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1. Introduction

Some management and economic problems can be perfectly described by means of deterministic
equations. Some others such as investment, budgeting, or ranking of alternatives include uncertainty
about the future states of nature. A particular case of this situation happens when there is almost a
complete lack of knowledge about the possible outcomes. This situation is called strict uncertainty and
is characterized by the absence of knowledge about the probability of any future state [1]. However,
there is complete information about the set of alternatives under consideration and the scalar evaluation
of choosing every alternative if a given state occurs. The principle of insufficient reason by Laplace [2],
the maximin rule by Wald [3], the Hurwicz criterion [4], or the minimax regret criterion by Savage [5]
are examples of different decision rules under strict uncertainty. Ballestero [1] proposed a new decision
rule to rank alternatives under strict uncertainty. This rule is suitable for moderately pessimistic
individuals and social groups, these agents being neither maximax nor maximin decision-makers but
people who assume that the best outcome from the action will not occur. The application of Ballestero’s
criterion to economic problems has been described by Ballestero in textile product selection [6], and
portfolio selection [7]. More recently, Bravo y Pla-Santamaria [8] and Pla-Santamaria et al. [9] in the
context of credit ranking. Other related works are those by Chambers [10], Rostek [11], and Sadhegi
and Moslemi [12].

Decision-making under strict uncertainty requires the use of a decision table with alternatives in
rows and future states in columns as shown in Table 1. Furthermore, the moderate pessimism criterion
by Ballestero [1] implies the application of a particular domination analysis to remove dominated
alternatives from the decision table. An important limitation is that the definition of domination
proposed by the author does not guarantee that a non-dominated alternative obtains a score of as least
as good as the one obtained by a dominated alternative. As a result, some relevant alternatives may be
removed when they are not inferior to any of the non-dominated alternatives in terms of the scoring
ranking function. To solve this limitation, we propose a new domination analysis that guarantees that
the score of a non-dominated alternative is not inferior to the score of a dominated alternative.

In this paper, we also extend the moderate pessimism criterion by Ballestero [1] by considering
novel score functions. On the one hand, we first propose the use of the inverse of standard deviation
and the mean absolute deviation instead of the inverse of range to obtain the system of weights attached
to each of the future states of nature. The rationale behind this proposal is the possibility that the range,
computed as the difference between the maximum and the minimum evaluations for each state in the
decision table, may be affected by the presence of outliers. On the other hand, we further elaborate
on the notion of duality established between future states of nature and possible multiple-criteria to
evaluate the set of alternatives in the decision table. This duality leads us to consider decision rules
based on the concept of distance to a reference point as in multiple-criteria decision-making [13–15].
More precisely, we propose a general ranking method based on the Minkowski distance to a reference
point. As a result, we show that the principle of insufficient reason by Laplace [2], the maximin rule
by Wald [3], the Hurwicz criterion [4], the minimax regret criterion by Savage [5], and the Ballestero
moderate pessimism criterion [1] are special cases of a general ranking method based on the Minkowski
distance function.

Summarizing, this paper contributes to the development of decision rules under the context of strict
uncertainty in three different ways:
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1. We propose a new domination analysis to avoid removing relevant alternatives.

2. We extend the moderate pessimism criterion by Ballestero [1] through the use of other measures
of dispersion that mitigate the impact of outliers.

3. We present a general distance-based ranking method that subsumes existing decision rules under
strict uncertainty.

The previous three contributions are connected by the notion of distance-based decision rules.
Indeed, we prove that Ballestero’s criterion is a special case of the general distance-based ranking
method described in this paper. By proposing alternative ways to derive the weight system of the
criterion, we reduce the impact of the possible existence of outliers when deploying our method.
Finally, we solve the limitation of removing relevant alternatives of the original moderate pessimism
criterion by a new domination analysis as a previous step to implement our distance-based ranking
method.

In addition to this introduction, Section 2 provides useful background on the concept of strict
uncertainty. Section 3 extends the concept of moderate pessimism under strict uncertainty and presents
several theoretical results. Finally, Section 4 concludes and highlights natural extensions of this work.

2. Materials and methods

In this section, we recall some basic concepts related to decision rules under the context of strict
uncertainty paying special attention to the formal definition of moderate pessimism.

2.1. Decision rules under strict uncertainty

The notion of strict uncertainty refers to a situation in which the available information is limited to
the future states of nature, the set of alternatives under consideration, and the consequence of choosing
every alternative if a given state occurs in the form of a valuation function [1]. As a result, it is
assumed that the decision-maker can say nothing about the probability of any state. More formally,
strict uncertainty is defined as follows:

Definition 1. Strict uncertainty. A decision-maker is said to rank alternatives under strict uncertainty
when the available information is limited to:

1. A finite set of alternativesA = {a1, a2, . . . , am}.

2. A finite set of states C = {r1, r2, . . . , rn}.

3. A scalar evaluation V : A× C → R of every alternative for each state.

For convenience, all scalar evaluations V are assumed to be of the type the more the better. The
combination of alternative ai within state r j results in evaluation vi j as summarized in Table 1.

