
Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Proving and disproving confluence of context-sensitive

rewriting ✩

Salvador Lucas a,∗, Miguel Vítores a, Raúl Gutiérrez b

a DSIC & VRAIN, Universitat Politècnica de València, Spain
b Universidad Politécnica de Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 July 2021
Received in revised form 4 January 2022
Accepted 4 January 2022
Available online 7 January 2022

Keywords:
Confluence
Context-sensitive rewriting
Program analysis

Context-sensitive rewriting is a restriction of term rewriting where reductions are allowed
on specific arguments of function symbols only, and then in particular positions of
terms. Confluence is an abstract property of reduction relations guaranteeing that two
diverging reduction sequences can always be joined into a common reduct. In this paper
we investigate confluence of context-sensitive rewriting and present some novel results.
In particular, a characterization of local confluence of context-sensitive rewriting as the
joinability of an extended class of critical pairs which we introduce here. We also show that
the treatment of joinability of critical pairs using theorem proving and solving feasibility
problems is useful to automatically prove and disprove confluence of context-sensitive
rewriting. Our techniques have been implemented in a new tool, CONFident. We show
by means of benchmarks the impact of the new techniques discussed in the paper.

© 2022 Published by Elsevier Inc.

1. Introduction

Term rewriting [2] is a computational paradigm which permits the specification of computations by means of rules
� → r which can be used to transform expressions s by replacing instances of the left-hand side � in s by the corresponding
instance of the right-hand side r. This is usually written s → t and called a rewriting step. Term Rewriting Systems R are
collections of rules � → r which are used to perform such rewriting steps and →R is called the one-step rewriting (or
reduction) relation induced by R. Termination and confluence are possibly the most important properties of →R , see, e.g.,
[2, Chapters 5 & 6]. We say that →R (or just R) is terminating if no infinite sequence s1 →R s2 →R · · · of rewriting steps
can be built. Similarly, R is confluent if for all terms s, t , and t′ such that s →∗

R t and s →∗
R t′ (where, e.g., s →∗

R t means
that t is obtained from s by means of zero or more rewriting steps), there is a term u such that t →∗

R u and t′ →∗
R u holds.

Intuitively, this means that, even if two diverging sequences of rewriting steps s →∗
R t and s →∗

R t′ can be issued, there
will be a term u to which both t and t′ can be rewritten.

Restricting reductions in term rewriting (i.e., forbidding some steps s →R t) is an obvious way to improve the ter-
mination behavior of a rewriting-based system. A simple way to introduce such restrictions is selecting the arguments
μ(f) ⊆ {1, . . . , k} of k-ary function symbols f where rewriting steps can be performed, whereas they are forbidden in ar-
guments of f not in μ(f). In this way, subterms of a term t can be partitioned into active (from the root of the term

✩ Partially supported by grant RTI2018-094403-B-C32 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, and
PROMETEO/2019/098.

* Corresponding author.
https://doi.org/10.1016/j.jlamp.2022.100749
2352-2208/© 2022 Published by Elsevier Inc.

https://doi.org/10.1016/j.jlamp.2022.100749
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2022.100749&domain=pdf
https://doi.org/10.1016/j.jlamp.2022.100749

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
to some depth in the different branches which depend on the symbols occurring in them) or frozen (from that point on).
Accordingly, they are able or unable to be rewritten. This is what Context-Sensitive Rewriting (CSR [20]) does. We write s ↪→ t
if s rewrites to t taking into account these restrictions.

t

Active

Frozen

For instance, Maude [3] gives support to such restrictions, see [20, Section 4.3].

Confluence and termination of CSR were first investigated in [17,18]. The ability of CSR to reinforce termination in
nonterminating rewrite systems has attracted the attention of a number of researchers, see [20, Section 7], [21, Sections 4,
5, and 6], and the references therein.

Example 1. The following (orthogonal, hence confluent) TRS R encodes a natural definition of the factorial function [20,
Example 1.1]:

p(s(x)) → x (1)

0 + x → x (2)

s(x) + y → s(x + y) (3)

0 × y → 0 (4)

s(x) × y → y + (x × y) (5)

if(true, x, y) → x (6)

if(false, x, y) → y (7)

zero(0) → true (8)

zero(s(x)) → false (9)

fact(x) → if(zero(x), s(0), fact(p(x)) × x) (10)

Rule (10) makes R nonterminating. Evaluation strategies like the leftmost-outermost strategy [26], where only the leftmost
outermost redex in each term s is reduced in each step to a term t , written s →lo t , and which is normalizing1 for left-
normal2 TRSs (like R), fail to achieve a terminating behavior. For instance, the evaluation of fact(p(0)) never ends3:

fact(p(0)) →lo if(zero(p(0)), s(0), fact(p(p(0))) × p(0)) →lo · · · (11)

In contrast, with μ(if) = {1} the second reduction step is forbidden and we obtain a terminating behavior which can be
automatically proved.

Of course, imposing such replacement restrictions may bring other problems and we refer the reader to [20] for an
account of possible solutions. Termination of CSR has received some attention in the past and several tools are able to prove
it automatically (e.g., AProVE [7] and mu-term [13], see also [20, Section 7.2]).

Regarding (local) confluence of CSR, besides guaranteeing the unicity of normal forms computed by CSR, other uses have
been explored: (i) it can be used as a sufficient condition for proving confluence of unrestricted rewriting [11] and also
to guarantee uniqueness of normal forms obtained by unrestricted rewriting [20, Section 8.5]; (ii) it can be used (with
termination of CSR) to guarantee uniqueness of infinitary normal forms in infinitary rewriting [20, Section 9.4]; (iii) it can
be used to (dis)prove confluence of conditional TRSs and conditional CSR [21, Sections 5.3 & 8.1.2]; also, (iv) it has been used
in the analysis of derivational complexity of normalization using CSR [22, Section 7.2.3].

However, except for some new results in [20, Section 8.4], the state-of-the-art of confluence of CSR is that of the 1996
paper [17]. For instance, in [20, Example 8.2] it is noticed that CSR for R in Example 1 is not confluent (thus witnessing
that confluence of rewriting does not imply confluence of CSR). However, there is no technical result supporting this conclu-
sion, which is obtained by providing a handcrafted counterexample. In order to solve this problem, the following example
motivates the theoretical and practical developments in this paper.

Example 2. Consider the orthogonal (i.e., confluent) TRS R:

f(x) → g(x, x) (12) g(0, x) → 0 (13)

g(s(x), y) → s(x) (14)

h(0) → 0 (15)

h(s(x)) → 0 (16)

1 A strategy is said to be normalizing if it obtains a normal form t of a term s, whenever it exists.
2 A TRS is left-normal if in every rule � → r the constant and function symbols in the left-hand side � precede (in the linear term notation) the variables.
3 Along the paper, contracted redexes in reduction sequences are often underlined.
2

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
with μ(f) = μ(g) = μ(h) = μ(s) = {1} [19, Example 19]. The following peak

s = f(g(x, x)) ← f(
←−
f(x))−−−→ → g(f(x), f(x)) = t (17)

can be produced with CSR: the innermost redex (
←−−−−−−
overlined with a left-arrow) can be rewritten due to μ(f) = {1}; the

outermost redex (underlined−−−−−−−→ with a right-arrow) can also be rewritten as root reduction is always allowed in CSR. In both
cases, rule (12) applies. Although s and t are joinable with respect to unrestricted rewriting:

s = f(g(x, x)) →(12) g(g(x, x),g(x, x)) and
t = g(f(x), f(x)) →(12) g(g(x, x), f(x)) →(12) g(g(x, x),g(x, x))

(where the notation →(12) makes explicit the use of rule (12) in the rewriting step) the second sequence gets broken with
CSR: the last step, reducing the redex f(x) in the second argument of g is disallowed due to μ(g) = {1}. Actually, f(g(x, x))
and g(f(x), f(x)) are not joinable using CSR (see Example 50 below).

Unfortunately, there is no systematic treatment which is able to capture a situation like the one depicted in Example 2,
thus leading to conclude that CSR is not confluent as happens for R and μ as above. In this paper, we fill this gap.
Furthermore, we have implemented our results as part of the new tool CONFident [14], which can be found here:

http://zenon .dsic .upv.es /confident/

As far as we know, this is the first tool which is able to prove confluence of CSR.
After some preliminaries in Section 2, Section 3 summarizes the state-of-the-art of techniques for proving confluence

of CSR and discusses the situation illustrated in Example 2 to identify the source of problems. Section 4 introduces a
characterization of local confluence of CSR by considering the μ-critical pairs introduced in [17] together with a new kind
of critical pairs which can be obtained from a TRS R and a replacement map μ. Overall, we call them extended μ-critical
pairs. Section 5 provides a logic-based characterization of CSR as provability in a first-order theory, recalls the notion of
feasibility [12], and introduces the treatment of CSR computations using a grounding operator. These notions are used in
Section 6 which investigates how to prove and disprove joinability of terms using CSR and their use in proofs of joinability
of extended μ-critical pairs. Section 7 explains how the tool CONFident proves confluence of CSR and reports on our
experimental evaluation of the tool. Section 8 discusses how to choose the replacement map μ to make μ-confluence
easier to achieve. Section 9 discusses some related work. Section 10 concludes.

2. Preliminaries

Abstract reduction relations Given a binary relation R ⊆ A × A on a set A, we often write a R b instead of (a, b) ∈ R. The
transitive closure of R is denoted by R+ , and its reflexive and transitive closure by R∗ . An element a ∈ A is irreducible (or an
R-normal form), if there exists no b such that a R b; we say that b is an R-normal form of a (written a R! b), if a R∗b and b
is an R-normal form. Given a ∈ A, if there is no infinite sequence a = a1 R a2 R · · · R an R · · · , then a is R-terminating (or
well-founded); R is terminating if a is R-terminating for all a ∈ A. We say that R is (locally) confluent if, for every a, b, c ∈ A,
whenever a R∗b and a R∗c (resp. a Rb and a R c), there exists d ∈ A such that b R∗d and c R∗d. The following result, usually
called Newman’s lemma, is well-known (see, e.g., [15, Lemma 2.4], and also [2, Lemma 2.7.2]).4

Lemma 3. A terminating relation is confluent if and only if it is locally confluent.

Signatures, terms, positions We use the standard notations in term rewriting (see, e.g., [27]). In this paper, X denotes a
countable set of variables and F denotes a signature, i.e., a set of function symbols { f , g, . . .}, each with a fixed arity given
by a mapping ar : F →N . The set of terms built from F and X is T (F ,X). The symbol labeling the root of t is denoted
as root(t). The set of variables occurring in t is Var(t). Terms are viewed as labeled trees in the usual way. Positions p
are represented by chains of positive natural numbers used to address subterms t|p of t . The set of positions of a term t is
Pos(t). The set of positions of a subterm s in t is denoted Poss(t). The set of positions of non-variable symbols in t are
denoted as PosF (t), and PosX (t) is the set of variable positions of t .

Unification A substitution σ is a mapping σ :X → T (F ,X) from variables into terms which is homomorphically extended
to a mapping (also denoted σ) σ : T (F ,X) → T (F ,X). It is standard to assume that substitutions σ satisfy σ(x) = x
except for a finite set of variables, usually called the domain of the substitution, and denoted Dom(σ). Thus, we often write
σ = {x1 �→ t1, . . . , xn �→ tn} to denote a substitution. Two terms s and t unify if there is a substitution σ (i.e., a unifier) such
that σ(s) = σ(t). If s and t unify, then there is a most general unifier (mgu) θ of s and t satisfying that, for any other unifier
σ of s and t , there is a substitution τ such that, for all x ∈ X , σ(x) = τ (θ(x)). Moreover, mgu’s are unique up to variable
renaming.

