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Nomenclature 

Latin letters  

b  Vector of design variables 

𝐵𝐶𝑃 Adjoint boundary condition for mass conservation equation 

𝐵𝐶𝑢  Adjoint boundary condition for momentum equation 

𝐵𝐶𝑇  Adjoint boundary condition for energy equation 

D  Thermal diffusivity 

G  Sensitivity 

J  Cost function 

𝐽1 Objective function referred to the mechanical power 

dissipated by the fluid through the boundaries 

𝐽2 Objective function referred to the net thermal power 

recoverable from the domain 

𝐽1̅  Normalized function of 𝐽1 

𝐽2̅  Normalized function of 𝐽2 

L  Augmented objective function  

p  Pressure 

q  Adjoint pressure 

𝑅  Set of governing equations for the problem 

𝑅𝑝  Mass conservation equation 

𝑅𝑢  Momentum conservation equation 

𝑅𝑇  Energy conservation equation 

𝑅𝑎  Set of adjoint equations 

𝑅𝑞  Adjoint mass conservation equation 

𝑅𝑣  Adjoint momentum conservation equation 

𝑅𝑇𝑎  Adjoint energy conservation equation 

𝑇𝑎  Adjoint temperature 

u  Velocity 

𝑣  Adjoint velocity 

𝑣𝑛  Normal component of the adjoint velocity 

𝑣𝑡  Tangential component of the adjoint velocity 

𝑤  Weighting factor 

𝑤1  Specific weighting factor for 𝐽1 

𝑤2  Specific weighting factor for 𝐽2 

Greek letters 

𝛼  Porosity 

𝜂  Pseudo density 

𝜆  Set of Lagrangian multipliers  

𝜈  Kinematic viscosity 

𝜌  Density 

∇  Nabla operator 

𝛻||  In-plane component of the Nabla operator 

Super indices 

*  Referred to a zero gradient BC 

**  Referred to an adjoint type BC 
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1. Introduction 

1.1.  Introduction 

As industrial systems become more complex and sophisticated, efficient solutions to 

thermal fluid concerns are necessary. The use of electric motors in the aerospace and automotive 

sectors, for example, has lately garnered attention for technological and environmental reasons. 

To enhance heat and mass transfer operations, properly disperse the vast amounts of waste heat in 

sophisticated avionics, and optimize energy utilization, improving propulsion and cooling systems 

is critical. Pressure drop in cooling systems must be avoided owing to heat transfer difficulties in 

order to restrict the pumping power given to the working fluid, which will eventually be dissipated 

due to its viscosity. By reducing the pressure drop, the pump needed for the cooling systems will 

be eventually smaller, reducing weight which is crucial for an aircraft. Thermal system parametric 

design optimization is related with various structural and physical parameters of high complexity; 

a trial-and-error technique for the general design approach is typically time-consuming and does 

not assure the best design. As a result, optimization techniques like shape optimization (SO) and 

topology optimization (TO) are commonly used. 

Topology Optimization is one of the methods that may make a breakthrough beyond the 

existing parametric design procedures. Topology Optimization was proposed by Bendsoe and 

Kikuchi [2] in 1988. Then, Bendsoe and Sigmud gave a systematic introduction of this technique 

[3]. However, for a long time, TO was only applied in structure mechanics design such as bridge 

construction and buildings. It took more than 10 years for this elegant concept to enter the research 

field of fluid dynamics. It was in 2013, when Kontoleontos [4] performed an adjoint based 

constrained topology for viscous flows concerning heat transfer which is the one of interest for 

this research.  

Topology optimization is a mathematical technique used to optimize the arrangement of 

materials within a given design space to meet specific loads, boundary conditions, and 

restrictions. This is achieved by adding solid material into the computational domain, thereby 

altering the domain's topology to optimize flow characteristics. Shape optimization, on the other 

hand, involves updating the boundary shape of the domain by parameterizing the borders and 

adjusting specific parameters until the desired shape is attained. Both ways have the same aim in 

common, which is basically to minimize an objective function while complying with the given 

constraints. Topology optimization is particularly suitable for generating initial design concepts 

that require significant modifications of the computational domain, making it a preferred 

optimization method for this study. 

The conventional topology optimization formulation uses a finite element method (FEM) 

to evaluate the design performance. Several methods have been used to optimize topology 

optimization problems, such as heuristic (simulated annealing, genetic algorithms, etc.) and 

gradient-based algorithms. However, due to the typically large number of control variables, 

gradient-based methods are commonly favoured for most applications. Adjoint equations can be 

solved using two common strategies, namely the continuous and discrete adjoint methods. This 

work employs the continuous adjoint method, which involves deriving and then discretizing the 

adjoint equations. In contrast, the discrete adjoint method directly derives adjoint equations from 

the algebraic equations obtained from discretizing the original problem. 