The Laplace [2] criterion leads to the assumption that knowing nothing about the future state is
equivalent to using the same weight for each state when computing the alternative score. As a result,
the Laplace score function Li for each alternative is the following:

Li =

n∑
j=1

vi j. (2.1)
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Table 1. Decision table.

States
Alternatives r1 r2 . . . r j . . . rn

a1 v11 v12 . . . v1 j . . . v1n

a2 v21 v22 . . . v2 j . . . v2n

. . . . . . . . . . . . . . . . . . . . .
ai vi1 vi2 . . . vi j . . . vin

. . . . . . . . . . . . . . . . . . . . .
am vm1 vm1 . . . vm1 . . . vmn

and the decision-maker should choose the alternative with maximum Li.
The maximin rule by Wald [3] is an extremely pessimistic rule because assumes that the worst state

will occur. Then, the decision-maker considers the evaluations for each alternative in the worst-case
state by comparing function Wi:

Wi = min
j

(vi j) (2.2)

and selects the alternative with maximum Wi.
The Hurwicz [4] criterion implies a balance between optimism and pessimism determined by

preference α in function Hi:
Hi = α · max

j
(vi j) + (1 − α)min

j
(vi j) (2.3)

and the decision-maker should choose the alternative with maximum Hi.
The minimax regret criterion by Savage [5] focuses on the regret that each combination of

alternative and state produces in the decision-maker. Regret is defined as the difference between the
best evaluation in the state and the particular evaluation of each alternative in this state. Then, the
decision-maker considers the regrets for each alternative and state by comparing function S i:

S i = max
j

(vi j) − vi j (2.4)

and selects the alternative with minimum S i.
The previous rules under strict uncertainty are examples of methods within the field of decision

theory [16]. In addition, the definition of the decision table fits well in that of a game and von Neumann
and Morgenstern’s theory of expected utility [17], and a wide range of subsequent game theory works.
More recent works about decision rules and strict uncertainty include applications in sewer network
planning [18], the use of the minimax and maximin criteria in a game against nature for the case of a
partial a priori uncertainty [19], an axiomatic extension to three-dimensional matrix games [20], and a
study about how large-scale railway projects of federal significance should be evaluated in a context of
uncertainty [21]. A departure from the traditional approach to decision-making under strict uncertainty
is the moderate pessimism criterion proposed by Ballestero [1], which was later applied to different
decision-making problems as described in [6–9]. In what follows, we focus on the moderate pessimism
criterion to solve some of its limitations.
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2.2. Moderate pessimism

Definition 2. Moderate pessimism [1]. A decision-maker who cautiously assumes that the most

favorable state when the action has been taken will not occur (no conjecture being made about the

other states) is named a moderately pessimistic decision-maker.

Moderate pessimism implies that dominated alternatives are removed from the decision table before
ranking the alternatives.

Definition 3. Dominated alternatives [1]. An alternative ak is dominated by a convex combination of

alternatives if the following relationship is satisfied:
m∑

i=1

ϕ jvi j ≥ vk j, ∀ j = 1, 2, . . . , n, (2.5)

where ϕ j is a coefficient for the j-th state bounded to the interval [0, 1].

The principle of moderate pessimism proposed by Ballestero [1] is based on the rationale that the
larger the dispersion of evaluations for each state, the higher the distrust of the decision-maker towards
the state. As a result, column dispersion is a piece of critical information for the ranking procedure.

Definition 4. Column dispersion [1]. In the set of non-dominated alternatives in the decision table for

the j-th column, the vi j values of this set are ranged over:

min
i

(vi j) ≤ vi j ≤ max
i

(vi j) (2.6)

where ∆ j = max(vi j) − min(vi j) is the column dispersion for the j-th state.

This criterion implies the selection of weights inversely proportional to the range of evaluations
leading to the following aggregation weights for the set of criteria:

w j =
1

∆ jK
(2.7)

where w j is the weight for the j-th state, and K is equal to:

K = 1 +

n∑
j=1

min
i

(vi j)

∆ j
. (2.8)

Finally, from aggregation weights w j, we get score function Bi for each alternative:

Bi =

n∑
j=1

w jvi j. (2.9)

The weighting scheme in Ballestero’s criterion has the advantage of controlling both optimistic
and pessimistic evaluations. The criterion is a consistent weight system in the sense that one and
only one weight is attached to each state of the world under plausible conditions of domination. It
incorporates the idea of security associated with attitudes of moderate pessimism as opposed to the
extreme pessimism by Wald [3]. Finally, Ballestero’s criterion uses all the available information in the
decision table and satisfies most of the traditional ranking axioms.
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3. Results and discussion

In this section, we extend the notion of moderate pessimism under strict uncertainty to solve some
of its limitations and propose a general ranking method based on the distance to a reference point.
First, we propose a new domination analysis that avoids removing dominated alternatives that are still
relevant in the final ranking of alternatives. Second, we propose two additional score functions using
the inverse of the standard deviation and the mean absolute deviation instead of the range of evaluations
for each future state to reduce the impact of the possible existence of outliers in the decision table.
Third, we show that the decision rules described in Section 2 are special cases of a general distance-
based approach to rank alternatives through the Minkowski distance function.

