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1. Introduction

The notion of recurrence for a dynamical system has a very long history, whose sys-
tematic study goes back to the work of Gottschalk and Hedlund [24] and Furstenberg 
[21] (see also [23] and [40] for recent advances). In linear dynamics, however, recurrent 
operators have only recently been studied systematically in a fundamental paper by 
Costakis, Manoussos and Parissis [19]; see also [20].

The literature on (non-linear) dynamical systems abounds with notions that are sim-
ilar to recurrence. Of course, periodicity is a very strong form of recurrence, and it is 
fundamental in any dynamical theory. But some other forms of recurrence have also 
recently been looked at in linear dynamics, see [22], [46], [29], [27], [15].

The aim of this paper is to study various notions of recurrence in the context of linear 
dynamics. The appropriate framework is that of F-recurrence for arbitrary Furstenberg 
families F . However, for better readability we will mainly concentrate on those types of 
recurrence that deserve the greatest interest from the point of view of linear dynamics. 
We will discuss the general notion of F-recurrence in Section 8.

Throughout Sections 1 to 7, X will denote a Fréchet space and T : X → X a (con-
tinuous, linear) operator, briefly T ∈ L(X). A vector x ∈ X is called recurrent for T if 
there exists a strictly increasing sequence (nk)k∈N of positive integers such that

Tnkx → x as k → ∞.

We will denote by Rec(T ) the set of recurrent vectors for T , and T is called recurrent 
if Rec(T ) is dense in X. The latter differs from, but is equivalent to the definition 
of recurrence given by Costakis et al., see [19, Proposition 2.1 with Remark 2.2] and 
Remark 8.2 below.

A vector x is called periodic for T if there is some n ≥ 1 such that Tnx = x. The 
set of periodic points of T will be denoted by Per(T ). The vector x is called uniformly 
recurrent for T if, for any neighbourhood U of x, the return set

N(x, U) = {n ≥ 0 : Tnx ∈ U}

is syndetic, that is, has bounded gaps. The set of uniformly recurrent vectors will be 
denoted by URec(T ). Uniformly recurrent vectors are often called almost periodic in the 
literature, see [24], but also syndetically recurrent or strongly recurrent, see [11], [32].

In addition, we fix the following terminology as suggested by recent work in linear 
dynamics.

Definition 1.1. Let T ∈ L(X). A vector x ∈ X is called frequently recurrent (upper 
frequently recurrent, reiteratively recurrent) for T if, for any neighbourhood U of x, the 
return set

N(x, U) = {n ≥ 0 : Tnx ∈ U}
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has positive lower density (positive upper density, positive upper Banach density, respec-
tively). The corresponding set of vectors is denoted by FRec(T ) (UFRec(T ), RRec(T ), 
respectively). If this set is dense in X then the operator is called frequently recurrent
(upper frequently recurrent, reiteratively recurrent, respectively).

We recall that, for a subset A of N0, its lower density is defined as

dens (A) = lim inf
N→∞

card{n ∈ A : n ≤ N}
N + 1 ,

its upper density as

dens (A) = lim sup
N→∞

card{n ∈ A : n ≤ N}
N + 1 ,

and its upper Banach density as

Bd (A) = lim
N→∞

sup
m≥0

card{n ∈ A : m ≤ n ≤ m + N}
N + 1 ;

see [25] for other, equivalent definitions of the upper Banach density; see also [13].
The notion of upper frequent recurrence was first introduced by Costakis and Parissis 

[20], while Grivaux and Matheron [26] have introduced a concept of frequent recurrence 
that is (at least formally) weaker than ours.

In non-linear dynamics, frequently recurrent points have been called weakly almost 
periodic, upper frequently recurrent points have been called quasi-weakly almost periodic 
or ergodic, and reiteratively recurrent points have been called positive Banach upper 
density points, Banach recurrent points, or essentially recurrent points, see [30], [34], 
[47], [45], [7].

As pointed out by the referee, there is an important notion of (topological) multiple 
recurrence studied for linear operators in [20]. It was observed in the recent article [16]
that it is equivalent to AP-recurrence, where AP is the Furstenberg family consisting of 
those subsets of N0 containing arbitrarily long arithmetic progressions. Let APRec(T )
denote the set of AP-recurrent vectors for an operator T .

We have the following inclusions, which are obvious, except RRec(T ) ⊂ APRec(T ), 
which was observed in [16].

Per(T ) ⊂ URec(T ) ⊂ FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ) ⊂ APRec(T ) ⊂ Rec(T ). (1)

The paper is organised as follows. In Section 2 we compare recurrence properties with 
their corresponding notions of hypercyclicity. In Section 3 we study the influence of power 
boundedness on recurrence. Section 4 is devoted to some structural properties of recur-
rence; in particular, we solve a problem of Grivaux et al. [27]. Weighted backward shifts 
are studied in Section 5, where we also show that all the inclusions in (1) are strict (in a 
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rather strong sense). Further operators are considered in Section 7; a common feature of 
many of these operators is a large supply of unimodular eigenvectors, which implies IP∗-
recurrence, an interesting strengthening of uniform recurrence. Thus, as a preparation, 
we briefly discuss IP∗-recurrence in Section 6. In the final Section 8 we introduce and 
discuss the general notion of F-recurrence for operators on general topological vector 
spaces. As a by-product of our work we obtain Ansari- and León-Müller-type results for 
F-hypercyclicity, see Theorem 8.8.

Our investigations have led to several open problems, see Questions 2.9, 2.11, 2.13, 
2.14, 4.10,1 5.3, and 6.3.

For any unexplained, but standard notions from linear dynamics we refer to the text-
books [5] and [28].

2. Recurrence, hypercyclicity, and the size of the set of recurrent vectors

The central notion in linear dynamics is that of a hypercyclic vector: it is characterised
by having a dense orbit. In a similar vein, a vector x ∈ X is called frequently hypercyclic 
(upper frequently hypercyclic, reiteratively hypercyclic) for T if, for every non-empty 
open subset U of X, the return set N(x, U) has positive lower density (positive upper 
density, positive upper Banach density, respectively). An operator that possesses such a 
vector is called frequently hypercyclic (upper frequently hypercyclic, reiteratively hyper-
cyclic, respectively), see [3], [44], [9], [13], and the textbooks [5], [28]. Note that uniform 
recurrence admits no hypercyclic analogue, see [9, Proposition 2].

Trivially, every notion of hypercyclicity implies the corresponding notion of recurrence. 
The converse, of course, is not true as seen by the identity operator. In this section we 
ask under which additional assumptions on the operator the converse does become true.

Our first result elaborates on [9, Theorem 14].

Theorem 2.1. Let T ∈ L(X). Then the following assertions are equivalent:

(a) T is reiteratively hypercyclic;
(b) T is hypercyclic, and RRec(T ) is a residual set;
(c) T is hypercyclic, and RRec(T ) is of second category;
(d) T admits a hypercyclic reiteratively recurrent vector;
(e) T is hypercyclic and reiteratively recurrent;
(f) T is hypercyclic, and every hypercyclic vector is reiteratively hypercyclic.

In that case the set of hypercyclic reiteratively recurrent vectors is residual.

Proof. (a) ⇒ (b). By [9, Theorem 14], if T is reiteratively hypercyclic then every hyper-
cyclic vector is reiteratively hypercyclic; and the set of hypercyclic vectors is residual.

1 Question 4.10 has recently been solved in the negative; see [17].
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(b) ⇒ (c). This is trivial.
(c) ⇒ (d). This follows from the fact that the set of hypercyclic vectors of a hypercyclic 

operator is residual.
(d) ⇒ (e). Since T admits a hypercyclic reiteratively recurrent vector x, then each 

element of the orbit of x is also a hypercyclic reiteratively recurrent vector. Thus T is 
hypercyclic and reiteratively recurrent.

(e) ⇒ (f). This was essentially shown in the proof of [9, Theorem 14]. We repeat the 
argument for the sake of completeness.

Let x be a hypercyclic vector and U a non-empty open set. By hypothesis there is a 
reiteratively recurrent vector y ∈ U . Thus, N(y, U) = {n ≥ 0 : Tny ∈ U} has positive 
upper Banach density.

Now let n ≥ 0. Then Un =
⋂

j∈N(y,U)∩[0,n] T
−j(U) is an open set, and it is non-empty 

since it always contains y. By hypercyclicity of x there is then some kn ≥ 0 such that 
T knx ∈ Un, thus T kn+jx ∈ U for every j ∈ N(y, U) ∩ [0, n].

In other words, for every n sufficiently large, there exists kn ≥ 0 such that

N(x, U) ⊃ kn + (N(y, U) ∩ [0, n]).

This easily implies that N(x, U) has positive upper Banach density. That is, x is reiter-
atively hypercyclic.

(f) ⇒ (a). This is trivial. �
In particular, since periodic points are reiteratively recurrent, we have the following 

result of Menet [35].

Corollary 2.2. Every chaotic operator is reiteratively hypercyclic.

In view of the theorem one might wonder whether, for a hypercyclic operator, a single 
non-zero reiteratively recurrent vector suffices to make it reiteratively hypercyclic. The 
following example shows that this is not the case.

Example 2.3. By [9, Theorem 13], there exists a mixing operator S on �2(N) that is 
not reiteratively hypercyclic, and let T be a mixing and chaotic operator on �2(N), for 
example twice the backward shift, 2B (see [28, Example 3.2]). Then the operator S × T

on �2(N) × �2(N) is also mixing; by the standard quasi-conjugacy argument (see [28, 
Proposition 1.42]) S × T cannot be reiteratively hypercyclic because S is not; and (0, y)
is periodic for S × T if y is periodic for T . So we even have a mixing operator with a 
non-zero periodic point that is not reiteratively hypercyclic.

