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A B S T R A C T

In this paper, wave propagation in structured media with quasiperiodic patterns is investigated.
We propose a methodology based on Sturmian sequences for the generation of structured
mechanical systems from a given parameter. The approach is presented in a general form so
that it can be applied to waveguides of different nature, as long as they can be modeled with
the transfer matrix method. The bulk spectrum is obtained and its fractal nature analyzed. For
validation of the theoretical results, three numerical examples are presented. The obtained bulk
spectra show different shapes for the studied examples, but they share features which can be
explained from the proposed theoretical setting.

. Introduction

The guiding and manipulation of waves is a major issue in Science and Technology. In the last decades, the manipulation of
aves and scattering have got rapid progress with the development of artificial materials known as photonic, phononic and sonic

rystals [1–3]. They are periodic structures built by repetition of unit cell in one or several dimensions. The particular design of
he unit cell allows customization of the wave behavior by the appearance of passbands and stopbands in the frequency domain. A
requency is said to be forbidden (or it lies in a bandgap-stopband) if the associated wave is evanescent with amplitudes decaying
long the structure. The final objective is to tailor the dispersion of waves enabling a precise control over the spectral transmission,
elocity and dynamic properties.

Another possibility to manipulate waves in this respect is the use of quasiperiodic systems. They are characterized by
eterministic patterns that exhibit correlation in the long-range order. Therefore, quasiperiodic media present unique properties
hat have been the subject of extensive research in various areas of physics: electronics [4], electromagnetics [5], elasticity [6,7].
ne of the most visible features of quasiperiodicity is the self-similarity of the spectrum of permitted modes and frequencies [8,9].

n particular, this behavior has been observed in systems constructed with the Fibonacci formalism [10,11].
In this paper, Sturmian quasiperiodic lattices are under consideration. A Sturmian word (or sequence) is a particular case of an

nfinite word formed from a two-letter alphabet and, among other applications, allows the construction of quasiperiodic patterns.
he precise definition and properties of Sturmian words can be found in the context of computer science and language theory [12]
nd condensed matter [13,14]. Although in essence, the concept allows several definitions [15,16], among them we are interested
n such sequences that can be generated from real numbers (also called mechanical words [17]).

In the past two decades the number of works on the design of quasiperiodic structures has been proliferating. Such structures
ave many interesting properties that can be useful for practical applications in crystallography, photonics, or structural mechanics.
nalysis of wave propagation in periodic and quasiperiodic structures is the main topic in many engineering areas. Dynamical
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analysis of such structures is critical because it allows us to improve vibroacoustic properties. A less investigated field in structural
mechanics is that the design and dynamical analysis of quasiperiodic structures. Appropriate design of such quasiperiodic structures
may leads to new interesting vibroacoustic properties with a wide range of applications. Among many possibilities of design of 1D
quasiperiodic lattices, the most popular are the methods based on Fibonacci number sequences [18–20]. The dispersion relation of
these systems exhibit band gaps, which often take the form of the well-known Hofstadter butterfly [21]. In mechanics, despite a few
studies described below, the dispersion properties of quasiperiodic elastic media have not yet been satisfactorily understood, specially
the design of tailored structures with specific properties concerning wave propagation. Elastodynamical properties of finite or infinite
periodic 1D rods or beams have been the topic of research investigations in [22–25]. Recent developments of the research in this
field comprise the analysis of how localized modes arise in continuous elastic media with quasiperiodic stiffness modulation [7] or
the analysis of the effects of combined modulation of structural parameters, with different arbitrarily related spatial periods, on wave
propagation properties of a general 1D waveguide [26]. For example, in Ref. [27] the topological modes for stiffened and sandwich
beams are investigated. The authors demonstrated that the occurrence of bandgaps possesses fractal nature in the frequency spectrum
of 1D continuous quasiperiodic elastic media (continuous stiffened beams and sandwich beams). Another interesting example of the
analysis of the structural response of periodic and quasiperiodic beams is presented in Ref. [28], wherein geometrical and material
variations are introduced following Fibonacci patterns along the spans modeled by finite elements. Glacet et al. [29] provided
the complete description of the vibrational analysis of a beam based on octagonal quasiperiodic tiling, while Gei [30] studied the
dispersion relations for axial and flexural waves of quasiperiodic infinite beams. Srivastava et al. [31] studied theoretically the
occurrence of longitudinal or flexural waves but in nonlinear isotropic rods.

In the literature we can find different examples on the study of the spectrum of allowed modes as a function of a certain
arameter that generates the quasiperiodic pattern. The most relevant case is that of the aforementioned Hoesteadtler butterfly [21]
n condensed matter, which has been reproduced and studied in other works [11,32]. Following the generation pattern known as the
rojection method [33] other authors have obtained similar figures in other physical systems like discrete mass–spring lattices [34],
uasiperiodic beams [7], dielectric quasicrystals [35], acoustic metamaterials [36] or quasicrystals of magnetic resonators [37].

In this paper we propose to investigate systems which are structured according to quasiperiodic patterns governed by the so-called
turmian sequences, something that will be carried out in the context of structural dynamics. After a rigorous definition of structured
ystems based on Sturmian sequences, a geometrical interpretation is provided and a systematic methodology for the determination
f dispersion relations, valid for unidirectional lattices, is defined. We also introduce the concept of Sturmian bulk spectrum and
tudy the observed self-similarity properties. Finally, the theoretical results are validated numerically through several numerical
xamples covering discrete and continuous systems, as well as compression and bending waves. In this sense, the application of
turmian sequences to mechanical engineering contributes to the design of mechanical structures with tailored properties for wave
ropagation.

. Sturmian quasiperiodic structures

In this section, the construction of structural systems with quasiperiodic pattern based on Sturmian sequences will be presented.
t will be considered that the wave is propagated in one direction throughout a infinite elastic medium. There is no restriction
n the nature of the waves. Thus, as it will be seen in the numerical examples, different types of waves and structures can be
onsidered. Elastic wave transmission models depend on several parameters, in general related to the geometry, mass and stiffness
roperties mostly. If for instance, we deal with a continuous homogeneous non-dispersive medium, then waves travel with constant
elocity and all waves are permitted, that is for each frequency 𝜔, there exist a non-evanescent mode with wavenumber 𝜅(𝜔). If,

on the contrary, one of the parameter changes along the waveguide under certain pattern of periodicity, then the dispersion curves
may present band gaps, where the wave is damped in the space with complex wavenumber. The way in which the parameters
are distributed opens up a tremendous range in terms of the typology of systems obtained. Thus quasiperiodic patterns arise as an
extension of periodic ones, although we can also find order in apparently random geometries, such as hyperuniformity [38].

2.1. Sturmian sequencies

We will study the dynamical properties of elastic waves considering that certain model parameter follows the pattern of a
Sturmian word along the medium. In our work, we are specially interested in the generation algorithm of a Sturmian word from a
real number, which along this paper will be denoted by 𝛼 ∈ R. This latter plays the roll of generation parameter and, without loss of
generality, it lies in the range 0 ≤ 𝛼 ≤ 1. Let the sequence [0; 𝑎1,… , 𝑎𝑛] be the continuous fraction of 𝛼, namely

𝛼 = [0; 𝑎1,… , 𝑎𝑛] =
1

𝑎1 +
⋯ + 1

𝑎𝑛−1 +
1
𝑎𝑛

, (1)

where 𝑎𝑘 > 0, for 𝑘 ≥ 1, are positive integer numbers. Consider in addition a binary alphabet formed by two symbols, say {𝑝, 𝑞}.
Then, we define a Sturmian word in a recursively way as the sequence of symbols

𝑘 = 𝑎𝑘
𝑘−1 𝑘−2 , 1 ≤ 𝑘 ≤ 𝑛 ,
2

−1 = 𝑞 , 0 = 𝑝 , (2)
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Table 1
Sturmian blocks, continued fractions and number of symbols associated to the numbers 𝛼 = 3∕11 and 𝛼 = 1∕𝜙, where 𝜙 = (1 +

√

5)∕2 is the gold number. Both
sequences start with −1 = 𝑞 and 0 = 𝑝.

𝑘 1 2 3 4 5

𝛼 = 3∕11 𝑘 𝑝𝑝𝑝 𝑞 𝑝𝑝𝑝𝑞 𝑝 𝑝𝑝𝑝𝑞𝑝𝑝𝑝𝑝𝑞𝑝 𝑝𝑝𝑝𝑞 – –
𝑎𝑘 3 1 2 – –
𝜈𝑘∕𝛿𝑘 1∕3 1∕4 3∕11 – –
𝑘 4 5 14 – –

𝛼 = 1∕𝜙 𝑘 𝑝𝑞 𝑝𝑞 𝑝 𝑝𝑞𝑝 𝑝𝑞 𝑝𝑞𝑝𝑝𝑞 𝑝𝑞𝑝 𝑝𝑞𝑝𝑝𝑞𝑝𝑞𝑝 𝑝𝑞𝑝𝑝𝑞
𝑎𝑘 1 1 1 1 1
𝜈𝑘∕𝛿𝑘 1∕1 1∕2 2∕3 3∕5 5∕8
𝑘 1 3 5 8 13

where both the exponent and the product must be understood as concatenations, for instance 𝑝3(𝑞2𝑝) = 𝑝𝑝𝑝𝑞𝑞𝑝. From the definition
given above, if 𝛼 is a rational number the Sturmian word 𝑛 is properly the last iteration and strictly the infinite word arises as
the periodic concatenation of 𝑛. Thus, for instance if 𝛼 = 1∕3 = [0; 3], then the last block is 1 = 𝑝𝑝𝑝𝑞 and the infinite word
𝑝𝑝𝑝𝑞 𝑝𝑝𝑝𝑞 𝑝𝑝𝑝𝑞 …. Otherwise, if 𝛼 is irrational, then it is known that the sequence 𝑎𝑛 becomes infinite and the associated Sturmian
word has a purely quasiperiodic pattern given by the limit lim𝑛→∞ 𝑛. This form of constructing a Sturmian word is not unique,
in fact there are other ways of finding Sturmian patterns [15,17]. Although they have different geometrical interpretations and
recursive models, still they are closely related each other [16]. In particular, it will be shown later in Section 2.3 that Sturmian
words defined as in Eq. (2) have an interesting geometrical interpretation.

