template) into another one. By taking advantage of this fact, we can develop a
methodology, which is able to discover correctness as well as completeness errors in a
given Web site w.r.t. a Web specification.

More precisely, our analysis allows us to discover the following kinds of errors:

• erroneous/forbidden information in the Web site (correctness errors);

• Web pages which are missing in a Web site or Web pages which are incomplete
w.r.t a given Web specification (completeness errors).

5.5.1 Detecting correctness errors

In this section, we provide a simple mechanism based on partial rewriting which can
detect erroneous or undesirable data included in a Web site. Our methodology allows
us to precisely locate which part of a Web page does not fulfill the Web specification.
We apply correctness rules to the Web pages of the Web site in order to discover
incorrect patterns. More precisely, given a Web page p, we first try to recognize a
given Web page template l into p by partially rewriting p via the (unconditional
part of a) correctness rule l ⇀ error | C. Then, we analyze the values taken by the
variables of C, which are obtained as a by-product of the partial rewrite step. If the
structured text, which is bound to each variable in C, belongs to the language of the
corresponding regular expression, and all the instantiated equations in C hold, the
faulty Web page p and an incorrectness symptom are supplied to the user.
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Definition 5.5.1 Let W be a Web site, (IN ⊎ IM, R) be a Web specification. Given
p ∈ W , we say that p is incorrect w.r.t. (IN ⊎ IM, R), if there exists a rule r ≡ (l ⇀
error |X1 in rexp1 . . . Xn in rexpn, Γ) ∈ IN such that

1. p ⇀σ
ru

error, where ru is the unconditional part of r;

2. for i = 1, . . . , n, Xiσ ∈ L(rexpi), where L(rexpi) is the regular language de-
scribed by rexpi;

3. every instantiated equation of Γ, (s = t)σ, holds in R.

We also say that lσ is an incorrectness symptom for p.

Let us see an example which illustrates the above definition.

Example 5.5.2 Let (IN ⊎ IM, R) be the Web specification of Example 5.3.5 and W be
the Web site of Figure 5.4.

Now, consider the correctness rule

r ≡ hpage(X) ⇀ error | X in [: TextTag :] ∗ sex [: TextTag :]∗ ∈ IN.

Note that the only Web page in W which can yield a correctness error by using r is
Web page (3), since (3) can be partially rewritten to error via ru by means of the
following substitution σ

{X/links(link(url(www.google.com),urlname(google)),

link(url(www.sexycalculus.com),urlname(FormalMethods)))}

and Xσ belongs to L([:TextTag:]* sex [:TextTag:]*). The corresponding incor-
rectness symptom is

hp(links(link(url(www.google.com),urlname(google)),

link(url(www.sexycalculus.com),urlname(FormalMethods)))).

Web page (4) is incorrect w.r.t (IN ⊎ IM, R), as it rewrites to error by rule
blink(X) ⇀ error and gives rise to the incorrectness symptom

blink(phone(4444)).

Moreover, we can also discover that the total budget of project B1 is wrongly computed
by applying rule

project(grant1(X), grant2(Y),
total(Z)) ⇀ error| sum(Nat(X), Nat(Y)) 6= Nat(Z).

Indeed, Web page (6) is incorrect, since the equation

sum(Nat(800), Nat(300)) 6= Nat(1000)
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hold in R. The associated incorrectness symptom is

project(grant1(800), grant2(300), total(1000)).

Finally, Rule

r′ ≡ members(member(name(X), surname(Y)),
member(name(X), surname(Y))) ⇀ error

detects that the entry for Mario Rossi in Web page (1) is repeated twice, since it
derives error by using r′ via substitution {X/mario, Y/rossi}. The respective incor-
rectness symptom is:

members(member(name(mario),surname(rossi)),

member(name(mario),surname(rossi))).

The example above points out the usefulness of incorrectness symptoms: they allow
us to precisely locate which erroneous piece of information must be modified by the
user in order to repair the faulty Web site.

Algorithm 5 outlines a procedure for the detection of correctness errors, which
takes as input a Web site W, a set of correctness rules IN, and a canonical TRS R.
Basically, the procedure repeatedly applies the test of Definition 5.5.1 for recognizing
incorrect and forbidden patterns. More precisely, for every Web page in W , we
verify whether (i) p reduces to the constant error via the unconditional part of some
correctness rule r, and (ii) the constraints in the condition of r are fulfilled. In the
case that an error is found in a Web page p by using a rule l ⇀ r | C, the pair
(p, lσ) is returned, which consists of the wrong page together with the corresponding
incorrectness symptom.

Algorithm 5 An algorithm for detecting correctness errors in a Web site.

1: procedure Correctness-errors(W, IN , R)
2: for all p ∈W do
3: for all r ≡ (l ⇀ error | X1 in rexp1, . . . , Xn in rexpn,

s1 = t1, . . . , sm = tm) ∈ IN do
4: if (p ⇀σ

ru
error) then

5: If (Xiσ ∈ L(rexpi), i = 1, . . . , n) and
((sj = tj)σ, j = 1, . . . , m, holds in R) then

6: output(“Error: (p,lσ)”) end if
7: end if
8: end for
9: end for

10: end procedure

Proposition 5.5.3 Let W be a Web site, and (IN ⊎ IM, R) be a Web specification.
Then, the procedure Correctness-errors(W, IN, R) terminates, and for each pair
(p, lσ), which is returned, p is an incorrect Web page w.r.t. (IN ⊎ IM, R) and lσ is the
corresponding incorrectness symptom.
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5.5.2 Detecting completeness errors

Essentially, the main idea to diagnose completeness errors is to compute the set of all
possible marked expressions that can be derived from W via the completeness rules of
a Web specification (IN ⊎ IM, R) by means of partial rewriting. These marked terms can
be thought of as requirements to be fulfilled by W . Then, we check whether the com-
puted requirements are satisfied by W using simulation and marking/quantification
information. In summary, the method works in two steps, as described below.

1. Compute the set of requirements ReqM,W for W w.r.t. IM;

2. Check ReqM,W in W .

Formally, a requirement is a pair 〈µ(e), q〉, where µ(e) is a marked term and
q ∈ {A, E}. A requirement is called universal whenever q = A, while it is called
existential when q = E. In order to formalize step 1, we define the following operator.

Definition 5.5.4 Let T be a set of marked terms and (IN ⊎ IM, R) be a Web specifica-
tion. Then, the immediate completeness requirements operator

JM(T) = T ∪ {〈µ2(s2), q〉 | ∃ 〈µ1(s1), q1〉 ∈ T, r ≡ (l ⇀ µ(r) 〈q〉) ∈ IM s.t.
µ1(s1) ⇀r µ2(s2)}

where T = {〈s, 〉 | s ∈ T}.

The operator in Definition 5.5.4 computes all the requirements which are obtained by
partially rewriting the marked expressions in T using the completeness rules of IM, and
returns the union of the resulting set and T. By repeatedly applying this operator, it
is possible to compute all marked terms that can be derived from an initial Web site
after an arbitrary number of partial rewriting steps. For this purpose, we formalize
the ordinal powers of the operator JM w.r.t. a Web site W as follows: JM ↑W 0 = W ,
JM ↑W n = JM(JM ↑W (n− 1)), n > 0.

It is immediate to prove that the operator JM is continuous on the lattice consisting
of the powerset of the requirements ordered by set inclusion. This ensures that a least
fixpoint of JM exists and can be reached after ω applications of JM, that is, JM ↑W ω
where ω is the first infinite ordinal. The least fixpoint of JM contains all the marked
expressions derivable from W via IM along with their quantification information.

Now, recalling the interpretation of the completeness rules of the Web site specifi-
cation given in Section 5.3, marked terms derived by the application of a completeness
rule must be recognized as (part of) some Web page in the Web site. Therefore, the
expressions in the least fixpoint of JM provide information that must occur in W .
Thus, since the pages in W trivially occur in the Web site W , we define the set of
requirements for W w.r.t. IM as

ReqM,W = lfp(JM) \W

where lfp(JM) is the least fixpoint of the operator JM.
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Example 5.5.5 Consider the Web specification (IN⊎IM, R) of Example 5.3.5 and the
Web site W of Figure 5.4. Then, the set of computed requirements ReqM,W is

{ 〈hpage(fullname(mariorossi), status), E〉,
〈hpage(fullname(francabianchi), status), E〉,
〈hpage(fullname(giulioverdi), status), E〉,
〈hpage(status(professor), teaching), A〉,
〈member(name(mario), surname(rossi)), E〉,
〈member(name(anna), surname(gialli)), E〉,
〈hpage(fullname(annagialli), status), E〉,
〈cpage(title(Algebra)), E〉 }

Clearly, the fixpoint of JM (and hence ReqM,W) for an arbitrary Web specification
might be infinite. Consider for instance the following example.

Example 5.5.6 Let W ≡ {h(g(0), f(0))} be a Web site and

IM ≡ {h(g(X)) ⇀ h(g(g(X)))〈q〉}

be a set of completeness rules of a Web specification S. Then,

ReqM,W = {〈h(g(g(0))), q〉, 〈h(g(g(g(0)))), q〉, 〈h(g(g(g(g(0))))), q〉, . . .}

is an infinite set of requirements.

Fortunately, the computation of the set of requirements is finite for some interest-
ing classes of Web specifications. Trivially, non-recursive specifications allow to reach
lfp(JM) after a finite number of applications of JM, i.e., lfp(JM) = JM ↑W k, k ∈ N.
However, non-recursive definitions are not expressive enough for verification purposes,
since some relevant conditions about Web sites cannot be formalized without resort-
ing to recursion; e.g., some properties stated in Example 5.3.5 cannot be formulated
by using a non-recursive specification.

In the following, we ascertain two important classes of recursive Web specifications
whose set of requirements is finite. Basically, the idea is to consider those specifications
in which the computation of the least fixpoint only generates marked expressions
whose size is bounded [10].

The following definition formalizes the class of the bounded Web specifications.

Definition 5.5.7 A Web specification (IN ⊎ IM, R) is bounded iff, for each l ≡
(V1, E1, r1, label1) ∈ LhsM, r ≡ (V2, E2, r2, label2) ∈ RhsM and each minimal injective
simulation S of l in r|v w.r.t. ∼, v ∈ V2, the following properties hold

1. if v2 ∈ π(S) and label2(v2) ∈ Var(r|v), then for all v1 ∈ V1 s.t.
label1(v1) ∈ Var(l), depth(r|v, v2) = depth(l, v1);

2. for each r ∈ RhsM, r does not contain any symbol of ΣR.
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Roughly speaking, Definition 5.5.7 states that, whenever the left-hand side l of a rule
is simulated by (a subterm of) the right-hand side r of a (possibly different) rule,
then no variables in the recognized substructure of r must be located at positions
which are deeper than all the positions of the variables in l. Moreover, bounded Web
specifications do not allow function calls in the completeness rules. Let us see an
example.