Before proceeding with the extension of moderate pessimism, we provide the following result
regarding Ballestero’s score function Bi that will allow us to simplify notation:

Proposition 1. Parameter K in equation (2.7) is irrelevant for ranking purposes.

Proof. Note that K is a constant in the score function Bi in equation (2.9). Then, given two arbitrary
alternatives i and h, the following holds:

Bi ≥ Bh ⇐⇒ KBi ≥ KBh. (3.1)

�

In what follows, we use weights w j = 1/∆ j to extend the moderate pessimism criterion.

3.1. Domination analysis

It is proven elsewhere [1] that if an alternative aD dominates the (ϕ1, ϕ2, . . . , ϕm) convex combination
alternatives according to Definition 3, then its ranking value BD must be greater than (or equal to) the
combination of ranking values:

BD ≥

m∑
i=1

ϕiBi. (3.2)

Similarly, if an alternative ad is dominated by the (ϕ1, ϕ2, . . . , ϕm) convex combination alternatives,
then its ranking value Bd must be less than (or equal to) the combination of ranking values:

Bd ≤

m∑
i=1

ϕiBi. (3.3)

Convex combinations gathered in row vector ϕT = (ϕ1, ϕ1, . . . , ϕm) are obtained by solving the
following linear programming model:

min ϕi (3.4)

subject to:
ϕT M ≥ vi (3.5)

1Tϕ = 1 (3.6)
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with non-negativity constraints where M is the decision matrix of size m× n with elements set to vi j, vi

is the row vector of M with the evaluations for the i-th alternative for all states, 1 is a column vector of
ones, and superscript T denotes transposition.

Remark 1. For a non-dominated alternative, denoted by aD, the solution of the linear program

encoded from equations (3.4) to (3.6) is ϕD = 1, being the remaining elements of vector ϕ equal

to zero.

Remark 2. For a dominated alternative, denoted by ad, the solution of the linear program encoded

from equations (3.4) to (3.6) is ϕd = 0, being the remaining elements of vector ϕ equal to some value

between zero and one.

However, domination in the sense of Definition 3 is not a sufficient condition for BD ≥ Bd, which
can reasonably be considered as a desired property for decision-making. The following result provides
a sufficient condition derived from dominance analysis.

Theorem 2. Let aD be a non-dominated alternative and let ad be a dominated alternative according

to Definition 3. A sufficient condition for BD ≥ Bd is that vD
T w ≥ ϕd

T Mw.

Proof. If alternative ad is dominated, then vd j ≤
∑

i=1 φivi j,∀ j = 1, 2, . . . , n. By considering vector
vd = (vd1, vd2, . . . , vdn), an equivalent domination relation can be rewritten in vector notation as:

vd ≤ ϕd
T M (3.7)

where ϕd is the vector of convex combinations. By multiplying both sides of equation (3.7) by vector
of weights w, we obtain:

Bd = vd
T w ≤ ϕd

T Mw (3.8)

BD = vD
T w ≥ ϕD

T Mw. (3.9)

As a result, if ϕD
T Mw ≥ ϕd

T Mw, then BD ≥ Bd. According to Remark (1), the previous sufficient
condition reduces to:

vD
T w ≥ ϕd

T Mw→ BD ≥ Bd. (3.10)

�

As a result, some relevant alternatives may be removed from the decision table when they are
not inferior to all of the non-dominated alternatives in terms of the scoring ranking function Bi. To
illustrate this point, consider the set of alternatives, states, and evaluations described in Table 2 taken
from an example described in [1]. Domination analysis derived from Definition 3 results in classifying
alternatives a∗1, a∗2, and a∗5 as dominated alternatives. However, if we compute the ranking score
function Bi using equation (2.9), we find that B1 > B6 even though alternative a6 is non-dominated.
Consequently, removing a∗1 from the set of available alternatives implies the impossibility of selecting
an alternative (assuming that more than one can be selected) that is better than a6.
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Table 2. An illustrative decision table (a∗i means dominated).

States
Alternatives r1 r2 r3 Bi Rank

a∗1 452 26 11 2.904 4
a∗2 332 73 62 3.525 3
a3 379 105 86 4.498 1
a4 393 94 78 4.329 2
a∗5 267 42 49 2.612 6
a6 453 26 10 2.896 5

Corollary 1. A necessary and sufficient condition for BD ≥ Bd is the following:

BD ≥ Bd ⇐⇒ vD
T w ≥ vd

T w ⇐⇒ vD ≥ vd. (3.11)

Proof. It is a direct consequence of equation 2.9. �

We argue that a domination analysis that satisfies the necessary and sufficient condition in
Corollary 1 improves the moderate pessimism criterion and decision-making under strict. As a result,
we propose a new definition of non-dominated and dominated alternatives based on the notion of Pareto
efficiency [14, 15].