4 The original result by Newman is in [25], although quite a different terminology and notation is used.
3

http://zenon.dsic.upv.es/confident/

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Term rewriting A rewrite rule is an ordered pair (�, r), written � → r, with �, r ∈ T (F ,X), � /∈ X and Var(r) ⊆ Var(�). The
left-hand side (lhs) of the rule is � and r is the right-hand side (rhs). A Term Rewriting System (TRS) is a pair R = (F , R) where
R is a set of rewrite rules. We often write � → r ∈R to denote that � → r is a rule of R.

Notation 4. In the following, when rules � → r are given numeric labels (n), as in Examples 1 (with rules labeled (1)-(10)) and 2 (with
rules labeled (12)-(16)), we often write �(n) and r(n) to refer the left- and right-hand sides of such rules.

An instance σ(�) of the left-hand side � of a rule � → r in a TRS R is called a redex. A TRS R is left-linear if for all rules
� → r ∈R, � is a linear term.

A term s ∈ T (F ,X) rewrites to t (at position p), written s
p→R t (or just s

p→ t , s →R , or even s → t), if s|p = σ(�) and
t = s[σ(r)]p , for some rule � → r ∈ R , p ∈ Pos(s) and substitution σ . We often say that the redex s|p = σ(�) is contracted
by the rewriting step.

2.1. Context-sensitive rewriting

In this section we provide some background on CSR, following [20]. Given a signature F , a replacement map is a mapping
μ satisfying that, for all symbols f in F , μ(f) ⊆ {1, . . . , ar(f)}. The set of replacement maps for the signature F is MF (or
MR for a TRS R = (F , R)). Replacement maps are compared as follows: μ 	 μ′ if for all f ∈ F , μ(f) ⊆ μ′(f); we often
say that μ is more restrictive than μ′ . We also write μ � μ′ iff μ 	 μ′ and μ
= μ′ and say that μ is strictly more restrictive
than μ′ . Extreme cases of replacement maps are μ⊥ , which disallows replacements in all arguments of function symbols:
μ⊥(f) = ∅ for all f ∈F , and μ , which restricts no replacement: μ(f) = {1, . . . , k} for all k-ary symbols f ∈F .

The set Posμ(t) of μ-replacing (or active) positions of t is Posμ(t) = {�}, if t ∈X , and Posμ(t) = {�} ∪{i.p | i ∈ μ(f), p ∈
Posμ(ti)}, if t = f (t1, . . . , tk). The set of non-μ-replacing (or frozen) positions of t is Posμ(t) =Pos(t) −Posμ(t). Positions of
active non-variable symbols in t are denoted as PosμF (t). Given terms s, t , we let Posμs (t) =Posμ(t) ∩Poss(t), i.e., Posμs (t)
denotes the set of frozen positions of subterm s in t .

Given a term t , Varμ(t) (resp. Var�μ(t)) is the set of variables occurring at active (resp. frozen) positions in t: Varμ(t) =
{x ∈ Var(t) | ∃p ∈ Posμ(t), x = t|p} and Var�μ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), x = t|p}. In general, Varμ(t) and Var�μ(t) are
not disjoint.

Example 5. Consider R and μ in Example 2 and the right-hand side g(x, x) of rule (12). We have Varμ(g(x, x)) =
Var�μ(g(x, x)) = {x}.

A pair (R, μ) where R is a TRS and μ ∈ MR is often called a CS-TRS. Context-sensitive rewriting (CSR) is the restriction
of rewriting obtained when a replacement map μ is used to specify the redex positions that can be contracted. A term s

μ-rewrites to t , written s
p

↪−→R,μ t (or s ↪→R,μ t , s ↪→μ t , or even s ↪→ t), if s
p→R t and p is active in s (i.e., p ∈Posμ(s)).

Example 6. Again, for R and μ in Example 2 we have g(f(x), f(x))
1

↪−→R,μ g(g(x, x), f(x)) because 1 ∈ μ(g) and hence 1 ∈
Posμ(g(f(x), f(x))). However, g(g(x, x), f(x))
↪→ g(g(x, x), g(x, x)) because 2 /∈ μ(g).

If ↪→R,μ is (locally) confluent (resp. terminating), we say that R is (locally) μ-confluent (resp. μ-terminating). The
↪→R,μ-normal forms are called μ-normal forms (of R). Two terms s and t are μ-joinable (written s ↓μ t) if there is a term
u such that s ↪→∗ u and t ↪→∗ u.

In the following, for the purpose of analyzing (μ-)confluence, we assume that no TRS contains rules of the form � → �

introducing no change (or divergence) in terms by using rewriting.

3. Analysis of confluence of context-sensitive rewriting

Given terms s, t , and t′, the situation t ← s → t′ is often called a peak [4, Section 4.1]. Two rules � → r and �′ → r′
sharing no variable (rename if necessary), a nonvariable position p ∈ PosF (�) (often called critical position), and θ being
the mgu of �|p and �′ , define a critical pair 〈s, t〉 = 〈θ(�)[θ(r′)]p, θ(r)〉.5 The set of critical pairs of a TRS R is denoted CP(R).
Left-linear TRSs R without critical pairs are called orthogonal.

Each critical pair 〈θ(�)[θ(r′)]p, θ(r)〉 represents peaks of potentially diverging one-step rewritings starting from σ(�) for
some substitution σ refining θ , i.e., σ = τ ◦ θ of θ for some substitution τ :

5 As remarked in the paragraph below [2, Definition 6.2.1], critical pairs obtained from rules � → r and �′ → r′ which are renamed versions of the same
rule can be safely ignored if the critical position p is the root position, i.e., p = �. In fact, other authors directly exclude them from the set of critical pairs
of a TRS, see, e.g., [27, Definition 4.2.1].
4

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
u = σ(�)[σ(r′)]p ← σ(�) → σ(r) = v (18)

This is called a critical peak. There can be infinitely many critical peaks, corresponding to all possible substitutions σ as
above. Since rewriting is closed under substitution application, joinability of all critical pairs implies joinability of all critical
peaks, as each critical peak is an instance of some critical pair.

In CSR, besides defining the analogous notion of μ-critical pair (where only active critical positions p ∈ PosμF (�) are
considered), what is tested is μ-joinability.

Definition 7 (μ-critical pair). [20, Definition 8.5] Let R be a TRS and μ ∈ MR . A critical pair 〈θ(�)[θ(r′)]p, θ(r)〉 ∈ CP(R) is
a μ-critical pair of R if p ∈ PosμF (�). The set of μ-critical pairs of R is CP(R, μ). A μ-critical pair 〈s, t〉 is μ-joinable if
s ↓μ t holds.

Example 8. Consider the TRS R [20, Example 8.10]

f(x) → g(h(x), x) (19)

f(x) → x (20)

g(x, x) → x (21)

h(x) → x (22)

together with μ(f) = μ(h) = ∅ and μ(g) = {1, 2}. With rule (19) and a renamed version of (20), where x′ is used instead of
x, p = � as the critical position, and the mgu θ = {x′ �→ x} as the most-general unifier, we obtain the following μ-critical
pair, which is the only one in CP(R, μ):

〈s, t〉 = 〈g(h(x), x), x〉 (23)

This μ-critical pair is μ-joinable:

s = g(h(x), x) ↪→R,μ g(x, x) ↪→R,μ x = t

Some critical pairs π ∈ CP(R) are not in CP(R, μ) due to the replacement restrictions: the critical position in π is
frozen. Thus, it is possible that CP(R, μ) is empty even though CP(R) is not.

Example 9. Consider the left-linear TRS R

g(x,a) → c(x) (24)

a → b (25)

with μ(c) = ∅ and μ(g) = {1}. Although the left-hand side a of rule (25) overlaps the left-hand side g(x, a) of rule (24) at
position 2, this position is frozen in g(x, a). Hence, R has no μ-critical pair: CP(R, μ) = ∅.

Unfortunately, in contrast to term rewriting (Huet’s Critical Pair Theorem [15, Lemma 3.1]), having no μ-critical pair does
not mean that ↪→μ is (locally) confluent.

Example 10. Consider R and μ in Example 9. As remarked in Example 9, CP(R, μ) is empty. However, the following peak

g(b,a) ←↩ g(a,a) ↪→ c(a) (26)

is not μ-joinable, as c(a) is a μ-normal form and the only μ-reduction step on g(b, a) is g(b,a) ↪→μ c(b), leading to a
different μ-normal form.

The situation depicted in Examples 2 and 10 is captured as follows.

Definition 11 (LHRV-condition [19,20]). Let μ be a replacement map. A rule � → r has left-homogeneous μ-replacing variables,
written LHRV(� → r, μ), if active variables in the left-hand side � are not frozen neither in � nor in r:

Varμ(�) ∩ (Var�μ(�) ∪ Var�μ(r)) = ∅ (27)

A TRS R has left-homogeneous μ-replacing variables, written LHRV(R, μ), if LHRV(� → r, μ) holds for all rules � → r ∈R.

In the following, when no confusion arises, given a rule � → r or a TRS R and a replacement map μ such that � → r (or
R) has left-homogeneous μ-replacing variables, we often say that the rule or TRS satisfies the LHRV-condition.

Example 12. For R and μ in Example 2, LHRV((12), μ) (and LHRV(R, μ)) does not hold: since (12) is f(x) → g(x, x) and
μ(f) = μ(g) = {1}, we note that variable x is active on the left-hand side but occurs frozen in the right-hand side.
5

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Some particular cases are worth to be collected in the following result whose proof is immediate from Definition 11.

Proposition 13. Let μ be a replacement map and � → r be a rule.

1. LHRV(� → r, μ⊥) and LHRV(� → r, μ) always hold.
2. LHRV(� → r, μ) holds if Varμ(�) = ∅.
3. If � is left-linear, then LHRV(� → r, μ) holds iff Varμ(�) ∩ Var�μ(r) = ∅.

Example 14. For the left-linear TRS R and μ in Example 9, consider rule (24), i.e., g(x, a) → c(x). Then, LHRV((24), μ) does
not hold: since μ(g) = {1} and μ(c) = ∅, variable x is active on the left-hand side g(x, a) but frozen in the right-hand side
c(x). With μ′(c) = μ′(g) = {1}, though, LHRV(R, μ′) holds: Proposition 13(3) applies to rules (24) and (25) now.

We summarize currently existing results for (dis)proving confluence of CSR on the basis of the analysis of the μ-critical
pairs in CP(R, μ):

Theorem 15. [20, Theorems 8.7, 8.9, and 8.12] Let R be a TRS and μ ∈ MR .

1. If there is a non-μ-joinable μ-critical pair π ∈ CP(R, μ), then R is not (locally) μ-confluent.
2. If R is left-linear, LHRV(R, μ) holds and CP(R, μ) is empty, then R is μ-confluent.
3. If R is μ-terminating, LHRV(R, μ) holds, and all μ-critical pairs π ∈ CP(R, μ) are μ-joinable, then R is μ-confluent.

Example 16 (R in Example 8 is μ-confluent). Consider R and μ as in Example 8. Since the only μ-critical pair in CP(R, μ),
i.e., (23), is μ-joinable (as shown in the example) and R is μ-terminating (use mu-term), by Theorem 15.(3), R is μ-
confluent.

Unfortunately, Theorem 15 cannot be used to conclude the non-μ-confluence of R in Examples 1, 2 or 9. In all cases, R
has no μ-critical pair. Hence Theorem 15.(1) (the only result which can be used to conclude non-μ-confluence) does not
apply. We investigate how to improve this situation.

4. Proving confluence of context-sensitive rewriting

In the following, rules � → r such that LHRV(� → r, μ) holds are called LHμ-positive (and LHμ-negative otherwise). Thus,
LHRV(R, μ) holds if all rules in R are LHμ-positive. We investigate the role of LHμ-positive/negative rules in proofs of
(non-)μ-confluence.