Example 5.5.8 Consider again the set of completeness rules IM of Web specification
S in Example 5.5.6. The left-hand side of the rule h(g(X)) ⇀ h(g(g(X)))〈q〉 is simulated
by its own right-hand side. Moreover, variable X in the right-hand side is located at
depth 3, while the unique variable in the left-hand side is at depth 2. Thus, S is not
bounded.

Now, take into account the Web specification S′ ≡ (I ′N ⊎ I ′M, ∅), whose set of com-
pleteness rules is

I ′M ≡ {m(n(X)) ⇀ h(n(X), s(s(X)))〈q′〉, h(n(X)) ⇀ m(n(X), t)〈q′′〉}, q′, q′′ ∈ {A, E}.

Then, m(n(X)) is simulated by m(n(X), t) and there is also a simulation of h(n(X)) in
the term h(n(X), s(s(X))). In both cases, variables occurring in the substructures of
the right-hand sides which are recognized by simulation and variables of the respective
left-hand sides are located at the same depth. Therefore, the Web specification S′ is
bounded.

For bounded Web specifications, the least fixpoint of the operator JM is finite as
stated by the next proposition. This provides an effective method for computing the
set of requirements ReqM,W for this class of specifications.

Proposition 5.5.9 Let (IN ⊎ IM, R) be a bounded Web specification and W be a Web
site. Then, there exists k ∈ N such that lfp(JM) = JM ↑W k.

Let us now introduce a more general class of Web specifications in which defined
functions can be invoked in the rhs’s of the completeness rules. In order to keep the
size of the derived terms bounded, the key idea is to ensure that function calls do not
generate infinite data structures.

Given a Web specification (IN ⊎ IM, R), we say that the completeness rule (l ⇀
µ(r)〈q〉) ∈ IM is function-dependent w.r.t. R iff r contains a function call f(t1, . . . , tn) ∈
τ(ΣR,V). Otherwise we say that rule r is function-independent w.r.t. R. Given a
function-dependent rule r, we obtain the function-independent version of r w.r.t. R,
and we denote it by r∗, by replacing all the function calls in the right-hand side of r
with fresh variables not occurring in the rule.

Example 5.5.10 Consider the function-dependent rule of Example 5.3.5

member(name(X), surname(Y)) ⇀ hpage(fullname(append(X, Y)),status) 〈E〉.

The function-independent version of the considered rule is
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member(name(X), surname(Y)) ⇀ hpage(fullname(Z),status) 〈E〉.

Definition 5.5.11 A Web specification (IN ⊎ IM, R) is bounded∗ iff

1. (IN ⊎ {r ∈ IM | r is function-independent w.r.t. R}, R) is bounded;

2. for each function-dependent rule r ∈ IM w.r.t. R and l ∈ LhsM

(a) there exists no minimal, injective simulation of l in any subterm of the
right-hand side of r∗ w.r.t. ∼;

(b) there exists no minimal, injective simulation of any subterm of the right-
hand side of r∗ in l w.r.t. ∼;

3. {f | f(t1, . . . , tn) ⇀ µ(r) ∈ Im} ∩ΣR = ∅.

By Definition 5.5.11, the rhs’s of function-dependent completeness rules do not in-
troduce terms which can be partially rewritten in a subsequent step. This suffices to
ensure the finiteness of all partial rewriting sequences. Now, it is immediate to prove
the finiteness of the least fixpoint of the JM operator for bounded∗ Web specifications.

The following proposition generalizes Proposition 5.5.9 for bounded∗ Web specifi-
cations.

Proposition 5.5.12 Let (IN ⊎ IM, R) be a bounded∗ Web specification and W be a
Web site. Then, there exists k ∈ N such that lfp(JM) = JM ↑W k.

Let us see an example.

Example 5.5.13 Let us consider the Web specification of Example 5.3.5. Then, we
can easily check that it is bounded∗. Moreover, the least fixpoint of JM is finite as
witnessed by Example 5.5.5.

Example 5.5.14 Consider now the following Web specification.

IN = ∅
IM = {h(c(X)) ⇀ h(g(X))}
R = {g(0)→ c(c(0)), g(c(X))→ c(g(X))}

The function-independent version of h(c(X)) ⇀ h(g(X)) is h(c(X)) ⇀ h(Z), and there
exists a minimal, injective simulation of h(Z) in h(c(X)) w.r.t. ∼. Therefore the
considered Web specification is not bounded∗. Actually, we can generate the following
infinite partial rewrite sequence:

h(c(0)) ⇀ h(c(c(0))) ⇀ h(c(c(c(0)))) . . .

Now, we are ready to formalize step 2, that is, checking the computed completeness
requirements in a given Web site. To accomplish this task, we first use simulation
for checking whether (the marked part of) a requirement is embedded into some Web
page of the considered site, and then consider the quantification attributes in order
to diagnose completeness errors.
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Definition 5.5.15 Let W be a Web site, (IN⊎IM, R) be a Web specification and ReqM,W
be the set of requirements for W w.r.t. IM. Let 〈µ(e), q〉 ∈ ReqM,W. The test set w.r.t.
〈µ(e), q〉 is defined as

TEST〈µ(e),q〉 = {p ≡ (V, E, r, label) ∈W | ∃ a minimal injective simulation of
mark(e, µ) in p|vw.r.t. ∼, with v ∈ V }.

This definition allows us to compute a subset of the Web site containing all the Web
pages which simulate the marked part of a given requirement. These Web pages might
be incomplete w.r.t. the Web specification, since they may not contain the considered
requirement. Let us see an example.

Example 5.5.16 Let us consider the completeness rule r

hpage(status(professor)) ⇀ hpage(status(professor),teaching)

and the Web site W of Figure 5.4. Rule r allows us to check whether Web pages
of the professors contain some teaching information. In order to do this, we use the
marking information in the rhs of r to select the professor Web pages. Let us consider
the requirement 〈µ1(e1), A〉 ≡ 〈hpage(status(professor), teaching), A〉, which can
be derived from W by means of r. By applying Definition 5.5.15, we get the following
test set TEST〈µ1(e1),A〉

{(2) hpage(fullname(mariorossi),phone(3333),status(professor),

hobbies(hobby(reading),hobby(gardening))),

(4) hpage(fullname(annagialli),status(professor),

blink(phone(4444)),teaching(courselink(

url(http://www.algebra.org),

urlname(Algebra))))}

which contains the two professor Web pages where the computed completeness require-
ment must be checked.

In the following, we consider completeness errors which refer to incomplete and/or
missing Web pages. We distinguish two cases: the former allows us to discover whether
a universal requirement is not fulfilled by a given Web site, while the latter recog-
nizes unsatisfied existential requirements. In both cases, our analysis provides the
missing/incomplete Web pages which are associated with those requirements.

Definition 5.5.17 Let W be a Web site, (IN⊎IM, R) be a Web specification and ReqM,W
be the set of requirements for W w.r.t. IM. Let re ≡ 〈µ(e), A〉 ∈ ReqM,W be a universal
requirement. Then, re is not satisfied in W if one of the following conditions hold:

1. TEST〈µ(e),A〉 = ∅;

2. there exists p ≡ (V, E, r, label) ∈ TEST〈µ(e),A〉 s.t. no minimal, injective simula-
tion of e in p|v w.r.t. ∼, with v ∈ V , exists.
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Vice versa, a universal requirement re is satisfied whenever it is possible to recognize
re inside any Web page of the corresponding test set TESTre. Let us clarify Definition
5.5.17 by an example.

Example 5.5.18 Consider the Web site W of Figure 5.4 and the universal require-
ment

〈µ1(e1), A〉 ≡ 〈(hpage(status(professor), teaching)), A〉

belonging to the set of requirements ReqM,W of Example 5.5.5. The requirement simply
states that all professor’s home pages must contain teaching information.

The test set associated with 〈µ1(e1), A〉, i.e. TEST〈µ1(e1),A〉, was computed in Ex-
ample 5.5.16 and contains all the professor’s Web pages of the considered site. Now,
by applying Definition 5.5.17, we detect that 〈µ1(e1), A〉 is not satisfied by W , since
there does not exist any minimal, injective simulation of e1 in (a subterm of) Web
page (2) w.r.t. ∼. In fact, Web page (2) lacks teaching information.

Finally, an existential requirement re is fulfilled if it is recognized inside (at least)
a Web page which belongs to the test set TESTre.

Definition 5.5.19 Let W be a Web site, (IN⊎IM, R) be a Web specification and ReqM,W
be the set of requirements for W w.r.t. IM. Let re ≡ 〈µ(e), E〉 ∈ ReqM,W be an existential
requirement. Then, re is not satisfied in W if one of the following conditions hold:

1. TEST〈µ(e),E〉 = ∅;

2. for each p ≡ (V, E, r, label) ∈ TEST〈µ(e),E〉 no minimal, injective simulation of e
in p|v w.r.t. ∼, with v ∈ V , exists.

Example 5.5.20 Consider the Web site W of Figure 5.4 and the existential require-
ment

〈µ2(e2), E〉 ≡ 〈cpage(title(Algebra)), E〉

belonging to the set of requirements ReqM,W of Example 5.5.5. Since TEST〈µ2(e2),E〉 is
empty, by Definition 5.5.19, re is not satisfied in W . This implies that a Web page
containing some information about the Algebra course should be provided.

Consider now the following existential requirements in ReqM,W

〈µ3(e3), E〉 ≡ 〈member(name(anna), surname(gialli)), E〉
〈µ4(e4), E〉 ≡ 〈hpage(fullname(giulioverdi), status), E〉.

We have that TEST〈µ3(e3),E〉 just includes Web page (1) of W , while TEST〈µ4(e4),E〉 con-
tains Web pages (2), (3) and (4). For both requirements, there is no Web page p in
the test sets such that a minimal, injective simulation of e3 (respectively, e4) in (a
subterm of) p w.r.t ∼ exists. Therefore, the Web site W does not meet the given
requirements. More precisely, the former unsatisfied requirement states that an entry
for Anna Gialli must be introduced in the group member list, and the latter detects
that the home page of Giulio Verdi is missing.
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The requirements which are not fulfilled can be considered as incompleteness symp-
toms. This allows us not only to locate bugs and inconsistencies w.r.t. a given
specification, but also to easily repair them by comparing incomplete pages to un-
satisfied requirements, since the latter ones provide the missing information which is
needed to complete the erroneous Web pages.

An algorithm for detecting incomplete information can be defined as follows. First
of all, we generate the requirements to be checked by computing the fixpoint of the
operator JM. Next, for each (universal/existential) requirement, the corresponding
test set is produced and then checked in order to analyze which requirements are
not fulfilled. The analysis is based on Definition 5.5.17 (resp., Definition 5.5.19)
which formalizes the notion of universal (resp., existential) requirement satisfiability.
Finally, incompleteness symptoms are returned, which are needed to help the user to
locate the missing/incomplete pages, whenever a requirement is not verified.

The basic procedure is sketched in Algorithm 6, which takes as input a Web site
W , a set of completeness rules IM, and a canonical TRS R.

Algorithm 6 An algorithm for detecting completeness errors.

