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Abstract: In gardening, particularly in golf courses, soil moisture management is critical for max-
imizing water efficiency. Remote sensing has been used to estimate soil moisture in recent years
with relatively low accuracies. In this paper, we aim to use remote sensing and wireless sensor
networks to generate soil moisture indexes for a golf course. In the golf course, we identified three
types of soil, and data was gathered for three months. Mathematical models were obtained using
data from Sentinel-2, bands with a resolution of 10 and 20 m, and sensed soil moisture. Models
with acceptable accuracy were obtained only for one out of three soil types, the natural soil in which
natural vegetation is grown. Two multiple regression models are presented with an R2 of 0.46 for
bands at 10 m and 0.70 for bands at 20 m. Their mean absolute error was lower than 3% in both cases.
For the modified soils, the greens, and the golf course fairway, it was not feasible to obtain regression
models due to the temporal uniformity of the grass and the range of variation of soil moisture. The
developed moisture indexes were compared with existing options. The attained accuracies improve
the current models. The verification indicates that the model generated with band 4 and band 12 is
the one with better accuracy.

Keywords: Sentinel-2; soil texture; multiple regression model; water efficiency; irrigation

1. Introduction

The irrigation of golf courses presents important difficulties due to the heterogeneous
distribution of the terrain, the variations in soil composition at different areas, and high
water consumption. Furthermore, some areas of the world may present added difficulties
due to water scarcity, which may lead to the use of treated wastewater to irrigate the golf
course [1]. Therefore, it is necessary to improve the efficiency of the irrigation to both
reduce water consumption and increase the quality of the grass at the golf courses. Golf
courses are comprised of differentiated areas such as the green, the fairway, or the rough.
These areas have different grass lengths, and the activities performed in each area may lead
to varied hazards such as uprooting [2]. The differences between these areas in vegetation,
soil composition, and terrain lead to different irrigation needs. Nowadays, the popular
irrigation methods of golf courses in Spain are comprised of sprinkler systems where the
control options allow either the management of sprinkler lines as a group or, in some cases,
the individualized management of the sprinklers. However, in order to adjust the amount
of irrigation for each area or sprinkler, the soil moisture at each part of the golf course must
be monitored.

The soil moisture monitoring process can be performed with varied methodologies.
The use of sensors is one of the most utilized forms of soil moisture monitoring [3]. The

Appl. Sci. 2021, 11, 11769. https://doi.org/10.3390/app112411769 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2777-4885
https://orcid.org/0000-0001-9215-8734
https://orcid.org/0000-0001-5214-4282
https://orcid.org/0000-0003-2902-5757
https://orcid.org/0000-0002-0862-0533
https://orcid.org/0000-0003-1675-3413
https://doi.org/10.3390/app112411769
https://doi.org/10.3390/app112411769
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411769
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411769?type=check_update&version=2


Appl. Sci. 2021, 11, 11769 2 of 17

most utilized soil moisture sensors are capacitance sensors. Multiple capacitance soil
moisture sensors are available in the market and have been tested for different types
of soils to determine their calibration equations [4]. Solid-state resistance soil moisture
sensors are also available, but they are less utilized [5]. These sensors are placed at multiple
depths to assess the water content in the plant’s root zone. The methodology of deploying
soil multiple soil moisture sensors is widely used for precision agriculture and has been
extended to other types of environments such as urban lawns and golf courses [6]. The staff
of the golf course may perform measures by physically accessing the desired area. On the
other hand, the sensors may be deployed on the golf courses to obtain soil moisture values
periodically. However, this solution presents increased cost as the number of deployed
sensors would determine the precision acquired for each area. As it was previously noted,
the variations in the terrain lead to areas where the water is accumulated and areas with
slopes where the water does not reach the desired depth. The differences in soil moisture
content of these different types of areas are difficult to monitor with sensors because it
would require a great number of them. Therefore, to obtain a very detailed soil moisture
map, countless sensors should be deployed in addition to the network devices necessary to
transmit the data to the database. As a result, remote sensing solutions were studied to
reduce the cost and difficulties of the sensor deployments.

One of the options is the use of drones that obtain images of the fields through devices
such as multispectral cameras [7]. These images are then processed to obtain the soil
moisture of the fields [8]. Hybrid systems that perform remote sensing through drones
and use the drone as a mobile gateway to obtain the data from sensors deployed on the
fields are a feasible option as well [9]. The other option is the use of satellites that provide
useful data, such as images and microwave data from satellite sensors, and process it to
obtain different metrics regarding the soil moisture content and the state of the plants [10].
The advantage of using satellite data is the obtention of a detailed map where the soil
moisture is assessed for all the terrain without the difficulties due to the variations in the
terrain faced by the sensor deployments. There are different types of available satellites to
choose from, such as Sentinel or Landsat. The cost of utilizing these types of solutions may
be reduced as the obtention of images from satellites such as Sentinel are free of charge.
Furthermore, the spatial resolution of 10 m pixel size provided by Sentinel is adequate
to monitor soil moisture. Other satellites may present different resolutions. Therefore,
the characteristics of each satellite should be studied before deciding on which resources
to use.