4.1. Variable peaks

In [5, Section 2.3], as part of their analysis of confluence of Conditional Term Rewriting Systems (CTRSs, see, e.g., [27,
Chapter 7]), Dershowitz, Okada, and Sivakumar identify a cause of divergence in conditional reduction, they call a variable
peak. When restricting the attention to unconditional rules, the notion is as follows. Consider (not necessarily distinct) rules
� → r and �′ → r′ sharing no variable (rename if necessary), a variable x in � at position p (i.e., �|p = x), and a substitution
σ such that σ(x) = C[σ(�′)]p′ for some context C with a hole at position p′ , containing an instance σ(�′) of �′ (since the
rules share no variable we can use a single substitution σ). Conveniently, we call x the critical variable of the variable peak.
Then, σ(�) = σ(�)[C[σ(�′)]p′]p can be rewritten in two different ways:

s = σ(�)[C[σ(r′)]p′]p ← σ(�)[C[←−−
σ(�′)]p′]p−−−−−−−−−−−−→ = σ(�) → σ(r) = t (28)

where the leftmost step is obtained by contracting in σ(�) the inner redex σ(�′) of rule �′ → r′ at position p.p′ . The
rightmost step is obtained by directly applying rule � → r to contract redex σ(�). Then, (28) is called a variable peak.

As noticed in [5], in unconditional rewriting such variable peaks are harmless, as they are always joinable, see Fig. 1,
where σ ′(x) = C[σ(r′)]p′ for x the critical variable of the variable peak, and σ ′(y) = σ(y) for all variables y
= x. Note that

1. Reductions in the sequence σ(�)[C[σ(r′)]p′]p →∗ σ ′(�) (in the leftmost part of the diagram) correspond to the possible
contraction of redexes σ(�′) occurring at position q.p′ , where q is a position of variable x in �.

2. This can be done because term rewriting is closed under contexts, see, e.g., [27, Definition 5.2.1], and hence redexes at
positions q.p′ can be rewritten without any problem.

3. Reductions in the sequence σ(r) →∗ σ ′(r) (in the rightmost part) correspond to the contraction of redexes σ(�′) occur-
ring in terms C[σ(�′)]p′ at positions q′.p′ , where q′ is a position of variable x in r.

These are the reasons why in unconditional, unrestricted term rewriting, such variable peaks do not induce specific critical
pairs representing such peaks whose joinability must be checked: they are always joinable.
6

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
σ(�)

σ (�)[C[σ(r′)]p′]p

∗

σ(r)

∗

σ ′(�)

σ ′(r)

Fig. 1. Joinability of variable peaks in unconditional rewriting.

4.2. Variable peaks in context-sensitive rewriting

As remarked by Dershowitz, Okada, and Sivakumar [5], when dealing with conditional rewriting the diagram in
Fig. 1 may fail to hold due to the need of satisfying the conditional part of rules in the two different branches of the
peak.

Remark 17 (Satisfiability of conditions in conditional term rewriting). In conditional rewriting, a conditional rule � → r ⇐ c
applies to a term s to obtain another term t , written s → t , if there is a substitution σ such that s|p = σ(�) for some
position p ∈ Pos(s) and the instantiation σ(c) of the conditional part c by σ can be satisfied (and there are several ways
how this can be done, see, e.g., [27, Definition 7.1.3]). Thus, the possibility of the rewriting step s → t , where t = s[σ(r)]p ,
crucially depends on the satisfiability of c by σ .

Dershowitz, Okada, and Sivakumar solve the problem concerning the satisfiability of the conditional part of conditional
rules by requiring specific syntactical restrictions on the CTRSs (e.g., the use of normal, terminating, or noetherian, CTRSs,
see [5, Definition 2] and the paragraph preceding [5, Section 2.1] for the definitions and [5, Section 4] for a discussion about
confluence of such systems). No attempt to define and use ‘variable critical pairs’ is made, though.

Although we do not consider conditional rules, similar problems arise in CSR. Remind that we assume two (not necessar-
ily distinct) rules � → r and �′ → r′ sharing no variables (rename if necessary). We consider a variable x which is active in
�, i.e., x ∈ Varμ(�) and a position p ∈ Posμx (�) of an active occurrence of x in �. Taking into account the situation depicted
in Fig. 1, in an attempt to replace → and →∗ by ↪→μ and ↪→∗

μ to guarantee the μ-joinability of variable peaks, we may
find the following problems:

1. If x occurs active in � at position p, i.e., �|p = x and p ∈Posμ(�), but there also are frozen occurrences of x at positions
q of � (i.e., q ∈ Posμx (�)), then σ(�)[C[σ(r′)]p′]p ↪→∗ σ ′(�), contracting redexes σ(�′) in positions q.p′ of σ(�), may
become impossible because some redexes σ(�′) are frozen in σ(�)[C[σ(r′)]p′]p , and the diagram fails to be closed.

2. If variable x is frozen at position q′ of the right-hand side r of the rule, i.e., q′ ∈Posμx (r), then positions q′.p′ of redexes
σ(�′) in σ(r) are frozen and cannot be μ-rewritten. Hence, the sequence σ(r) ↪→∗ σ ′(r) contracting such redexes could
be broken and, again, the diagram would not be closed.

At least one of these two situations (or both) may happen with LHμ-negative rules � → r. In [17], these problems were
overcomed by restricting the attention to TRSs R and μ ∈ MR satisfying the LHRV-condition. Although this suffices to
obtain positive answers about μ-confluence of TRSs (see Theorem 15.(2) and Theorem 15.(3)), it fails to capture the ‘ability’
of LHμ-negative rules to jeopardize μ-confluence. The following definition approaches this goal.

Definition 18 (LHμ-variable peak). Let R be a TRS and μ ∈ MR . Let � → r be an LHμ-negative rule of R and x ∈ Varμ(�)

be such that x ∈ Var�μ(�) ∪Var�μ(r). Let p ∈Posμx (�), C be a term, p′ ∈Posμ(C), �′ → r′ ∈R such that Var(�) ∩Var(�′) = ∅
(rename if necessary), and σ be a substitution such that σ(x) = C[σ(�′)]p′ . Then,

s = σ(�)[C[σ(r′)]p′]p ←↩ σ (�) ↪→ σ(r) = t (29)

is called an LHμ-variable peak.

Example 19. Consider R and μ in Example 9, and the LHμ-negative rule (24), i.e., g(x, a) → c(x). The peak (26) in Exam-
ple 10, i.e., g(b, a) ←↩ g(a, a) ↪→ c(a), is an LHμ-variable peak which is obtained from (24) using an arbitrary context C , the
empty position � (which is always active in any term), and the rule (25), i.e., a → b. In this case, σ in Definition 18 is given
by σ(x) = a.
7

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
4.3. New critical pairs from variable peaks

An LHμ-negative rule � → r ∈ R contains an active variable x ∈ Varμ(�) at position p ∈ Posμx (�), together with frozen
occurrences of x in � or r. Accordingly, for each μ-rewriting steps u ↪→R v , an LHμ-variable peak

σ(�)[v]p ←↩ σ (�) ↪→ σ(r) (30)

is obtained, where σ(x) = u. We introduce the following.

Definition 20 (LHμ-critical pair). Let R be a TRS and μ ∈ MR . Let � → r ∈ R be an LHμ-negative rule and p ∈ Posμx (�) for
some variable x of � such that x ∈ Var�μ(�) ∪ Var�μ(r). Let y be a fresh variable, not occurring in � or r. Then,

〈�[y]p, r〉 ⇐ (x ↪→ y) (31)

is called an LHμ-critical pair. Borrowing from the usual terminology of (ordinary) critical pairs, position p is called the
critical position of the LHμ-critical pair. LHCP(R, μ) consists of all LHμ-critical pairs of R.

Note the following fact, which follows by Definitions 11 and 20.

Proposition 21. Let R be a TRS and μ ∈ MR . Then, LHRV(R, μ) holds if and only if LHCP(R, μ) = ∅.

In the following, instead of 〈s, t〉 ⇐ (x ↪→ y), we often use 〈s, t〉 ⇐ x ↪→ y, if no confusion arises. Also, as for (μ-)critical
pairs 〈s, t〉, we often label LHμ-critical pairs using labels π by writing π : 〈s, t〉 ⇐ x ↪→ y.

Remark 22 (Peaks and conditions in LHμ-critical pairs). Given an LHμ-critical pair π : 〈s, t〉 ⇐ x ↪→ y, we often call the com-
ponents 〈s, t〉 and x ↪→ y the peak and condition of π , respectively. Note that s may contain several occurrences of variable
x together with a single occurrence of y, but t contains no occurrence of y.

Example 23 (Example 1 - LHμ-critical pair). For R and μ as in Example 1, the only LHμ-negative rule is (10), i.e., fact(x) →
if(zero(x), s(0), fact(p(x)), where x ∈ Varμ(�(10)) ∩ Var�μ(r(10)). There is a single LHμ-critical pair:

〈fact(y), if(zero(x), s(0), fact(p(x)) × x)〉 ⇐ x ↪→ y (32)

Example 24 (Example 2 - LHμ-critical pair). Consider R and μ as in Example 2. The only LHμ-negative rule in R, is (12), i.e.,
f(x) → g(x, x), where x ∈ Varμ(�(12)) ∩ Var�μ(r(12)). There is a single LHμ-critical pair:

〈f(y),g(x, x)〉 ⇐ x ↪→ y (33)

Example 25 (Example 9 - LHμ-critical pair). For R and μ in Example 9, the only LHμ-negative rule is (24), i.e., g(x, a) → c(x),
where x ∈ Varμ(�(24)) ∩ Var�μ(r(24)). We obtain a single LHμ-critical pair:

〈g(y,a), c(x)〉 ⇐ x ↪→ y (34)

The notation 〈�[y]p, r〉 ⇐ x ↪→ y suggests that LHμ-critical pairs are somehow related to conditional critical pairs of
CTRSs (see, e.g., [27, Definition 7.1.8.(1)]). Indeed, the peak component 〈�[y]p, r〉 of the LHμ-critical pair, together with a
substitution σ , is expected to represent a variable peak as in (30) provided that the instance σ(x) ↪→ σ(y) of the condition
x ↪→ y holds, i.e., σ(x) μ-rewrites into σ(y) in one step: u = σ(x) ↪→R,μ σ (y) = v . However, the conditional part x ↪→ y
is always satisfiable by means of a substitution σ such that σ(x) = �′ and σ(y) = r′ for some (not necessarily distinct) rule
�′ → r′ ∈R. This is in sharp contrast with conditional critical pairs, that can be infeasible, see [27, Definition 7.1.8.(3)].

We define μ-joinability of LHμ-critical pairs as follows.

Definition 26 (μ-joinable LHμ-critical pair). Let R be a TRS and μ ∈ MR . Let π : 〈s, t〉 ⇐ x ↪→ y be an LHμ-critical pair. We
say that π is μ-joinable if, for all substitutions σ such that Dom(σ) = {x, y}, σ(x) ↪→R,μ σ (y) implies σ(s) ↓μ σ (t).

Example 27 (Example 2 - Non-μ-joinable LHμ-critical pair). For R and μ in Example 2, consider the LHμ-critical pair (33),
i.e., π : 〈f(y), g(x, x)〉 ⇐ x ↪→ y is not μ-joinable: since f(x) ↪→ g(x, x), with σ = {x �→ f(x), y �→ g(x, x)}, we obtain σ(f(y)) =
f(g(x, x)) and σ(g(x, x)) = g(f(x), f(x)) which have been claimed non-μ-joinable in Example 2. Thus, π is not μ-joinable (see
also Example 58).
8

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Example 28 (Example 9 - Non-μ-joinable LHμ-critical pair). For R and μ in Example 9, consider the LHμ-critical pair (34), i.e.,
π : 〈g(y, a), c(x)〉 ⇐ x ↪→ y, is not μ-joinable: we have a ↪→ b, but with σ = {x �→ a, y �→ b}, σ(c(x)) = c(a) is a μ-normal
form, and the only μ-rewriting step on σ(g(y, a)) = g(b, a) is g(b,a) ↪→μ c(b), leading to a different μ-normal form. Thus,
π is not μ-joinable (see also Example 59).