1: procedure Completeness-errors(W, IM , R)
2: ReqM,W ← lfp(JM) \W
3: for all 〈µ(e), q〉 ∈ ReqM,W do
4: TEST〈µ(e),q〉 ← {p ≡ (V, E, r, label) ∈W | mark(e, µ) ∼= p|v, v ∈ V }
5: if TEST〈µ(e),q〉 = ∅ then
6: output(“Error: A Web page containing e must occur in Web site W!”)
7: end if
8: case q

9: q = A :
10: if ∃ p ≡ (V, E, r, label) ∈ TEST〈µ(e),A〉 s.t. e 6∼= p|v , with v ∈ V then
11: output(“Error: e must occur in all Web pages of TEST〈µ(e),A〉!”)
12: end if
13: q = E :
14: if ∀p ≡ (V, E, r, label) ∈ TEST〈µ(e),E〉, e 6∼= p|v, with v ∈ V then
15: output(“Error: e must occur in at least one Web page of

TEST〈µ(e),E〉!”)
16: end if
17: end case
18: end for
19: end procedure

Proposition 5.5.21 Let W be a Web site, (IN ⊎ IM, R) be a bounded∗ Web specifi-
cation, and ReqM,W be the set of requirements for W w.r.t. IM. Then, the procedure
Completeness-errors(W, IM, R) terminates. Moreover, for each error message re-
garding term e, which is returned by the procedure, there exists 〈µ(e), q〉 ∈ ReqM,W,
with q ∈ {A, E}, which is not satisfied in W .
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5.6 Implementation

The basic methodology presented so far has been implemented in the prototype system
GVerdi (VErification and Rewriting for Debugging Internet sites) which has been
written in Haskell (GHC v6.2.2) and is publicly available together with a set of tests
at http://www.dimi.uniud.it/∼demis/#software. A short system description can
be found in [11, 23].

The implementation consists of approximately 1100 lines of source code. It in-
cludes a parser for semistructured expressions (i.e. XML/XHTML documents) and
Web specifications, and several modules implementing the partial rewriting mecha-
nism, the verification technique, and the graphical user interface. A snapshot of the
running system is shown in Figure 5.8.

Figure 5.8: A screenshot of the system.

The system allows the user to load a Web site together with a Web specification.
Additionally, he/she can inspect the loaded data and finally check the Web pages
w.r.t. the Web site specification. We have tested the system on several XHTML Web
sites and XML data collections which can be found at the URL address mentioned
above. For instance, we checked the Web site of the Computational Logic Group of the
University of Udine which is available at the URL http://www.dimi.uniud.it/clg.
It contains about 20 Web pages concerning publications, people, and projects of the
group. In each considered test case, we have been able to detect the errors (i.e.
missing and incomplete Web pages) efficiently.
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Conclusions

In this thesis we have discussed how verification and correction techniques can be
applied to programs as well as to (semi-structured) data. We have presented the
following new contributions. First, a generic correction scheme has been developed,
then we particularized it to the functional logic and functional settings. Moreover,
we have formalized a rewriting-based language in order to specify formal properties
of Web sites and to subsequently check them automatically.

Automated Program Correction

The correction scheme we proposed allows one the automatic correction of the bugs
by means of a new inductive learning methodology which is driven by examples.
We have followed an hybrid, deductive (top-down) as well as inductive (bottom-up)
approach, which is able to infer program corrections that are hard, or not possible
at all, to obtain with a simple (pure deductive or inductive) program learner. The
resulting blend of top-down and bottom-up synthesis is conceptually cleaner than
more sophisticated, purely top down or bottom-up ones and combines the advantages
of both techniques.

Diagnosis tools work in combination with this methodology in order to provide
the needed examples (i.e., missing or wrong values) to drive the process towards a
suitable correction. The effectiveness of the correction process depends directly on
the available diagnosis and learning tools.

Correction of functional logic programs

Following the generic scheme of Chapter 1, we have described a new methodology
for synthesizing (partially) correct functional logic programs which complements the
diagnosis method we developed previously in [13, 14]. Our methodology is based
on the combination, in a single framework, of a diagnoser [13, 14] which identifies
those parts of the code containing errors, together with an hybrid program learner
which, once the bug has been located in the program, tries to repair it starting from
examples (uncovered as well as incorrect equations) which are essentially obtained as
an outcome of the diagnoser. The method we have described works for both lazy and
eager functional logic languages; more precisely, our framework is parametric w.r.t.
the needed narrowing and the leftmost-innermost narrowing strategy.

We have tested a number of example programs on the available implementation
of the system NoBug and we have presented an experimental evaluation.

We would like to note that our methodology could also be usefully combined within
more traditional debugging environments for functional logic programs where the user
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would be typically asked to provide the error symptoms (examples) manually.
Finally, we want to emphasize that this framework supersedes the preliminary

approach of [14]. In [14], recursive definitions were difficult, and sometimes impossible,
to repair, and no automated correction is provided for overspecialized programs either,
whereas the new methodology overcomes both drawbacks.

Correction of (first-order) functional programs

Also, we have formalized a methodology for synthesizing (partially) correct (first-
order) functional programs written in OBJ style, which endows the diagnosis method,
developed previously in [12], with some correction capabilities. Specifications of the
intended semantics, expressed as programs, are used to carry out the diagnosis as well
as the correction. This is not only a common practice in logic as well as equational
(or term rewriting) languages, but also in functional programming. For example,
in QuickCheck [36], formal specifications are used to describe properties of Haskell
programs (written as Haskell programs too) which are automatically tested.

As we did for the functional logic programming paradigm in Chapter 3, we par-
ticularized the generic scheme of Chapter 1 (in this case, to the functional setting).

This method is not comparable to our previous work [6] as it is lower-cost and it
works for a much wider class of TRSs. In particular, it is able to repair non-confluent
programs. This is not only theoretically more challenging, but also convenient in our
framework, where it is not reasonable to expect that confluence holds for an erroneous
program (even if program confluence was in the programmer’s intention).

Automated Web Site Verification

Conceiving and maintaining Web sites is a difficult task. In the second part of this
dissertation, we provided a rewriting-based, formal specification language which can
be used to impose properties both on the structure (syntactic properties) and on the
contents (semantic properties) of Web sites. Some XML schema languages such as
xlinkit [48] and Schematron [103] can express some of the semantic constraints we
consider; however, our specification language is richer and can be appreciated much
by users who prefer to avoid the encumbrances of DTDs and XML rule languages.
The computation mechanism underlying our language is based on a novel rewriting-
like technique, called partial rewriting, in which the traditional pattern matching
mechanism is replaced by tree simulation [66]. In our methodology, Web sites are
automatically checked w.r.t. a given Web specification in order to detect incorrect,
incomplete and missing Web pages. Moreover, by analyzing the error symptoms, we
are also able to find out the missing information needed to repair the Web site. We
have also briefly discussed some implementation details of the preliminary system
GVerdi, a prototypical implementation of the verification framework which can help
Web administrators to design, check and maintain their Web sites.

Let us conclude by mentioning some directions for future work. We are currently
extending our framework in order to provide a method for synthesizing the marking



Conclusions 75

information semi-automatically (currently, marks are provided by the user). In order
to consider semi-structured documents containing cycles, a graph rewriting extension
of our framework is also envisaged.
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A
Context Sensitive Rewriting and

Over-Generality

A.1 Deciding over-generality by context sensitive

rewriting

Theorem 3.3.8 makes the assumption that all the programsR to be repaired are overly
general w.r.t. the finite set of positive examples E+ (i.e., R ⊢ E+). Generally this
condition is undecidable. Anyway, if we restrict ourself to consider examples whose
right-hand sides are constructor terms, the predicate R ⊢ E+ becomes decidable by
imposing very simple constraints on the form of our programs. In the sequel, we will
describe an algorithm for checking whether an example t = c, τ(Σ) and c ∈ τ(C), is
covered by a program R. This will immediately supply a procedure to decide on the
over-generality of a program. Initially, we will deal with TRSs, then we will extend our
algorithm to CTRSs. The methodology is based on the notion of Context Sensitive
Rewriting (CSR)[78], which is a restraint (µ-rewriting) of the rewriting relation. We
briefly recall some definitions regarding CSR in the following section.

A.1.1 Context Sensitive Rewriting

Given a signature Σ, we define a mapping µ : Σ→ P(N), called replacing map, such
that for each k-ary symbol f ∈ Σ, µ(f) ⊆ {1, 2, . . . , k}. We will use it to discriminate
argument positions on which replacements (reductions) are allowed, that is, given a
function call f(t1, . . . , tn), replacements are allowed on term ti if and only if i ∈ µ(f).
When f ∈ Σ is a constant symbol, then µ(f) = ∅. These restrictions are inductively
raised to arbitrary positions of terms in the obvious way. By Oµ(t) we express the
set of all the µ-replacing positions of a term t. Moreover, let Os(t) denote the set of
all the positions of subterm s in term t.

In the CSR framework, we only rewrite replacing redexes; in other words,

a term t µ-rewrites to a term s, in symbols t →֒µ s, if and only if t
p
→Rs

and p is a non-variable position in Oµ(t).
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A term t is a µ-normal form, if there does not exist a term s such that t →֒µ s. We
say that a program R is µ-terminating, if →֒µ relation is terminating (that is, there
are no infinite chain t1 →֒µ t2 →֒µ . . .).

The canonical replacing map µcan
R is the most restrictive replacing map ensuring

that the non-variable subterms of the left-hand sides of the rules of R are replacing
[78]. Note that µcan

R can be automatically associated to a TRS R by means of a very
simple calculus. Let L(R) be the set of all the left-hand sides of a TRS R, then, for
each f ∈ Σ,

i ∈ µcan
R (f) iff ∃λ ∈ L(R), p ∈ OΣ(λ), (root(λ|p) = f ∧ p.i ∈ OΣ(λ)).

Example A.1.1 Consider the program

R ≡ { from(N)→ [N |from(s(N))], f irst(0, L)→ [ ],

f irst(s(N), [X |L]) = [X |first(N, L)] }

Then, we have that µcan
R (s) = µcan

R ([·|·]) = µcan
R (from) = ∅ and µcan

R (first) = {1, 2}.

Let MR be the set of all the replacing maps for a CTRS R. Given MR, we can
define an ordering ⊑ on it as follows: µ ⊑ µ′ if and only if for every f ∈ Σ, µ(f) ⊆
µ′(f). The ordering ⊑ forms a complete lattice in MR. Let CMR = {µ|µcan

R ⊑ µ}.
A context is a term C ∈ τ(Σ∪{2},V) with zero or more “holes” 2 (i.e., a new fresh

constant symbol). We write C[ ] to denote an arbitrary context with an arbitrary
number of holes, C[t1, . . . , tn] denotes the term obtained by filling the holes of C[ ]
with terms t1, . . . , tn. The maximal replacing context MRCµ(t) of a term t is a context
corresponding to the maximal prefix of t whose positions are µ-replacing in t. Hence,
{p|p 6∈ Oµ(MRCµ(t))} = O2(MRCµ(t)).