The contribution of this paper is the obtention of soil moisture indexes specific for the
studied region to monitor soil moisture in a golf course and its surroundings by utilizing
correlating sensors’ data with satellite information. The currently available indexes are
developed for other regions, and their accuracies are low. Nine sensors were deployed
on three types of soil for approximately three months. The sensors were calibrated for
each type of soil ranging from clay soil to soil with both clay and sand. Sentinel images
were obtained for the same time period to assess its adequacy for soil moisture monitoring
of golf courses. Furthermore, the need for the satellite to be calibrated as well according
to each soil type was evaluated as well. The main objectives of this study are twofold.
Firstly, we aim to obtain a training dataset with the data from both sensors and satellites
and a validation dataset. Secondly, we determine the best form of sprinkler management
according to the soil moisture results.

The rest of the paper is organized as follows. Section 2 discusses the related works
regarding soil moisture monitoring through satellite data. The description of the method-
ology of our study is presented in Section 3. The results of the comparison between
soil moisture monitoring through sensors and satellite images are provided in Section 4.
Section 5 discusses our results. Lastly, Section 6 presents the conclusion and future work.



Appl. Sci. 2021, 11, 11769 3 of 17

2. Related Work

In this section, we outline the existing options for monitoring soil moisture with
remote sensing resources. First, we describe the existing solutions, and then we analyze
the main gap of each one. Finally, we detail the contributions of our paper based on the
gaps of the existing proposals.

The use of satellite data in agriculture has expanded to include numerous functionali-
ties. Deepak Gautam et al. reviewed the current remote sensing applications for agricul-
ture [10]. Regarding monitoring soil moisture based on satellites, the authors comment on
the use of L-band microwave radiometry such as the Soil Moisture Active Passive (SMAP)
satellites from the NASA or the Soil Moisture Ocean Salinity (SMOS) sensor from ESA.
There are, however, some limitations to this technique, such as the spatial resolution and
the 5cm depth of retrieval. Therefore, it is impossible to use this type of solution due to its
low spatial resolution, which precludes its application in heterogenic scenarios such as golf
courses, urban laws, or other similar areas. Another review of agricultural applications
based on remote sensing is performed by L. Karthikeyan et al. [11]. The authors also
comment on the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) and
SMAP satellites. Furthermore, these satellites can also be used for other purposes, such as
quantifying irrigation water use. Furthermore, the new applications and features of the
Sentinel-2 satellites were discussed by Joel Segarra et al. [12]. The authors also compared
the performance of other satellites to the Sentinel-2 and determined that the latter provides
more capabilities for crop management and agricultural monitoring. Furthermore, the
results show that the combination of other remote sensing techniques as well as field data
is still necessary. Particularly, regarding soil moisture, determination coefficients between
65% and 83% were obtained from the combination of the NDVI obtained from Sentinel-2
and soil moisture models. The use of correlations between NDVI and soil moisture is
not valid for our purpose. The main reason is that in the selected scenario is that the soil
moisture changes faster than the NDVI. Therefore, when the change in NDVI is detected,
the stress of the plats might be too high. An earlier detection method is required.

One of the most interesting functionalities is the detection of soil moisture and crop
water content to determine irrigation needs without the need of deploying sensing devices.
Chengyang Xu et al. performed data fusion to MODIS and Landsat images to determine
the crop water content of soybean and corn crops [13]. A spatial resolution of 30 m and
a revisit cycle of 16 days were the parameters for the Landsat image acquisition, and a
spatial resolution of 500 m was used in the case of MODIS. Normalized Difference Water
Index (NDWI) was obtained after performing the data fusion. Furthermore, measures
were taken during the Soil Moisture Active Passive Validation Experiment to obtain the
plan and canopy Vegetation Water Content (VWC). The results showed higher correlations
for the soybean plants than that of the corn plants. As for [10], this solution cannot be
applied in our scenario, given the spatial resolution of the remote sensing source selected.
Hamed Adab et al. used machine learning to estimate soil moisture from satellite pictures
from Landsat 8 with 30 m resolution [14]. The utilized techniques were Artificial Neural
Networks (ANN), Random Forest (RF), Elastic Net Regression (EN), and Support Vector
Machine (SVM). The results of the near-surface soil moisture showed that a Nash-Sutcliffe
efficiency value of 0.73 was obtained for the RF technique, which was the highest value.
Again, this proposal has a limitation regarding the spatial resolution of selected images
(spatial resolution of 30 m) compared with the used satellite (spatial resolution of 10 m
and 20 m). A study on different soil moisture indexes from SMOS and MODIS satellite
data was presented by Miriam Pablos et al. [15]. The Soil Wetness Deficit Index (SWetDI),
Soil Water Deficit Index (SWDI), Soil Moisture Deficit Index (SMDI), and the Soil Moisture
Agricultural Drought Index (SMADI) were compared to the crop moisture index (CMI)
and atmospheric water deficit (AWD) to determine the correlation and similarity of the
studied indexes. The obtained results indicated that the SMADI and SWDI were the best
options for drought monitoring, with correlation coefficients ranging between 0.5 and
0.8. Anudeep Sure et al. studied soil moisture monitoring from the use of the microwave
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satellite sensors named Advanced Microwave Scattering Radiometer—2 (AMSR-2) and
Soil Moisture Active Passive (SMAP) [16]. The study was performed for rice and wheat
crops, and the soil wetness index was estimated for depths of 10 and 40 cm. The coefficient
of determination was calculated, obtaining a result of 0.9 for the SMAP sensor and 0.65 for
the AMSR-2 sensor. Furthermore, a higher time delay was observed for the ascending pass.
Moreover, Mireia Fontanet et al. performed a comparison of results from soil moisture
sensors and results from the DISaggregation based on Physical and Theoretical scale
Change (DISPATCH) algorithm, which SMOS and MODIS satellite data as well as NDVI
and land surface temperature (LST) to estimate soil moisture [17]. The authors concluded
that the DISPATCH algorithm performed appropriate estimations in the case of rainfall
but not for sprinkler irrigation, where the water is distributed in a heterogeneous manner.
Both [15] and [17] used MODIS, characterized by a low spatial resolution, which impedes
the application of their results in our scenario. The same problems apply to the results
of [16].