Each one of the words emerging from the recursive sequence (2) will be named Sturmian blocks. The last block of a sequence
{𝑘}𝑛𝑘=1, is said to be the Sturmian block associated to 𝛼, and for them we will use the notation (𝛼) = 𝑛. For numerical purposes,
irrational numbers must be approximated by rationals approximants. Thus, if 𝛼 is an irrational number, it can be approximated by
the so-called 𝑛th convergent, say 𝜈𝑛∕𝛿𝑛, where

𝜈1
𝛿1

= 1
𝑎1

,
𝜈2
𝛿2

= 1

𝑎1 +
1
𝑎2

, … ,
𝜈𝑛
𝛿𝑛

= 1

𝑎1 +
⋱ + 1

𝑎𝑛−1 +
1
𝑎𝑛

. (3)

Numerators and denominators of the 𝑛th convergent can be determined separately throughout the schemes [39]

𝜈𝑛 = 𝑎𝑛 𝜈𝑛−1 + 𝜈𝑛−2 , 𝜈−1 = 1 , 𝜈0 = 0 , (4)
𝛿𝑛 = 𝑎𝑛 𝛿𝑛−1 + 𝛿𝑛−2 , 𝛿−1 = 0 , 𝛿0 = 1 . (5)

Let us denote by 𝑘 to the total number of symbols of the 𝑘th block, for 𝑘 ≥ 0. Due to the recursive relation of Eq. (2), at each step
new 𝑎𝑘 blocks ot type 𝑘−1 are added to the existing block 𝑘−2, it follows immediately that

𝑘 = 𝑎𝑘 𝑘−1 +𝑘−2 , 1 ≤ 𝑘 ≤ 𝑛 , −1 = 1 , 0 = 1 . (6)

It is straightforward that 𝑘 = 𝜈𝑘 + 𝛿𝑘, 𝑘 ≥ −1, something that will be used later.
Two illustrative examples are shown in Table 1 for the numbers 𝛼 = 3∕11 = [0; 3, 1, 2] and 𝛼 = 1∕𝜙 = [0; 1, 1,…], where

𝜙 = (1 +
√

5)∕2 is the gold number. This latter corresponds to the well known Fibonacci sequence, although only the first five
iterations have been listed. Note that for both numbers, the total amount of symbols is equal to 𝑛 = 𝜈𝑛 + 𝛿𝑛, something that can
be proved straightforward from Eqs. (4) and (5). Furthermore, it turns out that among the 𝑛 symbols, there are 𝜈𝑛 are 𝑞’s and 𝛿𝑛
are 𝑝’s, being −1 = 𝑞 and 0 = 𝑝.

We have defined Sturmian sequences for every real number between 0 and 1, including both limits. It is worthwhile to stop for
moment and describe what the sequences associated with these limits look like. First, 𝛼 = 0 does not have strictly a continued

fraction as shown in Eq. (1) but can be considered the limit of 0 = lim𝑟→∞[0; 𝑟] and therefore its associated sequence will also be
the limit

(𝛼 = 0) = lim
𝑟→∞

(1∕𝑟) = lim
𝑟→∞

𝑝𝑟 𝑞 = 𝑝𝑝𝑝𝑝𝑝… (7)

On the other side, the value 𝛼 = 1 has as (degenerated) continuous fraction 1 = 1∕1 and therefore its associated Sturmian sequence
is

(𝛼 = 1) = 𝑝𝑞 𝑝𝑞 𝑝𝑞 𝑝𝑞 … (8)

As it will be seen later, both limit values 𝛼 = 0 and 1 are associated to very well-known systems: a homogeneous medium and the
periodic bi-layered structure, respectively. Now we have established how to construct Sturmian sequences from a simple two-symbol
alphabet. In the next section we will describe how each Sturmian word or block can be associated with a mechanical structure.
3
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Fig. 1. Three different examples of dynamical systems based on Sturmian blocks for number 𝛼 = 2∕7 = [0; 3, 2]. Above: a discrete spring–mass system, 𝛩 ≡ 𝑘
(spring coefficients). Middle: a continuous rod (axial waves), 𝛩 ≡ 𝜌𝐴 (mass per unit of length). Bottom: a continuous beam (flexural waves), 𝛩 ≡ 𝐸𝐼 (sectional
bending stiffness).

2.2. Quasiperiodic distribution of parameters

Consider a dynamical system capable to propagate waves in one direction. Let us assume that system is formed by the
concatenation of different elements, for instance masses, springs, rods, elastic supports, beams. All of these elements have
mechanical, inertial and geometrical properties in the context of elastic waves. Thus, for instance, a discrete lumped mass system
has as parameters the masses and the spring coefficients. Given certain 𝛼 ∈ [0, 1] = [0; 𝑎1,… , 𝑎𝑛], then the Sturmian block associated
to 𝛼, (𝛼) = 𝑛, has exactly 𝑁 = 𝑛 symbols according to the pattern given by Eqs. (2) and (6). Our system arises as the periodic
repetition of the block (𝛼), which in turn is formed by 𝑁 elements. One of the parameters, say 𝛩, can take only two values among
the binary set {𝜃𝑝, 𝜃𝑞}, meanwhile the rest of parameters remain constant from element to element along the block. Thus, if 𝛩(𝑗)
denotes the value of the parameter of the 𝑗th element, with 1 ≤ 𝑗 ≤ 𝑁 , then we have

𝛩(𝑗) =

{

𝜃𝑝 if the 𝑗th term of (𝛼) is 𝑝
𝜃𝑞 if the 𝑗th term of (𝛼) is 𝑞

, 1 ≤ 𝑗 ≤ 𝑁 . (9)

Since the system is formed by periodic repetition of the Sturmian block (𝛼), then 𝛩(𝑗 + 𝑁) = 𝛩(𝑗) for 𝑗 > 𝑁 . In Fig. 1 the
building process of the system is illustrated with three examples, a discrete spring–mass system, a continuous rod (axial waves) and
a continuous beam (flexural waves). The Sturmian pattern for the three systems is given by the number 𝛼 = 2∕7 = [0; 2, 3], resulting
the block (𝛼) = 𝑝𝑝𝑝𝑞𝑝𝑝𝑝𝑞𝑝. The elements of the discrete system are formed by one spring and one mass. The mass remains fixed but
the rigidity of the spring assumes the roll of the parameter, i.e. 𝛩 ≡ 𝑘, and 𝑘𝑝 or 𝑘𝑞 are depending on the Sturmian sequence within
(𝛼). The second system (shown in the middle of Fig. 1) represents a straight rod with density 𝜌, cross sectional area 𝐴 and Young
modulus 𝐸. As known, the axial compressional waves propagate at a velocity

√

𝐸𝐴∕𝜌𝐴. The infinite medium is structured into
elements of length 𝑙. In the particular case of this example, the axial stiffness 𝐸𝐴 is constant meanwhile the mass per unit of length
𝜌𝐴 varies among two values {𝜌𝐴𝑝, 𝜌𝐴𝑞} as indicated in the Sturmian block. The third example represents a beam on simple supports.
Possible parameters which can be assigned to 𝛩 are, for instance, {𝜌𝐴,𝐸𝐼,𝐺𝐴𝑠}, where 𝐸𝐼 and 𝐺𝐴𝑠 are the sectional bending and
shear stiffness, respectively. Even the span length between supports could be changed from element to element obeying the Sturmian
block pattern. In Fig. 1 (bottom) the bending stiffness is assumed to take one of the two values 𝐸𝐼𝑝 and 𝐸𝐼𝑞 as prescribed in (𝛼).
In this case, the three examples have 𝑁 = 9 elements which are repeated periodically. If 𝛼 is an irrational number, theoretically
the system is not periodic because (𝛼) has infinite number of symbols. In order to construct an achievable system, 𝛼 has to be
approximated by the 𝑛th convergent, i.e. 𝛼 ≈ 𝜈𝑛∕𝛿𝑛. As 𝑛 increases, the effects of quasiperiodicity become more relevant and visible
in the system. One of the consequences is the selfsimilarity of the spectrum as more terms of the sequence {𝑎𝑛} are added, something
that can be visualized for the Fibonacci case in Ref. [30]

Since from a practical point of view we can only form systems associated to rational numbers, the resulting parameter
arrangement will result in a so-called supercell with 𝑁 = 𝑛 elements. This one will be repeated periodically in the same way
as the associated Sturmian word, forming a mechanical waveguide.

2.3. A geometrical interpretation

Consider a dynamical system where one of the parameter is tuned according to the two values 𝛩 ∈ {𝜃𝑝, 𝜃𝑞}. As shown above,
the system is an infinite media divided into elements. The Sturmian block (𝛼) controls the pattern of assignation of 𝛩 for each
4
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Fig. 2. Two rectangles 𝑆1(𝑢 × 𝜃𝑝) and 𝑆2(𝑣 × 𝜃𝑞 ) forming a tiling by periodic translation of basis 𝐞 = (𝑣, 𝜃𝑝), 𝐟 = (−𝑢, 𝜃𝑞 ). The examples shown has been built for
𝛼 = 𝑣∕𝑢 = 2∕7 = [0; 3, 2].

element. It is possible to relate the three numbers 𝜃𝑝, 𝜃𝑞 , 𝛼 with a geometrical construction, providing a graphical interpretation of
the system and in turn with some analytical implications. The following developments make sense when 𝛼 is a rational number.
Otherwise, it has already been seen that the system cannot be evaluated computationally, except if it is considered as the limit of
a sequence of finite systems associated with the different convergents.

Assume that 𝛼 = [0; 𝑎1,… , 𝑎𝑛] ∈ [0, 1] can be written as the quotient of two coprime integers 𝛼 = 𝑣∕𝑢, with 𝑣 ≤ 𝑢. Let us consider
two rectangles 𝑆1, 𝑆2 ⊂ R2 with widths 𝑢 and 𝑣 and heights 𝜃𝑝 and 𝜃𝑞 , respectively (see Fig. 2). We can now form a basis of vectors
{𝐞, 𝐟} where

𝐞 = (𝑣, 𝜃𝑝) , 𝐟 = (−𝑢, 𝜃𝑞) . (10)

Translating repeatedly the figure 𝑆1 ∪ 𝑆2 in the both directions given by the vectors 𝐞 and 𝐟 , a bidimensional tiling arises. We are
interested in the pattern of the cutting points of any vertical line with horizontal sides of the tiling. It is clear that the distance
between two consecutive intersecting points is either 𝜃𝑝 or 𝜃𝑞 . It turns out that the sequence of the resulting segments, for instance
𝜃𝑝 𝜃𝑝 𝜃𝑝 𝜃𝑞 … coincides with that one given by the Sturmian block. The fact that 𝛼 = 𝑣∕𝑢 is a rational number makes the pattern to
periodically repeat, just as our unit cell is replicated in the infinite media. This property can be proved with help of the following
sequence of vectors {𝐠𝑘} defined recursively from the basis {𝐞, 𝐟} and from the continued fraction of 𝛼.