Now, we collect the ‘old’ μ-critical pairs and the new LHμ-critical pairs in a single set which, as we prove below, can be
used to characterize local μ-confluence.

Definition 29 (Extended μ-critical pairs). Let R be a TRS and μ ∈ MR . The set

ECP(R,μ) = CP(R,μ) ∪ LHCP(R,μ) (35)

which extends CP(R, μ) by adding the LHμ-critical pairs is called the set of extended μ-critical pairs of R.

4.4. Characterization of local confluence of CSR

The following result provides the first general characterization of local confluence of CSR on the basis of the analysis of
extended μ-critical pairs.

Theorem 30 (Local μ-confluence). Let R be a TRS and μ ∈ MR . Then, R is locally μ-confluent if and only if all pairs in ECP(R, μ)

are μ-joinable.

Proof. For the only if part, we consider two kinds of μ-critical pairs in ECP(R, μ). Let π : 〈s, t〉 = 〈θ(�)[θ(r′)]p, θ(r)〉 ∈
CP(R, μ) according to Definition 7. Since s ←↩ θ(�) ↪→ t , by local μ-confluence, s ↓μ t , i.e., π is μ-joinable. Similarly,
for LHμ-variable pairs π : 〈s, t〉 ⇐ x ↪→μ y, and substitutions σ such that σ(x) ↪→ σ(y), there is a peak (30). By local
μ-confluence, σ(s) ↓μ σ (t), i.e., π is μ-joinable.

For the if part, let s, t, t′ be terms such that s
p

↪−→ t and s
p′

↪−→ t′ , that is, there are rules α : � → r, α′ : �′ → r′ ∈ R, active
positions p, p′ ∈Posμ(s), and substitutions σ , σ ′ such that s|p = σ(�), s|p′ = σ ′(�′), t = s[σ(r)]p , and t′ = s[σ ′(r′)]p′ . Let us
consider two cases according to the positions p and p′ of the two redexes.

1. The positions p and p′ are disjoint. Then, we have t|p′ = σ ′(�′), p′ ∈ Posμ(t), t′|p = σ(�), and p ∈ Posμ(t′). For u =
t[σ ′(r′)]p′ = t′[σ(r)]p , we have t ↪→ u and t′ ↪→ u.

2. The positions p and p′ are not disjoint. Without loss of generality, we can assume p ≤ p′ (the case p′ ≤ p is analogous).
Let p′ = p.q for some position q. We have

s = s[σ(�)[σ ′(�′)]q]p
p′

↪−→ s[σ(�)[σ ′(r′)]q]p = t′ (36)

s = s[σ(�)]p
p

↪−→ s[σ(r)]p = t (37)

We show that there is u such that σ(r) ↪→∗ u and σ(�)[σ ′(r′)]q ↪→∗ u. Note also that, since q ∈ Posμ(σ (�)), we also
have the following:

σ(�)[σ ′(�′)]q
q

↪−→ σ(�)[σ ′(r′)]q (38)

σ(�)
�

↪−→ σ(r) (39)

If we prove μ-joinability of σ(�)[σ ′(r′)]q and σ(r), then the conclusion t ↓μ t′ follows by closedness under active
contexts [20, Section 4] applied to s[]p . Now, we consider two cases. First, the case when � and �′ overlap corresponds
to the use of μ-critical pairs and is proved in [19, Theorem 4.13]. On the other hand, if � and �′ do not overlap, then we
can write q = q1.q2 for positions q1 and q2 such that �|q1 = x ∈ X and σ(x)|q2 = σ ′(�′). Note that, since σ ′(�′) is active
in σ(�), q1 ∈Posμx (�), i.e., x is active in �, i.e., x ∈ Varμ(�). Hence, σ(x) = σ(x)[σ ′(�′)]q2 ↪→ σ(x)[σ ′(r′)]q2 . We consider
two cases:
(a) If x occurs active everywhere in � and r, then σ(�)[σ ′(r′)]q ↪→∗ σ ′′(�) ↪→ σ ′′(r) for σ ′′ defined as σ ′′(x) = σ ′(r′)

and σ ′′(y) = σ(y) if y
= x. We also have σ(r) ↪→∗ σ ′′(r) because all occurrences of x in r are active.
(b) If x, which is active in �, also occurs in frozen positions in α : � → r, then α is LHμ-negative and there is an

LHμ-critical pair π : 〈�[y]q1 , r〉 ⇐ x ↪→ y ∈ ECP(R, μ) where y is a fresh variable, not occurring in α. Since σ(x) ↪→
σ(x)[σ ′(r′)]q2 , we let the substitution τ defined on Var(�) ∪{y} as follows: τ (y) = σ(x)[σ ′(r′)]q2 , and τ (z) = σ(z) if
z
= y. Note that τ (�[y]q1) = σ(�)[σ(x)[σ ′(r′)]q2]q1 = σ(�)[σ ′(r′)]q and τ (r) = σ(r). By μ-joinability of π , τ (�[y]q1)

and τ (r) are μ-joinable. Therefore, σ(�)[σ ′(r′)]q and σ(r) are μ-joinable. Finally, we conclude μ-joinability of t and
t′ . �
9

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
As a corollary of Lemma 3, we have the following.

Lemma 31. Let R be a TRS and μ ∈ MR . If R is μ-terminating, then R is μ-confluent if and only if R is locally μ-confluent.

4.5. Confluence and orthogonality in context-sensitive rewriting

Now, we obtain the following generalization of Theorem 15 where the LHRV-condition is not used anymore.

Theorem 32. Let R be a TRS and μ ∈ MR .

1. If there is a non-μ-joinable pair π ∈ ECP(R, μ), then R is not (locally) μ-confluent.
2. If R is left-linear and ECP(R, μ) is empty, then R is μ-confluent.
3. If R is μ-terminating and all pairs in ECP(R, μ) are μ-joinable, then R is μ-confluent.

Proof. 1. Since μ-confluence implies local μ-confluence, it is immediate from Theorem 30.
2. It follows from Theorem 15.(2) and Proposition 21.
3. It follows from Theorem 30 and Lemma 31. �

Example 33 (R in Example 9 is not μ-confluent). According to Example 28, by using Theorem 32.(1) we can conclude now
that R in Example 9 is not locally μ-confluent, nor μ-confluent.

In [19, Definition 11] (and also [20, Definition 8.11]) a left-linear TRS without μ-critical pairs (i.e., such that CP(R, μ) is
empty) was called μ-orthogonal. In sharp contrast with the unrestricted case, though, μ-orthogonality does not immediately
imply μ-confluence, as the LHRV-condition is required (see [19, Theorem 6]).

Example 34. According to [19, Definition 11], R in Example 8 is μ-orthogonal. However, it is not μ-confluent (see Exam-
ple 33).

In view of Theorem 32.(2), the following redefinition of the notion makes sense.

Definition 35 (μ-orthogonal TRS). Let R be a left-linear TRS and μ ∈ MR . If ECP(R, μ) is empty, then R is called μ-
orthogonal.

With the new Definition 35, R in Example 9 is no longer μ-orthogonal. However, for the new definition of μ-
orthogonality, Theorem 15.(2) yields the desired correspondence with unrestricted rewriting.

Corollary 36. μ-orthogonal TRSs are μ-confluent.

Example 37 (R in Example 9 with μ′ in Example 14 is μ′-confluent). Consider the left-linear TRS R in Example 9 and μ′
as in Example 14. As shown in Example 14, LHRV(R, μ′)-holds. Since R has no μ′-critical pair, by Corollary 36, R is
μ′-confluent.

As remarked in the paragraph below Example 25, the structure of LHμ-critical pairs, and, consequently, the definition of
μ-joinability of LHμ-critical pairs (Definition 26) has a conditional component. In Section 6 we show how to deal with the
corresponding μ-joinability problems (for extended μ-critical pairs) by using logic-based methods. The following section
prepares the way.

5. Logic-based analysis of context-sensitive computations

In this section we first provide a logic-based description of CSR as deduction with respect to a first-order theory (Sec-
tion 5.1). Then we use such a description to apply the notion of feasibility problem to CSR (Section 5.2). Feasibility problems
are sequences of atoms where all variables are assumed to be existentially quantified. Such problems are solved positively
if appropriate substitutions are found to satisfy them. Since atoms in feasibility problems may contain variables which are
more naturally considered to be universally quantified, in Section 5.3 we discuss the possibility of replacing such variables
by new constant symbols so that universal quantification is no longer necessary and sequences of atoms are properly un-
derstood as feasibility problems. As remarked above, we make a practical use of all this in Section 6.
10

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
5.1. The first-order theory of context-sensitive rewriting

As discussed in [20, Section 4.1], given a TRS R and μ ∈ MR , both ↪→R,μ and ↪→∗
R,μ can be defined as provability of

goals s → t and s →∗ t (where → and →∗ are viewed as predicate symbols) in a first-order theory Rμ associated to R
and μ which consists of four components:

1. A sentence

(∀x) x →∗ x (40)

expressing reflexivity of the many-step context-sensitive rewrite relation ↪→∗
R,μ .

2. A sentence

(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z (41)

expressing compatibility of one-step and many-step relations ↪→R,μ and ↪→∗
R,μ .

3. For each k-ary function symbol f ∈F and i ∈ μ(f), a sentence

(∀�x)(∀yi) xi → yi ⇒ f (x1, . . . , xi, . . . , xk) → f (x1, . . . , yi, . . . , xk) (42)

where �x is a sequence x1, . . . , xk of k distinct variables, enabling the propagation of μ-reduction steps si ↪→R,μ ti on
active arguments si of f for i ∈ μ(f) in terms f (s1, . . . , si, . . . , sk) so that f (s1, . . . , si, . . . , sk) ↪→R,μ f (s1, . . . , ti, . . . , sk)

holds for all terms s1, . . . , sk and ti .6

4. For each rule � → r in R a sentence

(∀�x) � → r (43)

where �x is the sequence x1, . . . , xn of all variables occurring in the rule, representing the possibility of applying a rule
� → r to any instantiation σ(�) of � by a substitution σ to obtain a μ-rewriting step σ(�) ↪→R,μ σ (r).

Example 38. Consider the (terminating) orthogonal TRS R

f(x) → g(x) (44)

g(x) → x (45)

together with μ(f) = {1} and μ(g) = ∅. The theory Rμ is

(∀x) x →∗ x (46)

(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z (47)

(∀x, y) x → y ⇒ f(x) → f(y) (48)

(∀x) f(x) → g(x) (49)

(∀x) g(x) → x (50)

Now, for all terms s and t we have

s ↪→R,μ t iff Rμ � s → t and s ↪→∗
R,μ t iff Rμ � s →∗ t

where ‘�’ denotes provability with any (sound and complete) first-order calculus.7 Note that for �x = x1, . . . , xn the variables
occurring in s and t , we equivalently have

s ↪→R,μ t iff Rμ � (∀�x) s → t and s ↪→∗
R,μ t iff Rμ � (∀�x) s →∗ t

6 This is often called μ-monotonicity, see [20, Section 7.1].
7 Resolution, Hilbert’s axiomatic calculus, natural deduction, etc., see [6], for instance.
11

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
5.2. Feasibility sequences in context-sensitive rewriting

Following [12], given a set P of (binary) predicates �� ∈ P , we consider a P -indexed set T = {Th�� | �� ∈ P } of first-
order theories Th�� . An f-condition is an atom s �� t where �� ∈ P and s, t ∈ T (F ,X). Sequences F = (γi)

n
i=1 = (γ1, . . . , γn)

of f -conditions are called f-sequences. We often drop ‘ f -’ when no confusion arises. Empty sequences are written ().

Definition 39 (Feasibility). A condition s �� t is (T , σ)-feasible if Th�� � σ(s) �� σ(t) holds; otherwise, it is (T , σ)-infeasible.
We also say that s �� t is T -feasible (or Th��-feasible, or just feasible if no confusion arises) if it is (T , σ)-feasible for some
substitution σ ; otherwise, we call it infeasible.