The research is carried out in the open-source software called OpenFOAM implemented 

with an incompressible, single phase, multi-dimensional Finite Volume solver. However, the 

design and analysis of the solver set up deployed in OpenFOAM is beyond the scope of this paper, 

which is mainly focused on the post-processing of the simulations performed in the software to 

evaluate the results and perform several parametric analyses on specific variables to evaluate its 

impact on the results. 
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1.2.  Goals and highlights 

In recent years, the aerospace industry has seen a significant increase in the use of electric 

propulsion systems. These systems have the potential to be more thermally efficient than 

traditional propulsion systems, but they also generate a lot of heat during operation. As a result, 

it’s crucial to have effective cooling systems in place to ensure that the electric propulsion systems 

can operate at peak efficiency. 

The cooling system under investigation aims to efficiently dissipate heat from a given 

process or device while minimizing the mechanical power dissipated by the boundaries. The 

primary objective of this research is to evaluate the impact of specific variables on the 

performance of the cooling system, with the purpose of gaining insights into the influence of these 

variables on the cooling system's thermal and mechanical performance, ultimately leading to the 

optimization of cooling system design and operation. The analysis will encompass the effects of 

parameters such as weighting factors, interpolation methods, filtering techniques, and other 

relevant factors. By examining the interplay between these variables and the resulting system 

behaviour, valuable insights can be obtained to guide the development and improvement of 

efficient cooling systems. To address the research objectives, this study will begin by providing 

an overview of the theoretical framework behind the adjoint optimization solver theory. 

Understanding the principles and concepts of the adjoint optimization approach is crucial for 

accurately assessing and interpreting the simulation results. Following a comprehensive 

understanding of the theory, the study will proceed to analyse the results obtained from the 

computational simulations, investigating the impact of various variables on the cooling system's 

performance. 

On the other hand, some of the main highlights of the solver used will now be presented. 

A semi-implicit method for pressure linked equations (SIMPLE) [6] is applied to couple pressure 

and velocity in the primal and in the adjoint problem. Moreover, a density-based approach for the 

optimization problem is combined with the Rational Approximation of Material Properties 

(RAMP) method [7] to model the porosity and material properties between the fluid and the solid. 

Finally, sensitivity is computed by solving the adjoint equations and used with the Method of 

Moving Asymptotes [5] to update the design variables. 

2. The continuous Adjoint method for topology 

optimization 

2.1.  Multi-objective optimization 

Optimization refers to the process of finding the best possible solution to a problem out 

of all possible solutions. It involves identifying a set of variables that can be adjusted within a 

given set of constraints (expressed as R) to achieve the desired outcome, usually measured by a 

particular objective function (J). The objective function is a mathematical representation of the 

goal or target to be achieved, which can be maximized or minimized depending on the nature of 

the problem. It is now crucial to introduce the design (b) and state variables (x). Design variables 

are the parameters that can be adjusted during the optimization to achieve a desired outcome. In 

other words, they are the decision variables that are within the control of the designer or engineer. 

State variables, on the other hand, are the variables that describe the current state or condition of 

the system being optimized. 

For application of optimization, one could desire to minimize more than a single objective 

function; therefore, the new goal is to find a set of solutions that represent the best possible trade-

offs among two or more competing objectives. Hence, J can be defined as a linear combination 

of several objective functions (Ji ): 
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𝐽 =  ∑ 𝑎𝑖  𝐽𝑖

𝑛

𝑖=1

 (1) 

If all this is transferred to fluid mechanics, the state variables must satisfy (for steady, 

incompressible flows including heat transfer) three constraints: mass conservation,  momentum  

and energy balance (see Equation 2). Additional constraints can be added depending on the 

problem formulation. 

∇ · 𝑢 = 0 

(𝑢 · ∇) 𝑢 + ∇𝑝 − ∇ · (𝜈 ∇𝑢) = 0 

𝜌 𝑐𝑝(𝑢 · ∇) 𝑇 − 𝜆∇2𝑇 + 𝜙 = 0 
(2) 

The formulation of the problem changes depending on the choice of the design variables and 

the solution algorithm. Thus, in terms of the design variables chosen, we can opt for a shape 

optimization (SO )or a topology optimization (TO). On the other hand, another important aspect 

is the type of solution algorithm used, which can be classified into two main groups:  

- Heuristic algorithms are broad problem-solving strategies that employ a trial-and-error 

approach rather than an exact answer to obtain an acceptable solution. These algorithms 

generally scan a vast search space for a suitable solution in an acceptable period of time. 

Heuristic algorithms cannot guarantee optimality, but they can produce an acceptable 

answer in a fair period of time. Simulated annealing, genetic algorithms, and particle 

swarm optimization are all examples of heuristic algorithms. 

- On the other hand, gradient-based algorithms use mathematical techniques to find the 

minimum or maximum of a function. These methods are founded on the idea that a 

function's gradient leads in the direction of the steepest increase or fall, and that by 

following this direction, the algorithm can converge to a local minimum or maximum. 