𝐠𝑘 = 𝑎𝑘 𝐠𝑘−1 + 𝐠𝑘−2 , 0 ≤ 𝑘 ≤ 𝑛 , 𝐠−1 = 𝐟 , 𝐠0 = 𝐞 . (11)

It can be demonstrated straightforward by induction that 𝐠𝑘 = 𝜈𝑘 𝐟 + 𝛿𝑘 𝐞 since both 𝜈𝑘 and 𝛿𝑘 also can be formed under the same
pattern, see Eqs. (4) and (5). Using the components of 𝐞 and 𝐟 from Eq. (10) and denoting by (𝑥𝑘, 𝑦𝑘) = 𝐠𝑘, it yields

𝑥𝑘 = 𝛿𝑘 𝑣 − 𝜈𝑘 𝑢 , 𝑦𝑘 = 𝛿𝑘 𝜃𝑝 + 𝜈𝑘 𝜃𝑞 , 0 ≤ 𝑘 ≤ 𝑛 . (12)

Thus, in the 𝑘th step, the block 𝑘 has 𝑘 = 𝜈𝑘 + 𝛿𝑘 symbols among which 𝜈𝑘 are 𝑞’s and 𝛿𝑘 are 𝑝’s. In particular, for the last step,
if 𝛼 = 𝜈𝑛∕𝛿𝑛 (rational number), then 𝑥𝑛 = 𝛿𝑛 𝑢

(

𝛼 − 𝜈𝑛∕𝛿𝑛
)

= 0. In other case, 𝛼 ≈ 𝜈𝑛∕𝛿𝑛 represents an approximant and therefore
𝑥𝑛 ≠ 0. Moreover, the vertical component 𝑦𝑛 represents graphically the segment length of the window 𝑦𝑛 = 𝛿𝑛(𝜃𝑝 + 𝛼𝜃𝑞) in the tiling
(see Fig. 3). In terms of the parameters of the system, we have 𝑦𝑛 =

∑𝑁
𝑗=1 𝛩(𝑗), where 𝑁 denotes the size of the sequence. Since

𝑁 = 𝜈𝑛 + 𝛿𝑛 = 𝛿𝑛(1 + 𝛼) then the following relationship between the parameters of the system and the number 𝛼 can be established
𝑁
∑

𝑗=1
𝛩(𝑗) = 𝑁

𝜃𝑝 + 𝛼 𝜃𝑞
1 + 𝛼

. (13)

In Fig. 3 the geometrical interpretation of the Sturmian block is illustrated for the number 𝛼 = 2∕7 = [0; 3, 2]. Since the continued
fraction has two terms (𝑛 = 2), the last vector 𝐠2 results to be purely vertical with length equal to 2𝜃𝑞 + 7𝜃𝑝. The quasiperiodic
distribution of the parameter 𝛩 can be visualized following the cutting points of any vertical line with the horizontal sides of the
rectangles 𝑆1, 𝑆2. Similarly the different vectors of the sequence {𝐠𝑘} form a fan which tends to be vertical. Furthermore, if 𝛼 is an
irrational number, then the greater 𝑛, the closer to the vertical line is 𝐠𝑛. In the latter case, the dynamical properties of the system
5

must be approximated by the 𝑛th convergent.
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Fig. 3. Lattice plane tiling using rectangles 1 and 2. Sturmian blocks associated to 𝛼 = 2∕7 = [0; 3, 2] and the corresponding Sturmian-like spring–mass chain.
Right: sequence of bases {𝐠𝑘}𝑛𝑘=1 and length of the supercell in terms of the quasiperiodic parameter ∑𝑛

𝑗=1 𝛩(𝑗) = 𝜈𝑛𝜃𝑞 + 𝛿𝑛𝜃𝑝.

More details about the relationship between Sturmian words and tilings formed the so-called bi-partition of the torus can be
found in the Refs. [40,41]. There exist other geometrical approaches to obtain quasiperiodic patterns, for instance the cutting
sequences [15,42], the cut and project scheme [43,44] or the rotation-projection algorithm [7,37].

3. Spectrum of Sturmian structured media

One of the most relevant consequences of wave propagation in structured media is the emergence of bandgaps in the frequency
spectrum. In periodic media, a proper design of the unit cell can result in optimized location of bandgaps or passbands for practical
interest. On other side, quasiperiodic media, like for example Fibonacci sequence-based systems, exhibit self-similarity of the
spectrum [8–10]. In this article, we propose to study one-dimensional quasiperiodic systems formed by structural elements. The
proposed method allows to associate a generating parameter 𝛼 ∈ [0, 1] with each system. By sweeping out the values of such
enerator, we can form a family of structures with tailored properties as for instance can be the dispersion relations or resonances.
e seek to relate this generating parameter 𝛼 to the admitted frequencies in the system by means of the so-called bulk spectrum.

.1. Dispersion relation and bulk spectrum

Dispersion relation relates frequencies and wavenumbers that can be exited in an infinite medium. For one-dimensional
ropagation, the transfer matrix method (TMM) results suitable to describe the transmission of the system variables from one element
o the next one and ultimately between supercells. Energy transport mechanisms, dispersion curves, density of states or transmission-
eflexion coefficients can be addressed using this approach. The TMM allows to express the state variables of the problem associated
o a point of the system from those of another point by means of product of matrices, collecting the system properties between both
oints. Denote by u(𝑥, 𝑡) the state vector in time-domain at position 𝑥 and at instant 𝑡. In general, this vector contains both node
isplacements and internal forces of the system. Considering harmonic motion, we can write u(𝑥, 𝑡) = 𝐮(𝑥) 𝑒i𝜔𝑡. Let us consider two
oints in the system 𝑥𝑗 and 𝑥𝑘 and denote 𝐮𝑗 = 𝐮(𝑥𝑗 ), 𝐮𝑘 = 𝐮(𝑥𝑘). Then, the transfer matrix of the system between nodes 𝑗 and 𝑘,
uch that 𝑥𝑗 < 𝑥𝑘 is a square matrix 𝐓𝑗𝑘 such that
6

𝐮𝑘 = 𝐓𝑗𝑘 𝐮𝑗 . (14)
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Fig. 4. A one-dimensional Sturmian structured system associated to the number 𝛼. The binary parameter 𝛩(𝑗) ∈ {𝜃𝑝 , 𝜃𝑞} changes its value according to the
Sturmian pattern given by the block (𝛼).

Table 2
Transfer matrix of the 𝑘th Sturmian block associated to 𝛼 = [0; 𝑎1 , 𝑎2 ,… , 𝑎𝑛]. Matrices 𝐓𝑝 and 𝐓𝑞
denote respectively the transfer matrices of elements with parameters 𝜃𝑝 and 𝜃𝑞 .

Order, 𝑘 Sturmian block, 𝑘 Transfer matrix,  𝑘

−1 −1 = 𝑞  −1 = 𝐓𝑞
0 0 = 𝑝  0 = 𝐓𝑝
1 1 = 0

𝑎1… 0 −1  1 =  −1 
𝑎1
0

… … …
𝑛 𝑛 = 𝑛−1

𝑎𝑛… 𝑛−1 𝑛−2  𝑛 =  𝑛−2 
𝑎𝑛
𝑛−1

Some relevant properties of the transfer matrix [45] which will be used later:

• It is unimodular, i.e. det
(

𝐓𝑗𝑘
)

= 1.
• It depends on the elastodynamical properties of the system within 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑘 and on the frequency 𝜔.
• If 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑗−1 < 𝑥𝑗 then 𝐓1𝑗 = 𝐓𝑗−1,𝑗 𝐓𝑗−2,𝑗−1 ⋯𝐓12.

As described above, Sturmian structured systems are constructed on the assumption that certain element parameter 𝛩 is tuned
following the Sturmian pattern (𝛼) associated to certain number 𝛼 = [0; 𝑎1,… , 𝑎𝑛]. In Fig. 4 a schematic sketch of a Sturmian
system is shown, where the supercell given by (𝛼) is periodically repeated. Denoting by 𝐓𝑗 to the transfer matrix between nodes
𝑗 − 1 and 𝑗, then we can write the relationship between the state vectors at the two ends of the unit cell as

𝐮𝑁 =
(

𝐓𝑁 ⋅ ⋯ ⋅ 𝐓1
)

𝐮0 ≡  (𝛼)𝐮0 . (15)

The above expression holds for any one-dimensional dynamic model, regardless of the algorithm used for its construction. In
the particular case of Sturmian structured systems, we have already seen above that the block (𝛼) set the value of the property

. Since each block emerges from concatenation of previous blocks according to the rule (2), then the transfer matrix associated
o each block can also be determined in a recursive way in terms of matrix product. Indeed, denoting by  𝑘 to the transfer matrix
ssociated to the 𝑘th Sturmian block 𝑘, then the way in which they can recursively be determined is shown in Table 2.

 𝑘 =  𝑘−2
𝑎𝑘
𝑘−1 , 1 ≤ 𝑘 ≤ 𝑛 ,

 −1 = 𝐓𝑞 ,  0 = 𝐓𝑝 . (16)

he TM of the unit cell is then  (𝛼) =  𝑛 and relates the state variables 𝐮0 and 𝐮𝑁 yielding

𝐮𝑁 =  (𝛼)𝐮0 . (17)

pplying the Bloch theorem to the unit cell we know that 𝐮𝑁 = 𝑒i𝜅𝐿𝐮0, thus Eq (17) can be written then as the linear eigenvalue
roblem

[

 (𝛼) − 𝜆 𝐈
]

𝐮0 = 𝟎 , (18)

here the parameter is 𝜆 = 𝑒i𝜅𝐿. As known, the TM depends on the frequency 𝜔. Certain wave of frequency 𝜔 is said to be admitted
n the medium if there exist real solution for the wavenumber 𝜅 from Eq. (18). In such a case, the frequency lies within a passband.
therwise, it is in a bandgap or stopband, where the wave cannot be transmitted in the medium because is evanescent with an
xponentially decaying amplitude (complex wavenumber). Passbands and stopbands can be visualized in the dispersion curves
hich arise as solutions of the equation det

[

 (𝛼) − 𝜆 𝐈
]

= 0. In most structural models of rods and beams the transfer matrices
re 2 × 2 or 4 × 4 in size. For them, closed forms for the dispersion relations can be derived.