Lastly, Jesús Garrido-Rubio et al. presented a framework based on the Remote Sensing-
based Soil Water Balance (RS-SWB) from satellite images and the dual crop coefficient
from the FAO56 paper to calculate a Remote Sensing-based Irrigation Water Accounting
(RS-IWA) metric [18]. For the plot scale, a 12% root square mean error (RMSE) was obtained,
comparing the results to those of the farmers. For the case of the water user association
management, the obtained RMSE was 15%. Therefore, the authors concluded that their
proposed RS-IWA is appropriate to perform soil water balance estimations. Nevertheless,
their proposal is specific for certain crops (wheat, maize, and barley). Therefore, its
application in other vegetation such as grasses of urban lawns or golf courses or even for
natural vegetation cannot be ensured.

Most studies on soil moisture that use satellite data are focused on crops such as wheat.
However, this functionality is of interest for other types of vegetation, such as the grass
in golf courses. In this paper, satellite data is analyzed to estimate soil moisture for a golf
course composed of different types of grasses and areas with natural vegetation (which is
not irrigated). Therefore, our results will be applicable for multiple scenarios. Moreover,
we will include validation of proposed index or indexes by including data of other periods.
The main contributions of this paper are the following ones:

• The combination of sensors and remote sensing generates a tailored index (or indexes)
for estimating the soil moisture variations of the studied zone.

• The use of remote sensing imagery is characterized by higher spatial resolution (10 m
and 20 m) than the most used imagery, characterized by lower spatial resolution such
as MODIS.

• The data verification and clear presentation of indexes, R, and errors in both training
and validation datasets.

• The heterogeneity of employed datasets is characterized by different vegetation and
different soil types.

3. Materials and Methods

This section describes the sampling area, the sensor network, the image gathering,
and the data processing followed to estimate the soil moisture in the golf course during the
summer of 2021.

3.1. Studied Zone

We selected the “Encín Golf Course” located in Alcalá de Henares (Madrid, Spain) (Lat.
40◦31′21′ ′; Long. 3◦18′43′ ′) as the sampling area to deploy a batch of soil moisture sensors
provided by PLANTAE. This region is characterized by very hot and short summers; and
dry, very cold, and long winters. Generally, throughout the year, the temperature varies
from 1 to 33 ◦C. The temperature rarely cools down below −4 ◦C or increases above
37 ◦C [7]. Therefore, the golf manager must water the grass regularly in summer to keep it
healthy and in optimal conditions to play.
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The golf course was built on a plot used for agriculture previously, on the upper
terraces of the Henares River. Originally this area was characterized by a slope of less
than 0.5% and surface horizons Ap and AB with the following characteristics: Ap between
0 cm and 18 cm, clay loam texture (22.7% gravel, 44.1% silt, 33.2% clay), weak structure,
medium angular blocks, firm consistency when wet and hard when dry, thin and zonal
clay films, few very fine pores, abundant roots of all sizes; and AB between 18 cm and
32 cm, clay loam texture (24.9% gravel, 41.1% silt, 34.0% clay), weak structure, medium
angular blocks, firm consistency when wet and hard when dry, thin and zonal clay films,
few pores fine and very fine, with an abundance of roots of all sizes [19]. In addition, it was
designed in different areas, which account for different types of soil and grass management:
(1) tee, fairway, and green, where the grass is tightly trimmed, regularly watered, and
the soils are sandy; (2) rough surrounding the fairways, where the grass is kept longer,
regularly watered and soils are sandy-clay; and (3) wild areas, with native plants and zero
maintenance or watering, except from the rainfall (see Figure 1). Thus, only soil 1 and 2
were amended to adapt their texture to that required by the golf course designer.
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Figure 1. “Encín” Golf Course (Alcalá de Henares, Madrid, Spain) and sensors location.