Definition 5. A substitute non-domination analysis. Let v1, v2 ∈ R
n be two evaluation vectors for two

alternatives such that v1 = (v1 j, . . . , v1n) and v2 = (v2 j, . . . , v2n). Then v1 dominates v2 if and only if

v1 ≥ v2 and v1 , v2 (i.e., v1 j ≥ v2 j for all j and v1 j > v2 j for at least one j). Otherwise, v1 is dominated

by v2.

Corollary 2. Let aD be a non-dominated alternative and let ad be a dominated alternative according

to Definition 5. Then, BD ≥ Bd.

Proof. By definition aD dominates ad if and only if vD ≥ vd and vD , vd. Then, the following condition
holds.

BD = vD
T w ≥ vd

T w = Bd. (3.12)

�

As a result, the substitute domination analysis from Definition 5, solves the limitation of removing
relevant alternatives from the decision table when they are not inferior to some of the non-dominated
alternatives in terms of the scoring ranking function. A further advantage of our approach in terms
of selecting alternatives is that any dominated alternative is replaced by a better one instead of being
replaced by a combination of alternatives. In a wide range of decision-making contexts, alternatives
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must be selected or non-selected but cannot be replaced by a combination of alternatives. For instance,
a company considering the alternatives: 1) build a new production plant; 2) sell a production plant; and
3) do nothing; and three different states of the future economic situation, would select alternative 1, 2,
or 3 according to their respective evaluations, but is more difficult to assume that alternative 3 can be
replaced by a convex combination of alternatives 1 and 2.

3.2. Reducing the impact of outliers

The use of the range of evaluations for each state, computed as the difference between the maximum
and the minimum evaluations for each state in the decision table, may be affected by the presence of
outliers. It is likely that an outlier (or an error of measurement) within the decision table is either the
minimum or the maximum of evaluations. The system of weights derived from the moderate pessimism
criterion by Ballestero [1] will be different if there is an outlier that coincides with a minimum or
maximum evaluation for a state. To solve this limitation, we propose the use of the inverse of standard
deviation, and the inverse of the mean absolute deviation, instead of the inverse of range to obtain the
system of weights attached to each of the future states of nature. Alternatively, the use of winsorized
weight systems has been proposed elsewhere [9]. Because of that, we will not cover this option in this
paper but it has to be considered as an additional suitable way to reduce the impact of outliers in strict
uncertainty.

Given set of evaluations (v1 j, v2 j, . . . , vm j) for the j-th state, with average value v j, the standard
deviation σ j is defined as:

σ j =

√√
1
m

m∑
i=1

(vi j − v j)2, (3.13)

and the mean absolute deviation:

MAD j =
1
m

m∑
i=1

|vi j − v j|. (3.14)

Provided that the standard deviation and the mean absolute deviation are not null, their respective
values are always smaller than the range of evaluations as the following lemma shows.

Lemma 1. Let di and ∆ j be two real positive values, and let p be a positive integer. Assume that

di < ∆ j, then it follows that:

|di|
p < |∆ j|

p (3.15)

m∑
i=1

|di|
p <

m∑
i=1

|∆ j|
p = m|∆ j|

p (3.16)

 1
m

m∑
i=1

|di|
p

1/p

<
[m
m
|∆ j|

p
]1/p

=
[
|∆ j|

p
]1/p

= ∆ j. (3.17)

If we set p = 2, and define di = (vi j − v j), then σ j < ∆ j. Similarly, if we set p = 1, and define

di = |vi j − v j|, then MAD j < ∆ j.
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We next define two new score functions within the framework of moderate pessimism relying on
the standard deviation and the mean absolute deviation as measures of dispersion:

Bσ
i =

n∑
j=1

vi j

σ j
(3.18)

BMAD
i =

n∑
j=1

vi j

MAD j
. (3.19)

Theorem 3. Givenσ j > 0 and MAD j > 0, for at least one j in a decision table under strict uncertainty,

then Bσ
i > Bi, BMAD

i > Bi, and BMAD
i ≥ Bσ

i .