If  (𝛼) is a 2 × 2 matrix then the characteristic polynomial of Eq. (18) is
[ ] 2 [ ] [ ]
7

det  (𝛼) − 𝜆 𝐈 = 𝜆 − tr  (𝛼) 𝜆 + det  (𝛼) , (19)
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where tr(∙) stands for the matrix trace operator. The fact that transfer matrix are unimodular notably simplifies the problem resulting,
after some straight operations, the final expression for 2 × 2 TM spectrum

cos (𝜅𝐿) = 1
2
tr
[

 (𝛼)
]

. (20)

This approach can be extended to consider system described under 4 × 4 transfer matrices [8]. Indeed, in such case the characteristic
polynomial results

det
[

 (𝛼) − 𝜆 𝐈
]

= 𝜆4 − 𝑐1𝜆
3 + 𝑐2𝜆

2 − 𝑐3𝜆 + 𝑐4 = 0 , (21)

here

𝑐1 = tr
[

 (𝛼)
]

,

𝑐2 = 1
2

(

tr2
[

 (𝛼)
]

− tr
[

 2(𝛼)
])

,

𝑐3 = 1
6

(

tr3
[

 (𝛼)
]

− 3 tr
[

 2(𝛼)
]

tr
[

 (𝛼)
]

+ 2 tr
[

 3(𝛼)
])

,

𝑐4 = det
[

 (𝛼)
]

. (22)

If 𝜅 is the wavenumber of a solution representing a Bloch wave traveling towards the right, then 𝜆−1 = 𝑒−i𝜅𝐿 must be also a solution
traveling leftwards. Therefore, Eq. (21) holds also for 𝜆−1, yielding

det
[

 (𝛼) − 𝜆 𝐈
]

= 𝜆−4 − tr
[

 (𝛼)
]

𝜆−3 + 𝑐2𝜆
−2 − 𝑐3𝜆

−1 + 𝑐4 = 0 . (23)

Multiplying by 𝜆4 and identifying coefficients with Eq. (21) one gets 𝑐3 = 𝑐1 and 𝑐4 = 1. Moreover, using these results and dividing
Eq. (21) 𝜆2, the quartic equation can be reduced to the quadratic polynomial

𝑠2 − tr
[

 (𝛼)
]

𝑠 + 𝑐2 − 2 = 0 , (24)

where

𝑠 = 𝜆 + 𝜆−1 = 𝑒i𝜅𝐿 + 𝑒−i𝜅𝐿 = 2 cos(𝜅𝐿) =
tr
[

 (𝛼)
]

±
√

tr2
[

 (𝛼)
]

− 4(𝑐2 − 2)

2
. (25)

Finally, after some simplifications the spectrum yields

cos(𝜅𝐿) = 1
4

[

tr
[

 (𝛼)
]

±
√

2 tr
[

 2(𝛼)
]

− tr2
[

 (𝛼)
]

+ 8

]

. (26)

The two solutions obtained lead to two dispersion branches related to waves of different nature in the model. Thus, for instance,
in the case of Timoshenko beams, (revisited below as an example of 4 × 4 TM), both solutions correspond to the spectrum of pure
bending and shear waves associated with each frequency.

From both Eqs. (20) and (26) the wavenumber 𝜅(𝜔) can be expressed analytically as function of frequency. Admitted frequencies
are those values of 𝜔 which lead to a real wavenumber 𝜅(𝜔). For 2 × 2 TM, this can be reduced to the condition −2 ≤ tr

[

 (𝛼)
]

≤ 2. For
4 × 4 TM bandgaps are defined as those frequencies which make the right hand side of Eq. (26) to be higher than 1 in absolute value.
Collecting the admitted frequencies, they can be arranged along a line so that passbands are depicted as segments and stopbands
are the bandgaps between them. Repeating the process for the whole range of 𝛼 the passbands and stopbands form a figure, called
bulk spectrum (BS). The finer the discretization of the interval [0, 1], the better resolution of this graphical figure, which allows to
visualize at a single glance the quasiperiodic profile of our system based on the Sturmian sequences. In the following section we
will present some properties of BS that can be established a priori and that will be tested later in the numerical examples.

3.2. Spectrum properties and selfsimilarity

Given certain 𝛼 = 𝜈𝑛∕𝛿𝑛 in the range 0 ≤ 𝛼 ≤ 1, the mechanical system constructed from the Sturmian Block has exactly
𝑁(𝛼) = 𝜈𝑛+𝛿𝑛 elements, number that coincides with the number of symbols in the word (𝛼). Thus, for instance, systems associated to
imple fractions like for instance 𝛼 = 1∕2, 1∕3, 3∕4 will present 3, 4 and 7 elements respectively. The number of passbands/stopbands
nd their distribution depends directly on the arrangement of elements in the supercell. However, for an irrational number 𝛼, the
lock (𝛼) results in an infinite word and therefore it will present infinite passbands and bandgaps. For certain type of irrationals,
he frequency spectrum results to be selfsimilar [8]. Since both type of spectrums, associated to rational and irrational numbers,
oexist in the same bulk spectrum, our goal is trying to explain the geometrical structure and to justify the selfsimilarity properties
bserved in the numerical examples.

Consider two points 𝑎 and 𝑏 inside the interval [0, 1] defined as

𝑎 =
[

0; 𝑎1,… , 𝑎𝑛
]

= 1

𝑎1 +
1

⋱ + 1

𝑎𝑛−1 +
1

=
𝜈𝑛
𝛿𝑛

, 𝑏 =
[

0; 𝑎1,… , 𝑎𝑛−1
]

= 1

𝑎1 +
1

⋱ + 1
𝑎𝑛−1

=
𝜈𝑛−1
𝛿𝑛−1

. (27)
8

𝑎𝑛
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The matrices  (𝑎) and  (𝑏) stand for the TM’s of the Sturmian systems associated to both numbers. We know that both matrices
are determined as the last term of the recursion formula (16), namely

 (𝑎) =  𝑛 =  𝑛−2 
𝑎𝑛
𝑛−1 ,

 (𝑏) =  𝑛−1 =  𝑛−3
𝑎𝑛−1
𝑛−2 . (28)

lthough there are infinitely many numbers between 𝑎 and 𝑏 and therefore infinitely many systems, there is a family of systems
hat can be represented mathematically by a numerable set. This family allows us to deduce some interesting properties that help
o predict the behavior of the spectrum. Let {𝛼𝑟}𝑟≥0 be a sequence of real numbers defined as

𝛼𝑟 =
[

0; 𝑎1,… , 𝑎𝑛 + 𝑟
]

= 1

𝑎1 +
1

⋱ + 1

𝑎𝑛−1 +
1

𝑎𝑛 + 𝑟

. (29)

It is straightforward that

lim
𝑟→0

𝛼𝑟 = 𝑎 , lim
𝑟→∞

𝛼𝑟 = 𝑏 (30)

In addition, 𝛼𝑟 lies between 𝑎 and 𝑏. Indeed, since 𝑎 = 𝜈𝑛∕𝛿𝑛 and 𝑏 = 𝜈𝑛−1∕𝛿𝑛−1, then by Eqs. (4) and (5) we have 𝛼𝑟 = 𝜈(𝑟)∕𝛿(𝑟) with

𝜈(𝑟) = (𝑎𝑛 + 𝑟) 𝜈𝑛−1 + 𝜈𝑛−2 = 𝜈𝑛 + 𝑟 𝜈𝑛−1 ,

𝛿(𝑟) = (𝑎𝑛 + 𝑟) 𝛿𝑛−1 + 𝛿𝑛−2 = 𝛿𝑛 + 𝑟 𝛿𝑛−1 . (31)

Hence,

𝛼𝑟 =
𝜈(𝑟)
𝛿(𝑟)

=
𝜈𝑛 + 𝑟 𝜈𝑛−1
𝛿𝑛 + 𝑟 𝛿𝑛−1

=
𝑎 𝛿𝑛 + 𝑟 𝑏 𝛿𝑛−1
𝛿𝑛 + 𝑟 𝛿𝑛−1

= 𝜁𝑟 𝑎 + (1 − 𝜁𝑟) 𝑏 , (32)

here 𝜁𝑟 = 𝛿𝑛∕(𝛿𝑛 + 𝑟𝛿𝑛−1), with 0 < 𝜁𝑟 ≤ 1. Eqs. (32) shows clearly that 𝛼𝑟 lies between the two points no matter the order, because
a priori it is not know whether 𝑎 < 𝑏 or 𝑏 < 𝑎.

Let us denote by 𝝉𝑟 =  (𝛼𝑟) to the transfer matrix of the Sturmian system associated to 𝛼𝑟. By definition of  (𝛼𝑟) it yields

𝝉𝑟 =  𝑛−2 
𝑎𝑛+𝑟
𝑛−1 =

(

 𝑛−2 
𝑎𝑛
𝑛−1

)

 𝑟
𝑛−1 =  (𝑎)  𝑟(𝑏) . (33)

This expression exhibits the nature of the system associated with 𝛼𝑟 as the concatenation of the systems (𝑎) and (𝑏), this latter 𝑟
times.

(𝛼𝑟) = (𝑏) 𝑟… (𝑏)(𝑎) . (34)

he effect of introducing the system (𝑎) into a system of the form (𝑏) 𝑟… (𝑏) with 𝑟 ≫ 1 is to open the passbands of the latter
ith small bandgaps associated to the former. The closer we are to 𝑏 (the greater 𝑟) the more bandgaps will be open but also the
arrower. The interesting point about this behavior is that it occurs at all scales independently of the two points 𝑎 and 𝑏 chosen,

as long as they are the initial and limit numbers of the sequence {𝛼𝑟}. We are therefore faced with a fractal pattern in the figure
resulting from the spectrum. Mathematically, this relationship between the number of passbands and the distance between 𝛼𝑟 and 𝑏
an be visualized in a simple expression. Indeed, consider the parameter 𝜁 introduced in Eq. (32) as the relative distance between
𝑟 and 𝑏. In fact, it yields

𝜁𝑟 =
𝛼𝑟 − 𝑏
𝑎 − 𝑏

=
𝛿𝑛

𝛿𝑛 + 𝑟𝛿𝑛−1
. (35)

ow, the number of branches in the dispersion relation of the system associated to 𝛼 = [0; 𝑎1,… , 𝑎𝑛] is directly proportional to the
amount of distinct elements 𝑁(𝛼) = 𝜈𝑛 + 𝛿𝑛. Thus, for the numbers 𝑎, 𝑏 and 𝛼𝑟, we have

𝑁(𝑎) = 𝜈𝑛 + 𝛿𝑛 = (1 + 𝑎) 𝛿𝑛 ,

𝑁(𝑏) = 𝜈𝑛−1 + 𝛿𝑛−1 = (1 + 𝑏) 𝛿𝑛−1 ,

𝑁(𝛼𝑟) = 𝜈(𝑟) + 𝛿(𝑟) = (1 + 𝛼𝑟) 𝛿(𝑟) = 𝑁(𝑎) + 𝑟𝑁(𝑏) , (36)

where the latter expression holds directly from Eqs. (31). Plugging Eq. (36) into Eq. (35) and after some straight operations we have
finally