If T is recurrent, the set of recurrent vectors for T is residual, see [19]. Also, if T is 
a reiteratively hypercyclic operator, then the set of reiteratively hypercyclic vectors is 
residual, see [9]. Thus one would expect the same type of result for reiterative recurrence. 
Surprisingly, as we see next, this is not the case.
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Example 2.4. There is a reiteratively recurrent operator for which the set of reiteratively 
recurrent vectors is of first category. To see this, let X = �p(N), 1 ≤ p < ∞, or c0(N). 
We consider the operator T : X → X that is defined by Te1 = e1 and

Tek =
{

2ek+1 if 2j ≤ k < 2j+1 − 1,
1

2(2j−1) e2j if k = 2j+1 − 1

for j ≥ 1, where ek = (δk,n)n≥1 denotes the k-th canonical unit sequence. Obviously, 
every vector ek, k ≥ 1, is periodic for T , so that T admits a dense set of periodic points. 
In particular, T is reiteratively recurrent.

We now show that RRec(T ) is of first category. For this, it suffices to show that

G = {x = (xn)n≥1 ∈ X : |x2j | > 1
j for infinitely many j ≥ 1}

is a residual set that does not contain any reiteratively recurrent vector. In fact, it is 
easy to see that G is dense, and since

G =
⋂
J≥1

⋃
j≥J

{x ∈ X : |x2j | > 1
j },

it is a dense Gδ-set, hence residual. On the other hand, suppose that x ∈ G ∩ RRec(T ). 
Let U = {y ∈ X : ‖y−x‖ < 1

2}. Then the set A = {n ≥ 0 : Tnx ∈ U} has positive upper 
Banach density. Thus there is some δ > 0 and some N0 ≥ 0 such that, for any N ≥ N0,

sup
m≥0

card{n ∈ [m,m + N ] : Tnx ∈ U}
N + 1 > δ. (2)

Now, since x = (xn)n ∈ X, there is some N1 ≥ 0 such that |xn| < 1
2 for every n ≥ N1. 

Consequently we have that if y ∈ U then |yn| < 1 for every n ≥ N1. Moreover, since 
x ∈ G, there is some j ≥ 1 such that j

2j < δ
2 , 2j > max(N0, N1) and |x2j | > 1

j . We then 
have for any n = �2j + k, � ≥ 0, j ≤ k ≤ 2j − 1,

|[Tnx]2j+k| = 2k|x2j | > 2k

j
≥ 2j

j
> 1,

so that Tnx /∈ U . This implies that, for any m ≥ 0, card{n ∈ [m, m + 2j − 1] : Tnx ∈
U} ≤ j, hence

sup
m≥0

card{n ∈ [m,m + 2j − 1] : Tnx ∈ U}
2j ≤ j

2j <
δ

2 ;

since 2j > N0, this contradicts (2).
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We will now see that for upper frequently recurrent operators the situation is a little 
different from that for reiterative recurrence found in Theorem 2.1. We start with a 
partial analogue.

Theorem 2.5. Let T ∈ L(X). Then the following assertions are equivalent:

(a) T is upper frequently hypercyclic;
(b) T is hypercyclic, and UFRec(T ) is a residual set;
(c) T is hypercyclic, and UFRec(T ) is of second category;
(d) T admits a hypercyclic upper frequently recurrent vector.

In that case the set of hypercyclic upper frequently recurrent vectors is residual. Moreover, 
every hypercyclic upper frequently recurrent vector is upper frequently hypercyclic.

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (d). This follows from the fact that the set of upper frequently 
hypercyclic vectors is either empty or residual, see [6], and that the same is true for the 
set of hypercyclic vectors.

(d) ⇒ (a). Let x be a hypercyclic upper frequently recurrent vector, and let U be a 
non-empty open set. By hypercyclicity of x there is some m ≥ 0 such that Tmx ∈ U . 
The continuity of T implies that there is some neighbourhood V of x such Tm(V ) ⊂ U . 
Since x is upper frequently recurrent we have that the set

N(x, V ) = {n ≥ 0 : Tnx ∈ V }

has positive upper density, and so has N(x, V ) + m. But

N(x, V ) + m ⊂ {n ≥ 0 : Tnx ∈ U}.

This shows that x is upper frequently hypercyclic. This also proves the additional 
claim. �

However, the analogue of Theorem 2.1(e) breaks down for upper frequent recurrence, 
as the following shows.

Example 2.6. Menet [35] has constructed a chaotic operator T on �1(N) that is not 
upper frequently hypercyclic. Since periodic points are upper frequently recurrent, T is 
hypercyclic and upper frequently recurrent without being upper frequently hypercyclic.

Note also that, by Theorem 2.5(c), UFRec(T ) must be of first category. This is in 
sharp contrast to the fact that the set of upper frequently hypercyclic vectors is always 
either empty or residual, see [6].

In the case of frequent hypercyclicity we have even fewer equivalent conditions. The 
proof is identical to that of the corresponding part in Theorems 2.1 or 2.5.
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Theorem 2.7. Let T ∈ L(X). Then the following assertions are equivalent:

(a) T is frequently hypercyclic;
(b) T admits a hypercyclic frequently recurrent vector.

Moreover, every hypercyclic frequently recurrent vector is frequently hypercyclic.

There is a striking difference in hypercyclicity when passing from lower to upper 
densities: while the set of frequently hypercyclic vectors is always of first category ([38], 
[6]), the set of upper frequently hypercyclic vectors is residual unless empty ([6]). We 
have just seen that we lose the latter property for upper frequent recurrence. For frequent 
recurrence we collect here some cases where FRec(T ) is of first category.

Recall the following notions. The orbit of a vector x ∈ X for an operator T ∈ L(X) is 
called distributionally near to zero (distributionally unbounded) if there is a set A ⊂ N0
with dens(A) = 1 such that Tnx → 0 as n → ∞, n ∈ A (p(Tnx) → ∞ as n → ∞, 
n ∈ A, for some continuous seminorm p(·) on X, respectively). These two properties, 
put together, define the notion of a distributionally irregular vector, see [8].

Theorem 2.8. Let T ∈ L(X). Suppose one of the following conditions is satisfied:

(a) T is hypercyclic;
(b) T has a distributionally unbounded orbit;
(c) T has a dense set of vectors whose orbits are distributionally near to zero;
(d) T has a dense set of vectors x ∈ X such that Tnx → 0 as n → ∞.

Then FRec(T ) is of first category.

Proof. (a) Let T be hypercyclic. If FRec(T ) is of second category then so is the set of 
hypercyclic frequently recurrent vectors. But by the previous theorem these are exactly 
the frequently hypercyclic vectors, which is impossible since these vectors form a set of 
first category.

(b) By [8, Proposition 7], the hypothesis implies that there exists a residual subset of 
vectors in X with distributionally unbounded orbits. But none of these vectors can be 
frequently recurrent.

(c) We use the same argument as in (b), based now on [8, Proposition 9].
(d) This is a special case of (c). �
Of course, the identity operator tells us that FRec(T ) can be all of X. So the following 

question seems natural.

Question 2.9. Do we always have that either FRec(T ) = X or FRec(T ) is a set of first 
category?
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When we now try to look in the same way at uniformly recurrent vectors then we 
have gone too far: such vectors can never be hypercyclic. This is obvious for Banach 
space operators. But it is also valid in general, as follows from a classical result of 
Furstenberg [21, Theorem 1.17]: the closure of the orbit of any uniformly recurrent vector 
is a minimal set (that is, it does not contain any proper closed invariant subset). Thus, no 
periodic point can be an accumulation point of the orbit of a uniformly recurrent vector. 
We give here the proof of this conclusion for the sake of completeness; the argument can 
also be found in the proof of [9, Proposition 2].

Theorem 2.10. Let T ∈ L(X). Then no periodic point of T is an accumulation point of 
the orbit of a uniformly recurrent vector. In particular, no uniformly recurrent vector for 
T is hypercyclic.

Proof. Suppose on the contrary that a periodic point y is an accumulation point of the 
orbit of a uniformly recurrent vector x. Then x cannot belong to the (finite) orbit of 
y under T , so that there are disjoint open sets U and V containing x and the orbit of 
y, respectively. Let m be the maximum gap in the return set N(x, U). Then there is a 
neighbourhood W of y such that T j(W ) ⊂ V for j = 0, . . . , m. By assumption there is 
some n ≥ 0 such that Tnx ∈ W . But then T kx belongs to V and therefore not to U for 
the m + 1 exponents k = n, . . . , n + m, which is a contradiction.

Since 0 is a periodic point of every operator, the final conclusion follows. �
Theorem 2.10 only leaves the possibility to study hypercyclic operators that also have 

a dense set of uniformly recurrent vectors (or, for that matter, upper frequently recurrent 
vectors, frequently recurrent vectors). We will not pursue this here.

Let us ask again the following.

Question 2.11. Do we always have that either URec(T ) = X or URec(T ) is a set of first 
category?

We will get a partial positive answer in Section 3. Note that, for periodic points, the 
corresponding property holds. It is a simple consequence of Baire’s theorem that either 
Per(T ) is of first category or else Tn = I for some n ≥ 1 (and hence Per(T ) = X).

Our next result was motivated by [27, Corollary 5.20]. The authors there show that 
if an operator T is uniformly recurrent, and if there is a dense set of vectors x ∈ X such 
that Tnx → 0 as n → ∞, then T is upper frequently hypercyclic. They call this result 
somewhat unexpected. We can give here a more natural (and improved) version of their 
finding.

Theorem 2.12. Let T ∈ L(X). Suppose that there is a dense set of vectors x ∈ X such 
that Tnx → 0 as n → ∞. Then we have the following:

(a) if T is recurrent then it is hypercyclic;
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(b) if T is reiteratively recurrent then it is reiteratively hypercyclic;
(c) if T is upper frequently recurrent then it is upper frequently hypercyclic.