We placed three sensors, see Figure 2a in different spots of every area, at a depth
of 5 cm and covered by soil, to measure the shallow soil moisture. Thus, we have nine
different sets of data. Small patches of grass were cut, and soil was removed to install the
sensors; see Figure 2b. After placing the sensor, the hole was filled with soil, and the patch
of grass was relocated. The soil moisture sensors, provided by PLANTAE, are a resistive
sensor type, with temperature compensation [20]. The GPS coordinates and the sensor
number were registered for each point. Then, they were configured to send data every
15 min. The data was received in a hub placed close to the golf house. These records were
uploaded and processed in a cloud service managed by PLANTAE. Data was provided as
gravimetric water content (%): the mass of water per mass of dry soil. The soil moisture
sensors were calibrated by the service provider (PLANTAE), according to the texture of
soil samples taken during the installation of the sensors.
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The moisture values during the sampling period ranged between 5% and 35%, depend-
ing on the irrigation, rainfall, and environmental temperature. The sandy and sandy-clay
areas showed a lower humidity value (average 10% to 15%) compared to clay soil ones
(average 20%) due to the better drainage of these soils.

3.2. Sentinel-2 Image Gathering

To estimate and correlate the field data with the remote sensing data, we used Coper-
nicus Sentinel-2 mission images provided by the European Space Agency. Sentinel-2 com-
prises a constellation of two polar-orbiting satellites placed in the same sun-synchronous
orbit, phased at 180◦ to each other. As they provide a ten-day revisit time with one satellite
and five days with both satellites under cloud-free conditions, we gathered both Sentinel-2
A and Sentinel-2 B images. Therefore, the images available for the summer of 2021 include
the following dates: 12th and 27th of June; 2nd, 12th, 17th, 22nd and 27th of July; 1st, 6th,
11th, 16th, 21st, 26th, and 31st of August; 5th and 29th of September. The initial and final
dates were used for the verification of the regression models. The rest of the data were
used for the generation of models.

We used both 10 m and 20 m resolution images. Sentinel-2 offers information at three
scales, 10 m, 20 m, and 60 m. At each scale, information from different bands is accessible.
We consider that the images with resolution at 60 m have a too low spatial resolution to be
used in this study due to the heterogeneity of the land covers in the golf course. The 10 m
resolution images were available for band 2 (490 nm), band 3 (560 nm), band 4 (665 nm),
and band 8 (842 nm) spectral bands. Meanwhile, the 20m resolution images were available
for the previous bands and band 5 (705 nm), band 6 (740 nm), band 7 (783 nm), band 8a
(865 nm), band 11 (1.610 nm), and band 12 (2.190 nm). Although we consider that more
accurate information will be obtained with information with a spatial resolution of 10 m,
the facto of having more available information (more bands) at 20 m justifies its inclusion.
The statistical analyses do not join bands with different spatial resolutions to avoid the
problems linked to uncertainties regarding differing pixel sizes.

3.3. Data Processing

Through the ArcMap [21] “Extract Values to Points” tool [22], we collected each
pixel value from the multiple layers image (bands and days) at the specified sampling
points (sensor). Data of different bands of the Sentinel-2 were processed together with the
moisture values sensed by in-situ sensors. Soil moisture from the sensors was estimated
as the average values gathered from 9:00 a.m. to 1:00 p.m. since the Sentinel-2 image
was always taken at 10:56 a.m. The calculated average soil moisture value is used for the
statistical analyses.

The data matrix was processed with Statgraphics Centurion XVIII [23] to analyze if
there was any correlation between the moisture values and the values from the satellite
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images. First, general multivariate analyses, with all sorts of soil, and specific multivariate
analyses, for individual sort of soil, were performed to find which satellite image bands
correlate with the soil moisture. The multivariate analyses were performed according to the
predefined options of Statgraphics Centurion XVIII [23]. No modifications were applied to
the obtained results. The data of dispersion matrix and correlation matrix were used. All
cases were included in the analyses. No outlier results were deleted for this initial test.

Then, simple and multiple regression models are compared according to the results
of multivariate analyses. Regarding the simple regression models, a total of 27 possible
regression models are evaluated. All of them include the use of a constant number, and the
adjustment was performed according to the value of least squares. Concerning the multiple
regression models, only linear regression is evaluated. The regression models will be
calculated for all soil classes, a group of soils, or individual soils classes (sandy, sandy-clay,
and clay) according to multivariate analyses. We assume R2 as the best indicator of the
accuracy of the model. Attending to previous experiences, models characterized by R2

higher than 50% should be considered as good models for this case due to the heterogeneity
of the soil. This issue will be further analyzed in the discussion.