𝜁𝑟 =
𝛼𝑟 − 𝑏
𝑎 − 𝑏

= 1

1 + 1 + 𝑎
1 + 𝑏

𝑁(𝛼𝑟) −𝑁(𝑎)
𝑁(𝑎)

. (37)

Moreover, when 𝑎 and 𝑏 lies very closed each other it is verified that

𝜁𝑟 =
𝛼𝑟 − 𝑏

≈
𝑁(𝑎) if |𝑎 − 𝑏| ≪ 1 . (38)
9

𝑎 − 𝑏 𝑁(𝛼𝑟)
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The system 𝑟(𝑏), formed as periodic repetition of (𝑏) 𝑟 times, has a larger number of branches in the dispersion relation with
respect to that of (𝑏), but does not add new bandgaps in the spectrum of admitted frequencies, these are simply new foldings of
the Brillouin region. However, 𝑟(𝛼𝑟) = 𝑟(𝑏)(𝑎) results from embedding (𝑎) within 𝑟(𝑏), and the new heterogeneity induces new
bandgaps [8] in the branches of 𝑟(𝑏). Eq. (38), relates the distance |

|

𝛼𝑟 − 𝑏|
|

and the ratio between the size of the systems, which in
turn is somehow equivalent to the proportion of passbands of (𝑎) and (𝛼𝑟). This relationship between the geometric distance on
the axis of the alpha parameter and the structure of the spectrum will become clear in the numerical examples. Let us see that we
can analytically extract the spectrum as an explicit function of 𝑟 for the particular case of 2 × 2 transfer matrices.

Given 0 < 𝑎 ≤ 1, then the spectrum of admitted waves in the system (𝛼𝑟) is given by those values of the frequency 𝜔 which
lead to real eigenvalues of the wavenumber 𝜅(𝜔) in the eigenproblem

[

𝝉𝑟(𝜔) − 𝜆 𝐈
]

𝐮0 = 𝟎 , (39)

where 𝜆 = 𝑒i𝜅𝐿 and 𝝉𝑟(𝜔) =  (𝑎)  𝑟(𝑏) is the TM given by Eq. (33), highlighting the frequency dependency. Some properties of the
2 × 2-size unimodular matrices allow us to determine a closed form of the dispersion relation associated to each number of the
sequence. As stated above, the dispersion relation of a system modeled with 2 × 2 matrices is closely related to the trace of the TM,
so that the spectrum of 𝛼𝑟 can be represented by the set

{𝜔 ∈ R ∶ −1 ≤ tr
[

𝝉𝑟(𝜔)
]

∕2 ≤ 1} . (40)

From Eq. (33) it yields

𝝉𝑟+1 =  (𝑎)  𝑟+1(𝑏) = 𝝉𝑟  (𝑏) , (41)

𝝉𝑟−1 =  (𝑎)  𝑟−1(𝑏) = 𝝉𝑟 
−1(𝑏) . (42)

For the following developments we need two properties of the 2nd order unimodular square matrices enabling to derive closed
expressions for the spectrum associated to 𝛼𝑟. Consider 𝐀,𝐁 ∈ R2×2 and det 𝐀 = det 𝐁 = 1 then

(i) tr [𝐀𝐁] = tr [𝐀] tr [𝐁] − tr
[

𝐀𝐁−1].
(ii) 𝐀𝑟+1 = 𝑟(𝑧) 𝐀 −𝑟−1(𝑧) 𝐈2 , 𝑧 = tr 𝐀∕2 , 𝑟 = 1, 2, 3,…

where 𝑟(𝑧) the 𝑟th order Chebyshev polynomial of second kind. In Eqs. (41) and (42) the trace of 𝝉𝑟 results to be the trace of a
product of unimodular matrices. Thus, taking traces on Eq. (41) and making use of Eq. (42)

tr
[

𝝉𝑟+1
]

= tr
[

𝝉𝑟  (𝑏)
]

= tr
[

𝝉𝑟
]

tr
[

 (𝑏)
]

− tr
[

𝝉𝑟 
−1(𝑏)

]

= tr
[

𝝉𝑟
]

tr
[

 (𝑏)
]

− tr
[

𝝉𝑟−1
]

. (43)

Denoting by 𝑧𝑟 = tr
[

𝝉𝑟(𝜔)
]

∕2, then

𝑧𝑟+1 = 2 𝑧∞ 𝑧𝑟 − 𝑧𝑟−1 , (44)

where 𝑧∞ = tr
[

 (𝑏)
]

∕2 = lim𝑟→∞ tr
[

𝝉𝑟
]

∕2 stands for the spectrum of the system associated to 𝑏. The two eigenvalues of the recursive
scheme (44) are

𝑧∞ ±
√

𝑧2∞ − 1 . (45)

ince the system with transfer matrix  (𝑏) is known a priori, so are its frequency passbands, where |

|

𝑧∞|

|

≤ 1 holds. In turn, the
requency bands where the latter inequality is verified define the only region where the passbands of the sequence {𝑧𝑟} may converge,
ccording to Eq. (45).

A closed form expression for 𝑧𝑟+1 can be determined in this case invoking the property (ii) presented above. Since 𝝉𝑟+1 =
(𝑎)  𝑟+1(𝑏), then

𝝉𝑟+1 = 𝑟(𝑧∞) (𝑎)  (𝑏) −𝑟−1(𝑧∞) (𝑎) = 𝑟(𝑧∞)𝝉1 −𝑟−1(𝑧∞)𝝉0 (46)

nd taking traces

𝑧𝑟+1 = 𝑟(𝑧∞)𝑧1 −𝑟−1(𝑧∞)𝑧0 . (47)

his expression shows the algebraic pattern of the bands in the 𝛼𝑟 sequence, depending on the family of Chebyshev polynomials. The
nteresting feature is that this structure is repeated independently of the number 𝑎 = [0; 𝑎1,… , 𝑎𝑛] considered, so that a selfsimilar
eometrical shape is to be expected at different scales of the bulk spectrum, something that will be revealed in the numerical
xperiments in the next section. We shall illustrate the dynamical properties of systems generated by Sturmian sequences using for
hat both discrete and continuous structures and considering waves of different nature.

. Numerical examples

.1. Example 1. Compressional waves in discrete systems

In this first example a discrete spring–mass lattice is considered (see Fig. 5). Following the methodology described above, the
ystem consists of the periodic concatenation of 𝑁 single elements formed by a mass and a linear spring, with parameters 𝑚
10
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Fig. 5. (Example 1) Discrete spring–mass system with Sturmian quasiperiodic distribution of rigidities 𝐾𝑗 .

Fig. 6. (Example 1) Three spring–mass systems associated to three numbers 𝛼 = {2∕7, 1∕2, 7∕8}. The dispersion relation is determined assuming that the
supercell of length 𝐿 is distributed periodically. For each system 𝛼 = 𝜈𝑛∕𝛿𝑛 depicts the ratio between the number of rigidities 𝐾𝑞 and 𝐾𝑝 in each supercell. The
size of the system is equal to  (𝛼) = 𝜈𝑛 + 𝛿𝑛.

and 𝐾𝑗 , respectively. In this example, the rigidities 𝐾𝑗 are arranged along the chain following the Sturmian sequence associated to
𝛼 = [0; 𝑎1,… , 𝑎𝑛] ∈ [0, 1]. If 𝛼 = 𝜈𝑛∕𝛿𝑛, then the amount of entries in the sequence, i.e. the size of the chain, is equal to  (𝛼) = 𝜈𝑛+𝛿𝑛.
The variables u𝑗 (𝑡) stand for the horizontal displacements in time domain. Under harmonic motion with circular frequency 𝜔, each
degree of freedom can be expressed as u𝑗 (𝑡) = 𝑢𝑗𝑒i𝜔𝑡 and the harmonic force acting on the link elements is denoted by f𝑗 (𝑡) = 𝑓𝑗𝑒i𝜔𝑡.
Thus, the state vector in the frequency domain can be defined as 𝐮𝑗 = {𝑢𝑗 , 𝑓𝑗}𝑇 . As shown in Fig. 5, state vectors can be located
at the both ends of each element. The relationship between each state vector and the preceding one is given by the product of the
respective transfer matrices associated to the mass and to the spring [45], i.e.

𝐮𝑗 =
{

𝑢𝑗
𝑓𝑗

}

=
[

1 0
−𝑚𝑗𝜔2 1

]

[

1 − 1
𝐾𝑗

0 1

]

{

𝑢𝑗−1
𝑓𝑗−1

}

=
⎡

⎢

⎢

⎣

1 1
𝐾𝑗

−𝑚𝑗𝜔2 1 − 𝑚𝑗𝜔2

𝐾𝑗

⎤

⎥

⎥

⎦

{

𝑢𝑗−1
𝑓𝑗−1

}

≡ 𝐓(𝑚𝑗 , 𝐾𝑗 )𝐮𝑗−1 , (48)

where 𝐓(𝑚𝑗 , 𝐾𝑗 ) denotes the transfer matrix of the 𝑗th element. In this notation is highlighted the fact that 𝑚𝑗 and 𝐾𝑗 are the
dynamical parameters. The generation method considers a certain dynamic property of the system, 𝛩(𝑗), which in this example can
be assumed equal to the masses or to the rigidities. In our particular case, we will consider it equal to the stiffnesses, 𝛩(𝑗) = 𝐾𝑗 ,
remaining constant the masses, i.e. 𝑚𝑗 = 𝑚 for all 𝑗. The parameter 𝐾𝑗 takes values from the binary set {𝐾𝑝, 𝐾𝑞} according to what is
pecified in the Sturmian block (𝛼), which in turn results a binary word from the alphabet {𝑝, 𝑞}. As an example, we shall generate

three systems associated with the numbers 𝛼 = {2∕7, 1∕2, 7∕8} and determine the dispersion relations as well as the representation
f the wave frequency bands (spectrum bands). In the Fig. 6 the Sturmian blocks and the respective supercells have been sketched.