A sequence F is T -feasible (or just feasible) iff there is a substitution σ such that, for all γ ∈ F, γ is (T , σ)-feasible.
Note that () is trivially feasible.

In this paper, we consider feasibility problems given as sequences8

γ = s1 ��1 t1, . . . , sn ��n tn (51)

of atoms si ��i ti where for all 1 ≤ i ≤ n, ��i is a binary predicate symbol ↪→ or ↪→∗ representing one-step or many-step
μ-reduction conditions.

Remark 40. According to Definition 39 and considering the definition of Rμ given in Section 5.1, the predicate symbols
→ and →∗ (rather than ↪→ and ↪→∗) should be used in feasibility conditions (51), as Rμ uses predicates → and →∗ .
However, we think that using atoms s ↪→ t and s ↪→∗ t in feasibility conditions hopefully improves readability of the paper.

Given a TRS R and μ ∈ MR , we consider the theory Rμ to deal with both ↪→ and ↪→∗ predicates. Then, as a particu-
larization of Definition 39, we use the following:

Definition 41. Let R be a TRS and μ ∈ MR . A feasibility sequence γ of the form (51) is Rμ-feasible if and only if there is
a substitution σ such that, for all conditions s �� t in γ , Rμ � σ(s) �� σ(t) (i.e., σ(s) ↪→R,μ σ (t) if �� is ↪→ , or σ(s) ↪→∗

R,μ

σ (t) if �� is ↪→∗) holds. Otherwise, γ is called Rμ-infeasible.

The tool infChecker [12, Section 5] is able to (dis)prove such feasibility problems. In order to take benefit from feasibility
sequences s1 ��1 t1, . . . , sn ��n tn , it is useful to first remove all variables in terms si and ti for 1 ≤ i ≤ n which are (implicitly)
universally quantified and thus are not expected to be instantiated. The following section explores this approach which is
used in Section 6 below.

5.3. Dealing with variables as fresh constants

In term rewriting, variables occurring in terms ti in reduction sequences t1 → t2 → ·· · are treated as constants; they are
not instantiated in any way. This is in contrast with variables occurring in rules of TRSs which are instantiated to implement
reduction steps by means of matching substitutions. In the following, we formalize and exploit this fact to improve proofs
of (non-)μ-joinability of terms.

Let F be a signature and X be a set of variables. For each variable x ∈ X , we consider a new constant symbol cx such
that cx /∈ F ∪X . Let CX = {cx | x ∈ X } and FX = F ∪ CX . Note that there is a bijection between the set T (F ,X) of terms
with variables for the signature F and T (FX), the set of ground terms for FX : given a term t ∈ T (F ,X), t↓ ∈ T (FX)

is obtained by replacing each occurrence of x ∈ X in t by cx . We call t↓ the grounded version of t and _↓ is called the
grounding operator.9 Vice versa: given t ∈ T (FX), the ungrounded version t↑ ∈ T (F ,X) (obtained by the ungrounding
operator _↑) is obtained by replacing, for all x ∈ X , each constant cx in t by x.

Proposition 42. For all terms t ∈ T (F ,X), (t↓)↑ = t. For all terms t ∈ T (FX), (t↑)↓ = t.

Also, given a substitution σ : X → T (F ,X), define σ ↓ : X → T (FX) to be σ ↓(x) = σ(x)↓ for all x ∈ X (given θ : X →
T (FX), define θ↑ : X → T (F ,X) similarly). The following result shows that rewriting with terms in T (F ,X) can be
simulated as ground rewriting in T (FX).

Proposition 43. Let R = (F , R) be a TRS, μ ∈ MR , and s, t ∈ T (F ,X). Then, s ↪→R,μ t if and only if s↓ ↪→R,μ t↓ .

8 Actually, we can think of f -sequences as sets of f -conditions, as the order of the f -conditions, or their repetition, does not change their (in)feasibility.
9 We use ↓ as a superscript to denote the grounding operation as in t↓ , hopefully not leading to confusion with the infix use of ↓ as joinability operator,

as in s ↓ t .
12

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Proof. By induction on the structure of s. As for the only if part, if s is a variable x, then x is a μ-normal form, and s↓ = cx
also is, as cx /∈ F . If s = f (s1, . . . , sk) for some k ≥ 0 (i.e., we include here the case when s is a constant), then we consider
two cases according to p ∈ Posμ(s): (i) if p = �, then s = σ(�) and t = σ(r) for some � → r ∈ R and substitution σ .

Then, s↓ = σ ↓(�)
�

↪−→ σ ↓(r) = t↓ . (ii) if p = i.p′ for some i ∈ μ(f) and p′ ∈ Posμ(si), then, si
p′

↪−→ ti and, by the induction

hypothesis, s↓
i

p′
↪−→ t↓

i . Thus, by definition of _↓ , and since the marking process does not affect the active/frozen status of

positions, we obtain s↓ = f (s↓
1 , . . . , s↓

i−1, s
↓
i , . . . , s↓

k)
p

↪−→ f (s↓
1 , . . . , s↓

i−1, t
↓
i , . . . , s↓

k) = t↓ . The if part is similar starting with s↓
and t↓ which are ground terms in T (FX) and then proceeding as above using _↑ instead of _↓ , using Proposition 42. �

It is also useful to perform a partial grounding of terms t where all variables occurring in t are grounded, except those
collected in a finite set V ⊆ X . Thus, in the following, given a term t and V ⊆ X , the term t↓V is as t except that all
occurrences of variables x ∈ Var(t) − V are replaced by cx . Note that Var(t↓V) ⊆ V . Furthermore, t↓ = t↓∅ . We have the
following result, whose proof is analogous to Proposition 43.

Proposition 44. Let R = (F , R) be a TRS, μ ∈ MR , s, t ∈ T (F ,X) and V ⊆X . Then, s ↪→R,μ t if and only if s↓V ↪→R,μ t↓V .

6. Proving and disproving μ-joinability of extended μ-critical pairs

As a corollary of Proposition 43, we have the following:

Corollary 45. Let R = (F , R) be a TRS, μ ∈ MR , and s, t ∈ T (F ,X). Then, s and t are μ-joinable if and only if s↓ and t↓ are
μ-joinable.

This result is useful to deal with μ-joinability of arbitrary terms, being part of critical pairs or not. Joinability of terms
is easily transformed into a feasibility problem.

Proposition 46. Let R be a TRS and μ ∈ MR , and s, t ∈ T (F ,X) and z ∈ X . Then, s and t are μ-joinable if and only if s↓ ↪→∗
z, t↓ ↪→∗ z is Rμ-feasible.

Proof. By Corollary 45, s and t are μ-joinable if and only if s↓ and t↓ are. If s↓ and t↓ are μ-joinable, then there is a term
u such that s↓ ↪→∗

R,μ u and t↓ ↪→∗
R,μ u. Then, s↓ ↪→∗ z, t↓ ↪→∗ z is Rμ-feasible by using σ(z) = u. As for the if part, if

s↓ ↪→∗ z, t↓ ↪→∗ z is Rμ-feasible, then there is a substitution σ such that σ(s↓) = s↓ ↪→∗
R,μ σ (z) and σ(t↓) = t↓ ↪→∗

R,μ

σ (z), i.e., s↓ and t↓ are μ-joinable, and hence s and t also are. �
In the following, we develop the use of these results to deal with extended μ-critical pairs.

6.1. μ-critical pairs

Corollary 45 immediately applies to (dis)prove μ-joinability of μ-critical pairs.

Corollary 47. Let R = (F , R) be a TRS, μ ∈ MR , and π : 〈s, t〉 ∈ CP(R, μ). Then, π is μ-joinable if and only if s↓ and t↓ are
μ-joinable.

Remark 48 (Joinability of terms and critical pairs). Proposition 43 and Corollary 45 can also be used to prove joinability of
terms and critical pairs in unrestricted rewriting: term rewriting can be seen as a particular case of CSR where μ = μ , i.e.,
→R=↪→R,μ .

Example 49 (Example 8 - μ-joinability of (23) as feasibility). Consider R and μ as in Example 8 and the μ-critical pair (23),
i.e., 〈g(h(x), x), x〉. According to Proposition 46, the feasibility problem which characterizes the μ-joinability of (23) is

g(h(cx), cx) ↪→∗ z, cx ↪→∗ z (52)

The feasibility of (52) can be automatically proved by infChecker. This proves μ-joinability of (23).

The use of the grounding operator _↓ is essential to obtain an equivalent treatment of μ-joinability of μ-critical pairs
as Rμ-feasibility: by definition, in feasibility problems all variables can be instantiated; however, variables in terms s and
t whose μ-joinability by μ-rewriting are being tested should not be instantiated, as done in rewriting sequences. By first
grounding terms s and t in a μ-critical pair 〈s, t〉, we avoid such undesired instantiations. Otherwise, wrong results can be
obtained.
13

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Example 50. Consider R and μ as in Example 2. Let s = f(g(x, x)) and t = g(f(x), f(x)) as in the example. Note that
f(g(x, x)) ↪→∗ z, g(f(x), f(x)) ↪→∗ z is Rμ-feasible: with σ = {x �→ 0, z �→ 0}, we obtain

σ(s) = f(g(0,0)) ↪→ f(0) ↪→ g(0,0) ↪→ 0 (53)

σ(t) = g(f(0), f(0)) ↪→ g(g(0,0), f(0)) ↪→ g(0, f(0)) ↪→ 0 (54)

However, as remarked in the example, s and t are not μ-joinable. This problem is avoided by testing feasibility of s↓ ↪→∗
z, t↓ ↪→∗ z, i.e., of

f(g(cx, cx)) ↪→∗ z, g(f(cx), f(cx)) ↪→∗ z (55)

instead. For instance, it is not difficult to see that sequences (53) and (54) are not possible if 0 is replaced everywhere by
the new constant cx . Furthermore, the Rμ-infeasibility of (55) can be automatically proved by infChecker.

6.2. LHμ-critical pairs

In order to adapt Corollary 47 to LHμ-pairs 〈s, t〉 ⇐ x ↪→ y, we should not make the new variables x and y ground:
they may need to be appropriately instantiated to make the peak component 〈s, t〉 μ-joinable. In order to illustrate this
observation, the next example shows that there are LHμ-pairs where s↓ and t↓ are not μ-joinable but π is still μ-joinable.

Example 51. Consider R and μ in Example 38 and the LHμ-critical pair

〈f(y),g(x)〉 ⇐ x ↪→ y (56)

Note that f(c y) and g(cx) are not μ-joinable: g(cx) is a μ-normal form and the only μ-rewriting step on f(c y) is f(c y) ↪→R,μ

g(c y), leading to a different μ-normal form g(c y). According to Proposition 46, this can also be proved as the Rμ-infeasibility
of f(c y) ↪→∗ z, g(cx) ↪→∗ z, which can be proved by infChecker. However, as shown in Example 53 below, (56) can be proved
μ-joinable.

In the following result (Proposition 52), we show that μ-joinability of LHμ-critical pairs can be handled as provability
of a logical formula in the first-order theory Rμ . The result implements the observation in Example 51 showing that,
when dealing with LHμ-critical pairs 〈s, t〉 ⇐ x ↪→ y, we should not replace variables x and y in s and t by cx and c y ,
respectively: the instantiation of x and y should be controlled by the conditional part x ↪→ y instead. All other variables in
s and t , though, can be grounded.

Proposition 52. Let R be a TRS, μ ∈ MR , and π : 〈�[y]p, r〉 ⇐ x ↪→ y ∈ LHCP(R, μ) be an LHμ-critical pair. If Rμ �
(∀x)(∀y)(∃z) x → y ⇒ �

↓{x} [y]p →∗ z ∧ r↓{x} →∗ z holds, then π is μ-joinable.