Proof. Inequalities Bσ
i > Bi and BMAD

i > Bi are a direct consequence of Lemma 1. Inequality BMAD
i ≥

Bσ holds because MAD j ≤ σ j according to the Cauchy-Schwarz inequality ||x||1 ≤
√

m||x||2, as we next
show:

MAD j =
1
m
||x||1 ≤

1
√

m
||x||2 = σ j (3.20)

where x = v j−v j, in which v j is a vector of evaluations for the j-the state, and ||x||p denotes the p-norm
of vector x computed as:

||x||p =

 m∑
i=1

|xi|
p

1/p

. (3.21)

�

As a result, the presence of outliers is mitigated by assigning a larger weight than in the original
method to states with low weights due to the presence of an outlier that should not be in the decision
table. Indeed, the lower the measure of dispersion, the larger the weight assigned to the states, and
the larger the eventual mitigation as in the case mean absolute deviation compared to the standard
deviation because MAD j ≤ σ j. Then, BMAD

i ≥ Bσ
i . This fact leads us to consider a general measure of

dispersion, which we call the average deviation of order p, denoted by σp
j :

σ
p
j =

 1
m

m∑
i=1

|vi j − v j|
p

1/p

=
1

m1/p ||x||p. (3.22)

Next, we generalize the result BMAD
i ≥ Bσ, through the concept of average deviation of order p:

Theorem 4. Let σp
j > 0 be the average deviation of order p from v j, for at least one j in a decision

table under strict uncertainty, and let p be a positive integer, then Bσp

i ≥ Bσp+1

i .

Proof. Again, this result derives from the Cauchy-Schwarz inequality for 0 < p < q:

||x||p ≤ m1/p−1/q||x||q. (3.23)

By setting q = p + 1, we find that:

σ
p
j =

1
m1/p ||x||p ≤

1
m1/(p+1) ||x||p+1 = σ

p+1
j . (3.24)
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Then, weights derived from inverting σ
p
j are always greater or equal to weights derived from σ

p+1
j ,

resulting in Bσp

i ≥ Bσp+1

i . �

This generalization implies the possibility of controlling the degree of mitigation of the eventual
existence of outliers in the decision table. Finally, the use of the standard deviation and the mean
absolute deviation presents the advantage of using all the information in the decision table to compute
the column dispersion. This advantage is in direct contrast to the range used in [1] and the winsorized
range used in [9] when there is a loss of information.

3.3. A general distance-based ranking method

In this subsection, we follow the approach of considering states in a decision table as a set of
multiple-criteria under consideration for evaluation purposes. Indeed, there is a duality between states
and evaluation criteria because an alternative evaluated for different states can be viewed as a multiple-
criteria decision-making problem. Furthermore, multiple-criteria evaluations and multiple states can
also be assimilated into a multiple-criteria decision-making problem. As a result, each evaluation vi j

becomes the degree of achievement of the i-th alternative in terms of the j-th criterion. For instance,
alternative investments can be evaluated in terms of expected return, risk, and liquidity.

The concept of duality and the possibility to consider a decision table under strict uncertainty as
a multiple-criteria decision-making problem leads us to propose a general ranking method based on
the concept of distance to a reference point. In what follows, we consider two reference points: the
ideal and the anti-ideal (or nadir) points. The ideal point is usually infeasible but it plays a key role
in selecting the best alternatives. Given alternative ai ∈ A, with i = 1, 2, . . . ,m, and evaluations vi j in
terms of the j-the criterion, with j = 1, 2, . . . , n, in a maximization context, the ideal and anti-ideal (or
nadir) points are defined as follows [22]:

Definition 6. Point vI = (vI
1, . . . , v

I
j, . . . , v

I
n) given by vI

j := max
ai∈A

v j(ai) = max
i

vi j is called the ideal point

of the multicriteria problem max
ai∈A

(v1(ai), . . . , v j(ai), . . . , vn(ai)).

Definition 7. Point vN = (vN
1 , . . . , v

N
j , . . . , v

N
n ) given by vN

j := min
ai∈A

v j(ai) = min
i

vi j is called the anti-ideal

(nadir) point of the multicriteria problem max
ai∈A

(v1(ai), . . . , v j(ai), . . . , vn(ai)).

Using either vI or vN as reference points, we here propose to evaluate alternatives employing
the Minkowski distance function. For instance, the Minkowski distance between evaluations vi j for
alternative ai and the nadir point vN is computed as follows:

D(ai, vN , p) =

 n∑
j=1

wp
j |vi j − v jN |

p


1/p

. (3.25)

Note that parameter p in equation (3.25) is a topological metric belonging to the closed interval
[−∞,∞]. There are some values of p that are relevant to this work which we next summarize in a
group of remarks.

Remark 3. Setting p = −∞ leads to computing the minimum deviation over j:

D(ai, vN ,−∞) = min
j

(w j|vi j − v jN |). (3.26)
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Remark 4. Setting p = ∞ leads to computing the maximum deviation over j:

D(ai, vN ,∞) = max
j

(w j|vi j − v jN |). (3.27)

Remark 5. Setting p = 1 leads to computing the Manhattan distance over j:

D(ai, vN , 1) =

n∑
j=1

w j|vi j − v jN |. (3.28)

Remark 6. Setting p = 2 leads to computing the Euclidean distance over j:

D(ai, vN , 2) =

√√ n∑
j=1

w2
j(vi j − v jN)2. (3.29)

As a result, decision-makers can select the best alternative by finding out which alternative presents
either the minimum distance to the ideal point or the maximum distance from the nadir point. Similarly,
decision-makers can produce a ranking of alternatives by computing their respective distances and
sorting the values. Taking advantage of the previous remarks, the following results establish a link
between the decision rules by Laplace [2], by Wald [3], by Hurwicz [4], by Savage [5], and by
Ballestero [1] described in Section 2. To this end, and without loss of generality, we consider a fictitious
nadir point vN = 0 of size n with all its elements set to zero.