A.1.2 Testing R ⊢ E
+

The procedure we outlined in Algorithm 7 slightly modifies the Lucas’ algorithm
of normalization via µ-normalization [79], in which the normalization of a term t
proceeds by first obtaining a µ-normal form of t (namely, µNF(t)) and then recursively
normalizing the non-replacing subterms of µNF(t). It has been shown in [79] that this
normalization method is correct and complete w.r.t. the set of all the normal forms of
a term, whereas we consider left-linear TRSs and replacement maps in CMR. Indeed,
under these conditions, each µ-normal form of a term t has got a maximal replacing
context MRCµ(µNF(t)) which is a ‘rigid’ term, that is, it cannot be rewritten any
longer. We say that it represents a stable part of the final normal form. Hence, by
recursively calculating µ-normal forms of subterms at non-replaceable positions, we
calculate parts of the final normal form of a given term (if it exists).

We modify the methodology mentioned above in order to deal with equations and
to establish if they are covered by a program. Given as input an equation of the form
t = c, where c is a constructor term and hence a normal form, we prove t = c by
computing the normal form of t and comparing it to c by means of the normalization
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via µ-normalization process. The methodology works for left-linear, confluent and
µ-terminating TRS, where µ ∈ CMR.

Roughly speaking, our procedure tries to compute a normal form of the left-hand
side of the equation by finding stable parts (i.e. maximal replacing contexts of µ-
normal forms) of the final normal form level by level and comparing them to the
corresponding subterms in the right-hand side. The procedure returns true if and
only if the normal form of the left-hand side is equal to the right-hand side of the
equation. This suffices to prove the considered equation w.r.t a given TRS, provided
that each term has got at most one normal form. In fact, a problem might arise,
whenever a term can be reduced to several normal forms. Consider the equation
t = c, where t has two distinct normal forms c, c′ and suppose that t is normalized
to c′. Then, the procedure would return false, although t = c holds. Thus, to ensure
the uniqueness of the normal forms and the correctness of the procedure, we only
consider confluent TRSs.

Note that confluence does not imply the uniqueness of the µ-normal forms, however
it preserves the uniqueness of the maximal replacing contexts of the µ-normal forms
as proven in [78]. In short, this means that we are free to µ-normalize a term as we
like, this will always result in computing the same maximal replacing context, which
is what really matters.

The procedure works as follows. At each recursion call, we first compute the µ-
normal form µNF(t,R) w.r.t. a given TRS R, then we compare the maximal replacing
context of µNF(t,R) to the maximal replacing context of c. If the test fails, the normal
form of t (if it exists) cannot be equal to c, since there is a stable prefix of µNF(t,R)
(namely, MRCµ(µNF(t,R))), which differs from the corresponding prefix of c. So,
the procedure returns false. Otherwise, we know that MRCµ(µNF(t.R)) is a stable
prefix of µNF(t,R) which is equal to the corresponding prefix of c (namely, MRCµ(c)).
Here, we distinguish two cases.

1. There are no 2 symbols in MRCµ(µNF(t,R)). Thus,

µNF(t,R) ≡ MRCµ(µNF(t,R)) ≡ c

by the fact that R is confluent, and therefore the procedure returns true.

2. There are 2 symbols in MRCµ(µNF(t,R)). Since MRCµ(µNF(t,R)) is a stable
prefix of µNF(t,R) which is equal to the corresponding prefix of c, we only
need to recursively extend the check to all the subterms of µNF(t,R), which are
rooted at each non-replaceable position.

In order to make the procedure effectively computable, we require that µ-normal
forms are computed in finite time. A sufficient condition to guarantee it is considering
µ-terminating TRSs. In this way, we can ensure that no infinite µ-rewriting sequences
t1 →֒µ t2 →֒µ · · · can occur, therefore a µ-normal form is always computable in a finite
number of µ-rewrite steps. Due to the syntactical restrictions imposed by CSR, the
notion of µ-termination is weaker than standard termination, i.e., many TRSs which
are µ-terminating are not terminating. This implies that it is generally much easier
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proving µ-termination of a given TRS than its termination. Some methods to tackle
this problem have been described in [79] and a practical tool can be found at the URL
address already mentioned at the beginning of Section 3.3.

Example A.1.2 Consider again the TRS of Example A.1.1 and the replacing map
µ such that

µ(s) = µ([·|·]) = µ(from) = {1}, µ(first) = {1, 2}.

Note that program R is left-linear, confluent and µ-terminating. Besides, we have
that µcan

R ⊑ µ.

Now, given the equation (t = c) ≡ (first(s(0), from(0)) = [0]), we apply Algo-
rithm 7, tracing the computation step by step.

First of all, a µ-normal form of t is calculated:

µNF(t,R) = [0|first(0, from(s(0)))].

And, therefore, MRCµ(µNF(t,R)) ≡ [0|2]. Since MRCµ(µNF(t,R)) ≡ MRCµ(c), we
recursively call the procedure on the non-replaceable subterms of µNF(t,R). In this
case, we have just one recursive call, as there is only one 2 in MRCµ(µNF(t,R)).
By executing the recursive call, we first compute a µ-normal form of the term

µNF(t,R)|2 = first(0, from(s(0))),

obtaining µNF(µNF(t,R)|2,R) ≡ [ ]. Then, by comparing the maximal replacing
contexts of µNF(µNF(t,R)|2,R) and c|2, we discover that

MRCµ(µNF(µNF(t,R)|2,R)) ≡ [ ] ≡ MRCµ(c|2).

Hence, the recursive call returns true and the procedure terminates delivering the same
value.

Consider now the equation (t′ = c′) ≡ (from(0) = [0]). Equation t′ = c′ is not
covered by R, since the left-hand side of the equation does not admit a finite normal
form. Therefore, the procedure should return false. Again, let us trace the execution
of the procedure.

First, the µ-normal form of t′ becomes µNF(t′,R) = [0|from(s(0))]. Next, the
comparison between MRCµ(µNF(t′,R)) and MRCµ(c′) succeeds, since

MRCµ(µNF(t′,R)) ≡ [0|2] ≡ MRCµ(c′).

Therefore, another recursive call is performed on equation µNF(t′,R)|2 = c′|2. At this
stage, we note that

MRCµ(µNF(µNF(t′,R)|2,R)) ≡ [s(0)|2] 6≡ [ ] ≡ MRCµ(c′|2).

So, the call returns false and the algorithm terminates returning false as well.
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Algorithm 7 An algorithm to test whether R ⊢ t = c.

1: function check(t = c,R)
2: t = µNF(t,R)
3: if MRCµ(t) 6≡ MRCµ(c) then
4: return false
5: else
6: if O2(MRCµ(t)) = ∅ then
7: return true
8: else ⊲ t ≡ MRCµ[t1, . . . , tn] where ti = t|pi

, pi ∈ O2(MRCµ(t))
9: return

∧n
i=1 check(ti = c|pi

)
10: end if
11: end if
12: end function

To summarize, algorithm 7 (namely, Check) allows to prove an equation of the
form t = c w.r.t. a given TRS R. Therefeore, in order to check whether a TRS is
overly general w.r.t. the sets of positive example E+, we just have to execute the
algorithm on every example belonging to E+. In other words, we have

R ⊢ E+ iff
∧

e∈E+

Check(e) = true.

A.1.3 Extending the decision algorithm to CTRSs

Conditional rewriting is recognized as being much harder than unconditional rewrit-
ing. Thus, establishing if a CTRS is overly general may be a very complicated task
which cannot be carried out by näıvely lifting Algorithm 7 to the CTRS’ class. In
the sequel of this section, we will consider normal CTRSs, which are defined in the
following definition.

Definition A.1.3 A CTRS R is a normal CTRS if each rule does not contain extra-
variables and it is of the form λ → ρ ⇐ t1 = c1, . . . , tn = cn, where ci ∈ τ(C),
i = 1, . . . , n.

Instead of designing an algorithm suitable for normal CTRSs, we will decide the
over-generality property of a given normal CTRS by reusing all the machinery we
have already set up; roughly speaking, this means transforming the considered condi-
tional program into an ‘equivalent’ unconditional one and then applying the previous
procedure. For this purpose, we will use the unraveling transformation originally
introduced by Marchiori [81], which maps CTRSs into TRSs.

Definition A.1.4 (Unraveling) Given a rule of a normal CTRS r ≡ λ→ ρ⇐ t1 =
c1, . . . , tn = cn with n ≥ 1, Var(λ) = {X1, . . . , Xp} and ur a fresh defined symbol of
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arity n + p associated with rule r, we define the unraveling of r (i.e. unravel(r)) as
follows

λ→ ur(t1, . . . , tn, X1, . . . , Xp)

ur(s1, . . . sn, X1, . . . , Xp)→ ρ.

Given a normal CTRS R, the unraveling of R is unravel(R) =
⋃

r∈R unravel(r).

By Definition A.1.4 it is immediate to see that the unraveling transformation
preserves the left-linearity property, that is, if R is a left-linear normal CTRS 1, then
unravel(R) is a left-linear TRS.

Another relevant property regarding the unraveling transformation is stated by
the theorem below.

Theorem A.1.5 [81] Let R be a left-linear normal CTRS, t and s be two terms.
Then, t→∗

R s iff t→∗
unravel(R) s.

Notice that Theorem A.1.5 allows us to directly derive the preservation of the con-
fluence property. In other words, if a left-linear normal CTRS is confluent, then the
unravelled TRS is confluent.

Now we are ready to prove the following theorem.

Theorem A.1.6 Let R be a left-linear, confluent, normal CTRS and R′ = unravel(R).
Let µ ∈ CMR′ and E be a finite set of ground examples. If R′ is µ-terminating, then
predicate R ⊢ E is decidable.

Proof. As unraveling preserves confluence and left-linearity, we have that R′ is a
left-linear and confluent TRS. Moreover, R′ is µ-terminating and µ ∈ CMR′ . Thus,
by applying Algorithm 7 to every example in E we can decide whether R′ ⊢ E. At
this point, by using Theorem A.1.5, we can show that R ⊢ E iff R′ ⊢ E. Thus,
predicate R ⊢ E is decidable as well. �

Finally, checking whether a program is overly-general w.r.t. a set of positive ex-
amples E+ (that is, R ⊢ E+) is trivially decidable by Theorem A.1.6.

1Left-linearity for normal CTRSs is defined as for TRSs.
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Some technicalities

B.1 Proofs of the technical results of Chapter 3

Our unfolding methodology considers the leftmost-innermost narrowing strategy (ϕ =
inn) and the needed narrowing strategy (ϕ = needed). In the case when ϕ = inn
is considered, the normalizing rewriting strategy which we employ for reducing the
examples is leftmost-innermost rewriting, whereas outermost needed rewriting is ap-
plied in the case when ϕ = needed. By abuse of notation, we denote the normalizing
rewriting strategy which is employed also by ϕ.