Once the mathematical models are obtained, the validation includes qualitative and
quantitative analyses. The first one applies both mathematical models in ArcMap using the
tool “Raster Calculator” [24], and results are checked and compared with other soil moisture
indexes. The “Raster Calculator” is a simple tool that allows applying a mathematical
model to one or more bands. This tool applies the mathematical model based on the pixel
values of the bands included in the mathematical model generating a new raster. Then, the
predicted value of soil moisture obtained in ArcMap was extracted and compared with the
sensed one.

4. Results

In this section, we present the obtained results and correlations among the sensed
data by the sensors and the information of remote sensing methods. First, we focus on
bands with a spatial resolution of 10 m. Following, the correlations obtained with bands
with a spatial resolution of 10 and 20 m and the data sensed by the sensors are displayed.
Finally, we present the verification of our models.

4.1. Data of Bands with a Spatial Resolution of 10 m
4.1.1. Multivariate Analyses

The results of multivariate analyses are presented in Figure 3. In Figure 3, we can see
the dispersion and the correlation matrix. In the correlation matrix, the values range from
−1 to 1; the values closer to 0 indicate low correlations. The symbol (positive or negative)
indicates if there is a positive or negative correlation between the variables. Moreover,
the significance of the correlation, in terms of p-value is indicated in Figure 3. We can
identify in Figure 3a the results of including all soil types, in Figure 3b the results for clay
soil, in Figure 3c the results for sandy soil, and in Figure 3d the results for sandy-clay soil.
According to the results, we can affirm that it is better to analyze the soils individually.
For clay soil, band 4 has a negative correlation, and band 8 has a positive correlation, both
statistically significant. Regarding clay-sandy soil, only band 8 correlates with the soil
moisture values. In this case, is a positive and strong correlation. For the sandy soils, no
correlation is found.
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4.1.2. Regression Models

The following step is to analyze the regression models for the clay soil and sandy soil
that allow estimating soil moisture based on remote sensing. Since for the sandy soil, there
is only one band that shows a correlation with a p-value > 0.05 we present the regression
model for this band (Band 8). Regarding clay soil, we present the regression model with
the band with the highest significance level (Band 4). Both simple regression models are
represented in Figure 4 (Figure 4a for clay soil and Figure 4b for sandy soil). In Figure 4,
we can see the mathematical model with the confidence and prediction intervals as well as
the equation, the correlation coefficient, and the R2. In both cases, non-linear models are
used to improve the accuracy of the regression, which increases the correlation coefficient
described in Figure 3.
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On the other hand, a multiple regression model is calculated for clay soil since two
bands have shown a correlation with p-value > 0.05. The result of this multiple regression
model, as observed vs. predicted soil moisture, can be seen in Figure 5. We obtain better
accuracy with the multiple regression model (R2 = 0.47) for clay soil than for the simple
regression model (R2 = 0.35).
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Figure 5. Multiple Regression Models for clay soil for bands with 10 m of resolution.

4.2. Data of Bands with a Spatial Resolution of 20 m
4.2.1. Multivariate Analyses

As in the previous subsection, the results of the multivariate analyses performed with
the Statgraphics Centurion XVIII [23] are presented in Figure 6. It is important to note that
the pixel value of bands included in the previous subsection does not match the values
in this subsection. For these analyses, we have used bands characterized the pixel value
with a resolution of 20 m; there are more available bands for this spatial resolution. As in
Figure 3, in Figure 6 the dispersion and the correlation matrix can be seen. Nonetheless,
in this case, we have included only the bands that correlate with the moisture since the
complete table (with all the bands) is too big and provides too much useless information.
As in the previous subsection, we can identify in Figure 6a the results of including all soil
types, in Figure 6b the results for sandy soil, and in Figure 6c the results for clay soil. No
correlations are obtained for sandy-clay soil.
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Figure 6. Summary of multivariate analyses. (a) all soil types, (b) sandy soil, and (c) clay soil.
Significance levels (Sig): *** p < 0.001; ** p < 0.010; * p < 0.05.

The most interesting results are linked to clay soil. The information contained in the
satellite bands 4, 5, 11, and 12 presents a strong negative correlation with soil moisture,
while; band 7 has a strong positive correlation. Other bands present correlation but with
lower significance. For the other types of soil, no strong correlation (with high significance)
is found.

4.2.2. Regression Models

Following, we analyze for the clay soil the regression models that allow estimating
soil moisture based on remote sensing. In this case, no regression model for other types of
soil is found. Simple and multiple regression models are calculated. For simple regression



Appl. Sci. 2021, 11, 11769 10 of 17

models, models based on band 4 and band 12 are displayed in Figure 7a,b, respectively.
As in previous sections, in Figure 7, we can identify the regression model, the prediction
and confidence intervals, correlation coefficient, and R2. Both bands, band 4 and band 12,
are combined for a multiple regression model; see Figure 8. In Figure 8, we can see the
equation of correlation models, R2, and predicted vs. observed results.
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4.3. Verification of Our Regression Models

In this subsection, we verify our regression models by using data gathered just before
and after the dataset used in the previous section. Used images correspond to 12 June 2021
and 20 September 2021, which are the closest dates without cloud coverage in the studied
area. First, we show a visual verification which consists of applying the regression model
to the area close to the golf course using ArcMap 10.4.1 software [21].