The dispersion relation establishes the frequency 𝜔 of the waves admitted in the system associated to the wavenumber 𝜅, with
and 𝜅 real numbers. The transfer matrix is obtained by the procedure described above in Eqs. (16) and (17) with
11

𝐓𝑞 = 𝐓(𝑚,𝐾𝑞) , 𝐓𝑝 = 𝐓(𝑚,𝐾𝑝) . (49)
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Fig. 7. Example 1. Dispersion relation for three Sturmian spring–mass chains for 𝛼 = {2∕7, 1∕2, 7∕8}. The last figure on the right represents the associated
spectrum only for the three numbers considered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Although omitted, both matrices depend on the frequency. Since spring–mass lattices can be modeled with 2 × 2 transfer matrices,
the wavenumber 𝜅 can be determined straightforward from the relationship

cos(𝜅𝐿) = 1
2
tr
[

 (𝛼)
]

(50)

Using the particular values 𝐾𝑝 = 1 N∕m, 𝐾𝑞 = 2𝐾𝑝 = 2 N/m, and 𝑚 = 1 kg, the dispersion curves can be constructed sweeping out
the range of frequencies 0 ≤ 𝜔 ≤ 3 rad/s and solving the above equation for the dimensionless wavenumber 𝜅𝐿, where 𝐿 stands for
the supercell length. Results are shown in Fig. 7 for the three values 𝛼 = 𝜈𝑛∕𝛿𝑛 = {2∕7, 1∕2, 7∕8}. The fact that the supercell is made
up of single elements with different parameters leads to heterogeneity and therefore to the appearance of passbands and stopbands.
It turns out [8,46] that the amount of passbands, coincides with the size of the Sturmian sequence which in turn is closely related
to the associated number 𝛼 by 𝑁 =  (𝛼) = 𝜈𝑛 + 𝛿𝑛. Projection on a vertical line of the whole set of admitted frequencies leads
to a simplified representation of passbands and stopbands, resulting a dashed line that can be associated to the number 𝛼, generator
of the chain. In Fig. 7 (right) the three numbers are represented in three different colors and their respective spectra have been
located on the corresponding abscissas. The graphical representation that arises from the repetition of the process over the entire
interval 0 ≤ 𝛼 ≤ 1 gives rise to a figure like that of Fig. 9. We call this representation the Sturmian bulk spectrum.

One of the main objectives of this paper is to determine the Sturmian spectrum for elastic structures and to justify its fractal
nature. We shall validate the selfsimilar properties discussed in the previous section. For this purpose we will consider the
quasiperiodic system associated to the number 1∕

√

2, written as the continuous fraction
1
√

2
= [0; 1, 2, 2, 2,…] = 0.70710678… (51)

Consider for example its approximation by convergents up to the fourth term, i.e. 𝑎 = [0; 1, 2, 2, 2] = 12∕17 ≈ 0.70588. This number
allows to build a sequence given by {𝛼𝑟 = [0; 1, 2, 2, 2+𝑟]}∞𝑟=0 so that, according to Eqs. (29) and (30), the numbers 𝑎 = 𝛼0 = 12∕17 and
𝑏 = 𝛼∞ = 5∕7 ≈ 0.71428 are the two endpoints of the sequence. The theoretical developments have shown two interesting properties
in reference to the spectrum passbands of the systems associated to each 𝛼𝑟: (i) the higher the index 𝑟, the closer the 𝛼𝑟 passbands
are to those of 𝑏 = 𝛼∞ and (ii) According to Eq. (47), the spectrum of 𝛼𝑟 is explicitly defined in terms of the 𝑟th order Chebyshev
polynomial. Therefore, as 𝑟 increases, so it does the number of passbands associated to 𝛼𝑟. The process described above can
be repeated for each of the convergents of the irrational number 1∕

√

2. We can then distinguish a set of sequences of passbands
increasingly closer to the quasiperiodic system defined by the number 1∕

√

2. Fig. 8 depicts the Sturmian bulk spectrum of the four
sequences listed in the table. Self-similar structures formed by the frequency bands arise, highlighting the geometrical meaning of
12
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Fig. 8. Sturmian bulk spectrum of spring–mass systems associated to different sequences 𝛼𝑟. The numbers which define the endpoints of the sequence 𝑎 = 𝛼0
and 𝑏 = 𝛼∞ are listed in the table (above). In this figure, in the upper part, the location of the number 1∕

√

2 is highlighted. The black arrow indicates the
increasing values of 𝑟.

Eq. (47), valid regardless of how close the 𝑎 = 𝛼0 and 𝑏 = 𝛼∞ values are. In the limit as we increase the number of convergents, the
same fractal structure appears when zooming around the irrational number 1∕

√

2.
In Fig. 9 the Sturmian bulk spectrum in the interval 0 ≤ 𝛼 ≤ 1 for the parameters 𝐾𝑝 = 1 N∕m and 𝐾𝑞 = 2𝐾𝑝 = 2 N/m

and 𝑚 = 1 kg has been plotted. The fractal pattern observed above in Fig. 8 is now reproduced revealing more complex shapes.
One can easily distinguish the simplest systems, those generated by simple fractions of the form 𝛼 = {1, 1∕2, 1∕3, 1∕4, 1∕5,…} and
𝛼 = {2∕3, 3∕4, 4∕5,…} because they have the widest frequency bands, shown darker in the figure. In particular 𝛼 = 0 corresponds
to the degenerate system ‘‘𝑞𝑞𝑞𝑞𝑞…’’, while 𝛼 = 1 gives rise to the periodic binary system ‘‘𝑝𝑞𝑝𝑞𝑝𝑞…’’, with two bands: the low
frequency or acoustic band and the high frequency or optical band. Both 𝛼 = 0, 1 have the well-known 𝜅–𝜔 spectrum given by
expressions

𝛼 = 0 → cos(𝜅𝐿) = 1 − 𝜔2

2𝐾𝑞
,

𝛼 = 1 → cos(𝜅𝐿) = 1 −
𝐾𝑝 +𝐾𝑞

𝐾𝑝𝐾𝑞
𝜔2 + 𝜔4

2𝐾𝑝𝐾𝑞
. (52)

Both 0 and 1 are precisely the limits of two sequences of type 𝛼𝑟 that begin at the same point 𝛼0 = 1∕2. Indeed, 𝛼𝑟 = [0; 2 + 𝑟] =
{1∕2, 1∕3, 1∕4,…} has as limit 𝛼∞ = 0, while 𝛼𝑟 = [0; 1, 1 + 𝑟] = {1∕2, 2∕3, 3∕4,…} converges to 𝛼∞ = 1. The Fig. 9 clearly reveals
the bands associated with these two sequences, which are in turn limits of other sequences of numbers with increasingly longer
continued fractions.

4.2. Example 2. Compressional waves in rods

In this example Sturmian distribution of parameters along a straight rod will be considered. Let us assume an infinite medium
formed by single elements of length 𝑙. The 𝑗th element has stiffness and mass properties given by 𝐸𝐴𝑗 and 𝜌𝐴𝑗 , where 𝐸𝐴𝑗 and
𝜌𝐴𝑗 stand for the compressional sectional stiffness and the mass per unit of length, respectively. In order to simplify the notation,
the parameters 𝐸𝐴 and 𝜌𝐴 are understood as the products of the Young modulus 𝐸 and the density 𝜌 and the area of the cross
13
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Fig. 9. Sturmian bulk spectrum of a spring–mass system with quasiperiodic distribution of rigidities 𝐾𝑗 . Top-left: bulk spectrum for the whole range of generator
parameter 0 ≤ 𝛼 ≤ 1. Top-right, bottom-right and bottom-left: details A, B and C to visualize the selfsimilar structure of the bulk spectrum.

section 𝐴𝑗 , associated to the 𝑗th element. As known, horizontal displacement 𝑢(𝑥, 𝑡) and internal force 𝑓 (𝑥, 𝑡) in the 𝑗th element are
related by

𝜕𝑢
𝜕𝑥

=
𝑓 (𝑥, 𝑡)
𝐸𝐴𝑗

,
𝜕𝑓
𝜕𝑥

= 𝜌𝐴𝑗
𝜕2𝑢
𝜕𝑡2

. (53)

Assuming harmonic motion with 𝑢(𝑥, 𝑡) = 𝑈 (𝑥) 𝑒i𝜔𝑡 and 𝑓 (𝑥, 𝑡) = 𝐹 (𝑥) 𝑒i𝜔𝑡, Eqs. (53) yields
{

𝑈 ′(𝑥)
𝐹 ′(𝑥)

}

=
[

0 1∕𝐸𝐴𝑗
−𝜔2 𝜌𝐴𝑗 0

]{

𝑈 (𝑥)
𝐹 (𝑥)

}

, (54)

where (∙)′ = 𝑑(∙)∕𝑑𝑥 denotes the space-domain derivative. The state vector 𝐮(𝑥) = {𝑈 (𝑥), 𝐹 (𝑥)}𝑇 verifies then 𝐮′ = 𝐖𝑗 (𝜔)𝐮, which
integrating between 𝑥 = 0 and 𝑥 = 𝑙 give rise to the transfer matrix of a single element, 𝐮(𝑙) = 𝑒𝐖𝑗 (𝜔)𝑙 𝐮(0), where

𝐓𝑗 (𝜔) = 𝑒𝐖𝑗 (𝜔)𝑙 =

[

cos𝜇𝑗
𝑙

𝐸𝐴𝑗 𝜇𝑗
sin𝜇𝑗

−𝜇𝑗
𝐸𝐴𝑗
𝑙 sin𝜇𝑗 cos𝜇𝑗

]

, 𝜇𝑗 = 𝜔 𝑙

√

𝜌𝐴𝑗

𝐸𝐴𝑗
. (55)

Therefore, the relationship between both state vectors 𝐮𝑗 = 𝐮(𝑙) and 𝐮𝑗−1 = 𝐮(0) has been established as function of the transfer
matrix. The algorithm of the Sturmian sequences can already be applied in order to generate the bulk-spectrum of compressional
14
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Fig. 10. Sturmian bulk spectra of a rod (compressional waves) with quasiperiodic variation of elastic sectional stiffness between values {𝐸𝐴𝑝 , 𝐸𝐴𝑞}: Left, middle
and right plots show the bulk spectrum for three different values of the ratio 𝐸𝐴𝑝∕𝐸𝐴𝑞 : 𝐸𝐴𝑝 = 4𝐸𝐴𝑞 (left), 𝐸𝐴𝑝 = 16𝐸𝐴𝑞 (middle) and 𝐸𝐴𝑝 = 100𝐸𝐴𝑞 (right).
Darkened regions show frequency passbands. The three plots on bottom represent the frequency passbands obtained from the analytical expression (59), for the
three values of 𝐸𝐴𝑝∕𝐸𝐴𝑞 considered.