Proof. For upper frequent hypercyclicity, it suffices by [13, Corollary 3.4] to show that, 
for any non-empty open set V in X there is some δ > 0 such that, for any non-empty 
open set U in X, there is some x ∈ U such that

dens{n ≥ 0 : Tnx ∈ V } > δ. (3)

Such a set V contains an upper frequently recurrent vector v. Choose open neighbour-
hood V0 of v and W of zero such that V0 + W ⊂ V . Then the set

A := {n ≥ 0 : Tnv ∈ V0}

has positive upper density. Choose 0 < δ < dens(A). Now let U be a non-empty open 
set. By hypothesis there is some y ∈ U − v such that Tny → 0 as n → ∞. Then the 
vector x := y + v belongs to U , and we have that

Tnx = Tny + Tnv ∈ W + V0 ⊂ V

whenever n ∈ A is sufficiently large, which implies (3).
The proof for reiterative recurrence and recurrence is similar; see also Theorem 8.5

below. �
The proof, however, breaks down for frequent hypercyclicity.

Question 2.13. Let T be a frequently recurrent operator (or even a chaotic operator) 
such that Tnx → 0 as n → ∞ for all x from a dense subset of X. Does it follow that T
is frequently hypercyclic? It seems to be even open whether every chaotic operator with 
a dense generalised kernel (that is, 

⋃
n≥0 ker(Tn) = X) is frequently hypercyclic.

We finish the section with one more natural question. Let T be an invertible op-
erator. Does then a given dynamical property pass from T to its inverse? This is so 
for hypercyclicity, as is well known, as well as for reiterative hypercyclicity (see [13]) 
and recurrence ([19]). On the other hand, Menet [36], [37] has recently shown that the 
corresponding results are false for (upper) frequent hypercyclicity.

Question 2.14. Let T be an invertible operator. If T is reiteratively recurrent (upper 
frequently recurrent, frequently recurrent, uniformly recurrent), does T−1 have the same 
property?
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3. Recurrence and power boundedness

Not surprisingly, power boundedness influences strongly the dynamical properties of 
an operator. An operator T ∈ L(X) is called power bounded if the sequence (Tn)n≥0 is 
equicontinuous, that is, if for any 0-neighbourhood W1 there is a 0-neighbourhood W2
such that, for any n ≥ 0,

Tn(W2) ⊂ W1;

by the Banach-Steinhaus theorem, this is equivalent to saying that every orbit under T
is bounded, see [41].

The following is then obvious; see also [19, Lemma 3.1].

Theorem 3.1. Let T ∈ L(X). If T is power bounded, then the sets URec(T ), FRec(T ), 
UFRec(T ), RRec(T ) and Rec(T ) are closed.

Proof. We only consider uniform recurrence. Let x ∈ URec(T ) and W be a 0-
neighbourhood. Choose a 0-neighbourhood W1 such that W1 + W1 + W1 ⊂ W . By 
power boundedness, there is a 0-neighbourhood W2 ⊂ W1 such that Tn(W2) ⊂ W1 for 
all n ≥ 1.

Now, by assumption, there is some y ∈ URec(T ) such that x − y, y − x ∈ W2. In 
addition, the set A := {n ≥ 0 : Tny − y ∈ W1} is syndetic. But then we have for n ∈ A

that

Tnx− x = Tn(x− y) + Tny − y + y − x ∈ W1 + W1 + W1 ⊂ W.

Since W is arbitrary, x is uniformly recurrent. �
This shows that, for every power bounded operator, recurrence of the operator implies 

that every vector is recurrent; and similarly for the other notions of recurrence.
On the other hand, for an operator acting on a Banach space, every uniformly re-

current vector has a bounded orbit. Thus we immediately obtain the following partial 
answer to Question 2.11.

Corollary 3.2. Let X be a Banach space, and T ∈ L(X) be a uniformly recurrent operator. 
Then either URec(T ) is of first category, or URec(T ) = X.

Proof. Suppose that the set URec(T ) is of second category. Then so is the set of vectors 
with bounded orbit under T , which by the Banach-Steinhaus theorem implies that T
is power bounded, see [41]. By the previous theorem, URec(T ) is then closed, and also 
dense by hypothesis, so URec(T ) = X. �

Now, for Fréchet space operators, a uniformly recurrent orbit is not necessarily 
bounded, so that one cannot argue as in the proof of Corollary 3.2. An example is 
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j
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2k

2k−1

Fig. 1. Indices for the seminorms pn.

given by the backward shift on the space KN of all (real or complex) sequences, see [22, 
Example 1]. We give here an example on a Fréchet space with a continuous norm. The 
type of operator considered in this example might also be of independent interest.

Example 3.3. Let X be the space of doubly indexed sequences x = (xk,j)k≥0,0≤j<2k such 
that, for any n ≥ 1,

pn(x) :=
∞∑
k=0

1
2k max

0≤j<2k
|xk,j | +

∞∑
k=2

k max
1≤m≤n
m<2k−1

|xk,2k−1+m| < ∞.

Fig. 1 indicates the area of indices that is involved in the second sum. When endowed 
with the increasing sequence of (semi)norms pn, n ≥ 1, X obviously becomes a separable 
Fréchet space.

We consider the operator T on X given by

T (xk,j)k,j = (xk,j+1(mod 2k))k,j ,

that is, a simple row-wise rotation. To see that T is continuous, fix n ≥ 1. Choose l ≥ 2
so that 2l ≥ 2(n + 2), which implies that n + 1 < 2k−1 for all k ≥ l. Then we have for 
x ∈ X that

pn(Tx)

=
∞∑
k=0

1
2k max

0≤j<2k
|[Tx]k,j | +

∞∑
k=2

k max
1≤m≤n
m<2k−1

|[Tx]k,2k−1+m|

=
∞∑
k=0

1
2k max

0≤j<2k
|xk,j | +

l−1∑
k=2

k max
1≤m≤n

k−1

|[Tx]k,2k−1+m| +
∞∑
k=l

k max
1≤m≤n

|xk,2k−1+m+1|

m<2
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≤
∞∑
k=0

1
2k max

0≤j<2k
|xk,j | + (l − 1)2l−1

l−1∑
k=2

1
2k max

0≤j<2k
|xk,j | +

∞∑
k=l

k max
1≤m≤n+1

|xk,2k−1+m|

≤ (1 + (l − 1)2l−1)pn+1(x),

which proves continuity.
Now, consider the vector x = (xj,k) ∈ X given by xk,0 = 1 for k ≥ 0 and all other 

xk,j = 0. Then x is uniformly recurrent for T . Indeed, let n ≥ 1 and ε > 0. Choose l ≥ 0
such that 2l > max(n, 1/ε). Let ν ≥ 0. First we observe that

[T ν2l

x]k,j = xk,j , k ≤ l, 0 ≤ j < 2k.

On the other hand, for k > l, the fact that xk,j = 0 for all j �= 0 implies that [T ν2l

x]k,j = 0
whenever j is not a multiple of 2l. Now since, for these k, 2k−1 is a multiple of 2l and 
n < 2l, we have that

[T ν2l

x]k,2k−1+m = 0, k > l, 1 ≤ m ≤ n;

note that m < 2k−1 is automatic. Thus we have for any ν ≥ 0

pn(T νlx− x) =
∑
k>l

1
2k = 1

2l < ε.

This shows that x is uniformly recurrent.
On the other hand, by construction, the orbit of x is unbounded. It suffices to observe 

that for k ≥ 2

[T 2k−1+1x]k,2k−1+1 = 1,

so that p1(T 2k−1+1x) ≥ k.

The vector x considered above is not periodic, but it enjoys the following property: for 
any neighbourhood U of x there is some k ≥ 1 such that Tnkx ∈ U for all n ≥ 0. Such 
points have been called regularly recurrent (or regularly almost periodic) in non-linear 
dynamics, see [24], [11].

The examples show that, for Fréchet spaces, the proof for Corollary 3.2 breaks down 
at a very early stage. One may wonder what kind of (weak) boundedness the orbit of a 
uniformly recurrent vector possesses in the setting of Fréchet spaces.

On the other hand, for power bounded operators we have a strong form of bounded-
ness.

Theorem 3.4. Let T ∈ L(X) be power bounded. If x is a uniformly recurrent vector for 
T then the closure of its orbit is compact.
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Proof. We show, equivalently, that the orbit of x is totally bounded, that is, for any 
0-neighbourhood W there are finitely many points x0, . . . , xN such that the orbit is 
contained in 

⋃N
n=0(xn +W ). Thus let W be a 0-neighbourhood. By power boundedness 

there is a 0-neighbourhood W0 such that Tn(W0) ⊂ W for all n ≥ 0. Let N be the 
maximum gap in the return set N(x, x + W0). Then we have that

{T kx : k ≥ 0} ⊂
N⋃

n=0
Tn(x + W0) ⊂

N⋃
n=0

(Tnx + W ),

which implies the claim. �
We already recalled Furstenberg’s result which says that the closure of the orbit of 

a uniformly recurrent vector is a minimal set. The dynamics on minimal compact sets 
(like irrational rotations on the torus) is a matter of study in non-linear dynamics.

4. Recurrence, the unit circle, and the spectrum

In this section we study some properties of recurrence whose hypercyclic analogues 
belong to the fundamental results in linear dynamics. Costakis et al. [19] have obtained 
the following: for any recurrent operator T ,

– T p is recurrent for any p ≥ 1; in fact, Rec(T p) = Rec(T );
– λT is recurrent whenever |λ| = 1; in fact, Rec(λT ) = Rec(T );

moreover, if X is a complex Banach space, then

– every component of the spectrum σ(T ) meets the unit circle;
– the point spectrum σp(T ∗) of its adjoint T ∗ is contained in the unit circle.

We start by looking at the first two properties for other notions of recurrence. Our 
approach uses in a crucial way an idea of Bayart and Matheron [5, Section 6.3.3]. Let 
us say that a family F of subsets of N0 has the cut-shift-and-paste property, CuSP for 
short, if for any I1, . . . , Iq ⊂ N0 with N0 =

⋃q
j=1 Ij and n1, . . . , nq ∈ N0 (q ≥ 1),

A ∈ F ⇒
q⋃

j=1
(nj + A ∩ Ij) ∈ F .