Proof. If Rμ � (∀x)(∀y)(∃z) x → y ⇒ �
↓{x} [y]p →∗ z ∧ r↓{x} →∗ z holds, then, for each instantiation σ of variables x and

y such that Rμ � σ(x) → σ(y) holds (i.e., σ(x) ↪→R,μ σ (y) holds), there is a term u such that Rμ � σ(�
↓{x} [y]p) →∗

u ∧ σ(r↓{x}) →∗ u holds, i.e., both σ(�
↓{x} [y]p) ↪→∗

R,μ u and σ(r↓{x}) ↪→∗
R,μ u hold. Hence, σ(�

↓{x} [y]p) and σ(r↓{x}) are
μ-joinable. By Proposition 44, π is μ-joinable. �
Example 53 (R in Example 38 is μ-confluent). Continuing Example 51, consider R and μ in Example 38. Note that, since
R is terminating, it is μ-terminating. We have ECP(R, μ) = LHCP(R, μ) = {(56)} = {〈f(y), g(x)〉 ⇐ x ↪→ y}. By using the
theorem prover Prover9 [23], it is possible to show that

Rμ � (∀x)(∀y)(∃z) x → y ⇒ f(y) →∗ z ∧ g(x) →∗ z

holds. By Proposition 52, π is μ-joinable. Since R is μ-terminating, by Theorem 32).(3), it is μ-confluent.

Note that proving μ-confluence of R in Example 38, as done in Example 53, is not possible with Theorem 15 as the
LHRV-condition is always required for that purpose and R does not fulfill the LHRV-condition because LHCP(R, μ)
= ∅
(see Proposition 21). As for proofs of non-μ-joinability of LHμ-critical pairs, we have:

Proposition 54. Let R be a TRS and μ ∈ MR . Let π : 〈s, t〉 ⇐ x ↪→ y be an LHμ-critical pair. Let z ∈X be such that z /∈ {x, y}. If

x ↪→ y, s↓{x,y} ↪→∗ z, t↓{x} →∗ z (57)

is Rμ-infeasible, then π is not μ-joinable.
14

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Proof. By contradiction. If π is joinable, then for all substitutions σ with Dom(σ) = {x, y}, if σ(x) ↪→R σ(y) holds, then
there is a term u such that σ(s) ↪→∗

R u and σ(t) ↪→∗
R u. Since σ instantiates no variable in s and t except x and y, we

can also say that σ(s↓{x,y}) ↪→∗
R u and σ(t↓{x}) ↪→∗

R u (note that, by definition of LHμ-critical pair, y cannot occur in t).
Since, given a rule � → r ∈ R, the substitution σ(x) = � and σ(y) = r trivially satisfies σ(x) ↪→R σ(y), if we additionally
let σ(z) = u, then x ↪→ y, s↓{x,y} ↪→∗ z, t↓{x} →∗ z is Rμ-feasible, leading to a contradiction. �

Unfortunately, Proposition 54 cannot be reversed to characterize μ-joinability of LHμ-critical pairs as Rμ-feasibility:
there are non-μ-joinable LHμ-critical pairs whose feasibility problem (57) can be solved.

Example 55. Consider R and μ as in Example 2 and π : 〈f(y), g(x, x)〉 ⇐ x ↪→ y in Example 27. The sequence

x ↪→ y, f(y) ↪→∗ z,g(x, x) ↪→∗ z (58)

is Rμ-feasible: with σ(x) = �(14) = h(0) and σ(y) = r(14) = 0, we have σ(x) ↪→ σ(y), σ(f(y)) = f(0) and σ(g(x, x)) =
g(h(0), h(0)). Since f(0) ↪→ g(0,0) ↪→ 0 and g(h(0), h(0)) ↪→ g(0,h(0)) ↪→ 0, we have that (58) is feasible, but π is not μ-
joinable (see Example 58).

Example 55 also shows that Proposition 54 can be difficult to use in practice: depending on the considered μ-rewriting
step fulfilling the feasibility condition x ↪→ y, it is possible that the remainder of the condition holds or not. Thus, infeasibil-
ity of (58), i.e., the absence of substitutions σ that make all feasibility conditions to hold in Rμ , cannot be proved because,
as shown in Example 55, there is a substitution that satisfies (58). Still, π in Example 55 is not μ-joinable.

The following result provides a different approach where such considered steps are restricted to those directly obtained
from the rules � → r of the TRS, which obviously permit a μ-rewriting step � ↪→R,μ r.

Proposition 56. Let R be a TRS, μ ∈ MR and π : 〈s, t〉 ⇐ x ↪→ y ∈ LHCP(R, μ). Let � → r ∈ R and σ given by σ(x) = �↓ ,
σ(y) = r↓ , and σ(z) = cz if z /∈ {x, y}. If σ(s) and σ(t) are not μ-joinable, then π is not μ-joinable.

Proof. Since, by definition of σ , we have that σ(x) ↪→ σ(y) holds, by Definition 26 and using Corollary 45, the fact that
σ(s) and σ(t) are not μ-joinable implies that π is not μ-joinable. �
Example 57 (R in Example 1 is not μ-confluent). Consider R and μ as in Example 1 and

π : 〈fact(y), if(zero(x), s(0), fact(p(x)) × x)〉 ⇐ x ↪→ y

in Example 23. With σ(x) = �
↓
(2) = 0 + cx and σ(y) = r↓

(2) = cx , we obtain σ(fact(y)) = fact(cx) and

σ(if(zero(x), s(0), fact(p(x)) × x)) = if(zero(0 + cx), s(0), fact(p(0 + cx)) × (0 + cx)).

Since the only μ-rewriting step on s = fact(cx) is

s = fact(cx) ↪→ if(zero(cx), s(0), fact(p(cx)) × cx)

leading to a μ-normal form, and t = if(zero(0 + cx), s(0), fact(p(0 + cx)) × (0 + cx)) only admits the following μ-rewriting
step

t = if(zero(0 + cx), s(0), fact(p(0 + cx)) × (0 + cx))

↪→ if(zero(cx), s(0), fact(p(0 + cx)) × (0 + cx))

leading to a different μ-normal form, s and t are not μ-joinable and by Proposition 56, π is not μ-joinable. By Theorem 32,
R is not μ-confluent.

Example 58 (R in Example 2 is not μ-confluent). Continuing the previous discussion in Example 50, consider R and μ as in
Example 2 and π : 〈f(y), g(x, x)〉 ⇐ x ↪→ y in Example 27. With σ(x) = �

↓
(12) = f(cx) and σ(y) = r↓

(12) = g(cx, cx), we obtain
σ(f(y)) = f(g(cx, cx)) and σ(g(x, x)) = g(f(cx), f(cx)). By Proposition 46, in order to prove their (non-)μ-joinability, we should
check the sequence

f(g(cx, cx)) ↪→∗ z, g(f(cx), f(cx)) ↪→∗ z

which can be proved infeasible by using infChecker. By Proposition 56, π is not μ-joinable. By Theorem 32, R is not
μ-confluent.
15

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Example 59 (R in Example 9 is not μ-confluent). Consider R and μ as in Example 9 and π : 〈g(y, a), c(x)〉 ⇐ x ↪→ y in Exam-
ple 28. With σ(x) = �

↓
(25) = a and σ(y) = r↓

(25) = b, we obtain σ(g(y, a)) = g(b, a) and σ(c(x)) = c(a). By Proposition 46, in
order to prove their (non-)μ-joinability, we should check the sequence

g(b,a) ↪→∗ z, c(a) ↪→∗ z

which can be proved infeasible by using infChecker. By Proposition 56, π is not μ-joinable. By Theorem 32, R is not
μ-confluent.

7. Implementation and experimental evaluation

CONFident 1.0 is written in Haskell and consists of 80 Haskell modules with around 14000 lines of code. The tool is
accessible through its web interface at the URL showed in the introduction. The input format is an extended version of the
Confluence Competition (CoCo) format [24], which is the official format used in the confluence (CR) category. The input is a
CS-TRS R in TPDB format,10 where replacement maps μ can be specified as well as part of the STRATEGY CONTEXTSEN-
SITIVE section of the format: each function symbol f with μ(f) = {i1, . . . , im} is given an entry (f i1 · · · im). However,
only k-ary symbols f whose replacement map μ(f) imposes some replacement restrictions, i.e., such that μ(f)
= {1, . . . , k},
need to be specified: function symbols f of arity k with no entry in the STRATEGY CONTEXTSENSITIVE section are as-
sumed to have no replacement restriction, i.e., μ(f) = {1, . . . , k}.

Example 60. The TRS R and μ in Example 2, where μ(f) = μ(g) = μ(h) = μ(s) = {1} is entered as follows:

(VAR x y)
(STRATEGY CONTEXTSENSITIVE

(g 1)
)
(RULES

f(x) -> g(x,x)
g(0,x) -> 0
g(s(x),y) -> s(x)
h(0) -> 0
h(s(x)) -> 0

)

Note that, since f and h are monadic and μ(f) = μ(h) = {1}, no special entry in the STRATEGY CONTEXTSENSITIVE
section is required.

The implementation of CONFident (see [28] for missing details) is based on a divide and conquer schema where, given an
input problem, a set of techniques is orderly applied to it according to a predefined strategy. The techniques can simplify the
problem, reduce it into a set of simpler problems or just give a positive or negative answer. Our proof strategy is based on
experimentation: we first apply techniques that simplify the problems and reduce them into simpler problems (e.g., remove
unnecessary rules t → t for some term t). When all simplification techniques have been applied, we analyze the problem in
order to extract good properties that guide the strategy (left-linearity, μ-termination, etc.). Then we calculate its extended
μ-critical pairs and check them for μ-joinability using the results in Section 6, calling infChecker to prove (in)feasibility, or
by applying faster methods in specific situations (e.g., two different μ-normal forms are immediately qualified as non-μ-
joinable). If proofs of μ-termination are required, they are obtained from mu-term. When required, provability of first-order
formulas (as in Example 53) is checked with Prover9. If the final answer is YES or NO, the tool displays a report in plain
text. Otherwise, MAYBE is returned.

7.1. Experimental evaluation

Since termination of CSR is one of the subcategories of the International Termination and Complexity Competition
(termCOMP), see e.g., [8, Section 3.1], in order to test our tool we have used the collection of CS-TRSs which is avail-
able for such a competition, which consists of 108 examples. The timeout limit to provide an answer is the usual one of
CoCo: 60 seconds. Table 1 summarizes the obtained results. The table shows the outcome of two versions of the tool: the
first row shows the results for a version of the tool which only uses μ-critical pairs (i.e., pairs in CP(R, μ)) together with
Theorem 15. The second row displays the results when extended critical pairs (i.e., ECP(R, μ)) and Theorem 32 are used.
Note that version ECPs disproves μ-confluence of 49 examples which could not be handled by the CPs version. Further-
more, it proves μ-confluence of 2 examples which could not be handled with CPs only. In particular, we are able to prove

10 See http://zenon .dsic .upv.es /muterm /?page _id =31.
16

http://zenon.dsic.upv.es/muterm/?page_id=31

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Table 1
Proofs of μ-confluence with CPs and ECPs.

Yes No Maybe Solved (Yes+No) Total

CPs 25 30 53 55 108
ECPs 27 79 2 106 108

Table 2
μ-confluence and μcan

R -confluence of our example TRSs.

R and μ in LHRV μ-confluent? LHRV(R,μcan
R) μcan

R -confluent?

Example 1 No No (Example 57) Yes Yes
Example 2 No No (Example 58) Yes Yes
Example 8 No No (Example 16) Yes No
Example 9 No No (Example 33) Yes No
Example 9 & μ′ in Example 14 Yes Yes (Example 37) Yes No
Example 38 No Yes (Example 53) Yes Yes

μ-confluence of TRSs not satisfying the LHRV-condition (e.g., R and μ in Example 38). Full details of the proofs can be
found in the benchmarks section of the web site of the tool.