waves traveling through rod structures. In this case, we consider that the sectional stiffness 𝐸𝐴 takes the role of the 𝛩 parameter
used in the theoretical developments. Thus, 𝐸𝐴𝑗 ∈ {𝐸𝐴𝑝, 𝐸𝐴𝑞}. To carry out the numerical computations we subdivide the interval
[0, 1] into 1000 points and evaluate in a loop the transfer matrix  (𝛼) for each point. Thus, we can then aim to determine the
dispersion relations associated with numbers of at most 3 decimal places. As can be seen from the numerical results in Fig. 10, it is
more than enough to notice the resulting geometrical pattern. We know that 𝛼 = 0 corresponds to the continuous homogeneous rod
with parameters 𝐸𝐴𝑞 and 𝜌𝐴𝑞 with no stopbands in the whole frequency band. On the other side, 𝛼 = 1 gives rise to the periodic
binary system ‘‘𝑝𝑞𝑝𝑞𝑝𝑞…’’. In Fig. 10 the bulk spectrum for different ratios 𝐸𝐴𝑝∕𝐸𝐴𝑞 have been represented. Since rods are
continuous structures, we will find passbands in the whole frequency band. However, as observed in the three plots, the general
pattern of bands distribution strongly depends on the contrast between both 𝐸𝐴𝑝 and 𝐸𝐴𝑞 . Furthermore, a periodicity is observed in
the vertical direction (frequencies) of the bulk spectrum. Both, the bands width and the periodicity can be explained and somehow
quantified studying the spectrum of the systems associated to the numbers given by the sequence {𝛼𝑟 = 1∕𝑟}∞𝑟=1. The associated
Sturmian block is (𝛼𝑟) = 𝑝 𝑟… 𝑝 𝑞 and therefore the transfer matrix yields

 (𝛼𝑟) = 𝐓𝑞(𝜔)𝐓𝑟
𝑝(𝜔) , (56)

where

𝐓𝑞(𝜔) = 𝑒𝐖𝑞 (𝜔)𝑙 =

[

cos𝜇𝑞
𝑙

𝐸𝐴𝑞 𝜇𝑞
sin𝜇𝑞

−𝜇𝑞
𝐸𝐴𝑞
𝑙 sin𝜇𝑞 cos𝜇𝑞

]

, 𝜇𝑞 = 𝜔 𝑙

√

𝜌𝐴𝑞

𝐸𝐴𝑞
,

𝐓𝑟
𝑞(𝜔) = 𝑒𝐖𝑝(𝜔)(𝑟𝑙) =

[

cos(𝑟𝜇𝑝)
𝑙

𝐸𝐴𝑝 𝜇𝑝
sin(𝑟𝜇𝑝)

𝐸𝐴𝑝

]

, 𝜇𝑝 = 𝜔 𝑙

√

𝜌𝐴𝑝

𝐸𝐴
.

(57)
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The spectrum of admitted frequencies can be found as the values of 𝜔 ∈ R such that −1 ≤ 𝑧𝑟(𝜔) ≤ 1, where 𝑧𝑟(𝜔) stands for the half
trace of the transfer matrix, which after some simplifications can be expressed as

𝑧𝑟(𝜔) = 1
2
tr
[

𝐓𝑞(𝜔)𝐓𝑟
𝑝(𝜔)

]

=
(1 + 𝜆)2

4𝜆
cos

(

𝜆 + 𝑟
𝜆

𝜔
𝑙𝑐𝑞

)

−
(1 − 𝜆)2

4𝜆
cos

(

𝜆 − 𝑟
𝜆

𝜔
𝑙𝑐𝑞

)

, 𝜆 =

√

𝐸𝐴𝑝

𝐸𝐴𝑞
, 𝑐𝑞 =

√

𝐸𝐴𝑞

𝜌𝐴𝑞
. (58)

The conditions for the above expression to be periodic in frequency is that (𝜆 + 𝑟)∕(𝜆 − 𝑟) is rational, something that it holds
provided that 𝜆 is rational. In Fig. 10 the bulk spectrum for 𝜆 = 2, 4, 10 have been plotted. Along the frequency direction, the
figures have a periodicity equal to 𝛥𝜔 = 𝜋𝜆𝑐𝑞∕𝑙. The particular values of the parameters are 𝜌𝐴𝑝 = 𝜌𝐴𝑞 = 1 kg/m, 𝐸𝐴𝑝 = 𝜆2𝐸𝐴𝑞 ,
𝐸𝐴𝑞 = 1 N∕m, 𝑐𝑞 = 1 m∕s. Therefore, 𝛥𝜔 = {2𝜋, 4𝜋, 5𝜋} rad/s. The three plots show clearly the periodicity not only for the those
values corresponding to 𝛼𝑟 = 1∕𝑟, but also for the whole range 0 ≤ 𝛼 ≤ 1. The higher the ratio 𝜆 =

√

𝐸𝐴𝑝∕𝐸𝐴𝑞 , the more contrast
between both rigidities. It is then expected that the passbands become narrower, as indeed occurs in the right plot.

Finally, we consider of interest to present an analytical outcome which reproduces part of the pattern shown in Fig. 10. A
motivation along this paper is to achieve a formula of the spectrum depending analytically on 𝛼 and 𝜔. The closest we were of such
an expression is that one depending on the Chebyshev polynomials derived in Eq. (47), valid for 2 × 2 transfer matrices. However,
this formula does not include the number 𝛼 explicitly. In the case of rods, the closed form given in Eq. (58) has been determined.
Although it is essentially exact and reproduces passbands and stopbands for all integers 𝑟 = 1∕𝛼𝑟. In this paper we wonder how the
bands are distributed if we do 𝑟 = 1∕𝛼, allowing 𝛼 to take any real number in the range 0 ≤ 𝛼 ≤ 1, leading to the new formula

𝑍(𝛼, 𝜔) =
(1 + 𝜆)2

4𝜆
cos

(

𝛼 𝜆 + 1
𝛼 𝜆

𝜔
𝑙𝑐𝑞

)

−
(1 − 𝜆)2

4𝜆
cos

(

𝛼 𝜆 − 1
𝛼 𝜆

𝜔
𝑙𝑐𝑞

)

(59)

It is important to note that, although it is a closed form, it is an expression derived after substituting 𝛼𝑟 by 𝛼. Its representation
in Figs. 10(bottom) is made in order to experiment numerically what happens and to observe how it reproduces passbands and
stopbands. Thus, we see that

• The representation of the set {(𝛼, 𝜔) ∶ −1 ≤ 𝑍(𝛼, 𝜔) ≤ 1, } reproduces the global form of the wider stopbands of the original
bulk spectrum, but it does for 0 ≤ 𝜔 ≤ 𝛥𝜔 = 𝜋𝜆𝑐𝑞∕2𝑙. Further, the form is completely different. In Fig. 10, it has only been
depicted this range, which covers the half period of the bulk spectrum.

• Eq. (59) reproduces the width pattern of the passbands: the larger the ratio 𝜆, the narrower the passbands.
• The fractal structure of the spectrum is not replicated. The admitted frequency bands do not show self-similarity.

esearch on the formula developed and the explanation of the different phenomena observed is left for future work.

.3. Example 3. Flexural waves in beams

In this last example the bulk spectrum of Sturmian structured beams will be studied. The Timoshenko beam model, which includes
ransverse shear deformation and rotational inertia, results of special interest because it can be modeled with 4 × 4 transfer matrices.
he state variables of any point 𝑥 along the axis of the beam are one side displacements and rotations 𝑤(𝑥, 𝑡) and 𝜑(𝑥, 𝑡) and on
he other side, shear force and bending moment (internal forces), i.e. (𝑥, 𝑡) and (𝑥, 𝑡). Constitutive relationships and dynamic
quilibrium lead to the four partial differential equations relating these variables [47]

𝜕𝑤
𝜕𝑥

= 
𝐺𝐴

+ 𝜑 , (60)
𝜕𝜑
𝜕𝑥

= 
𝐸𝐼

, (61)

𝜕
𝜕𝑥

= 𝜌𝐴 𝜕2𝑤
𝜕𝑡2

, (62)

𝜕
𝜕𝑥

= 𝜌𝐼
𝜕2𝜑
𝜕𝑡2

, (63)

where 𝐸𝐼,𝐺𝐴 stand for the bending and shear stiffnesses, 𝜌𝐴, 𝜌𝐼 are the mass and rotational inertia per unit of length, respectively.
Assuming harmonic motion,

𝑤(𝑥, 𝑡) = 𝑊 (𝑥) 𝑒i𝜔𝑡 , 𝜑(𝑥, 𝑡) = 𝜙(𝑥) 𝑒i𝜔𝑡 , (𝑥, 𝑡) = 𝑉 (𝑥) 𝑒i𝜔𝑡 , (𝑥, 𝑡) = 𝑀(𝑥) 𝑒i𝜔𝑡 , (64)

the above equations of motion can be reduced to a system of 4 ordinary differential equations in the space domain, yielding in
matrix form

d𝐮
d𝑥

= 𝐖𝐮 , (65)

where 𝐮(𝑥) = {𝑊 (𝑥), 𝜙(𝑥), 𝑉 (𝑥),𝑀(𝑥)}𝑇 denotes the state vector (in frequency domain) and

𝐖 =

⎡

⎢

⎢

⎢

⎢

0 1 1∕𝐺𝐴 0
0 0 0 1∕𝐸𝐼

−𝜌𝐴𝜔2 0 0 0
2

⎤

⎥

⎥

⎥

⎥

. (66)
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Fig. 11. Quasiperiodic structured beam based on the Timoshenko model. Geometrical and material properties (𝐸𝐼𝑗 , 𝐺𝐴𝑗 ,…) are associated to each element.