We use the following notion of conditional rewriting without evaluation of condi-
tions, which slightly adapts the original definition by Bockmayr and Werner [27] to
consider a rewriting strategy.

Definition B.1.1 Let R ∈ IRϕ be a program and g, g′ be two goals. We say that g

rewrites to g′ at position p via r w.r.t ϕ, in symbols g
σ,r,p
−→ϕ g′, if there exist a position

p ∈ ϕ(g), a variant of a rule r ≡ λ −→ ρ ⇐ C << R and a substitution σ such that

g|p = λσ and g′ = (Cσ, g[rσ]p). We omit some of the labels in
σ,r,p
−→ϕ whenever this is

clear from the context.

We denote the length of the rewriting sequence D by |D|. Dϕ
R(g) denotes the

successful rewriting sequence which proves g in R by using the normalizing rewriting
strategy ϕ.

Proposition B.1.2 Let R ∈ IRϕ and g, g′ be two ground goals. Then,

g ≡ g0 −→ϕ g1 −→ϕ . . . −→ϕ gn ≡ g′ iff g ≡ g0 ;ϕ g1 ;ϕ . . . ;ϕ gn ≡ g′.

Proof. By induction on the length of the derivations. �

Definition B.1.3 Let R be a CTRS and r ≡ λ → ρ ⇐ C, r′ << R two variants of

rules in R. Let p ∈ O(C, ρ = y). If (C, ρ = y)
θ,r′,p
;ϕ (C′, ρ′ = y) is a conditional
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narrowing step, then we define the rule unfolding of r w.r.t. r′ at position p (the
position p is referred to O(C, ρ = y)) as

unfold(r, r′, p) = {(λθ → ρ′ ⇐ C′)}.

Given a substitution θ = {X1/t1, . . . , Xn/tn}, we denote the equational represen-

tation of θ by θ̂ = {X1 = t1, . . . , Xn = tn}. In order to prove some auxiliary results,
we use to the commutative parallel composition operator ⇑ [98], which is defined as
θ1 ⇑ θ2 = mgu(θ1 ∪ θ2). An interesting property of the operator ⇑ is the following.

Proposition B.1.4 [98] Let θ1 and θ2 be two substitutions. Then,

θ1 ⇑ θ2 = θ1mgu(θ̂2θ1) = θ2mgu(θ̂1θ2).

The following result holds (c.f. Lemma 3.2.8 in [82]).

Lemma B.1.5 (Contraction) [82] Let R be a CTRS, g0 a goal, and r, r′ << R.
Then,

g0
q,r,θ
; g

p′,r′,θ′

; g′ iff g0
q,r′′,θ′′

; g′′

with p′ a non-variable position in the rhs or the condition of r, r′′ ∈ unfold(r, r′, p),
g′ = g′′ and θθ′ = θ′′|̀g0

Proof. (⇒) Let r ≡ (λ → ρ ⇐ C) and r′ ≡ (λ′ → ρ′ ⇐ C′). W.l.o.g., we assume
that p is a non-variable position in C and, therefore, p = p′ ( the case where p is a
non-variable position of ρ is analogous).

Since g0
q,r,θ
; g

p′,r′,θ′

; g′, we have that θ = mgu({g0|q = λ}), g = (C, g0[ρ]q)θ,
θ′ = mgu({Cθ|p = λ′}), and g′ = (C′, C[ρ′]p, g0[ρ]q)θθ

′. Now, let us consider σ =
mgu({C|p = λ′}. We have that

θθ′ =

θmgu{Cθ|p = λ′} = (since Dom(θ) ∩ V ar(r′) = ∅)

θmgu(m̂gu({C|p = λ′})θ) =

θmgu(σ̂θ) = (by Proposition B.1.4)

θ ⇑ σ = (by Proposition B.1.4)

σmgu(θ̂σ) =

σmgu(m̂gu({g0|q = λ})σ) = (since Dom(σ) ∩ V ar(g0) = ∅)

σmgu({g0|q = λσ}).

Besides, as θθ′ 6= fail, σ 6= fail. Thus, there exists a rule r′′ = (λ → ρ ⇐
C′, C[ρ′]p)σ ∈ unfold(r, r′, p). Now, since mgu({g0|q = λσ}) 6= fail, the follow-

ing narrowing step is enabled: g0
q,r′′,σ′′

; g′′, where θ′′ = mgu({g0|q = λσ} and
g′′ = (C′σ, C[ρ′]pσ, g0[ρσ]q)θ

′′. Finally, by θθ′ = σθ′′ and Dom(σ)∩V ar(g0) = ∅), we
have that g′ = g′′ and θθ′ = θ′′|̀g0

.

(⇐) This case is similar to the previous one. We just need to exploit again the
equivalence between θθ′ and σθ′′. �
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Now, we are able to demonstrate the following proposition, which essentially states
that the length of the rewriting proofs for the considered examples are shortened by
unfolding.

Proposition B.1.6 Let R ∈ IRϕ, ϕ ∈ {inn, needed}, R′ = Uϕ
r (R), r << R, and g be

a ground goal. Then, we have

1. if g →∗
ϕ ⊤ in R then also g →∗

ϕ ⊤ in R′

2. if r ∈ OR(Dϕ
R(g)), then |Dϕ

R′(g)| < |Dϕ
R(g)|.

Proof. We prove (1) and (2) by induction on the length n of DR(g).

n = 0. Since g ≡ ⊤, claims (1) and (2) hold trivially.

n > 0. Dϕ
R(g) contains at least one redex in a position q ∈ ϕ(g) which is reduced via

r1 ≡ λ1 → ρ1 ⇐ C1 << R. So, we have

Dϕ
R(g) ≡ g

σ1,r1,q
−→ϕ (C1σ1, g[ρ1σ1]q) −→

∗
ϕ true.

Here we consider two cases.

Case r1 ∈ R′. Since r1 belongs to both programs, R and R′, we have that the
first reduction step of Dϕ

R(g) is also a reduction step w.r.t. R′. Moreover,
by the induction hypothesis, (C1σ1, g[ρ1σ1]q) −→∗

ϕ true is a successful
rewriting sequence in R′. Thus, (1) holds.

To prove (2), we first observe that r1 6≡ r by Definition 3.3.2 (unfold-
ing). By induction hypothesis, if r ∈ OR(Dϕ

R(C1σ1, g[ρ1σ1]q)), then
|Dϕ

R′(C1σ1, g[ρ1σ1]q)| < |D
ϕ
R(C1σ1, g[ρ1σ1]q)|, and claim (2) follows.

Case r1 6∈ R′. By Definition 3.3.2, we have that r1 ≡ r. Since r ≡ r1 is un-
foldable, there is at least one defined function symbol in the rhs or the
condition of r1. Therefore, the derivation Dϕ

R(g) has the form

Dϕ
R(g) ≡ g

σ1,r,q
−→ϕ (C1σ1, g[ρ1σ1]q)

σ2,r2,p
−→ϕ g′′ −→∗

ϕ true

with r2 << R. Since g is ground, by Proposition B.1.2, the sequence Dϕ
R(g)

is a narrowing derivation for g in R as well. By applying Lemma B.1.5 to

g
r,q
;ϕ (C1σ1, g[ρ1σ1]q)

r2,p
;ϕ g′′

we know that

g
r∗,q
;ϕ g′′,

with r∗ ∈ R′ = Uϕ
r (R). By applying Proposition B.1.2 in the opposite

sense of direction, we get

g
q,r∗

−→ϕ g′′,
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which is a one-step rewriting sequence in R′ w.r.t. ϕ, since q ∈ ϕ(g). Now,
by the induction hypothesis, a successful rewriting sequence for g′′ in R′

w.r.t. ϕ does exist. Hence, the sequence Dϕ
R′(g) ≡ g −→∗

ϕ true is proven,
which demonstrates (1).

Let us give the proof for (2). First, remember that the rules r1 and r2 of
R used in Dϕ

R(g) are replaced by the rule r∗ ∈ R′ in Dϕ
R′(g) . Now, if

r ≡ r1 occurs in OR(Dϕ
R′(C1σ1, g[ρ1σ1]q)), by induction hypothesis,

|Dϕ
R′(C1σ1, g[ρ1σ1]q)| < |D

ϕ
R(C1σ1, g[ρ1σ1]q)|,

hence |Dϕ
R′(g)| < |Dϕ

R(g)|. If r 6∈ OR(Dϕ
R′(C1σ1, g[ρ1σ1]q)), then by Defi-

nition 3.3.2, each rule in OR(Dϕ
R′(C1σ1, g[ρ1σ1]q)) ⊂ R. Then,

|Dϕ
R′(C1σ1, g[ρ1σ1]q)| = |D

ϕ
R(C1σ1, g[ρ1σ1]q)|,

hence |Dϕ
R′(g)| < |Dϕ

R(g)|.

�

Now, we are ready to proceed with the proofs of the correctness of Algorithm 2 which
is described in Chapter 3.

Proposition 3.3.7 Let ϕ be a normalizing rewriting strategy for lRϕ and R be a
program in lRϕ. Let E+ (resp. E−) be a set of positive (resp. negative) examples. If
there are no e+ ∈ E+ and e− ∈ E− which can be proven in R by using the same rule
sequence, then, for each unfolding succession S(R), there exists a natural k, such that

∀e− ∈ E−∃r ∈ OR(DRk
(e−)) s.t. r is not discriminable.

Proof. W.l.o.g., we consider those successful rewrite sequences for the example e
of the form e −→∗

ϕ c1 = c1, . . . cn = cn −→∗
ϕ ⊤, with ci ∈ τ(C); that is, program

rules are first applied and then the equality rules are applied to reduce the ground
constructor equation set c1 = c1, . . . cn = cn to ⊤. We also assume as many fresh
constants available as required to derive the program correction. The key idea for the
proof is in the following fact (which holds by Proposition B.1.6).

At each unfolding step involving a discriminable rule, the length of the
proof of, at least, one positive example decreases.

Therefore, by a finite number k of unfolding steps, we get program Rk where each
e+ ∈ E+ succeeds by using just one rule r of Rk. This amounts to saying that there
is no defined symbol in the rhs or the condition of r.

Now, consider a negative example e− and the corresponding proof Dϕ
Rk

(e−). In order
to prove the claim, we distinguish two cases:
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|Dϕ
Rk

(e−)| > 1. In this case, there exists one rule r ∈ Rk occurring in DRk
(e−),

where the rhs or the condition of r contains at least one defined function symbol.
Hence, r cannot occur in the proof of any positive example and, thus, the claim
follows.

|Dϕ
Rk

(e−)| = 1. Let r ∈ Rk be the rule used to prove e−. By contradiction, suppose
that there exists a positive example e+ ∈ E+, whose proof Dϕ

Rk
(e+) uses the

very same rule r. Since Rk derives by unfolding from R, then by repeatedly
applying the Contraction Lemma B.1.5 and by Proposition B.1.2, the appli-
cation of the rule r ∈ Rk can be mimicked in R by applying a rule sequence
〈r1, . . . , rn〉 of R. This means that examples e+ and e− can be proven in R by
using the same rules sequence, which leads to a contradiction.