The results are visually analyzed as a qualitative verification, and the most relevant
findings are in Figure 9, which includes the Orthophoto of the area [25]. We can see the
differences in resolution in the models, especially in the detailed view in which the pixel
resolution can be seen. Comparing the data, we can affirm that the results of the model
calculated with a 10 m (presented in Figure 5) tend to estimate lower soil moisture. It
is especially visible in the fairways and green areas. It must be noted that this model is
designed for the natural areas with no irrigation or limited irrigation, and the results of
irrigated areas might not be accurate. The areas in which the model is applied include
both irrigated areas (as the greens and fairways of the golf course) and non-irrigated areas
(such as some parts of the golf course, the surrounding fields of rainfed crops, and the
natural areas as the mountains and the river). We can affirm that this area constitutes an
excellent testbench to evaluate our results due to this heterogeneity. In both general and
detailed view, we can see that the calculated soil moisture for the surroundings of the
golf camps reflect the expected trends with (i) higher values in the areas close to the rives
(sud-est of the picture), (ii) intermediate value in the natural areas with vegetation and,
(iii) low values in areas such as olive orchards in which no vegetation retains the water.
Regarding the detailed view, we see in detail the practice area composed of the driving
range and the putting green. Both models’ data accurately depicts the driving range’s
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composition with higher soil moisture values in the green areas and their surroundings.
Regarding the differences among dates, we can affirm that the most relevant difference in
the analyzed periods is that the soil moisture level is lower in the second period. It is the
expected change since after the summer, the whole area, most of it composed of natural
areas and rainfed crops, has less soil moisture due to the reduction of rain and elevation of
evapotranspiration during the summer. Therefore, based on our knowledge of the area and
its direct observation during the studied period, we can affirm that the visual verification
of results indicate that the predicted values are aligned with the expected variability of soil
moisture in the golf course and their surroundings.
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Figure 9. Comparison of proposed models. Models with transparency of 50% and Orthophoto of 2019. Figure 9. Comparison of proposed models. Models with transparency of 50% and Orthophoto of 2019.

On the other hand, we perform a quantitative verification. For this verification, the
soil moisture data of sensors from the clay soil of the golf course are compared with the
results of generated models. In Figure 10a, we can see the six groups of data, which
correspond to the 2 days and the 3 areas. In each data group, we can see in dark blu the
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value predicted by the mathematical model that uses bands with a resolution of 10 m, and
in light blue, the results for the model with the bands with 10 m resolution. In Figure 10b,
the bivariate correlations between measured and estimated soil moisture values are shown.
Meanwhile, the dark grey bars indicate the soil moisture values sensed by the sensors.
In almost all cases, the mathematical model overestimates the soil moisture. The model
calculated with the bands with a resolution of 10 m is the one with a higher overestimation.
According to the temporal distribution of datasets and the variability of soil moisture and
vegetation cover during the training and verification data set, a possible explanation for this
overestimation can be proposed. Since the datasets used for the training stage correspond
to the summer, the driest period, it is possible that the vegetation cover is greener in the
validation dataset than in the training dataset, which causes this overestimation. The
mean absolute error (MAE) is 12.5% and 8.4% for the models calculated with bands with
resolutions of 10 m and 20 m, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17 
 

On the other hand, we perform a quantitative verification. For this verification, the 

soil moisture data of sensors from the clay soil of the golf course are compared with the 

results of generated models. In Figure 10a, we can see the six groups of data, which cor-

respond to the 2 days and the 3 areas. In each data group, we can see in dark blu the value 

predicted by the mathematical model that uses bands with a resolution of 10 m, and in 

light blue, the results for the model with the bands with 10 m resolution. In Figure 10b, 

the bivariate correlations between measured and estimated soil moisture values are 

shown. Meanwhile, the dark grey bars indicate the soil moisture values sensed by the 

sensors. In almost all cases, the mathematical model overestimates the soil moisture. The 

model calculated with the bands with a resolution of 10 m is the one with a higher over-

estimation. According to the temporal distribution of datasets and the variability of soil 

moisture and vegetation cover during the training and verification data set, a possible 

explanation for this overestimation can be proposed. Since the datasets used for the train-

ing stage correspond to the summer, the driest period, it is possible that the vegetation 

cover is greener in the validation dataset than in the training dataset, which causes this 

overestimation. The mean absolute error (MAE) is 12.5% and 8.4% for the models calcu-

lated with bands with resolutions of 10 m and 20 m, respectively. 