8. Discussion: how to achieve the LHRV-condition?

In general, given a TRS R one can freely associate a replacement map μ to impose replacement restrictions on symbols f
occurring in the rules of R. However, if the LHRV-condition does not hold, R is often non-μ-confluent. Thus, the following
question naturally arises:

How to achieve the LHRV-condition?

First note that, as a consequence of Proposition 13.(1), the use of μ⊥ guarantees the LHRV-condition for any TRS R. In
general, though, μ⊥ is a very restrictive choice of replacement map as it forbids all reductions below the root of terms.

A more natural requirement on μ(f) for each symbol f is that the replacement restrictions imposed by a replacement
map μ do not prevent the rules defining f from being applied to calls f (t1, . . . , tk). As discussed in [20, Section 5], this is
requirement is captured by the canonical replacement map.

8.1. Canonical replacement map and LHRV-condition

Given a TRS R, the canonical replacement map μcan
R is systematically associated to R as

the most restrictive replacement map ensuring that, for all rules � → r ∈ R, the non-variable subterms of � are all active [20,
Section 5].

Example 61. For R in Example 1, we have μcan
R (s) = μcan

R (fact) = ∅, and μcan
R (f) = {1} for any other non-constant symbol

f . It is not difficult to see that all variables in the left-hand sides of the rules in R are frozen now (with respect to μcan
R).

As a consequence of Proposition 13.(2), if all variables occur frozen in left-hand sides � of rules � → r ∈ R, then the
LHRV-condition holds. When using μcan

R , variables will often remain frozen in the left-hand sides of rules as only non-
variable subterms must be active. Actually, all TRSs R considered in this paper satisfy LHRV(R, μcan

R). Table 2 reports
on the LHRV-condition and confluence of CSR for these examples, regarding both μ in the corresponding example (with
pointers to the examples of the paper where μ-confluence is proved or disproved), and μcan

R (with proofs or refutations of
μcan
R -confluence obtained by CONFident in all cases). However, using the canonical replacement map does not guarantee the

LHRV-condition.

Example 62. Consider the following TRS Rhalf defining a function half, which computes the quotient of integer division of
natural numbers (in Peano’s notation) by 2:

half(0) → 0 (59)

half(s(0)) → 0 (60)

half(s(s(x))) → s(half(x)) (61)
17

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Table 3
μ-confluence vs. μcan

R -confluence (termCOMP TRSs).

Rep. map #LHRV Yes No Maybe Solved (Yes+No) Total

μ 40 27 79 2 106 108
μcan

R 61 52 50 2 102 108

The canonical replacement map for Rhalf is μcan
Rhalf

(half) = μcan
Rhalf

(s) = {1}. Note that μcan
Rhalf

imposes no replacement restric-
tion on any symbol. Trivially, LHRV(Rhalf, μcan

Rhalf
) holds. Actually, we can think of (R, μcan

Rhalf
) as a TRS, i.e., ↪→Rhalf,μ

can
Rhalf

and
→Rhalf coincide. Therefore, since Rhalf is orthogonal, it is confluent, and also μcan

Rhalf
-confluent.

Now consider the TRS Rfirst defining a function first, which returns a sublist with the first n components of a list:

first(0, xs) → [] (62)

first(s(n), x : xs) → x : first(n, xs) (63)

We have μcan
Rfirst

(:) = μcan
Rfirst

(s) = ∅, and μcan
Rfirst

(first) = {1, 2}. Since Rfirst is orthogonal, it has no μcan
Rfirst

-critical pair. Since
LHRV(Rfirst, μcan

Rfirst
) holds, there is no LHμcan

Rfirst
-critical pair. Hence, Rfirst is μcan

Rfirst
-orthogonal (see Definition 35). By Corol-

lary 36, Rfirst is μcan
Rfirst

-confluent.
Now consider the TRS R obtained as the union of Rhalf and Rfirst , i.e., R = Rhalf ∪ Rfirst . We have μcan

R (:) = ∅,
μcan
R (half) = μcan

R (s) = {1}, and μcan
R (first) = {1, 2}. Since R is also orthogonal, there is no μcan

R -critical pair. However, we
note that (63) is LHμcan

R
-negative: n ∈ Varμcan

R (�(63)) ∩ Var��μcan
R (r(63)). Then, there is an LHμ-critical pair:

π : 〈first(s(y), x : xs), x : first(n, xs)〉 ⇐ n ↪→ y

According to Proposition 56, with (59) as the rule � → r in the proposition, since first(s(0), cx : cxs) and cx : first(half(0), cxs)

are not μcan
R -joinable (this can be proved using Proposition 46 and infChecker), we conclude that π is not μcan

R -joinable. By
Theorem 32.(1), R is not μcan

R -confluent.

Example 62 shows that, although the use of the canonical replacement map could ‘naturally’ guarantee the LHRV-
condition for TRSs, like Rhalf and Rfirst , defining specific functions which could be useful for some purposes, when trying
to use them together, as part of a ‘collecting’ TRS R, the LHRV-condition may fail to hold. Moreover, as discussed in [20,
Section 8], the LHRV-condition is not necessarily preserved when restricting or relaxing the replacement map μ. This is in
sharp contrast with μ-termination, which is preserved if the replacement map is made more restrictive.

Example 63. Consider R and μ in Example 1. As remarked in [20, Example 1.1], R is μ-terminating. CONFident is able to
show that R is not μ-confluent (see also Example 57). If we let μ′ be as μ except μ′(fact) = ∅, then R is μ′-terminating
(as μ′ is more restrictive than μ), but it is now μ′-confluent (CONFident can prove it). However, if we restrict further, e.g., by
letting μ′′ be as μ′ except μ′′(add) = {1}, then R is still μ′′-terminating, but it is not μ′′-confluent now (again, CONFident
proves it).

8.2. Canonical replacement map as ‘default’ replacement map for TRSs?

Despite the discussion in the previous section, Table 2 is encouraging: it suggests that a systematical use of μcan
R is

good to achieve the LHRV-condition and also to obtain confluence of CSR. At a purely experimental level, this is somehow
supported by the benchmarks summarized in Table 3, where we consider again the TRSs R in termCOMP’s CS-TRS collection
(first row), but we also use the canonical replacement map μcan

R instead of the specified replacement map now (second
row). The second column of the table (labeled #LHRV) shows the number of systems where the LHRV condition holds
(with respect to μ or μcan

R). We can see that the use of μcan
R ‘reinforces’ the LHRV-condition and also confluence of CSR:

whereas only 27 examples are proved confluent for the TRSs R with the original replacement maps μ,11 when the canonical
replacement map is considered, 52 TRSs are proved μcan

R -confluent. The increase in the number of examples that can be
proved confluent is similar to the increase in the number of TRSs fulfilling the LHRV-condition.

Since using the canonical replacement map has important computational advantages (see [20, Sections 5 and 9]), it is
a natural choice already. The discussion above provides additional, although ‘heuristic’, arguments to start with μcan

R when
using CSR.

11 Most of the 108 CS-TRSs included in the termCOMP benchmark collection have been taken from examples used in papers related to termination of CSR
along the last 25 years. Typically, they are obtained from nonterminating TRSs R by adding a replacement map μ to (try to) make them μ-terminating. The
particular choice of μ usually tries to illustrate the application of some technique to prove or disprove termination of CSR. Achieving other computational
properties of CSR (e.g., μ-confluence), was not in the agenda.
18

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
9. Related work

The idea of turning variables into constants to see terms with variables as ground terms of an extended signature is
standard in algebraic specifications, see, e.g., [9, page 9]. However, as far as we know, such a connection has not been used
in verification of computational properties like confluence, which is the main focus of this paper.

As remarked above, research on confluence of CSR goes back to [17] and [19] (journal version of the conference paper
[17]). In [20, Section 8], besides surveying existing results on (local) confluence of CSR, some applications of μ-confluence
in proofs of confluence properties of rewriting are reported ([20, Section 8.5 and also Section 9.4]) and some results are
provided. In particular, new results about ground confluence of CSR, i.e., confluence of CSR where rewrite sequences start
with a ground term, were proved ([20, Theorem 8.14]). Although [20, Theorem 8.14] does not require the LHRV-condition,
restrictions like termination, ground confluence, and completely definedness of R are required instead.

Remark 64 (μ-confluence and ground μ-confluence). The TRS R and μ in Example 2 is ground μ-confluent (see [20, Example
8.15]). However, as shown in Example 2, R is not μ-confluent.12

In this respect, an important contribution of this paper is providing a homogeneous treatment of the LHRV-condition,
usually required in virtually all previous results on confluence of CSR, but whose absence had not been exploited to (try
to) conclude non-μ-confluence to date. Theorem 30 permits to ‘embed’ the LHRV-condition as a new class of μ-critical
pairs to explore its role in determining local μ-confluence using μ-joinability. Theorem 32 generalizes the old results
(summarized in Theorem 15) to deal with arbitrary TRSs, without requiring the LHRV-condition. Example 53 shows that,
besides dramatically improving the ability to disprove μ-confluence (as witnessed by our benchmarks), this also has a
‘positive’ impact in proofs of μ-confluence.

Recently, Andrianarivelo and Réty [1] have used the analysis of confluence of CSR in [17] to investigate confluence of
prefix-constrained rewrite systems [16], where restrictions on rewriting steps can be specified using automata techniques,
being CSR a particular case of prefix-constrained rewriting. It is possible that our new results could be of some use to
improve the analysis of confluence of prefix-constrained rewriting or similar systems.

10. Conclusions and future work

We have defined the notion of LHμ-critical pair which captures how variables which occur active in the left-hand side
of a rule but also frozen somewhere else in the rule may affect confluence. The μ-critical pairs introduced in [17] (see
Definition 7) together with LHμ-critical pairs (Definition 20) conform the extended μ-critical pairs (Definition 29) whose
μ-joinability characterizes local μ-confluence (Theorem 30) and, together with μ-termination, also μ-confluence (Theo-
rem 32). We have also redefined the notion of μ-orthogonality of TRSs (Definition 35), so that it implies μ-confluence, as
in the usual results for unrestricted rewriting (Corollary 36).

We have characterized μ-joinability of μ-critical pairs 〈s, t〉 as the μ-joinability of the ‘grounded’ version 〈s↓, t↓〉 ob-
tained by replacing in s and t all occurrences of variables x by constants cx (Corollary 47). We have also investigated how to
deal with these μ-joinability checkings of μ-critical pairs as feasibility problems (Proposition 46). We have given sufficient
conditions for proving and disproving μ-joinability of LHμ-critical pairs (Propositions 52, 54, and 56). In the last two cases,
we have shown how to treat such (non-)μ-joinability problems as (in)feasibility problems which can be automatically han-
dled using existing tools like infChecker. We have implemented our techniques as part of the confluence tool CONFident,
which is available for use as a web application.

The experimental evaluation of the tool is encouraging: on the external benchmark suite we used (108 examples of
CS-TRSs from the CSR subcategory of termCOMP) we are able to prove/disprove the μ-confluence of 106 of the examples
(more than 98%). On the same collection of TRSs R but systematically using the canonical replacement map μcan

R , we are
able to handle 102 examples (more than 94%). The experiments also support the idea that using the canonical replacement
map μcan

R often reinforces the LHRV-condition and also confluence of CSR, as discussed in Section 8. This provides more
arguments to use the canonical replacement map in computations with CSR, as already discussed in [20].

In 2021, the Steering Committee of the Confluence Competition decided to launch a new subcategory of the competition
devoted to confluence of CSR.13 We envisage the participation of CONFident in the forthcoming edition of the competition.
Although we are not aware of any other tool which is able to prove confluence of CSR, this situation will hopefully change
thanks to this opportunity, which will probably promote new research in confluence of CSR. In this sense, an important
aspect to be explored in the future is modularity of confluence of CSR. Modularity issues for CSR are underexplored to
date. With the exception of [10], concerning modularity of termination of CSR, we are not aware of any other development.
Therefore, this is an important subject for future work.