Then [5, Lemma 6.29] says that the family of sets of positive lower density has CuSP.

Lemma 4.1. The following families have CuSP: The syndetic subsets and the infinite 
subsets of N0, and the sets of positive lower density, positive upper density, and positive 
upper Banach density.
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Proof. The case of positive lower density is proved in [5, Lemma 6.29]; the same proof 
also covers the case of positive upper density. The result is obvious for the family of 
infinite subsets.

For the remaining cases, fix I1, . . . , Iq ⊂ N0 with N0 =
⋃q

j=1 Ij and n1, . . . , nq ∈ N0, 
where q ≥ 1. Set M = max(n1, . . . , nq).

Let A ⊂ N0 be such that Bd(A) > δ > 0. Fix N0 ≥ 0. Then there is some N1 ≥
max(N0, M) such that, for every N ≥ N1, there is some m ≥ 0 such that

1
N + 1card(A ∩ [m,m + N ]) > δ.

Now, for some k, 1 ≤ k ≤ q, we have that

card(A ∩ Ik ∩ [m,m + N ]) ≥ 1
q
card(A ∩ [m,m + N ]);

moreover,

card
(
(nk + A ∩ Ik) ∩ [m,m + N + M ]

)
≥ card(A ∩ Ik ∩ [m,m + N ]).

Altogether we obtain that

1
N + M + 1card

(( q⋃
j=1

(nj + A ∩ Ij)
)
∩ [m,m + N + M ]

)
≥

1
q

N + 1
N + M + 1

1
N + 1card(A ∩ [m,m + N ]) ≥ 1

2q δ,

which shows that 
⋃q

j=1(nj + A ∩ Ij) has positive upper Banach density.
Finally, let A ⊂ N0 be a syndetic set. Then there is some N ≥ 1 such that every 

integer interval of length N contains some element of A. Let J = [m1, m2] be an integer 
interval of length N + M . Then the interval [m1, m1 + N ] contains an element m ∈ A. 
By assumption there is some k, 1 ≤ k ≤ q, such that m ∈ A ∩ Ik. But then m + nk is 
an element of 

⋃q
j=1(nj + A ∩ Ij) that belongs to J . Thus the set 

⋃q
j=1(nj + A ∩ Ij) is 

syndetic. �
As a first application we deduce an Ansari-type result for various forms of recurrence. 

Recall that Ansari [1] has proved that, for any p ≥ 1, T and T p have the same hypercyclic 
vectors. Her proof uses in an essential way a connectedness argument; for recurrence, the 
argument is simpler.

Theorem 4.2. Let T ∈ L(X), and let p ≥ 1. Then T and T p have the same uniformly re-
current (frequently recurrent, upper frequently recurrent, reiteratively recurrent) vectors.

In particular, if T is uniformly recurrent (frequently recurrent, upper frequently recur-
rent, reiteratively recurrent) then so is T p.
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Proof. Let p ≥ 1 be given. We will show that URec(T ) = URec(T p), where we only use 
two properties of the family of syndetic sets: CuSP and the fact that A ⊂ N0 is syndetic 
if and only if pA = {pn : n ∈ A} is. Therefore the remaining assertions can be proved in 
exactly the same way.

It suffices to show that URec(T ) ⊂ URec(T p), the converse inclusion being trivial. 
We may also suppose that p is a prime number. Thus, let x be a uniformly recurrent 
vector for T . Let (Uk)k≥1 be a decreasing sequence of neighbourhoods of x that forms a 
local base. For k ≥ 1, we define

Jk = {j ∈ {0, . . . , p− 1} : there exists n ≥ 0 with n = j(mod p) and Tnx ∈ Uk}.

Then (Jk)k≥1 is a decreasing sequence of non-empty finite sets, which therefore stabilises. 
That is, there is a non-empty set J ⊂ {0, . . . , p − 1} and some k0 ≥ 1 such that Jk = J

for all k ≥ k0.
We claim that J is a subgroup of Z/pZ. Indeed, let j, j′ ∈ J . First, there is some 

n ≥ 0 with n = j(mod p) such that Tnx ∈ Uk0 . By continuity there is some l ≥ k0 such 
that Tn(Ul) ⊂ Uk0 . Now, since j′ ∈ Jl, there is then some n′ ≥ 0 with n′ = j′(mod p)
such that Tn′

x ∈ Ul. Altogether we have that Tn+n′
x = Tn(Tn′

x) ⊂ Uk0 , hence, by 
definition, j + j′(mod p) ∈ Jk0 = J .

Since p is prime, Z/pZ only has two subgroups. We distinguish these two cases.
(a) We first assume that J = {0}. Then the sets

Ak := {n ≥ 0 : Tnx ∈ Uk}, k ≥ k0

only consist of multiples of p, and they are syndetic by hypothesis. Thus the sets 1
pAk

are syndetic, and (T p)nx ∈ Uk for all n ∈ 1
pAk. This shows that x is uniformly recurrent 

for T p.
(b) Now assume that J = {0, . . . , p − 1}, hence Jk = {0, . . . , p − 1} for all k ≥ 1. Let 

k ≥ 1. For any j ∈ J we can find some nj = p − j(mod p) such that Tnjx ∈ Uk. By 
continuity there is some l ≥ 1 such that, for any j ∈ J ,

Tnj (Ul) ⊂ Uk.

By our hypothesis, the set

Al = {n ≥ 0 : Tnx ∈ Ul}

is syndetic. In order to apply Lemma 4.1, we set

Ij = {n ≥ 0 : n = j(mod p)}, j ∈ J.

Let n ∈ Al ∩ Ij , j ∈ J . Then we have that
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Tnj+nx = Tnj (Tnx) ∈ Uk.

In other words,

A :=
⋃
j∈J

(nj + Al ∩ Ij) ⊂ {n ≥ 0 : Tnx ∈ Uk}

(we only need the fact that J is the full subgroup for the existence of some nj for any 
j ∈ J). By Lemma 4.1, A is a syndetic set. Moreover, if m ∈ A then there are j ∈ J and 
n ≥ 0, n = j(mod p) such that

m = nj + n = p− j + j(mod p) = 0(mod p).

Thus the set 1
pA is syndetic and (T p)nx ∈ Uk for all n ∈ 1

pA. Since k ≥ 1 was arbitrary, 
we see that x is uniformly recurrent for T p. �
Remark 4.3. In fact, Theorem 4.2 holds for any continuous map on any topological space, 
and in particular for every operator on any topological vector space. In the proof one 
only needs to replace the countable local base (Uk)k≥1 by the filter of all neighbourhoods 
at x. See also [19, Remark 2.4].

As usual, the λT -problem is closely related to the T p-problem: León and Müller [33]
have shown that, for any scalar λ of modulus 1, T and λT have the same hypercyclic 
vectors. Like for hypercyclicity, the proof in the λT -case for recurrence requires somewhat 
more work than in the T p-case.

Theorem 4.4. Let T ∈ L(X), and let λ be a scalar with |λ| = 1. Then T and λT have the 
same uniformly recurrent (frequently recurrent, upper frequently recurrent, reiteratively 
recurrent) vectors.

In particular, if T is uniformly recurrent (frequently recurrent, upper frequently recur-
rent, reiteratively recurrent) then so is λT .

Proof. This time we only use the CuSP property, so it again suffices to do the uniformly 
recurrent case.

The real scalar case already follows from Theorem 4.2 because (−T )2 = T 2. Thus we 
need only consider complex scalars. Alternatively one can also do the following proof for 
R instead of C.

It obviously suffices to show that URec(T ) ⊂ URec(λT ) whenever |λ| = 1. Thus, let 
λ ∈ C with |λ| = 1, and let x be a uniformly recurrent vector for T . Let (Uk)k≥1 be a 
decreasing sequence of neighbourhoods of x that forms a local base. For k ≥ 1, we define

Λk = {μ ∈ T : there exists n ≥ 0 with λn = μ and Tnx ∈ Uk},
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where T = {z ∈ C : |z| = 1} denotes the unit circle. Then (Λk)k≥1 is a decreasing 
sequence of non-empty subsets of T . Let

Λ =
∞⋂
k=1

Λk.

Since Λ is the intersection of a decreasing sequence of non-empty closed sets, it is a 
non-empty closed subset of T .

We now claim that Λ is a subsemigroup of the multiplicative group T . To see this, let 
μ, μ′ ∈ Λ. Let k ≥ 1 and ε > 0. Then there is some μk ∈ Λk such that |μ −μk| < ε. This 
implies that there is some nk ≥ 0 such that λnk = μk and Tnkx ∈ Uk. By continuity 
there is some l ≥ 1 such that Tnk(Ul) ⊂ Uk. We then find some μ′

l ∈ Λl such that 
|μ′ − μ′

l| < ε and hence some n′
l ≥ 0 such that λn′

l = μ′
l and Tn′

lx ∈ Ul. Altogether we 
get that Tnk+n′

lx ∈ Tnk(Ul) ⊂ Uk. Since λnk+n′
l = μkμ

′
l, we deduce that μkμ

′
l ∈ Λk. On 

the other hand,

|μμ′ − μkμ
′
l| ≤ |μ− μk| |μ′| + |μk| |μ′ − μ′

l| < 2ε.

Since ε > 0 is arbitrary, μμ′ ∈ Λk, and that for any k ≥ 1. Thus μμ′ ∈ Λ, as had to be 
shown.