  

(a) (b) 

Figure 10. Results of quantitative verification in terms of (a) graphic bars of estimated and sensed data and (b) bivariate 

correlations. 

5. Discussion 

In this section, we discuss the results obtained in the aforementioned section. A com-

parison of our mathematical models with the existing soil moisture index that Sentinel 

Playground [26] provides is performed to assess the accuracy of our model compared with 

existing methods. Finally, the limitations of the present study are described.  

5.1. Comparison of Our Regression Models with Existing Moisture Indexes 

Regarding the existing soil moisture indexes, we follow the same procedure in the 

verifications, with quantitative and quantitative validation. For the qualitative compari-

son, we compare our results with the soil moisture index calculated by Sentinel Play-

ground [26], see Figure 11.  

  

y = 0.9587x + 13.238
R² = 0.2736

y = 0.5421x + 16.152
R² = 0.1404

12.5

17.5

22.5

27.5

32.5

37.5

42.5

7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00

Es
ti

m
at

ed
 S

o
il 

M
o

is
tu

re
 (

%
)

Measured Soil Moisture (%)

Model 10 m
Model 20 m
Lineal (Model 10 m)
Lineal (Model 20 m)
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5. Discussion

In this section, we discuss the results obtained in the aforementioned section. A
comparison of our mathematical models with the existing soil moisture index that Sentinel
Playground [26] provides is performed to assess the accuracy of our model compared with
existing methods. Finally, the limitations of the present study are described.

5.1. Comparison of Our Regression Models with Existing Moisture Indexes

Regarding the existing soil moisture indexes, we follow the same procedure in the
verifications, with quantitative and quantitative validation. For the qualitative comparison,
we compare our results with the soil moisture index calculated by Sentinel Playground [26],
see Figure 11.

In Figure 11, we can see that results for both days, 12 June 2021 and 20 September
2021 reflect the same trends observed in the data of soil moisture index. We can see those
surroundings above the golf course have higher soil moisture values in both proposed
and existing models in September than in June. On the other hand, the large field in
the northwest of the picture is dryer in September, and this trend is reflected in both the
proposed and existing index. Other areas in which the trends can be observed are the
golf course itself and the round area in the northeast of the picture in which we identify a
pivot that irrigates the crops (corn), and soil moisture was higher in September. Finally,
an advantage of our index is that edifications present very different values, which allows
extracting edifications from the analysis (black areas). Nonetheless, in some instances,
fields with extremely low irrigations are considered as edifications.
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Figure 11. Comparison of proposed models with the model presented in Sentinel Playground.

The second part of the comparison is performed comparing the obtained R2 of the
models and the MAE of the verification with the results of other authors. Regarding the
papers presented in the related work [10–18], based on their information, none of them
presents the modeled indexes, the R2, and MAEs to allow a comparison. Very few papers
on this topic include details of the verification in these terms. Therefore, we have limited
data to compare our results. In [27], Srivastava et al., the obtained MAEs are between 5.5%
and 8.2% using different spatial interpolation methods. In this case, the obtained regression
model is characterized by an R2 of 0.64. On the other hand, Lou et al. [28] used linear
regression models to predict soil moisture among the six generated mathematical models.
The maximum obtained R2 was 0.39, and no information about MAE was given. In [29],
Pal et al. estimate the soil moisture at 7.5 cm with different remote sensing sources, and
the maximum obtained R2 was 0.28 and the MAEs range from 7% to 11% approximately
(this data was obtained from a graphic and the exact values might be slightly different).
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According to the results of Sadeghi et al. [30], the greatest R2 was 0.85 with an MAE of
2.4%. Finally, Chen et al. in [31] obtained two correlations characterized by R2 of 0.45 to
0.49 and MAEs of 3% to 8%. Those are the only found related work in which the R2 and
MAEs are provided for the developed indexes.

In our calibrations, we obtained R2 of 0.46 and 0.70 with MAEs of 3.42% and 2.55%
for models calculated with data of satellite with a spatial resolution of 10 m and 20 m,
respectively. In the verifications, the MAEs increased to 12.5 and 8.4%. Thus, we can
affirm that our models have similar characteristics to the existing models with the lowest
MAEs in the calibrations and highest R2. No papers provide information about the MAEs
calculated during the verification phase. Therefore, it is not possible to perform this type
of comparison. More information was found regarding other types of studies based on
remote sensing data, which provide information about the R2 and MAEs of the training
and validation dataset. In [32]. The authors measured the above-ground biomass of wheat;
their results of the validation showed a modification of R2 (average reduction of 6%) and
MAEs (average increase of 11%). Only in one of the eight cases, there was an improved
R2 (with an increase of 10%), but no improvement on its MAEs is reported. Another
paper reports these differences, in [33] a decrease of R2 of 20% and 84% in the validation
(according to of residual correction is applied or not). The change detected in the MAE in
the verification dataset compared with the training dataset was an increase of 59% and
67%, according to of residual correction is applied or not. In [34], authors show multiscale
remote sensing to map cropland’s spatial distribution and extent in the Sudanian savanna
of West Africa. Their paper shows an increase of between 1.7 and 15.4% in the MAE values
of the validation dataset for different training samples. The last example is shown in [35]
in which chlorophyll content is estimated based on hyperspectral images. In the results,
the authors indicate as average a reduction of 13% on the R2 in the validation dataset and
an average increment of 12% in the MAEs. Nonetheless, authors found in some cases
increments on the R2 of the validation dataset (from 0.57 to 0.78) and reductions on the
MAEs (from 2.78 to 2.23).