�

Theorem 3.3.8 [Correctness] Let R ∈ IRϕ which satisfies the csr conditions, E+

and E− be two sets of examples such that R ⊢ E+. If the rewriting rule sequences for
e+ ∈ E+ and e− ∈ E− are different, then the TD-CorrectorFL algorithm yields
a correct specialization of R w.r.t. E+ and E−.

Proof. Assuming that R satisfies the csr conditions [79], then each example l = c ∈
E+, with ρ ground constructor term and l ground pattern, can be checked by finitely
comparing c with the “maximal context” of l (normalization via µ–normalization) (See
appendix A.1). In the case when this test succeeds, we know that there exists a (finite)
rewriting sequence which proves e in R using the normalizing strategy ϕ for the class
IRϕ. On the other hand, since the semantics of R is preserved by unfolding w.r.t. ϕ
under the conditions of Definition 3.3.3, program Rk does cover E+ also. According
to Proposition 3.3.7, every negative example e− succeeds in Rk by means of (at least)
one rule which is not used in the proof of any positive example. Subsequently, the
Deletion phase removes all, and only, those rules r ∈ Rk which do not appear in the
proof of any positive example. Hence, a specialized program is computed which does
not cover E− while still succeeds on the whole E+, which gives the desired result. �

B.2 Proofs of the technical results of Chapter 4

Lemma 4.3.1 Let I be a TRS and EP := {e|e ∈ F̃κ
val

(I) ∧ Var(e) ∩ V̂ = ∅}. Then,
EP ⊆ Sem

val
(I).

Proof. Let e ∈ EP . Then, Var(e) ∩ V̂ = ∅ and e ∈ F̃κ
val

(I). By Claim (2) of
Proposition 4.1.8, e ∈ Fval(I). By Theorem 4.1.5, e ∈ Sem

val
(I). �

Lemma 4.3.2 Let R be a TRS, I be a specification of the intended semantics and
EN := {e|e ∈ F̃κ

val
(R) ∧Var(e)∩ V̂ = ∅ ∧ F̃κ

val
(I) 6≤S {e}}. Then, EN ⊆ (Sem

val
(R) \

Semval(I)).
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Proof. Let e ∈ EN . Then, e ∈ F̃κ
val

(R) and Var(e)∩V̂ = ∅. By Claim (2) of Proposi-
tion 4.1.8, e ∈ Fval(R), and thus by Theorem 4.1.5, e ∈ Semval(R). Now, we proceed

by contradiction. Suppose that e ∈ Semval(I). Since e ∈ EN , F̃κ
val

(I) 6≤S {e}.

This implies that, for each e′ ∈ F̃κ
val

(I), e′ 6≤ e. By Theorem 4.1.5, e ∈ Fval(I).

By Claim (1) of Proposition 4.1.8, there exists e′ ∈ F̃κ
val

(I) such that e′ ≤ e,

which contradicts the fact that F̃κ
val

(I) 6≤S {e}. Hence, e 6∈ Semval(I). Finally,
e ∈ (Sem

val
(R) \ Sem

val
(I)). �

Proposition 4.4.1 Let R be a TRS and E+ be a set of positive examples. If, for
each e ∈ E+, there exists e′ ∈ F̃κ

val
(R) s.t.

1. e′ ≤ e;

2. Var(e′) ∩ V̂ = ∅;

then, R is overly general w.r.t. E+.

Proof. Let e ≡ (l = c) ∈ E+. Then, there exists e′ ≡ (l′ = c) ∈ F̃κ
val

(R). Since

Var(e′) ∩ V̂ = ∅ holds, we can apply Proposition 4.1.8 to e′. So, e′ ∈ Fval(R). Thus,
e′ ∈ Semval(R) (that is, l′ →!

R c). Since e′ ≤ e, there exists σ such that e′σ ≡ e. This
implies that l′σ = l. By the stability of the rewriting relation and the fact that c is a
ground normal form, l ≡ l′σ →!

R cσ ≡ c, therefore e ∈ Sem
val

(R). This proves that
R is overly-general w.r.t. E+. �

The following auxiliary lemma is instrumental for the proof of Theorem 4.4.7.

Lemma B.2.1 Let r1 ≡ λ1 → ρ1 and r2 be two rules. Let t0, t1, t2 ∈ τ(Σ∪V). Then,
t0 →r1,p1

t1 →r2,p2
t2, where p2 ∈ OΣ(t1) corresponds to some position p ∈ OΣ(ρ1),

iff t0 →r′,p1
t2, where r′ ∈ Ur2

(r1).

Proof. It follows immediately from Lemma 3.2.8 in [82]. �

Theorem 4.4.7 Let R be a well-framed left-linear CS, r << R be an unfoldable rule
and R′ = UR(r). Let e ≡ (l = c) be an equation such that l ∈ τ(Σ,V) and c ∈ τ(C).
Then, if e ∈ Semval(R), then e ∈ Semval(R

′).

Proof. The proof proceeds by induction following a proof scheme similar to the one
proposed in [82]. �

Lemma 4.4.11 Let R be a well-framed left-linear CS, E be a set of examples and
r ∈ first(E) be an unfoldable rule such that R′ = UR(r). Let t = c ∈ E, where t is a
pattern and c is a value. Then,

1. if S is a rewrite sequence from t to c in R, then there exists a rewrite sequence
S′ from t to c in R′;
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2. if r occurs in S, then |S′| < |S|.

Proof. Claim (1) directly follows from Theorem 4.4.7. Claim (2) is based on the
following observation. Consider a rewrite sequence for t = c in R

S ≡ t→r1,q1
t[ρ1σ1]q1

→r2,q2
t2 . . .→rn,qn

c,

where (r1 ≡ λ1 → ρ1) ∈ first(E) and r1 is unfoldable. Since term t is a pattern,
Lemma B.2.1 applies to the first two rewrite steps of S. Therefore, we can mimic
the first two rewrite steps of S by a single rewrite step t →r∗,q1

t2 using a rule
r∗ ∈ Ur2

(r1) ⊆ UR(r1) ≡ R′, which demonstrates that a derivation S′ in R′ shorter
than S does exist. �

Lemma 4.4.12 Let R be a well-framed left-linear CS, E be an example set and
t = c ∈ E, where t is a pattern and c is a value. Let t →r1

. . .→rn
c, n ≥ 1. Then,

for each unfolding succession US(R) w.r.t. E, there exists Rk occurring in US(R)
such that t→r∗ c, r∗ ∈ Rk.

Proof. We demonstrate the claim by induction on the length n of the rewrite sequence
from t to c.

Case n = 1. We have that t→r1
c in R. For each unfolding succession US(R) w.r.t.

E, R0 ≡ R. Then, by taking k = 0 the claim is proven.

Case n > 1. Let S ≡ t →r1
t1 . . . →rn

c in R, where n > 1. Consider an arbitrary
unfolding succession US(R) ≡ R0,R1, . . . w.r.t. E. Moreover, r1 ∈ first(E).
By the fact that t is a pattern and R is well-framed, r1 is unfoldable. There-
fore, there exists an Rk′ , k′ ≥ 0, in US(R) such that Rk′+1 ≡ URk′

(r1). By
repeatedly applying Lemma 4.4.11, we have that there exists a rewrite sequence
S′ in Rk′+1, which proves t = c and |S′| < |S|. By inductive hypothesis, for
each US(Rk′+1) w.r.t. E, there exists a Rk′′ occurring in US(Rk′+1) such that
t→r∗ c, r∗ ∈ Rk′′ . Thus, by choosing program Rk′+1+k′′ in US(R), we get the
desired result.

�

Lemma 4.4.13 Let R be a TRS and e an equation. Then, if F̃κ
val

(R) 6≤S {e}, then
e 6∈ Semval(R).

Proof. Let us proceed by contradiction. Suppose e ∈ Sem
val

(R), then by Theorem

4.1.5, e ∈ Fval(R). By Claim (1) of Proposition 4.1.8, there exists e′ ∈ F̃κ
val

(R)

such that e′ ≤ e, which contradicts the hypothesis F̃κ
val

(R) 6≤S {e}. Thus, e 6∈
Semval(R). �
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Theorem 4.4.14 Let R be a well-framed left-linear CS and I be a specification
of the intended semantics of R. Let E+ and E− be the example sets generated by
ExGen(R, I).

1. If (E+, E−) is discriminable in R, then the algorithm TDCorrectorF(R, I)
terminates.

2. If R is overly general w.r.t. E+ and TDCorrectorF(R, I) terminates, then
the computed program Rc is correct w.r.t. E+ and E−.

Proof.

Claim (i). First of all, the termination of the procedure ExGen(R, I), which is
used to generate the example sets, trivially holds, since abstract semantics is
finitely computed. Then, note that the overgenerality test is computable as
well. Therefore, if programR is not overly general w.r.t. E+, the algorithm halts
without delivering a correction. Otherwise, we have to demonstrate termination
of the while loop for an overly-general program w.r.t E+. It suffices to prove
that program rules cannot be infinitely unfolded. As the considered programs
are well-framed left-linear CS, Lemma 4.4.12 holds. Since the rule selection
strategy is fair and by applying Lemma 4.4.12, in the worst case after a finite
number n of unfolding steps, we get program Rn, where at least a rewrite
sequence for every e+ ∈ E+ consist of a unique step. This amounts to saying
that, in every one-step rewrite sequence of Rn proving a positive example, the
applied rule contains no defined symbols in their rhs’s (that is, the applied rule
is not unfoldable any further) and is of the form λ → c, where λ is a pattern
and c belongs to τ(C,V).

Let us consider the iteration of the while loop in which we obtain such a pro-
gram Rn. At this point, no rule of Rn—which is used to prove some positive
example—is unfoldable, so no more unfolding steps are possible. Now, a refine-
ment of program Rn is computed after removing some rules by means of the
OverlyGeneral procedure. W.l.o.g., we assume that the considered k for the
depth-k abstraction is greater than or equal to the maximum depth of the terms
occurring in E+. Consequently, (λ = c) ∈ F̃k

val
(Rn) for each λ→ c ∈ Rn which

is used to prove the positive examples; and therefore, by Proposition 4.4.1, the
program RE+ = {λ→ c ∈ Rn|λ→ c is used to prove some e+ ∈ E+} is overly
general w.r.t. E+.

Now, we show that, after the deletion phase, no negative example can be proven
in Rn and thus the while loop exits, hence the algorithm terminates. Let us
consider a negative example e− ∈ E−. Let Se− be a rewrite sequence in Rn for
e−. In order to prove the claim we distinguish two cases.

Case |Se− | > 1. In this case, there exists one rule r ∈ Rk occurring in Se− ,
where the rhs of r contains at least one defined function symbol. Since
Rn \ {r} ⊇ RE+ , Rn \ {r} is overly general w.r.t. E+. Thus, rule r is not
necessary to prove any positive example in Rn and can be safely deleted.
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Case |Se− | = 1. If the unique rule r occurring in Se− is never used to prove
some positive example; then, Rn \ {r} ⊇ RE+ is overly general w.r.t. E+

and rule r is deleted.