As a consequence, there are only two possibilities for Λ, see [28, pp. 170–171].
(a) This time it is easier to start with the full group: Λ = T . Let U be a neighbourhood 

of x. By continuity of scalar multiplication there is some ε > 0 and some k ≥ 1 such that 
B(1, ε)Uk ⊂ U , where B(z0, ε) = {z ∈ C : |z− z0| < ε}. Since Λ = T , the set Λk is dense 
in T . Using compactness there are N ≥ 1 and nj ≥ 0 with Tnjx ∈ Uk, j = 1, . . . , N , 
such that

T ⊂
N⋃
j=1

B(λnj , ε). (4)

By continuity there exists l ≥ 1 such that, for j = 1, . . . , N ,

Tnj (Ul) ∈ Uk,

and we have that the set

Al := {n ≥ 0 : Tnx ∈ Ul}

is syndetic. Also, it follows from (4) that the sets

Ij := {n ≥ 0 : λnj+n ∈ B(1, ε)}, j = 1, . . . , N,

form a cover of N0.
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Now, if n ∈ Al ∩ Ij , j = 1, . . . , N , then

(λT )nj+nx = λnj+nTnj (Tnx) ∈ B(1, ε)Tnj (Ul) ⊂ B(1, ε)Uk ⊂ U.

This shows that

A :=
N⋃
j=1

(nj + Al ∩ Ij) ⊂ {n ≥ 0 : (λT )nx ∈ U},

and it follows from Lemma 4.1 that {n ≥ 0 : (λT )nx ∈ U} is syndetic. Thus x is 
uniformly recurrent for λT .

(b) It remains the case when there is some N ≥ 1 such that Λ = {e2πi j
N : j =

1, . . . , N}. Let U be a neighbourhood of x, and then ε > 0 and k′ ≥ 1 such that 
B(1, ε)Uk′ ⊂ U . It follows from a simple compactness argument that there is some 
k ≥ k′ such that

Λk ⊂
N⋃
j=1

B
(
e2πi j

N , ε
2
)
.

Moreover, since e2πi−j
N ∈ Λ ⊂ Λk, j = 1, . . . , N , there are nj ≥ 0 with Tnjx ∈ Uk and

∣∣λnj − e2πi−j
N

∣∣ < ε
2 .

As before there is some l ≥ k such that, for j = 1, . . . , N ,

Tnj (Ul) ⊂ Uk,

and the set

Al = {n ≥ 0 : Tnx ∈ Ul}

is syndetic.
Now, let n ∈ Al. Then λn ∈ Λl ⊂ Λk, so that there is some j ∈ {1, . . . , N} such that 

|λn − e2πi j
N | < ε

2 , hence

|λnjλn − 1| ≤
∣∣λnj − e2πi−j

N

∣∣|λn| +
∣∣e2πi−j

N λn − 1
∣∣ < ε.

This shows that the sets

Ij := {n ≥ 0 : λnj+n ∈ B(1, ε)}, j = 1, . . . , N,

cover Al. From here the proof can be finished as in case (a). In order that the sets Ij
cover N0 one might add I0 = N0 \Al, which has no influence in the sequel. �
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Remark 4.5. Again, by considering the neighbourhood filter instead of the countable 
local base (Uk)k≥1, the same proof shows that Theorem 4.4 holds for any operator on 
any topological vector space.

Our proofs for the T p- and λT -problems work equally well for recurrent operators and 
therefore provide alternative, if longer, proofs to those of Costakis et al. [19].

If we combine the last two theorems with Theorems 2.5 and 2.7 we obtain new proofs 
of Ansari-type and León-Müller type theorems for upper frequent hypercyclicity and 
frequent hypercyclicity that are due to Shkarin [44] and Bayart, Grivaux and Matheron 
[3], [5], respectively.

The corresponding results for reiterative hypercyclicity follow with Theorem 2.1. They 
seem to be new. Note, however, that the only issue is that reiterative hypercyclicity passes 
to T p or λT because, for a reiteratively hypercyclic operator, the sets of reiteratively 
hypercyclic and hypercyclic vectors coincide, see [9].

Corollary 4.6. Let T ∈ L(X) be reiteratively hypercyclic.
(a) If p ≥ 1, then T p is reiteratively hypercyclic.
(b) If λ is a scalar with |λ| = 1, then λT is reiteratively hypercyclic.

We have another interesting application of Theorem 4.4. In [27, Question 7.11], the 
authors ask whether any Banach space operator with a dense set of uniformly recurrent 
vectors must have a non-zero periodic point. Since λI with λ ∈ T not a root of unity 
provides a counter-example, see also Remark 4.8 below, the authors probably were only 
interested in hypercyclic operators. Still, a negative answer follows from the theorem 
above and an important counter-example of Bayart and Bermúdez [2].

Corollary 4.7. There exists a hypercyclic operator on Hilbert space that has a dense set 
of uniformly recurrent vectors but no non-zero periodic points.

Proof. In [2, Theorem 3.1] it is proved that there exists a chaotic operator T on complex 
Hilbert space such that λT is not chaotic for some λ ∈ T . Indeed, the proof even shows 
that the point spectrum of λT contains no root of unity, so that λT has no non-zero peri-
odic points, see [28, Proposition 2.33]. Now since periodic points are uniformly recurrent 
vectors, the operator T is uniformly recurrent, and then so is λT by Theorem 4.4. �
Remark 4.8. Let us mention that the corollary can be proved without Theorem 4.4. 
Indeed, if x is a periodic point for an operator T , then it follows rather directly that x is 
uniformly recurrent for λT for any λ ∈ T . To see this, suppose that TNx = x for some 
N ≥ 1, and let λ ∈ T . Let ε > 0. It is well known (see also Lemma 7.1 below) that there 
is then a syndetic set A ⊂ N0 such that |(λN )n − 1| < ε

‖x‖ for all n ∈ A; of course we 

may assume that x �= 0. Hence |(λT )nNx − x| = |(λN )n − 1|‖x‖ < ε for all n ∈ A. This 
shows that x is uniformly recurrent for λT .
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We turn to the spectrum of recurrent operators if the underlying space is a complex 
Banach space. By Costakis et al. [19] we know that every component meets the unit 
circle. We have additional information when T is upper frequently recurrent. Shkarin [44, 
Theorem 1.2 and its proof] showed that the spectrum of an upper frequently hypercyclic 
operator cannot have isolated points. His argument also serves to show the following.

Theorem 4.9. Let X be a complex Banach space and T ∈ L(X) be an upper frequently 
recurrent operator.

(a) If σ(T ) = {λ} is a singleton, then |λ| = 1 and T = λI.
(b) If σ(T ) has an isolated point λ ∈ C, then |λ| = 1 and there are non-trivial T -

invariant closed subspaces M1 and M2 of X such that X = M1 ⊕ M2 and T |M1 =
λI|M1 .

In particular, in either case, T cannot also be hypercyclic; indeed, in (b), the usual 
quasi-conjugacy argument (see [28, Proposition 2.25]) would imply that T |M1 = λI|M1

was hypercyclic, which is absurd. Note that this result also contains the well known fact 
that the spectrum of any chaotic operator has no isolated points, see [12], [5, Proposition 
6.37].

Proof. (a) By the result of Costakis et al. [19] mentioned above we have that |λ| = 1. 
Let S = λ−1T , which is also upper frequently recurrent by Theorem 4.4. On the other 
hand, an analysis of Shkarin’s argument, see [5, Remark on p. 153], shows that if S �= I

then one can find a non-empty open set U of X such that {n ≥ 0 : Snx ∈ U} has upper 
density zero for all x ∈ X; in particular, no vector in U is upper frequently recurrent for 
S. Thus S = I, hence T = λI.

(b) This follows from (a) by the usual argument employing the Riesz decomposition 
theorem and quasi-conjugacy, see for example the proofs of [5, Proposition 6.37] or [28, 
Proposition 5.7]. �

It is not clear whether the result extends to reiterative recurrence. By a result of Salas 
[42], see also [28, Example 8.4], there exist hypercyclic compact perturbations T = I+K

of the identity with σ(T ) = {1}.

Question 4.10. 2 (a) Can the spectrum of a reiteratively hypercyclic operator be a sin-
gleton?

(b) Does there exist a reiteratively hypercyclic compact perturbation of the identity?

2 This question has recently been solved in the negative; see [17].
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5. Recurrence of weighted backward shift operators

Backward shifts are the best understood class of operators in linear dynamics. In par-
ticular they will serve us here to distinguish five of the six types of recurrence considered 
in (1).

Apart from the proof of the latter fact, this section contains no proofs: the other results 
are special cases of stronger results proved either in Section 2, or in a forthcoming paper 
by the first two authors [14], or by other authors. We find it nonetheless instructive to 
highlight the recurrence behaviour of weighted shifts.

We first need some terminology. A Fréchet sequence space (over N) is a Fréchet space 
that is a subspace of the space KN of all (real or complex) sequences and such that 
each coordinate functional x = (xn)n≥1 → xk, k ≥ 1, is continuous. The canonical unit 
sequences are denoted by ek = (δk,n)n≥1. A weight sequence is a sequence w = (wn)n≥1

of non-zero scalars. The (unilateral) weighted backward shift Bw is then defined by 
Bw(xn)n≥1 = (wn+1xn+1)n≥1.

Fréchet sequence spaces over Z and bilateral weighted backward shifts are defined 
analogously.

Now, Theorem 2.12 applies in particular to unilateral weighted backward shifts.

Corollary 5.1. Let X be a Fréchet sequence space over N in which (en)n≥1 is a basis. 
Suppose that the weighted backward shift Bw is an operator on X. Then we have the 
following:

(a) if Bw is recurrent then it is hypercyclic;
(b) if Bw is reiteratively recurrent then it is reiteratively hypercyclic;
(c) if Bw is upper frequently recurrent then it is upper frequently hypercyclic.

Note that each of the hypercyclic properties in the corollary have been characterised
in terms of the weights, at least if the basis is unconditional, see [28, Theorem 4.8], [13, 
Theorem 5.1].