12 In [19, Example 19] the μ-confluence of R is wrongly claimed. Only ground μ-confluence of R holds.
13 See http://project -coco .uibk.ac .at /2022 /categories /csr.php.
19

http://project-coco.uibk.ac.at/2022/categories/csr.php

S. Lucas, M. Vítores and R. Gutiérrez Journal of Logical and Algebraic Methods in Programming 126 (2022) 100749
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank the anonymous referees for many remarks and suggestions that led to improve the paper.

References

[1] Nirina Andrianarivelo, Pierre Réty, Confluence of prefix-constrained rewrite systems, in: Hélène Kirchner (Ed.), 3rd International Conference on For-
mal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, in: LIPIcs, vol. 108, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018, pp. 6:1–6:15.

[2] Franz Baader, Tobias Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[3] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, Carolyn L. Talcott, All About Maude - A High-

Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic, Lecture Notes in Computer Science, vol. 4350, Springer,
2007.

[4] Nachum Dershowitz, Jean-Pierre Jouannaud, Rewrite systems, in: Jan van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics, Elsevier and MIT Press, 1990, pp. 243–320.

[5] Nachum Dershowitz, Mitsuhiro Okada, G. Sivakumar, Confluence of conditional rewrite systems, in: Stéphane Kaplan, Jean-Pierre Jouannaud (Eds.),
Conditional Term Rewriting Systems, 1st International Workshop, Orsay, France, July 8–10, 1987, Proceedings, in: Lecture Notes in Computer Science,
vol. 308, Springer, 1987, pp. 31–44.

[6] Melvin Fitting, First-Order Logic and Automated Theorem Proving, second edition, Graduate Texts in Computer Science, Springer, 1996.
[7] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter

Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, René Thiemann, Analyzing program termination and complexity automatically with AProVE, J.
Autom. Reason. 58 (1) (2017) 3–31, https://doi .org /10 .1007 /s10817 -016 -9388 -y.

[8] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, Akihisa Yamada, The termination and complexity competition, in: Dirk Beyer,
Marieke Huisman, Fabrice Kordon, Bernhard Steffen (Eds.), Tools and Algorithms for the Construction and Analysis of Systems - 25 Years of TACAS:
TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings, Part III, in: Lecture Notes in Computer Science,
vol. 11429, Springer, 2019, pp. 156–166.

[9] Joseph A. Goguen, José Meseguer, Models and equality for logical programming, in: Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, Ugo Montanari
(Eds.), TAPSOFT’87: Proceedings of the International Joint Conference on Theory and Practice of Software Development, Pisa, Italy, March 23-27, 1987,
Volume 2: Advanced Seminar on Foundations of Innovative Software Development II and Colloquium on Functional and Logic Programming and
Specifications (CFLP), in: Lecture Notes in Computer Science, vol. 250, Springer, 1987, pp. 1–22.

[10] Bernhard Gramlich, Salvador Lucas, Modular termination of context-sensitive rewriting, in: Proceedings of the 4th International ACM SIGPLAN Confer-
ence on Principles and Practice of Declarative Programming, October 6-8, 2002, Pittsburgh, PA, USA (Affiliated with PLI 2002), ACM, 2002, pp. 50–61.

[11] Bernhard Gramlich, Salvador Lucas, Generalizing Newman’s lemma for left-linear rewrite systems, in: Frank Pfenning (Ed.), Term Rewriting and Appli-
cations, 17th International Conference, RTA 2006, Seattle, WA, USA, August 12–14, 2006, Proceedings, in: Lecture Notes in Computer Science, vol. 4098,
Springer, 2006, pp. 66–80.

[12] Raúl Gutiérrez, Salvador Lucas, Automatically proving and disproving feasibility conditions, in: Nicolas Peltier, Viorica Sofronie-Stokkermans (Eds.),
Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, in: Lecture Notes in Computer
Science, vol. 12167, Springer, 2020, pp. 416–435.

[13] Raúl Gutiérrez, Salvador Lucas, mu-term: verify termination properties automatically (system description), in: Nicolas Peltier, Viorica Sofronie-
Stokkermans (Eds.), Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, in:
Lecture Notes in Computer Science, vol. 12167, Springer, 2020, pp. 436–447.

[14] Raúl Gutiérrez, Salvador Lucas, Miguel Vítores, Confluence of conditional rewriting in logic form, in: Mikołaj Bojańczy, Chandra Chekuri (Eds.), 41st
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021), in: Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 213, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021, pp. 44:1–44:18, https://
drops .dagstuhl .de /opus /volltexte /2021 /15555.

[15] Gérard P. Huet, Confluent reductions: abstract properties and applications to term rewriting systems: abstract properties and applications to term
rewriting systems, J. ACM 27 (4) (1980) 797–821, https://doi .org /10 .1145 /322217.322230.

[16] Florent Jacquemard, Yoshiharu Kojima, Masahiko Sakai, Term rewriting with prefix context constraints and bottom-up strategies, in: Amy P. Felty, Aart
Middeldorp (Eds.), Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, August 1–7, 2015,
Proceedings, in: Lecture Notes in Computer Science, vol. 9195, Springer, 2015, pp. 137–151.

[17] Salvador Lucas, Context-sensitive computations in confluent programs, in: Herbert Kuchen, S. Doaitse Swierstra (Eds.), PLILP, in: Lecture Notes in
Computer Science, vol. 1140, Springer, 1996, pp. 408–422.

[18] Salvador Lucas, Termination of context-sensitive rewriting by rewriting, in: Friedhelm Meyer auf der Heide, Burkhard Monien (Eds.), ICALP, in: Lecture
Notes in Computer Science, vol. 1099, Springer, 1996, pp. 122–133.

[19] Salvador Lucas, Context-sensitive computations in functional and functional logic programs, J. Funct. Logic Program. 1998 (1) (1998), http://danae .uni -
muenster.de /lehre /kuchen /JFLP /articles /1998 /A98 -01 /A98 -01.html.

[20] Salvador Lucas, Context-sensitive rewriting, ACM Comput. Surv. 53 (4) (2020) 78, https://doi .org /10 .1145 /3397677.
[21] Salvador Lucas, Applications and extensions of context-sensitive rewriting, J. Log. Algebraic Methods Program. 121 (2021) 100680, https://doi .org /10 .

1016 /j .jlamp .2021.100680.
[22] Salvador Lucas, Derivational complexity and context-sensitive rewriting, J. Autom. Reason. 65 (8) (2021) 1191–1229, https://doi .org /10 .1007 /s10817 -

021 -09603 -1.
[23] William McCune, Prover9 & Mace4, Technical report, 2005–2010, http://www.cs .unm .edu /~mccune /prover9/.
[24] A. Middeldorp, J. Nagele, K. Shintani, CoCo 2019: report on the eight confluence competition, Int. J. Softw. Tools Technol. Transf. 23 (2021) 905–916,

https://doi .org /10 .1007 /s10009 -021 -00620 -4.
[25] M.H.A. Newman, On theories with a combinatorial definition of “equivalence”, Ann. Math. 43 (2) (1942) 223–243, http://www.jstor.org /stable /1968867.
[26] Michael J. O’Donnell, Computing in Systems Described by Equations, Lecture Notes in Computer Science, vol. 58, Springer, 1977.
[27] Enno Ohlebusch, Advanced Topics in Term Rewriting, Springer, 2002.
[28] Miguel Vítores, Confident: a tool for confluence analysis of rewriting systems (master thesis), April 2022.
20

http://refhub.elsevier.com/S2352-2208(22)00002-5/bib675A8915A4591AA5815C4CA64CAF231As1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib675A8915A4591AA5815C4CA64CAF231As1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib675A8915A4591AA5815C4CA64CAF231As1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib5076B25F9927070E64B0E14A826D9586s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib2CC8820CB3EDFFB32AC7177805A31934s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib2CC8820CB3EDFFB32AC7177805A31934s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib2CC8820CB3EDFFB32AC7177805A31934s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib868482C71804E46467DA93C8D9C70AC8s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib868482C71804E46467DA93C8D9C70AC8s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibBCA17E0F13B48A0043A53494689452CFs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibBCA17E0F13B48A0043A53494689452CFs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibBCA17E0F13B48A0043A53494689452CFs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib637A3A11D85D1F4E4F2E445D261B6945s1
https://doi.org/10.1007/s10817-016-9388-y
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib06E4F3A809E2393C0F5725B16563D811s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib06E4F3A809E2393C0F5725B16563D811s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib06E4F3A809E2393C0F5725B16563D811s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib06E4F3A809E2393C0F5725B16563D811s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibD1698E8D4CF73ECE6D78C2075FD7996Bs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibD1698E8D4CF73ECE6D78C2075FD7996Bs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibD1698E8D4CF73ECE6D78C2075FD7996Bs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibD1698E8D4CF73ECE6D78C2075FD7996Bs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibF94313A3AF605E47B5B67829994DFA3Cs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibF94313A3AF605E47B5B67829994DFA3Cs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib10FCAA5B5CB961CA92D7BEAB82CCFD05s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib10FCAA5B5CB961CA92D7BEAB82CCFD05s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib10FCAA5B5CB961CA92D7BEAB82CCFD05s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibC55DF72E553BD69BC474637E4ECE1DC8s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibC55DF72E553BD69BC474637E4ECE1DC8s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibC55DF72E553BD69BC474637E4ECE1DC8s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib606D7BFF8D4AAAC9C1F05376B046B857s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib606D7BFF8D4AAAC9C1F05376B046B857s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib606D7BFF8D4AAAC9C1F05376B046B857s1
https://drops.dagstuhl.de/opus/volltexte/2021/15555
https://drops.dagstuhl.de/opus/volltexte/2021/15555
https://doi.org/10.1145/322217.322230
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib107AC9798A23A2EB5FEB50422C652EC6s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib107AC9798A23A2EB5FEB50422C652EC6s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib107AC9798A23A2EB5FEB50422C652EC6s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib2A356D794DC211BF6E3888968B625F8Fs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib2A356D794DC211BF6E3888968B625F8Fs1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib6A8690AB07E72D95E79B64E4E448D922s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib6A8690AB07E72D95E79B64E4E448D922s1
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.html
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.html
https://doi.org/10.1145/3397677
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1007/s10817-021-09603-1
https://doi.org/10.1007/s10817-021-09603-1
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/s10009-021-00620-4
http://www.jstor.org/stable/1968867
http://refhub.elsevier.com/S2352-2208(22)00002-5/bibB3E150DDB8124C11A0C49BB194D66FC1s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib77FA295E1F34571EE06E7E949723F7E0s1
http://refhub.elsevier.com/S2352-2208(22)00002-5/bib39E68B850BD02F4075C4145AA05C3DAEs1

	Proving and disproving confluence of context-sensitive rewriting
	1 Introduction
	2 Preliminaries
	2.1 Context-sensitive rewriting

	3 Analysis of confluence of context-sensitive rewriting
	4 Proving confluence of context-sensitive rewriting
	4.1 Variable peaks
	4.2 Variable peaks in context-sensitive rewriting
	4.3 New critical pairs from variable peaks
	4.4 Characterization of local confluence of CSR
	4.5 Confluence and orthogonality in context-sensitive rewriting

	5 Logic-based analysis of context-sensitive computations
	5.1 The first-order theory of context-sensitive rewriting
	5.2 Feasibility sequences in context-sensitive rewriting
	5.3 Dealing with variables as fresh constants

	6 Proving and disproving μ-joinability of extended μ-critical pairs
	6.1 μ-critical pairs
	6.2 LHμ-critical pairs

	7 Implementation and experimental evaluation
	7.1 Experimental evaluation

	8 Discussion: how to achieve the LHRV-condition?
	8.1 Canonical replacement map and LHRV-condition
	8.2 Canonical replacement map as ‘default’ replacement map for TRSs?

	9 Related work
	10 Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	References