The integration of Eq. (65) along a single element allows us to determine the relationship between the state vectors 𝐮𝑗 = 𝐮(𝑥𝑗 ) and
𝐮𝑗−1 = 𝐮(𝑥𝑗−1), with 𝑙𝑗 = 𝑥𝑗 − 𝑥𝑗−1, yielding

𝐮𝑗 = 𝐓𝑗 (𝜔)𝐮𝑗−1 , (67)

where the transfer matrix of a single element of length 𝑙𝑗 is

𝐓𝑗 (𝜔) = 𝑒𝐖𝑙𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos(𝜅𝑠𝑙𝑗 )
𝜅𝑏 sin(𝜅𝑏𝑙𝑗 )−𝜅𝑠 sin(𝜅𝑠𝑙𝑗 )

𝜅2𝑏−𝜅
2
𝑠

𝜅𝑠 sin(𝜅𝑠𝑙𝑗 )
𝜌𝐴𝑗𝜔2

𝜅2𝑏 (cos(𝜅𝑠𝑙𝑗 )−cos(𝜅𝑏𝑙𝑗 ))

𝜌𝐼𝑗𝜔2(𝜅2𝑏−𝜅
2
𝑠 )

0 cos(𝜅𝑏𝑙𝑗 ) 0 𝜅𝑏 sin(𝜅𝑏𝑙𝑗 )
𝜌𝐼𝑗𝜔2

− 𝜌𝐴𝑗𝜔2 sin(𝜅𝑠𝑙𝑗 )
𝜅𝑠

− 𝜌𝐼𝑗𝜔2(cos(𝜅𝑠𝑙𝑗 )−cos(𝜅𝑏𝑙𝑗 ))
𝜅2𝑏 (𝜅

2
𝑏−𝜅

2
𝑠 )

cos(𝜅𝑠𝑙𝑗 )
𝜅𝑏 𝜌𝐴𝑗
𝜅𝑠 𝜌𝐼𝑗

𝜅𝑏 sin(𝜅𝑏𝑙𝑗 )−𝜅𝑠 sin(𝜅𝑠𝑙𝑗 )
𝜅2𝑏−𝜅

2
𝑠

0 − 𝜌𝐼𝑗𝜔2 sin(𝜅𝑏𝑙𝑗 )
𝜅𝑏

0 cos(𝜅𝑏𝑙𝑗 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (68)

where 𝜅𝑏 and 𝜅𝑠 represent respectively two parameters with wavenumber dimensions given by

𝜅𝑏 = 𝜔

√

𝜌𝐼𝑗
𝐸𝐼𝑗

, 𝜅𝑠 = 𝜔

√

𝜌𝐴𝑗

𝐺𝐴𝑗
. (69)

and 𝜌𝐴𝑗 , 𝜌𝐼𝑗 , 𝐸𝐼𝑗 , 𝐺𝐴𝑗 denote respectively the mass per unit of length, the rotational inertia, the bending stiffness and the shear
stiffness of the 𝑗th single element. In case of Sturmian structured media, one of the above properties is assumed to take two possible
values as ruled by the Sturmian sequence. Furthermore, even more complex systems can be constructed just multiplying by the
corresponding transfer matrix. Thus, for instance in Fig. 11 a single spring of rigidity 𝐾𝑗 has been added. The transfer matrix of the
single element is then the product 𝐓(𝐾𝑗 )𝐓𝑗 (𝜔) where

𝐓(𝐾) =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0

−𝐾 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (70)

Several numerical experiments have been carried out to show the variability of the pattern obtained by the Sturmian bulk
spectrum. In Fig. 12 four cases have been represented. Each bulk spectrum has been plotted together with a sketch of the
corresponding system. Thus, cases (a) and (b) are infinite unsupported beams where the variable parameters in the Sturmian
sequences are the bending stiffness 𝐸𝐼 and the mass per unit of length 𝜌𝐴, respectively. Cases (c) and (d) are Timoshenko beams
on elastic supports. In cases (c) and (d) the quasiperiodic parameters are respectively the rigidity 𝐾𝑗 and the distance 𝑙𝑗 between
springs. The rest of the properties have been listed in Table 3.

The case 𝐸𝐼𝑝∕𝐸𝐼𝑞 = 30 has been plotted in Fig. 12(a). It turns out that the square root of this ratio is not an integer number.
Since the transfer matrix depends on expressions involving harmonic functions in terms of these parameters, then we can expect that
in the final expression, although a closed form is not available, no periodicity will be shown in the frequency domain something that
is revealed in Figs. 12(a). On the contrary, it has been imposed a ratio 𝜌𝐴𝑝∕𝜌𝐴𝑞 = 16 = 42 (perfect square) something that leads to a
periodic bulk spectrum in the vertical direction in Fig. 12(b). Both cases (c) and (d) represent a beam on elastic supports of rigidity
𝐾𝑗 separated a distance 𝑙𝑗 . In case (c) the distance 𝑙𝑗 = 𝑙𝑝 = 𝑙𝑞 remains constant and the spring constants are distributed in terms of
the Sturmian sequence, i.e. 𝐾𝑗 ∈ {𝐾𝑝, 𝐾𝑞}. On the other side, in case (d), 𝐾𝑗 = 𝐾𝑝 = 𝐾𝑞 and the distance between consecutive springs
alternates according to what is dictated by the corresponding quasiperiodic pattern, i.e. 𝑙𝑗 ∈ {𝑙𝑝, 𝑙𝑞}. The bulk spectrum of cases (c)
and (d) reveals the effect of the distribution of the elastic supports in the low frequency range. Since the beam itself is continuous
without heterogeneous distribution of parameters, it is expected that the high frequency range associated to short wavelength will
be less affected by the stiffness of the supports. This behavior can be visualized in Fig. 12(c) and (d) where passbands are closer
each other in the high frequency range.
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Fig. 12. Bulk spectrum of structured Timoshenko beams using Sturmian quasiperiodic patterns. (a) Bending waves on a beam without supports with quasiperiodic
distribution of the bending sectional stiffness, 𝐸𝐼 . Relationship between parameters in elements of type 𝑝 and 𝑞, 𝐸𝐼𝑝∕𝐸𝐼𝑞 = 30. (b) Same case but with quasiperiodic
distribution of the parameter mass per unit of length, 𝜌𝐴, with ratio 𝜌𝐴𝑝∕𝜌𝐴𝑞 = 16. (c) Continuous beam on elastic supports separated a distance 𝑙 = 1 m (constant)
with quasiperiodic distribution of spring rigidities, 𝐾𝑗 ∈ {𝐾𝑝 , 𝐾𝑞} with 𝐾𝑝∕𝐾𝑞 = 800. (d) Continuous beam on elastic supports with constant stiffness 𝐾. Separation
pattern between springs follows a quasiperiodic sequence with 𝑙 ∈ {𝑙𝑝 , 𝑙𝑞} and 𝑙𝑝∕𝑙𝑞 = 4.

The Timoshenko beam model provides a glimpse into the range of possible bulk spectra as a function of the different parameters.
Our motivation is still to find closed forms that allow predicting the general behavior of the Sturmian systems along the range
0 ≤ 𝛼 ≤ 1, without the numerical computation of the dispersion relation for each 𝛼, something that is computationally expensive,
specially if 4 × 4 transfer matrices are involved.
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Table 3
Example 3: Properties of Timoshenko beams in Fig. 12. Each one of the four cases are associated with a quasiperiodic variation of a parameter. The two values
of that parameter are indicated in the corresponding column as (∙)𝑝∕(∙)𝑞 .

𝐸𝐼𝑗 (N m2) 𝐺𝐴𝑗 (N) 𝜌𝐴𝑗 (kg/m) 𝜌𝐼𝑗 (m2 kg/m) 𝑙𝑗 (m) 𝐾𝑗 (N/m)

Case (a), 𝐸𝐼𝑝 ≠ 𝐸𝐼𝑞 0.2500/0.0083 3.00 0.010 8.33 × 10−6 1.00 –
Case (b) 𝜌𝐴𝑝 ≠ 𝜌𝐴𝑞 0.0083 3.00 0.160/0.010 8.33 × 10−6 1.00 –
Case (c) 𝐾𝑝 ≠ 𝐾𝑞 8.33 3.33 × 103 0.010 8.33 × 10−6 1.00 6.67 × 103/8.33
Case (d) 𝑙𝑝 ≠ 𝑙𝑞 8.33 3.33 × 103 0.010 8.33 × 10−6 4.00/1.00 6.67 × 103

In reference to the self-similarity of the bulk-spectrum for a quasiperiodic Timoshenko beam, the developments presented
n Section 3.2 lead to the prediction that self-similar forms can be observed between two consecutive systems associated with
arameters 𝛼 = {𝑎, 𝑏}. This may give rise by repetition to visible fractal structures, as indeed can be observed in Fig. 12(a) to (d).
he structure and organization of the system seems to greatly affect the spectrum, as indeed is seen in the four presented cases in
he current example. For instance, Timoshenko beams in which sectional properties are quasiperiodically distributed (cases (a) and
b), see Table 3) seem to have a bulk-spectrum similar to those of rods (Fig. 10). However, the introduction of other elements, such
s springs, introduce resonances that affect to the spectrum in the low frequency range, as explained above, although still showing
igns of self-similarity, as can be observed in Fig. 12(c) and (d). A deeper study of the modes of traveling waves in quasiperiodic
turmian media and their relation to self-similarity may shed some light on this question, something that is currently under research.

The practical consequences of quasiperiodicity have been explored in the field of condensed matter, photonic and phononic
uasicrystals, quasiperiodic dielectric multilayers, photovoltaic cells or even number recognition devices. Some of these real
pplications that take advantage of the fractal nature of quasiperiodic systems can be found in ref. Maciá [8]. Quasiperiodic
tructures, such as the ones studied in this work, are interesting because, if properly designed, they can cover large bandwidths.
he fractal nature of the spectrum guaranties that you can find a quasiperiodic structure that has a bandgap placed in the frequency
and of interest, structure identified by certain number 𝛼 ∈ [0, 1]. Nevertheless, in practical applications one must reach a balance

between those effects related to the presence of energy losses and the dispersion effects (requiring relatively small systems) and
beneficial aspects stemming from selfsimilarity and quasiperiodicity related effects (which require a large enough system).

5. Conclusions

In this paper we study the dynamic properties of heterogeneous elastic structured media with quasiperiodic pattern. Sturmian
words have been originally defined in the context of information theory. Quasiperiodic patterns based on Sturmian words have been
applied in theoretical physics such as condensed matter or quantum mechanics, but to the best of our knowledge, they have not been
applied to the generation of mechanical systems such as elastic waveguides. Consider any real number in the interval [0,1] given as
a continued fraction, we can construct a word or sequence from a binary alphabet, giving rise to so-called Sturmian sequence. The
methodology proposed in this paper takes such a string consisting of two symbols and transforms it into a quasi-periodic sequence
consisting of two different values of one single parameter from the mechanical system. Dynamical properties and dispersion relations
of Sturmian mechanical systems have been analytically determined using the transfer matrix method. This method also allows to
justify self-similarity of the bulk spectrum. These properties have been validated and visualized along three numerical examples
covering a spring–mass lattice and two continuous systems: a rod and a beam. In the first case, the spring constants have been used
as the quasiperiodic parameter. In the case of the rod, the sectional stiffness is changed according to the Sturmian pattern and in the
beam case four different mechanical variables to be distributed quasiperiodically are considered separately: sectional stiffness, mass,
spring supports rigidity and distances between springs. In all cases, the complete bulk spectrum of admitted states or frequencies of
the system have been obtained and the results derived from the theoretical analysis validated.
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