On the other hand, it cannot happen that rule r appears in a proof of a
positive example. Let us demonstrate it by contradiction. Let r ∈ Rn be
the unique rule used in Se− . Now, suppose that r is also used to prove a
positive example, i.e., there exists a positive example e+ ∈ E+, which is
proven by a rewrite sequence Se+ of Rn using the same rule r. Since Rn

derives by unfolding from R, by repeatedly applying Lemma B.2.1, the
application of rule r ∈ Rn can be mimicked in R by applying a sequence
of rules 〈r1, . . . , rn〉 of R. This means that examples e+ and e− can be
proven in R by using the same sequence of rules (i.e. (E+, E−) is not
discriminable in R), which leads to a contradiction.

Therefore, after having computed the specialization Rn by unfolding, all the
rules which are not needed to prove E+ are removed, which implies the termi-
nation of the while loop and hence the termination of the TDCorrectorF
algorithm, which delivers a program called Rc.

Claim (ii). Since the algorithm TDCorrectorF(R, I) terminates and the program
R is overly general w.r.t. E+, the algorithm delivers a program Rc (see proof
of Claim (i)).

Now we show that Rc is correct w.r.t. E+ and E−. By Lemma 4.4.13, when
the while loop is exited, we obtain a specialization Rc ≡ Rk such that E− ∩
Sem

val
(Rk) = ∅. Moreover, we have the following facts:

• the original program R ≡ R0 is overly general w.r.t. E+;

• if E+ ⊆ Semval(Rk), then E+ ⊆ Semval(Rk+1) (cf. Theorem 4.4.7);

• rule deletion is only performed if the resulting program specialization is
overly general w.r.t. E+.

Therefore, we have that E+ ⊆ Sem
val

(Rc) and E− ∩ Sem
val

(Rc) = ∅, when the
procedure terminates. Hence, Rc is correct w.r.t. E+ and E−.

�

B.3 Proofs of the technical results of Chapter 5

Proposition 5.4.5 Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) be two Web
page templates in τ(Text ∪ Tag,V). A minimal page simulation S of s1 in s2 w.r.t.
∼ is a mapping S : V1 → V2 . Proof. Let s1 ≡ (V1, E1, r1, label1), s2 ≡
(V2, E2, r2, label2) ∈ τ(Text ∪ Tag,V). By Conditions 1 and 3 of Definition 5.4.3,
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and by using the fact that s1 has an underlying tree structure (in particular, it is a
connected graph), we have that

∀ v1 ∈ V1, ∃ v2 ∈ V2 such that (v1, v2) ∈ S.

Moreover, the minimality of S ensures that

∀ v1 ∈ V1, ∃ a unique v2 ∈ V2 such that (v1, v2) ∈ S

which implies that S is a mapping from V1 to V2. �

Proposition 5.5.3 Let W be a Web site, and (IN ⊎ IM, R) be a Web specification.
Then, the procedure Correctness-errors(W, IN, R) terminates, and for each pair
(p, lσ), which is returned, p is an incorrect Web page w.r.t. (IN ⊎ IM, R) and lσ is
the corresponding incorrectness symptom. Proof. First of all, let us prove the
termination of the algorithm. The outer loop (lines 2–9) is executed |W | times.
The inner loop (lines 3–8) is executed |IN| times. As for the partial rewrite step
p ⇀σ

ru
error in line 4, it terminates, because it is just an application of the simulation

algorithm [66], which terminates. The evaluation of the condition in line 5 terminates,
since:

1. the problem of evaluating (Xiσ ∈ L(rexpi), i = 1, . . . , n) boils down to the mem-
bership problem in regular languages, which is decidable (see [70]), so there
exists an effective procedure which tests (Xiσ ∈ L(rexpi), i = 1, . . . , n) in finite
time.

2. evaluating the condition ((sj = tj)σ, j = 1, . . . , m, holds in R) trivially termi-
nates, since R is canonical (in particular, it is terminating).

The output command in line 6 clearly terminates. Summing up, we execute the block
of terminating instructions, which is included in lines 4–7, |W | ∗ |IN| times, so the
whole procedure terminates.
Let us prove the partial correctness of the algorithm, that is, if the procedure termi-
nates producing the outcome (p, lσ), then p ∈ W is incorrect w.r.t. (IN ⊎ IM, R) and
lσ is an incorrect symptom for p.
Let (p, lσ) be an output of the procedure. This implies that (i) p ⇀σ

ru
error for

some r ≡ (l ⇀ error | X1 in rexp1, . . . , Xn in rexpn, s1 = t1, . . . , sm = tm) ∈ IN (see
line 4); (ii) for each i = 1, . . . , n, (Xiσ ∈ L(rexpi), i = 1, . . . , n) (see line 5); and (iii)
for each j = 1, . . . , m, (sj = tj)σ holds in R (see line 5). Now, by simply applying
Definition 5.5.1 , we get that p ∈ W is incorrect w.r.t. (IN ⊎ IM, R) and lσ is an
incorrect symptom for p. �

In order to prove Proposition 5.5.9, we need the following auxiliary definitions and
results.
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Definition B.3.1 Given a term t ∈ τ(Σ,V), the height of t, height(t), is defined as
follows.

height(t) =

{
0 if t ≡ X ∈ V or t ≡ c ∈ τ(Σ,V)
1 + max{height(ti)|i = 1, . . . , n} if t ≡ f(t1, . . . , tn) ∈ τ(Σ,V)

We can lift the notion of height to substitutions in the following way.

Definition B.3.2 Given a substitution σ = {X1/t1, . . . , Xn/tn}, the height of σ,
height(σ), is defined as follows.

height(σ) = max{height(ti) | i = 1, . . . , n}

Now we can prove two useful technical results.

Proposition B.3.3 Let (IN ⊎ IM, R) be a bounded Web specification and

µ0(s0) ⇀σ0

r0
µ1(s1) ⇀σ1

r1
µ2(s2) ⇀σ2

r2
. . .

be a partial rewrite sequence, where ri ∈ IM, i = 0, 1, 2, . . . Then, for each si, i =
1, 2, . . .,

si ≡ ri−1σi−1

where ri−1 is the right-hand side of the rule ri−1.

Proof. It directly comes from Definition 5.4.9 and by the fact that Reduce(rσ, R) =
rσ when considering a bounded Web specification, since no function of R can appear
in the right-hand sides of the completeness rules. �

In other words, Proposition B.3.3 states that each term occurring in a partial
rewrite sequence is an instance of the right-hand side of some completeness rule.

Proposition B.3.4 Let (IN ⊎ IM, R) be a bounded Web specification and

µ0(s0) ⇀σ0

r0
µ1(s1) ⇀σ1

r1
µ2(s2) ⇀σ2

r2
. . .

be a partial rewrite sequence, where ri ∈ IM, i = 0, 1, 2, . . . Then, for each si, i =
1, 2, . . .,

height(si) ≤ height(ri−1) + height(σi−1)

where ri−1 is the right-hand side of the rule ri−1.

Proof. It is a direct consequence of Proposition B.3.3, Definition B.3.1, and Definition
B.3.2. �
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Lemma B.3.5 Let (IN ⊎ IM, R) be a bounded Web specification and

µ0(s0) ⇀σ0

r0
µ1(s1) ⇀σ1

r1
µ2(s2) ⇀σ2

r2
. . .

be a (possibly infinite) partial rewrite sequence, where ri ∈ IM, i = 0, 1, 2, . . . Then,
for each si, i = 1, 2, . . .,

height(si) ≤ height (ri−1) + height(σ0)

where ri−1 is the right-hand side of rule ri−1.

Proof. By contradiction, let sk′ be the first term appearing in the partial rewrite
sequence such that

height(sk′) > height(rk′−1) + height(σ0),

where rk′−1 is the right-hand side of the rule rk′−1. Clearly, k′ > 1, as the claim
trivially holds for k′ = 1. Moreover, for each j = 1, . . . k′ − 1, we have

height(sj) ≤ height(rj−1) + height(σ0).

Now, let us focus on the partial rewrite step

sk′−1 ⇀
σk′−1

rk′−1
sk′ .

By Proposition B.3.3, sk′−1 ≡ rk′−2σk′−2. So, we have

height(sk′−1) ≤ height(rk′−2) + height (σk′−2)

And, also height(σk′−2) ≤ height (σ0).
Again, by Proposition B.3.3, sk′ ≡ rk′−1σk′−1. And, hence,

height(sk′) ≤ height (rk′−1) + height (σk′−1) (by Proposition B.3.4).

Here, we distinguish two cases: since sk′−1 ≡ rk′−2σk′−2, the partial rewrite step
sk′−1 ⇀

σk′−1

rk′−1
sk′ can be given on a vertex in rk′−1 (Case 1) or on a vertex belonging

to a term in {t | X/t ∈ σk′−2)} (Case 2).

Case 1. Since the Web specification is bounded, no variables in the substructure
of rk′−1 which is simulated by the left-hand side of rule rk′−1 can be located
at positions which are deeper than all the positions of the variables in the
considered left-hand side. So, we must have height(σk′−1) = height(σk′−2).
Therefore,

height (sk′) ≤ height(rk′−1) + height(σk′−1)

= height(rk′−1) + height(σk′−2)

≤ height(rk′−1) + height(σ0)

which is a contradiction.



B.3. Proofs of the technical results of Chapter 5 95

Case 2. Trivially, height (σk′−1) ≤ height(σk′−2). Hence,

height(sk′ ) ≤ height (rk′−1) + height(σk′−1)

≤ height (rk′−1) + height(σk′−2) ≤ height(rk′−1) + height(σ0)

which also leads to a contradiction.

Thus, there cannot exist a term sk′ such that height(sk′) > height (rk′−1)+height(σ0)
and the claim is proven. �

Proposition B.3.6 Let W be a Web site, (IN ⊎ IM, R) be a Web specification. Then,

{µ(s) | ε(p) ⇀m µ(s), 0 ≤ m ≤ k, ε(p) ∈W} = {µ(s) | 〈µ(s), q〉 ∈ JM ↑
W k}

Proof.
(⊇) Simple induction on the ordinal power k.

(⊆) Simple induction on the length m of the rewrite sequence. �

Corollary B.3.7 Let W be a Web site, (IN ⊎ IM, R) be a Web specification. Then,

{µ(s) | ε(p) ⇀∗ µ(s), ε(p) ∈W} = {µ(s) | 〈µ(s), q〉 ∈ lfp(JM)}

Now, we are ready to prove Proposition 5.5.9.

Proposition 5.5.9 Let (IN ⊎ IM, R) be a bounded Web specification and W be a Web
site. Then, there exists k ∈ N such that lfp(JM) = JM ↑W k.