Theorem 5. Setting w j = 1,∀ j = 1, 2, . . . , n, and vN = 0, the Laplace rule max
i

(Li) is equivalent to:

max
i

(1/n · D(ai, vN , 1)). (3.30)

Proof. It is a direct consequence of Remark 5. �

Theorem 6. Setting w j = 1,∀ j = 1, 2, . . . , n, and vN = 0, the Wald rule max
i

(Wi) is equivalent to:

max
i

(D(ai, vN ,−∞)). (3.31)

Proof. It is a direct consequence of Remark 3. �

Theorem 7. Setting w j = 1,∀ j = 1, 2, . . . , n, and vN = 0, the Hurwicz rule max
i

(Hi) is equivalent to:

max
i

(αD(ai, vN ,∞) + (1 − α)D(ai, vN ,−∞)). (3.32)

Proof. It is a direct consequence of Remarks 3 and 4. �
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Theorem 8. Setting w j = 1,∀ j = 1, 2, . . . , n, and vN = 0, the Savage rule min
i

(S i) is equivalent to:

min
i

(D(ai, vN ,∞) − vi j),∀ j = 1, 2, . . . , n. (3.33)

Proof. It is a direct consequence of Remark 4. �

Theorem 9. Setting w j = 1/∆ j,∀ j = 1, 2, . . . , n, and vN = 0, the Ballestero rule max
i

(Bi) is equivalent

to:

max
i

(D(ai, vN , 1)). (3.34)

Proof. It is a direct consequence of Remark 5. �

By changing the reference point, we can design further decision rules based on the concept of
distance to the ideal point and Zeleny’s axiom of choice [13], which states that alternatives that are
closer to the ideal point are preferred to those that are further. To this end, we first reformulate the
Minkowski distance function in equation (3.25) to consider ideal point vI as a reference point for
decision-making:

D(ai, vI , p) =

 n∑
j=1

wp
j |v jI − vi j|

p


1/p

. (3.35)

Next, we establish the following preference relations for two arbitrary alternatives a1, a2 ∈ A :

a1 � a2 ⇐⇒ D(a1, vI , p) < D(a2, vI , p) (3.36)

a1 ∼ a2 ⇐⇒ D(a1, vI , p) = D(a2, vI , p) (3.37)

where � means “is preferred to”, and ∼ means “is indifferent to”.
When using distances considering multiple-criteria (states), measurements must be comparable to

avoid meaningless comparisons due to problems of scale. For instance, in Table 2, we observe that
the first criterion (state) presents significantly higher values than the remaining criteria (states). If we
directly apply a distance function to evaluate alternatives, the results will be biased toward the best
alternative in the first column because of the higher scale. To solve this limitation, we normalize the
evaluation using the following change of variable [15]:

θi j =

vi j − min
j

(vi j)

max
j

(vi j) − min
j

(vi j)
(3.38)

where normalized evaluation θi j ranges in the interval [0, 1].
As a result, the Minkowski distance function of the alternatives to the ideal point becomes:

D(ai, vI , p) =

 n∑
j=1

wp
j |1 − θi j|

p


1/p

(3.39)

and we can evaluate all alternatives in a decision table according to some decision-making principles
as suggested by Romero [23] and Gonzalez-Pachon and Romero [24]. For instance, p = 1 corresponds
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to the idea of maximum freedom of the individuals derived from the theory of utilitarianism by
Bentham [25], whereas p = ∞ corresponds to the principle of maximum fairness, from the Rawlsian
idea of considering only the welfare of the worst-off group [26]. Indeed, by increasing p, we are
increasing the balance of solutions, meaning that the best solutions tend to be those with less inequality
in the evaluations for different criteria (states). Note also that weights w j attached to each of the criteria
(states) are not necessarily equal. They may be equal when the criteria (states) are equally important
for decision-making purposes as in the case of the Laplace rule, but they may be different when some
criteria (states) are considered more important than others as in the case of Ballestero’s rule. Then,
these weights must be set by the decision-maker according to the rule used. In the following illustrative
example, we consider that all criteria (states) are equally important. Let us extend Table 2 with equally-
weighted distances to the ideal point (1, 1, 1) after normalization for p = 1 (Benthamite principle),
p = 2 (principle of the smallest Euclidean deviation), and p = ∞ (Rawlsian principle) as shown in
Table 3.