There is a considerable strengthening of assertion (a). By a remarkable result of Chan 
and Seceleanu [18], if a weighted shift on �p(N), 1 ≤ p < ∞, admits an orbit with 
a non-zero limit point, then it is already hypercyclic. Recently, this was extended by 
He et al. [29, Lemma 5] to all Fréchet sequence spaces over N in which (en)n≥1 is an 
unconditional basis; see also [14].

For bilateral weighted shifts we have the analogue of (a).

Theorem 5.2. Let X be a Fréchet sequence space over Z in which (en)n∈Z is a basis. 
Suppose that the weighted backward shift Bw is an operator on X. If Bw is recurrent 
then it is hypercyclic.
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This was proved by Costakis and Parissis [20, Proposition 5.1] for the space �2(Z). 
The general case can be shown by combining the proof of these authors with the one 
of [28, Theorem 4.12(a)], adding a standard conjugacy argument. But, again, Chan and 
Seceleanu [18] have the stronger result that if a weighted shift on �p(Z), 1 ≤ p < ∞, 
admits an orbit with a non-zero limit point, then it is hypercyclic. In [14], this is extended 
to all Fréchet sequence spaces over Z in which (en)n∈Z is an unconditional basis.

Several questions remain (see also Question 2.13).

Question 5.3. Does the analogue of Corollary 5.1 hold for frequent recurrence? Does the 
analogue of Theorem 5.2 hold for reiterative (upper frequent, frequent) recurrence?

Moreover, the work by Chan and Seceleanu might suggest that the existence of a single 
non-zero vector with some recurrence property implies some type of hypercyclicity. This 
is indeed the case for uniform recurrence.

Theorem 5.4. Let X be a Fréchet sequence space (over N or Z) in which (en)n is an 
unconditional basis. Suppose that the (unilateral or bilateral) weighted backward shift Bw

is an operator on X. If Bw admits a non-zero uniformly recurrent vector, then it is 
chaotic and therefore frequently hypercyclic.

For unilateral shifts, this result is due to Galán et al. [22, Theorem 2, Corollary 1 and 
following Remark]; indeed, their statement is more restrictive, but they actually prove 
the full result, which was also obtained in He et al. [29, Corollary 4.2]. A special case is 
due to Grivaux et al. [27, Remark 5.21]. For bilateral shifts, the result was obtained by 
the first two authors [14].

The previous theorem can be considerably improved if the underlying space is �p. The 
following is a consequence of [14], using an idea of Bès et al. [9]. Note that it does not 
hold on c0(N) by [6, Theorem 5].

Theorem 5.5. Let Bw be a weighted backward shift on �p(N) or �p(Z), 1 ≤ p < ∞. If Bw

admits a non-zero reiteratively recurrent vector, then it is chaotic and therefore frequently 
hypercyclic.

As we said above we do not know whether, for general Fréchet sequence spaces, the 
existence of a single non-zero frequently recurrent vector, say, implies that the shift is 
frequently hypercyclic. Luckily, for the main result of this section, we only need the 
following weaker implication.

Lemma 5.6. Let X be a Fréchet sequence space over N in which (en)n is an unconditional 
basis. Suppose that the weighted backward shift Bw is an operator on X. If there exists 
a non-zero vector that is frequently recurrent (upper frequently recurrent, reiteratively 
recurrent) then there is a set A ⊂ N of positive lower density (positive upper density, 
positive upper Banach density, respectively) such that
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∑
n∈A

1∏n
ν=1 wν

en converges in X.

This follows from He et al. [29, Lemma 5]; see also [14]. The lemma allows us to prove 
the following.

Theorem 5.7.

(a) There is a hypercyclic operator without non-zero reiteratively recurrent vectors. The 
operator may even be mixing.

(b) There is a reiteratively hypercyclic operator without non-zero upper frequently recur-
rent vectors.

(c) There is an upper frequently hypercyclic operator without non-zero frequently recur-
rent vectors.

(d) There is a frequently hypercyclic operator without non-zero uniformly recurrent vec-
tors.

In view of Corollary 4.7 we may complete this list by the following assertion; note 
that, by Theorem 5.5, such an operator cannot be a weighted shift on �p(N) or �p(Z), 
1 ≤ p < ∞.

(e) There is a hypercyclic uniformly recurrent operator without non-zero periodic points.

Proof of Theorem 5.7. (a) By [9, Theorem 13], the weighted backward shift on �1(N)
with weight sequence w = (n+1

n )n is mixing but not reiteratively hypercyclic. In view of 
Theorem 5.5 it cannot have a non-zero reiteratively recurrent vector.

(b) By [9, Theorem 7] (see also [13, Theorem 7.1] for a simplified proof) there exists 
a reiteratively hypercyclic weighted backward shift Bw on c0(N) that is not upper fre-
quently hypercyclic. In fact, the proofs show that the weight even satisfies that there is 
no set A ⊂ N of positive upper density such that

n∏
ν=1

wν → ∞ as n → ∞, n ∈ A.

Thus, by the lemma, Bw cannot have a non-zero upper frequently recurrent vector.
(c) This follows exactly as in (b), using [6, Theorem 5] or [13, Theorem 7.2] and their 

proofs.
(d) By [4, Corollary 5.2] (see also [13, Theorem 7.3]) there exists a frequently hyper-

cyclic weighted backward shift on c0(N) that is not chaotic. In view of Theorem 5.4, this 
operator cannot have non-zero uniformly recurrent vectors. �
Corollary 5.8.

(a) There is a recurrent operator without non-zero reiteratively recurrent vectors.
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(b) There is a reiteratively recurrent operator without non-zero upper frequently recurrent 
vectors.

(c) There is an upper frequently recurrent operator without non-zero frequently recurrent 
vectors.

(d) There is a frequently recurrent operator without non-zero uniformly recurrent vectors.
(e) There is a uniformly recurrent operator without non-zero periodic points.

6. IP∗-recurrence

In the next section we will discuss recurrence properties of further operators. As we 
will see, a rich supply of eigenvectors to unimodular eigenvalues allows us not only to 
deduce uniform recurrence for many of these operators, but even a stronger notion that 
is defined in terms of the so-called IP∗-sets. Before turning to these examples we will 
therefore study IP∗-recurrence in this section.

The starting point is the family IP of IP-sets. As mentioned in [21, p. 52], this family 
arises naturally when one studies the structure of the sets of integers that can serve 
as the set of recurrence times for some point in the system. We recall that A ⊂ N0 is 
an IP-set if there exists a strictly increasing sequence (kn)n∈N of positive integers such 
that kj1 + · · · + kjm ∈ A whenever j1 < · · · < jm and m ∈ N. Then a vector x ∈ X

is called IP-recurrent for an operator T ∈ L(X) if, for any neighbourhood U of x, the 
return set N(x, U) is an IP-set. But it follows from [21, Theorem 2.17] that, in our 
setting, every recurrent vector satisfies this property, so that the notions of recurrence 
and IP-recurrence coincide.

It is more interesting to study the dual family IP∗, that is, the family of all subsets 
of N0 that intersect every set in IP non-trivially. The elements of this family are called 
IP∗-sets. A vector x ∈ X is called IP∗-recurrent for T ∈ L(X) if, for any neighbourhood 
U of x, the return set N(x, U) is an IP∗-set, see [21, Chapter 9]. The corresponding set 
of vectors is denoted by IP∗Rec(T ). If this set is dense in X then the operator T is called 
IP∗-recurrent.

It is known that kN0 = {kn : n ∈ N0} is an IP∗-set for every k ∈ N (see the argument 
in the case k = 2 in [21, p. 178]) and that every IP∗-set is syndetic, see [21, Lemma 9.2]. 
This implies that

Per(T ) ⊂ IP∗Rec(T ) ⊂ URec(T ), (5)

and every IP∗-recurrent operator is uniformly recurrent.
The notion of IP∗-recurrence in a linear context has already been studied by Galán 

et al. [22]. It was observed there that, thanks to a classical result of Furstenberg [21, 
Theorem 9.11], IP∗-recurrent vectors of an operator T ∈ L(X) coincide with product 
recurrent vectors, that is, those vectors x ∈ X such that, for any operator S ∈ L(Y ) on 
a Fréchet space Y and for any recurrent vector y for S, the vector (x, y) is recurrent for 
T × S.
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Note also that the vector x with unbounded orbit constructed in Example 3.3 or the 
one in Example 1 of [22] are IP∗-recurrent since, for every neighbourhood U of x, we 
have that kN0 ⊂ N(x, U) for some k ∈ N.

An important property of the family IP is that it is partition regular, that is, if 
A1 ∪A2 ∈ IP, then either A1 ∈ IP or A2 ∈ IP; this immediately implies have that its 
dual family IP∗ is a filter, see [21, Lemma 9.5].

Theorem 6.1. Let T ∈ L(X). Then IP∗Rec(T ) is a linear subspace of X. In particular, 
if T is IP∗-recurrent, then T admits a dense linear manifold of IP∗-recurrent vectors.

Proof. Let x1, x2 ∈ IP∗Rec(T ), and let λ1, λ2 be scalars. Given an arbitrary neighbour-
hood U of x := λ1x1 + λ2x2, we fix neighbourhoods Uj of xj , j = 1, 2, such that

λ1U1 + λ2U2 ⊂ U.

Therefore we conclude, by the filter property of IP∗, that

N(x, U) ⊃ N(x1, U1) ∩N(x2, U2) ∈ IP∗,

the second part being a consequence of the definition of IP∗-recurrence. �
We next obtain that, for power bounded operators, uniform recurrence and IP∗-recurr-

ence coincide. To do this we need to recall the concept of proximality: Given a dynamical 
system (X, T ), where (X, d) is a metric space, we say that two points x, y ∈ X are 
proximal for T if there exists an increasing sequence (nk)k∈N of positive integers such 
that d(Tnkx, Tnky) → 0 as k → ∞.

Theorem 6.2. Let T ∈ L(X). If T is power bounded, then

IP∗Rec(T ) = URec(T ).