5.2. Limitation of Proposed Regression Models

The main limitation of the proposed system is that it can only be applied in the areas
classified as natural areas. No suitable models have been obtained which can monitor with
an acceptable error the areas covered by grass in the golf course, the green areas, and the
fairways. It is possible to have mathematical models for these cases, but the R2 of these
models is around 24%, and we assume that the errors are too high. Thus, we focused on
the models for the natural areas within a golf course. Moreover, the application of the
generated models can be applied to other areas with natural vegetation. Two key aspects
cause the lack of models with appropriate R2 and MAEs.

On the one hand, there is a variability of soil moisture (from 6 to 19% approximately)
in the greens, which is not correlated with changes in the grass. This is caused because the
daily irrigation ensures that the plants h an optimum vigor. The soil of the greens is sandy
soil, which causes very fast drainage of water, which, together with the evapotranspiration,
produces a fast decrease of soil moisture. This decrease of soil moisture is not related to the
grass status, which neglects the correct detection of the soil moisture by observing grass
coverage in this specific environment. Moreover, high spatial variability of soil moisture
inside the green can be identified, as shown in [36].

On the other hand, in the fairways, we have a similar case. The grass coverage neglects
the estimation of soil moisture because regardless of the instantaneous soil moisture value,
the grass coverage aspect is stable in time. In this case, the situation is worsening than in
the greens since the soil has lower homogeneity in the fairways, and it is formed by natural
soil with an amendment of sand; an example of the heterogeneity of its soil moisture can be
seen in [37,38]. Moreover, the grass coverage in the fairways is far less homogeneous than
in the greens, both in the temporal and spatial gradient. Regarding the temporal variability,
an example can be seen in [6]. In the greens, the grass is kept at a given height, and they
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are mowed periodically, ensuring the same grass height along the green and along the time.
In the fairways, we do not have this homogeneity.

Regarding the use of NDV and related indexes to evaluate the soil moisture in greens
and fairway areas of the golf course, as shown in [12], recently published results show no
correlation between NDVI and soil moisture. Although [39] showed a clear correlation
between NDVI and soil moisture in grasses with different water stress, Ref. [40] indicated
that there is no correlation when no continuous stress is applied. The authors set in [40]
that this is because in short periods of time, even though the soil moisture decreases after
irrigating, the NDVI remains uniform. Moreover, they highlight the difficulties of obtaining
data that prove the decrease of soil moisture in a short period of time due to the high
heterogeneity of soil.

Finally, the MAEs of the verification process is higher than the MAEs of the calibration.
The increase of MAEs in the verification might be caused by changes in the land coverage,
which are not considered in the initial model. Therefore, it will be necessary to gather and
analyze more data along the year to estimate if the proposed soil moisture model should
be reformulated to include other seasons. Another option is to generate specific models for
each season or period.

6. Conclusions

The estimation of accurate soil moisture using satellite imagery is essential for evalu-
ating irrigation efficiency. It can be applied to several areas such as in the urban lawn, golf
courses, agriculture, or at a higher scale considering a whole river basin. Nonetheless, the
existing proposed models have relatively low accuracies.

This paper shows the combined use of remote sensing and a soil moisture sensor
network to generate soil sensor indexes based on satellite imagery. Our results indicate that
it is feasible to evaluate the soil moisture at different points of the golf course to achieve
better water efficiency by using Sentinel-2 images. Nonetheless, indexes offered accurate
results only in the natural soil, precluding remote soil moisture estimation in the fairways
and greens. The accuracy of obtained models upgrades the existing solutions based on the
R2 and the MAEs of the calibration dataset. We added a validation dataset to verify our
findings. The validation indicated that the model obtained with bands at 20 m has greater
MAE than the training dataset. This aspect was not considered in previous contributions,
and it is essential to ensure its application to new areas. To verify our results, a comparison
with other indexes is performed. The indexes were applied to the nearby area of the golf
course, and the obtained results correspond to the observed changes in the different land
uses.

As future work, we will include data of other seasons to decrease the MAEs of the
validation dataset. Our main objective with future work is to evaluate the option of creating
seasonal soil moisture indexes. Moreover, other remote sensing sources will be combined
with Sentinel-2 data to attain the generation of soil moisture models suitable for fairways
and green areas.
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