Table 3. A normalized decision table with three different distances to the ideal point.

States
Alternatives r1 r2 r3 D(ai, vI , 1) Rank D(ai, vI , 2) Rank D(ai, vI ,∞) Rank

a1 0.995 0.000 0.013 1.992 4 1.405 4 1.000 4
a2 0.349 0.595 0.684 1.371 3 0.829 3 0.651 3
a3 0.602 1.000 1.000 0.398 1 0.398 2 0.398 2
a4 0.677 0.861 0.895 0.567 2 0.367 1 0.323 1
a5 0.000 0.203 0.513 2.284 6 1.369 6 1.000 4
a6 1.000 0.000 0.000 2.000 5 1.414 5 1.000 4

Note that in the case of considering distances to the ideal point, the best alternative is the one
with the minimum distance value. By comparing Tables 2 and 3, we observe that the final ranking of
alternatives derived from the application of the distance-based method for p = 1 (Benthamite principle)
is equivalent to the Ballestero moderate pessimism criterion. However, we find differences when the
value of p is increased to 2 (principle of the smallest Euclidean deviation). In this case, the best option
is alternative a4. Finally, by setting p = ∞ (Rawlsian principle) the first three best alternatives are the
same as in case p = 2 and the remaining alternatives obtain the same score because all of them present
the worst evaluation for at least one of the criteria (states).

3.4. Application of distance-based decision rules in portfolio selection

In this section, we extend the results reported by Ballestero et al. [7] in the context of portfolio
selection. More precisely, we evaluate the implications in the selection of the best portfolio when
considering 15 scenarios under strict uncertainty by varying the weights and the topological metric p
when using the distance-based decision rules proposed in this paper. Table 4 shows the simulation-
based multicriteria performance indices described by Ballestero et al. [7] for non-dominated pre-
selected efficient portfolios (PEP) for a profitability seeker investor. Although the authors also reported
results for a neutral and a conservative investor, we restrict the following analysis to a profitability
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seeker because our findings are very similar in the three cases. Summarizing, these values were
obtained by: 1) computing the efficient frontier for portfolios based on historical data; 2) defining
a number of uncertain scenarios from the range of past returns of the market index; 3) simulating
market returns; and 4) deriving from the market simulation a return-risk performance index including
a parameter describing the risk preferences of the investor. To facilitate the analysis, we extend the
table of results with the inverse of the range, the inverse of standard deviation, and the inverse of the
mean absolute deviation that will be later used in the computation of the scores for the alternatives.

Table 4. Performance indices for non-dominated pre-selected efficient portfolios (PEP) for a
profitability seeker investor.

Scenarios

PEP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 0.729 2.396 1.375 1.157 1.570 1.329 1.223 1.754 2.404 2.707 1.676 1.891 2.036 2.074 2.019
12 0.966 2.175 1.427 1.271 1.622 1.356 1.305 1.664 2.175 2.385 1.589 1.754 1.859 1.889 1.85
14 0.429 2.581 1.275 0.991 1.439 1.278 1.099 1.829 2.603 3.009 1.758 2.020 2.208 2.253 2.18
11 1.140 1.920 1.432 1.332 1.595 1.360 1.344 1.558 1.915 2.044 1.497 1.610 1.678 1.698 1.674
10 1.199 1.741 1.400 1.331 1.529 1.338 1.335 1.476 1.736 1.823 1.428 1.510 1.556 1.572 1.555

1/∆ j 1.299 1.190 6.369 2.933 5.464 12.195 4.082 2.833 1.153 0.843 3.030 1.961 1.534 1.468 1.600
1/σ j 3.526 3.275 17.489 7.724 15.669 34.018 10.912 7.828 3.176 2.325 8.421 5.427 4.246 4.060 4.425
1/MAD j 3.986 3.764 22.007 8.778 18.657 43.554 12.475 8.980 3.665 2.692 9.812 6.297 4.910 4.694 5.125

The results in Table 4 represent an example of a decision table under strict uncertainty which is
the basic input information to apply the set of decision rules described in this paper. Along the lines
of Ballestero [1], we consider that decision rules that do not exhaustively use all the information in
the decision table are less desirable than others using all the information. As a result, we dismiss the
rules proposed by Wald, Hurwicz, and Savage in the next analysis. Following the same reasoning, we
also discard the use of distance function D(ai, vN ,∞), because this rule only focuses on the maximum
performance for each alternative. To analyze the impact of selecting different weight systems and
different topological metrics required in the distance-based ranking method described in Section 3.3,
we consider the following variants to compute the distance to the nadir point: 1) weights set to the
inverse of the range of performance indices for each scenario (w j = 1/∆ j) and p = 1 (Ballestero’s
criterion =D1); 2) equal weights for each scenario (w j = 1/15) and p = 1 (Laplace criterion =D2); 3)
equal weights for each scenario (w j = 1) and p = 2 (D3); 4) weights set to the inverse of the standard
deviation of performance indices for each scenario (w j = 1/σ j) and p = 1 (D4); 5) weights set to the
inverse of the standard deviation of performance indices for each scenario (w j = 1/σ j) and p = 2 (D5);
6) weights set to the inverse of the mean absolute deviation of performance indices for each scenario
(w j = 1/MAD j) and p = 1 (D6); and 7) weights set to the inverse of the mean absolute deviation of
performance indices for each scenario (w j = 1/MAD j) and p = 2 (D7). The results of the previous
distance-based scores for the alternatives in Table 4 are summarized in Table 5.