Proof. We just need to show that every uniformly recurrent vector is IP∗-recurrent. 
Thus let x ∈ X be uniformly recurrent for T . By Theorem 3.4 the closure K of its orbit 
is a compact set, and it is T -invariant. When we now apply [21, Theorem 9.11] to the 
dynamical system (K, T |K) we see that x is IP∗-recurrent (for T ) provided that no point 
y �= x in K is proximal to x.

Thus, suppose that there is some y ∈ K with y �= x such that x and y are proximal for 
T . Let (nk)k∈N be an increasing sequence of positive integers such that d(Tnkx, Tnky) →
0 as k → ∞. Since we may assume that the metric d on X is translation-invariant, we 
get that

Tnk(x− y) → 0 as k → ∞.
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By equicontinuity of (Tn)n∈N0 we then have that Tn(x − y) → 0 as n → ∞.
Now, since x is recurrent there is an increasing sequence (mk)k∈N of positive integers 

so that Tmkx → x as k → ∞. Thus, TmkTnx → Tnx as k → ∞, for each n ∈ N0. 
Again by equicontinuity of (Tn)n∈N0 and the density of the orbit of x in K, we get that 
Tmkz → z as k → ∞, for every z ∈ K. In particular,

0 = lim
k→∞

Tmk(x− y) = x− y �= 0,

which is the desired contradiction. �
The above result suggests the following problem.

Question 6.3. Is there an operator that is uniformly recurrent but not IP∗-recurrent?

Let us comment on this problem.

Remark 6.4. (a) The León-Müller theorem holds for IP∗-recurrence, that is, for any 
operator T ∈ L(X) and any scalar λ with |λ| = 1 we have that IP∗Rec(λT ) = IP∗Rec(T ). 
This is an easy consequence of the fact that a vector is IP∗-recurrent if and only if it 
is product recurrent, and the fact that the León-Müller theorem holds for recurrence. 
It thus follows exactly as in the proof of Corollary 4.7 that there exists a hypercyclic 
operator on Hilbert space that has a dense set of IP∗-recurrent vectors but no non-zero 
periodic points. In particular, the first inclusion in (5) can be strict in a very strong 
sense, but we do not know the status of the second inclusion. Incidentally, IP∗ does 
not have CuSP, so that one cannot deduce the León-Müller property as in the proof of 
Theorem 4.4: the set A = N0 can be partitioned into the even and the odd numbers, but 
the set of odd numbers is not an IP∗-set, see [21, p. 178].

(b) For all of the operators considered in this paper, whenever we could show uniform 
recurrence, we even obtained IP∗-recurrence. This will be a common pattern for the 
operators considered in the next section. And for weighted backward shift operators see 
Theorem 5.4.

7. Recurrence and unimodular eigenvectors

As promised we now study recurrence properties of various classes of operators. We 
limit ourselves to operators studied by Costakis et al. [19]; our results strengthen several 
of their results. In order to keep the paper short we refer to that paper for the definition 
of the operators and the spaces involved.

It turns out that for practically all of these operators their unimodular eigenvectors 
play a crucial role. In the sequel we will only consider Fréchet spaces over the complex 
field, and we recall that T denotes the unit circle in C.

The following result is the key point in this section.
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Lemma 7.1. Let λ1, . . . , λk ∈ T , k ≥ 1. Then, for any ε > 0,

{n ≥ 0 : sup
j=1,...,k

|λn
j − 1| < ε} ∈ IP∗;

in particular, it is a syndetic set.

Proof. This is a consequence of [21, Proposition 9.8 with Lemma 9.2], applied to the 
Kronecker system consisting of the compact group Tk and the (left) multiplication 
(z1, . . . , zk) → (λ1z1, . . . , λkzk). �

We mention that if one is only interested in proving that the sets are syndetic, then 
one finds a nice proof in [39, Lemma 3.1] based on Kronecker’s theorem.

For T ∈ L(X) we denote by

E(T ) =
⋃
λ∈T

Eig(T, λ)

the set of unimodular eigenvectors for T .
For uniform recurrence, the following was obtained, with a different proof, in [27, Fact 

5.6].

Corollary 7.2. Let T ∈ L(X). Then

span E(T ) ⊂ IP∗Rec(T ).

In particular, if span E(T ) is dense in X then T is IP∗-recurrent, and hence uniformly 
recurrent.

Proof. Let x ∈ span E(T ), and let W be a 0-neighbourhood. We can write x =
∑k

j=1 ajxj

with aj ∈ C and xj ∈ X such that Txj = λjxj , λj ∈ T , for j = 1, . . . , k. Then there 
is some ε > 0 such that 

∑k
j=1 ηjajxj ∈ W whenever |ηj | < ε for j = 1, . . . , k. Now, by 

the lemma, there is a set A ∈ IP∗ such that |λn
j − 1| < ε for all n ∈ A and j = 1, . . . , k. 

Thus we have for any n ∈ A that

Tnx− x =
k∑

j=1
(λn

j − 1)ajxj ∈ W,

which shows the claim. �
The corollary reminds one of the well-known fact that the set of periodic points of an 

operator has the representation

Per(T ) = span
( ⋃

λ∈T
Eig(T, λ)

)
,

λ root of unity
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see [28, Proposition 2.33]. We will see in Remark 7.5 below that we do not necessarily 
have equality in Corollary 7.2.

We start by looking at operators on finite-dimensional spaces.

Theorem 7.3. Let n ≥ 1. Then, for a matrix T : Cn → Cn, the following assertions are 
equivalent:

(a) T is recurrent;
(b) T is uniformly recurrent;
(c) T is IP∗-recurrent;
(d) T is similar to a diagonal matrix with unimodular diagonal entries.

In that case, every vector in Cn is IP∗-recurrent for T .

Proof. Costakis et al. [19, Theorem 4.1] have shown that (a) and (d) are equivalent. 
Thus it suffices to show that (d) implies (c).

Let S be an invertible matrix such that S−1TS is a diagonal matrix with unimodular 
diagonal entries. Then Sek ∈ E(T ), for k = 1, . . . , n. Thus span E(T ) = Cn, and we 
conclude with Corollary 7.2. �

This result suggests to consider general multiplication operators.

Theorem 7.4. Let X be a complex Fréchet sequence space over N which contains span{en :
n ∈ N} as a dense set. Let (λn)n be a sequence in C, and let Mλ be the multiplication 
operator

Mλ(xn)n = (λnxn)n,

which we suppose to be an operator on X.
(A) The following assertions are equivalent:

(a) Mλ is recurrent;
(b) Mλ is uniformly recurrent;
(c) Mλ is IP∗-recurrent;
(d) λn ∈ T for all n ≥ 1.

(B) If Mλ is power bounded and one of the conditions in (A) holds then every vector 
in X is IP∗-recurrent for Mλ.

Proof. (A) It obviously suffices to show that (d) implies (c). For this, we need only 
observe that every sequence en, n ≥ 1, belongs to E(Mλ), so that span E(Mλ) is dense 
in X by hypothesis.

(B) This is a direct consequence of Theorems 3.1 and 6.2. �
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We note that if (en)n is an unconditional basis of X and if and one of the conditions 
in (A) holds then Mλ is power bounded, so that the conclusion of (B) holds in this case.

This result has an interesting consequence.

Remark 7.5. Let us consider a multiplication operator Mλ on �2(N), say, where the 
λn ∈ T , n ≥ 1, are pairwise distinct. Then the non-zero multiples of the en, n ≥ 1, are 
the only unimodular eigenvectors, so that spanE(T ) contains exactly the finite sequences. 
On the other hand, by the previous result, every vector in �2(N) is IP∗-recurrent. This 
shows that the inclusion in Corollary 7.2 may be strict.

We turn, more generally, to multiplication operators on spaces of measurable func-
tions. If (Ω, A, μ) is a measure space, then we call a function φ : Ω → C essentially 
countably valued in D ⊂ C if there is a countable subset C ⊂ D such that φ(t) ∈ C for 
μ-almost every t ∈ Ω.

Theorem 7.6. Let (Ω, A, μ) be a measure space, φ a bounded measurable function on Ω, 
and let Mφ be the multiplication operator

Mφf = φf

on Lp(Ω), 1 ≤ p < ∞.

(a) ([19]) If Mφ is recurrent then φ(t) ∈ T for μ-almost every t ∈ Ω.
(b) If φ is essentially countably valued in T then Mφ is IP∗-recurrent; in fact, every 

vector in Lp(Ω) is IP∗-recurrent.

Proof. Part (a) was shown in the proof of [19, Theorem 7.6].
For (b), let φ(t) ∈ {λ1, λ2, . . .} ⊂ T for almost every t ∈ Ω, and let Ek = {t ∈ Ω :

φ(t) = λk}, k ≥ 1. Then μ(Ω \
⋃

k≥1 Ek) = 0.
Now let f ∈ Lp(Ω), f �= 0, and ε > 0. There exists some N ≥ 1 such that

∫
⋃

k>N Ek

|f |pdμ <
ε

2p+1 .

By Lemma 7.1, there is a set A ∈ IP∗ such that, for any n ∈ A and k = 1, . . . , N ,

|λn
k − 1|p <

ε

2‖f‖p .

Therefore we have for every n ∈ A that

‖Mn
φ f − f‖p =

N∑
k=1

∫
E

|φn − 1|p|f |pdμ +
∫

⋃
E

|φn − 1|p|f |pdμ

k k>N k
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≤ ε

2‖f‖p
N∑

k=1

∫
Ek

|f |pdμ + 2p
∫

⋃
k>N Ek

|f |pdμ < ε.

Thus, f is IP∗-recurrent. �
We note that in order to only get IP∗-recurrence of the operator in (b) we could have 

used Corollary 7.2. Indeed, any indicator function 1E lies in E(T ) when E is a measurable 
subset of some Ek, k ≥ 1. Then clearly span E(T ) is dense in Lp(Ω).