Proof. First, let us show that each µ(s), such that 〈µ(s), q〉 ∈ lfp(JM), has a
bounded height.
By Corollary B.3.7, {µ(s) | ε(p) ⇀∗ µ(s), ε(p) ∈W} = {µ(s) | 〈µ(s), q〉 ∈ lfp(JM)}.
Thus, for each µ(s), such that 〈µ(s), q〉 ∈ lfp(JM), there exists a Web page ε(p) ∈W
such that ε(p) ⇀∗ µ(s). Here, we distinguish two cases.

Case (ε(p) ⇀0 µ(s)). Let HW = max{height(p) | ε(p) ∈ W )}. In this case, µ(s) ≡
ε(p), hence

height(µ(s)) = height(ε(p)) ≤ HW .

Case (ε(p) ⇀+ µ(s)). Let

HI = max{height(r) | r ∈ RhsM}

HS = max{height(σ′) | ε(p) ⇀σ′

r′ µ(s), ε(p) ∈W, r′ ∈ IM}.

Now, we have ε(p) ⇀σ0
r0

µ(s1) ⇀∗ µ(s). By Lemma B.3.5, there exists r ∈ RhsM
such that

height(s) ≤ height(r) + height(σ0) ≤ HI + HS .
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Thus, for each µ(s), such that 〈µ(s), q〉 ∈ lfp(JM), we get

height(µ(s)) ≤ max{HW , HI + HS}.

Since we have only a finite number of marked terms whose height is less than or equal
to max{HW , HI + HS}, lfp(JM) must be a finite set. Finally, since the operator JM is
continuous (in particular, monotonic) and lfp(JM) is a finite set, then there exists a
natural number k such that lfp(JM) = JM ↑W k. �

In order to prove Proposition 5.5.12, we first give some auxiliary results.

Lemma B.3.8 Let s1 and s2 be two Web page templates in τ(Text ∪Tag,V). Then,
s1
∼= s2 and s2

∼= s1 iff there exists a substitution σ

s2σ partially matches s1 via some substitution σ′.

Proof.

(⇒) Let us assume that

s1
∼= s2 or s2

∼= s1.

Case s1
∼= s2. By Definition 5.4.3, we also have s1

∼= s2σ, for every σ. Directly,
by Definition 5.4.7, there exists a substitution σ′ s.t. s2σ partially matches
s1 via σ′.

Case s2
∼= s1. s1 partially matches s2 via σ′′. By Definition 5.4.3, we also have

s2σ
′′ ∼= s1. Indeed, s2σ

′′ is embedded into s1. Therefore, s1
∼= s2σ

′′, and
s2σ

′′ partially matches s1 via the empty substitution ǫ. So, if we take
σ′ = ǫ and σ = σ′′, then there exists σ and σ′ such that s2σ partially
matches s1 via σ′.

(⇐) Since there exists a substitution σ s.t. s2σ partially matches s1 via some sub-
stitution σ′, we have that s1

∼= s2σ. Here we can distinguish two cases: (1)
there is a minimal, injective simulation of s1 in a subterm of s2 w.r.t. ∼ and
hence s1

∼= s2; (2) there is a minimal, injective simulation of s1 in s2σ w.r.t.
∼, which also involves some terms occurring in σ. In this case, we have that,
for some X/t ∈ σ, t is simulated by some subterm of s1. It is not difficult to
see that, by Definition 5.4.2 and Definition 5.4.3, there always exists a minimal,
injective simulation between a variable and an arbitrary term. Exploiting this
fact, we can state that each variable in s2, which is replaced by some term in
s2σ, simulates the corresponding subterm in s1, thus s2

∼= s1.

�
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Lemma B.3.9 Let (IN⊎IM, R) be a bounded∗ Web specification and r ≡ (l ⇀ r〈q〉) ∈
IM be a function-dependent rule w.r.t. R. Let µ1(s1) and µ2(s2) be two marked Web
page templates. If µ1(s1) ⇀σ

r µ2(s2), then there do not exist a Web page template
µ3(s3) and substitution σ′ s.t. µ2(s2) ⇀σ′

r′ µ3(s3), with r′ ∈ IM.

Proof. Let us consider µ1(s1) ⇀σ
r µ2(s2). Then, by Definition 5.4.9,

s2 = Reduce(rσ, R).

We consider two cases.

Case s2 ∈ τ(ΣR,V). s2 = Reduce(rσ, R) is just an irreducible form computed by
the canonical TRS R. No partial rewriting steps can be applied to s2, because
(i) {f | f(t1, . . . , tn) ⇀ µ(r) ∈ Im} ∩ ΣR = ∅, since (IN ⊎ IM, R) is bounded∗;
(ii) the function calls cannot be applied to arguments containing symbols in
{f | f(t1, . . . , tn) ⇀ µ(r) ∈ Im}.

Case s2 ∈ τ(Text ∪ Tag ∪ ΣR,V) \ τ(ΣR,V). s2 = Reduce(rσ, R) = r∗σ∗, where r∗

is the right-hand side of the function-independent version of r w.r.t. R, and
σ∗ is a suitable substitution. Since (IN ⊎ IM, R) is bounded∗, condition 2 of
Definition 5.5.11 holds. Thus, by applying Lemma B.3.8, we can ensure that the
subterms that occur at positions coming from r∗ cannot be partially rewritten in
a subsequent step. Moreover, for each X/t ∈ σ∗, t does not contain any subterm
which can be partially rewritten, because (i) {f | f(t1, . . . , tn) ⇀ µ(r) ∈ Im} ∩
ΣR = ∅, since (IN ⊎ IM, R) is bounded∗; (ii) the function calls are never applied
to arguments containing symbols in {f | f(t1, . . . , tn) ⇀ µ(r) ∈ Im}. Therefore
there are no subterms in s2 = r∗σ∗ which can be partially rewritten any longer.

�

Lemma B.3.10 Let (IN ⊎ IM, R) be a bounded∗ Web specification and

µ0(s0) ⇀σ0

r0
µ1(s1) ⇀σ1

r1
µ2(s2) ⇀σ2

r2
. . .

be a (possibly infinite) partial rewrite sequence, where ri ∈ IM, i = 0, 1, 2, . . . Then,
there exists k ∈ N s.t. for each si, i = 0, 1, 2, . . .,

height(si) ≤ k.

Proof. Let us consider the partial rewrite sequence

µ0(s0) ⇀σ0

r0
µ1(s1) ⇀σ1

r1
µ2(s2) ⇀σ2

r2
. . .

We distinguish two cases.
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Case 1. First consider that the partial rewrite sequence only contains function-inde-
pendent rules. Since, (IN ⊎ {r ∈ IM | r is function-independent w.r.t. R}, R) is
bounded, we can simply apply Lemma B.3.5. So,

height (si) ≤ height(ri−1) + height(σ0)

where ri−1 is the right-hand side of rule ri−1, i = 1, 2, . . .

Let k′ = max{height(r) | r ∈ RhsM}. By taking k = max{height(s0), k
′ +

height(σ0)}, we prove the claim.

Case 2. Now, assume that function-dependent completeness rules are also used in
the sequence. Let us suppose that µj(sj) ⇀

σj
rj µj+1(sj+1) is the first partial

rewrite step of the sequence in which a function-dependent rule ri occurs. By
Lemma B.3.9, µj+1(sj+1) cannot be partially rewritten any longer, therefore the
sequence must be finite. So, by inspecting the heights of every term appearing
in the sequence, we can find the one with the maximum height h. Finally, it is
enough to choose k = h and the claim in proven.

�

Proposition 5.5.12 Let (IN⊎IM, R) be a bounded∗ Web specification and W be a Web
site. Then, there exists k ∈ N such that lfp(JM) = JM ↑W k. Proof. Similarly to
the proof of Proposition 5.5.9, by Corollary B.3.7, {µ(s) | ε(p) ⇀∗ µ(s), ε(p) ∈W} =
{µ(s) | 〈µ(s), q〉 ∈ lfp(JM)}.
Thus, for each µ(s), such that 〈µ(s), q〉 ∈ lfp(JM), there exists a partial rewrite
sequence ε(p) ⇀∗ µ(s), where ε(p) ∈ W . As (IN ⊎ IM, R) is bounded∗, every marked
term appearing in the partial rewrite sequence ε(p) ⇀∗ µ(s) has a bounded height
by Lemma B.3.10 and hence lfp(JM) is a finite set.
Finally, since the operator JM is continuous (in particular, monotonic) and the set
lfp(JM) is finite, then there exists a natural number k such that lfp(JM) = JM ↑W k. �

Proposition 5.5.21 Let W be a Web site, (IN ⊎ IM, R) be a bounded∗ Web specifi-
cation, and ReqM,W be the set of requirements for W w.r.t. IM. Then, the procedure
Completeness-errors(W, IM, R) terminates. Moreover, for each error message re-
garding term e, which is returned by the procedure, there exists 〈µ(e), q〉 ∈ ReqM,W,
with q ∈ {A, E}, which is not satisfied in W .

Proof. First of all, let us prove the termination of procedure Completeness-
errors(W, IM, R). Line 2 computes the sets of requirements ReqM,W. Since W is a
bounded∗ Web specification, by Proposition 5.5.12, lfp(JM) is a finite set which is
computed in finite time. Therefore, ReqM,W ← lfp(JM) \W is also computed in finite
time.
The loop within lines 3–18 is executed |ReqM,W| times. It simply takes every single
requirement belonging to ReqM,W and analyzes it in order to discover whether it is
satisfied.
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The assignment in line 4 computes the test set TEST〈µ(e),q〉 which terminates by Def-
inition 5.5.15: actually, it is just an application of the simulation algorithm [66] to a
finite set of (marked) terms, i.e., the Web site W .
The emptiness test in lines 5–7 trivially terminates as well as the case statement in
lines 8–17, which includes some checks based on the simulation algorithm [66].
Now, let us prove the partial correctness of the algorithm: that is, if an error message
regarding e (incompleteness symptom) is returned by the procedure, then 〈µ(e), q〉,
where q ∈ {A, E}, is not satisfied in W .
If an error message regarding e (incompleteness symptom) is returned by the proce-
dure, then it refers to a requirement 〈µ(e), q〉. Let us consider the iteration of the
loop in lines 3–18 which checks 〈µ(e), q〉. Note that an error message can be risen in
three cases. Whenever

1. TEST〈µ(e),q〉 = ∅;

2. there exists p ≡ (V, E, r, label) ∈ TEST〈µ(e),A〉 s.t. e 6∼= p|v , with v ∈ V ;

3. for each p ≡ (V, E, r, label) ∈ TEST〈µ(e),E〉, e 6∼= p|v, with v ∈ V .

In case 1, requirement 〈µ(e), A〉 is not satisfied in W directly by Definition 5.5.17 (see
point 1), while requirement 〈µ(e), E〉 is not satisfied in W by Definition 5.5.19 (see
point 1)).
In case 2, requirement 〈µ(e), q〉, where q = A, is not satisfied in W by Definition
5.5.17 (see point 2).
In case 3, requirement 〈µ(e), q〉, where q = E, is not satisfied in W by Definition
5.5.19 (see point 2). �
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