We observe that the best alternative for D1 (Ballestero) is different to D2 (Laplace) and D3. This
is not surprising because the weight system of D1 is obtained from the inverse of the range, and D2

and D3 are equally-weighted distances. In addition, we find that the use of the inverse of the standard
deviation inD4 and the mean absolute deviation inD6 as weight systems do not produce any change in
the best alternative despite the different weight system. However, we observe a change in the selection
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Table 5. Distance-based scores for alternatives in Table 4. Bold values mean best values.

PEP D1 D2 D3 D4 D5 D6 D7

13 73.938 1.756 7.094 204.591 66.105 245.049 81.502
12 73.460 1.686 6.688 203.214 66.813 243.642 82.500
14 72.783 1.797 7.444 201.449 64.016 241.022 78.785
11 71.365 1.586 6.214 197.362 66.072 236.859 81.711
10 68.763 1.502 5.853 190.132 64.333 228.312 79.636

w j 1/∆ j 1/15 1 1/σ j 1/σ j 1/MAD j 1/MAD j

p 1 1 2 1 2 1 2

of the best alternative when these weights are combined with metric p = 2 in D5 and D7. This
behavior is caused by the fact that both weights and performance indexes are raised to exponent 2,
hence overweighing those scenarios with less variation that may lead to a change in the final scores.
As a result, we find that the impact of the use of the inverse of measures of dispersion such as the
range, the standard deviation, or the mean absolute deviation is increased when the topological metric
is increased. From this observation, we conclude that metric p can be used as a key variable to control
the degree of confidence (importance) in the scenarios with less dispersion. This fact provides a higher
degree of flexibility than the moderate pessimism criterion by Ballestero. This feature may be useful
to accommodate well to the needs or beliefs of different decision-makers with respect to either the
distrust of high dispersion scenarios or the confidence in low dispersion scenarios.

4. Conclusions

Within the context of decision rules under strict uncertainty, this paper has extended the moderate
pessimism criterion by Ballestero [1] to solve two important limitations. On the one hand, we solve the
problem of removing alternatives that are relevant in the final ranking by proposing a new definition
of dominated and non-dominated alternatives based on the concept of Pareto optimality. On the other
hand, we propose the use of the inverse of the standard deviation and the inverse of the mean absolute
deviation instead of the inverse of the range of evaluations for each future state to reduce the impact
of the possible existence of outliers in the decision table. To motivate this proposal, we show in
Theorem 3 that the presence of outliers is mitigated by using the standard deviation and the mean
absolute deviations as measures of dispersion by attaching a larger weight than in the original method
to states with low weights due to the presence of an outlier that should not be in the decision table. In
addition, we find that this mitigation is larger in the case of the mean absolute deviation than in the
case of the standard deviation due to well-known properties of these measures. We generalize the use
of additional measures of dispersion through the concept of average deviation of order p and prove
in Theorem 4 that this generalization implies the possibility of controlling the degree of mitigation of
the eventual existence of outliers in the decision table. Finally, the use of the standard deviation and
the mean absolute deviation presents the advantage of using all the information in the decision table to
compute the column dispersion.
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We also propose a general distance-based ranking method that subsumes existing decision rules
under strict uncertainty. This approach can be applied from two different points of view. The first one
implies the maximization of distances to an anti-ideal point. Following this first approach, we show
that all the decision rules under strict uncertainty considered in this paper are indeed particular cases of
maximizing distances to an anti-ideal point with all elements set to zero. The second approach implies
the minimization of distances to an ideal point with maximum achievements for each of the criteria
(states) considered. In this case, the use of a parameter in the Minkowski distance function introduces
the possibility of ranking alternatives according to some general decision-making principles by varying
the balance of solutions. We also observe that metric p can be used as a key variable to accommodate to
the needs and beliefs of different decision-makers with respect to either the distrust of high dispersion
scenarios or the confidence in low dispersion scenarios. From this observation, we conclude that the
distance-based ranking methods proposed in this paper not only generalize previous approaches but
also provide a higher degree of flexibility for decision-making.

Finally, we consider that a natural extension of this work is to extend the analysis of the duality
established between states and criteria and strengthen the link between decision-making under strict
uncertainty and the whole range of tools and methodologies of multiple-criteria decision-making such
as mathematical programming or combinatorial optimization.
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