Example 7.7. Costakis et al. [19, Example 7.9] consider the case when Ω = [0, 1] with 
the Lebesgue measure and φ : [0, 1] → T given by φ(t) = e2πif(t), where f : [0, 1] → [0, 1]
is the Cantor-Lebesgue function. Then not only is φ essentially countably valued in T , 
but almost all of its values are even roots of unity. The previous argument then shows 
that Mφ has a dense set of periodic points.

We next turn to composition operators. We first look at operators on H(C) and H(D), 
the Fréchet spaces of entire functions and of holomorphic functions on D, respectively, 
both endowed with the topology of uniform convergence on compact sets.

Theorem 7.8. Let φ : C → C be a holomorphic function, and let Cφ be the composition 
operator on H(C) given by Cφf = f ◦ φ. Then the following assertions are equivalent:

(a) Cφ is recurrent;
(b) Cφ is uniformly recurrent;
(c) Cφ is IP∗-recurrent;
(d) φ(z) = az + b, z ∈ C, with a ∈ T and b ∈ C.

Moreover, every vector is IP∗-recurrent for Cφ if and only if φ(z) = az + b, z ∈ C, with 
a = 1 and b = 0, or a ∈ T \ {1} and b ∈ C.

Proof. By [19, Theorem 6.4] it suffices to show that (d) implies (c), and that the second 
claim holds. Thus, let φ(z) = az + b, z ∈ C, with a ∈ T and b ∈ C. If a = 1 and b �= 0, 
then Cφ is well known to be chaotic, see [28, Example 2.35]; in that case, IP∗Rec(Cφ)
is dense in but not all of H(C). If a = 1 and b = 0 then clearly IP∗Rec(Cφ) = H(C). 
Finally let a ∈ T \ {1} and b ∈ C. Let f ∈ H(C), and fix R > 0 and ε > 0. It was shown 
in the proof of [19, Theorem 6.4] that there is an η > 0 such that if |an − 1| < η, n ≥ 0, 
then

sup
|z|≤R

|Cn
φf(z) − f(z)| < ε.

Now it follows from Lemma 7.1 that {n ≥ 0 : |an − 1| < η} ∈ IP∗. This implies that f
is IP∗-recurrent. Thus we have again that IP∗Rec(Cφ) = H(C). �
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It is instructive to note that if, once more, one is only interested in obtaining IP∗-
recurrence of the operator then this can easily be done with Corollary 7.2. This is trivial 
if a = 1 and b = 0, and well known if a = 1 and b �= 0, see [28, Example 2.35]. Finally, if 
a ∈ T \{1}, b ∈ C, then the functions fn(z) = (z+ b

a−1 )n, z ∈ C, n ≥ 0, are eigenvectors 
for Cφ with eigenvalue an ∈ T , and they span the set of polynomials, hence a dense 
subspace of H(C).

For the unit disk we have the following.

Theorem 7.9. Let φ : D → D be a holomorphic function, and let Cφ be the composition 
operator on H(D) given by Cφf = f ◦ φ. Then the following assertions are equivalent:

(a) Cφ is recurrent;
(b) Cφ is uniformly recurrent;
(c) Cφ is IP∗-recurrent;
(d) either φ is univalent and has no fixed point, or φ is an elliptic automorphism.

Moreover, every vector is IP∗-recurrent for Cφ if and only if φ is an elliptic automor-
phism.

Proof. By [19, Theorem 6.9] it suffices to show that (d) implies (c), and that the second 
claim holds. If φ is univalent and has no fixed point then Cφ is chaotic by [43, Section 
4]; hence IP∗Rec(Cφ) is dense in but not all of H(D). If φ is an elliptic automorphism 
then, by the proof of [19, Theorem 6.9], Cφ is conjugate to Cφλ

for some λ ∈ T , where 
φλ(z) = λz, z ∈ D. It then follows easily from Lemma 7.1 that IP∗Rec(Cφ) = H(D). �

We end the section by considering composition operators on the Hardy space H2(D).

Theorem 7.10. Let φ : D → D be a linear fractional map φ(z) = az+b
cz+d , z ∈ D, with 

ad − bc �= 0. Let Cφ be the composition operator on H2(D) given by Cφf = f ◦ φ. Then 
the following assertions are equivalent:

(a) Cφ is recurrent;
(b) Cφ is uniformly recurrent;
(c) Cφ is IP∗-recurrent;
(d) φ is either hyperbolic with no fixed point in D, or a parabolic automorphism, or an 

elliptic automorphism.

Moreover, every vector is IP∗-recurrent for Cφ if and only if φ is an elliptic automor-
phism.

Proof. By [19, Theorem 6.12] it suffices to show that (d) implies (c), and that the second 
claim holds. If φ is hyperbolic with no fixed point in D, or a parabolic automorphism, 
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then it is chaotic by [31, Corollary 7], hence IP∗Rec(Cφ) is dense in but not all of H2(D). 
If φ is an elliptic automorphism then we conclude as in the previous proof. �

Recurrence properties of further operators can easily be deduced from results in 
Costakis et al. [19, Sections 6, 7].

8. F -recurrence

In this paper we have concentrated on the most important types of recurrence in order 
to highlight their differing behaviour. In this section we will briefly study the general 
notion of F-recurrence, and we consider operators on arbitrary topological vector spaces. 
The concept was introduced by Furstenberg [21, Chapter 9] in a non-linear context.

Recall that a non-empty family F of subsets of N0 is called a Furstenberg family if 
A ∈ F and B ⊃ A implies that B ∈ F ; we will assume throughout that F does not 
contain the empty set. A Furstenberg family is called left-invariant (right-invariant) if 
A ∈ F and n ≥ 0 implies that A − n := {k − n : k ∈ A, k ≥ n} ∈ F (respectively 
A + n ∈ F).

Definition 8.1. Let X be a topological vector space, T ∈ L(X), and let F be a Furstenberg 
family. Then a vector x ∈ X is called F-recurrent if, for any neighbourhood U of x, the 
return set N(x, U) belongs to F . The set of F-recurrent vectors is denoted by FRec(T ). 
If this set is dense in X then the operator is called F-recurrent.

Remark 8.2. Costakis et al. [19] have defined T to be recurrent if, for any non-empty 
open subset U of X, the set

N(U,U) = {n ≥ 0 : Tn(U) ∩ U �= ∅} is non-empty,

which amounts to demanding that it be in the family of infinite sets. By [19, Proposition 
2.1 with Remark 2.2], this is equivalent to the definition used in this paper provided that 
X is a Fréchet space.

More generally it might be interesting to study the operators T with the following 
property: for any non-empty open subset U of X,

N(U,U) = {n ≥ 0 : Tn(U) ∩ U �= ∅} ∈ F .

Motivated by [20] one might call these operators topologically F-recurrent. This notion 
is naturally linked to the concept of F-transitive operators as introduced by Bès et al. 
[10].

We have preferred the pointwise definition adopted in this paper in order to be close 
to the corresponding notion of F-hypercyclicity. Recall that an operator T ∈ L(X) is 
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F-hypercyclic if there is some x ∈ X such that, for any non-empty open set V in X, 
N(x, V ) ∈ F , see [9]. The vector x is then called F-hypercyclic.

We have the following generalisations of results in the first part of the paper. The 
proofs follow as in the special cases, see Theorems 2.1, 2.5, 2.12, 3.1, 4.2 and 4.4 with 
Remarks 4.3 and 4.5.

Theorem 8.3. Let X be a topological vector space, T ∈ L(X), and F a right-invariant 
Furstenberg family. Then a vector is F-hypercyclic if and only if it is hypercyclic and 
F-recurrent.

In particular, T is F-hypercyclic if and only if it admits a hypercyclic F-recurrent 
vector.

For the following results we need the concept of an (u.f.i.) upper Furstenberg family; 
we refer to [13] and Theorem 3.1 there.

Theorem 8.4. Let X be a Fréchet space, T ∈ L(X), and F a right-invariant upper 
Furstenberg family. Then the following assertions are equivalent:

(a) T is F-hypercyclic;
(b) T is hypercyclic, and FRec(T ) is a residual set;
(c) T is hypercyclic, and FRec(T ) is of second category;
(d) T admits a hypercyclic F-recurrent vector.

In that case the set of hypercyclic F-recurrent vectors is residual.

Theorem 8.5. Let X be a Fréchet space, T ∈ L(X), and F a u.f.i. upper Furstenberg 
family. Suppose that there is a dense set of vectors x ∈ X such that Tnx → 0 as n → ∞. 
Then T is F-hypercyclic if and only if it is F-recurrent.

Theorem 8.6. Let X be a topological vector space and T ∈ L(X). If T is power bounded, 
then the set FRec(T ) is closed.

The property CuSP for a family of subsets of N0 was introduced in Section 4.

Theorem 8.7. Let X be a topological vector space, T ∈ L(X), and F a Furstenberg family 
with CuSP.

(a) Let p ≥ 1. Assume that, for any A ⊂ N0, A ∈ F if and only if pA ∈ F . Then T and 
T p have the same F-recurrent vectors. In particular, if T is F-recurrent then so is 
T p.

(b) Let λ be a scalar with |λ| = 1. Then T and λT have the same F-recurrent vectors. 
In particular, if T is F-recurrent then so is λT .
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Theorems 8.3 and 8.7 have an interesting application to F-hypercyclicity.

Theorem 8.8. Let X be a topological vector space, T ∈ L(X), and F a right-invariant 
Furstenberg family with CuSP.

(a) Let p ≥ 1. Assume that, for any A ⊂ N0, A ∈ F if and only if pA ∈ F . Then T and 
T p have the same F-hypercyclic vectors. In particular, if T is F-hypercyclic then so 
is T p.

(b) Let λ be a scalar with |λ| = 1. Then T and λT have the same F-hypercyclic vectors. 
In particular, if T is F-hypercyclic then so is λT .
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