Gradient-based algorithms can offer accurate solutions, but they are computationally 

expensive, particularly when the search space is wide, or the function is complex. 

The selection of both topology optimization and gradient-based algorithms for this 

research is based on the recognition that the complexity of the cooling system requires a 

comprehensive approach that can accommodate multiple design parameters while ensuring the 

optimization of the cooling system's performance, efficiency, and reliability. 

2.2.  Gradient-based optimization and the Adjoint method 

 To initiate the continuous adjoint formulation for topology optimization problems, the 

derivative of the objective function (known as sensitivity, G) with respect to the design variables 

must be computed in such a way that it is independent of the number of design variables. The 

sensitivity required for a gradient-based optimization is: 

𝐺 =  
𝛿𝐽

𝛿𝑏
 ≅  

𝐽(𝑏 + ∆𝑏) − 𝐽(𝑏)

∆𝑏
 (3) 

However, as can be seen in Equation 3, sensitivity (G) is directly dependent on the 

number of design variables, so that it would be necessary to perform such a calculation for each 

of the design variables, which would imply a very high computational cost if the number of 

parameters is high. The use of Lagrange multipliers in the derivation of continuous adjoint 

equations is employed to ensure that the sensitivity is not dependent on the number of design 

variables [9]. This approach incorporates the constraints of the problem and enables the 

optimization algorithm to update the Lagrange multipliers and the design variables in a way that 

satisfies the constraints and improves the objective function. 

 The primary aim of this study is to introduce a methodology for multi-objective topology 

optimization of a coupled system involving heat transfer and fluid flow. The focus is on 
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controlling the recovered thermal power generated over the boundaries from single or multiple 

heat sources. However, these problems are subject to a set of physical constraints represented by 

R, which can be enforced using a Lagrange function L, which is computed according to Equation 

4, in which V is the domain and  is the vector of Lagrangian multipliers that for the adjoint 

approach will represent the adjoint variables, which are the adjoint pressure (q), adjoint velocity 

(v) and the adjoint temperature (𝑇𝑎) as shown in Equation 4.  

𝐿 = 𝐽 +  ∫ 𝜆 · 𝑅 𝑑𝑉
 

𝑉

 

𝜆 = (𝑞 , 𝑣 , 𝑇𝑎) 
(4) 

In this manner, the optimization problem that follows involves computing the sensitivity 

of the augmented cost function L in relation to the design variables b:  

𝛿𝐿

𝛿𝑏
=

𝛿𝐽

𝛿𝑏
+

𝛿

𝛿𝑏
∫ 𝜆 · 𝑅 𝑑𝑉

 

𝑉

 (5) 

Applying now Leibniz's theorem to expand the derivative term of the integral, leaves 

Equation 6. 

𝛿𝐿

𝛿𝑏
=

𝛿𝐽

𝛿𝑏
+ ∫

𝜕𝜆

𝜕𝑏
· 𝑅 𝑑𝑉 + ∫ 𝜆 ·

𝜕𝑅

𝜕𝑏
 𝑑𝑉

 

𝑉

+ ∫ (𝜆 · 𝑅) 
𝛿𝑥

𝛿𝑏
 𝑛 𝑑𝑆

 

𝑆

 

𝑉

 (6) 

If to the latter Equation 6 one applies the fixed-boundary hypothesis (valid for TO) which 

assumes that the state variables have fixed values at the boundaries of the domain, Equation 7 is 

obtained. This assumption allows for the elimination of certain terms in the adjoint equations, 

which reduces the computational cost of solving the adjoint problem. 

𝛿𝐿

𝛿𝑏
=

𝛿𝐽

𝛿𝑏
+ ∫ 𝜆 ·

𝜕𝑅

𝜕𝑏
 𝑑𝑉

 

𝑉

 (7) 

At this stage, what needs to be done is to expand the constraint term R which, as we have 

seen in Equation 2, represents the main equations of conservation of mass (𝑅𝑝), momentum (𝑅𝑢) 

but now with the addition of the energy equation (𝑅𝑇) due to the existence of heat transfer. 

Meaning that the solution of the state equations is actually a constraint for the problem [10]. 

𝑅 = { 𝑅𝑝,  𝑅𝑢,  𝑅𝑇} = 0 (8) 

- Mass conservation: 

𝑅𝑝  ≡  ∇ · 𝑢  (9) 

- Momentum balance:  

𝑅𝑢  ≡  𝛻 · (𝑢𝑢) + 𝛻𝑝 − 𝛻 · (𝜈 𝛻𝑢) + 𝛼(𝜂)𝑢 (10) 

In Equation 10, it can be observed how the term “𝛼(η)u” has been added, which is known 

as the Brinkman penalization term, where 𝛼 is the porosity which is updated using the pseudo 

density (η)  as design variable. The Brinkman penalization term is added to the Navier-Stokes 

equation as a source term, which penalizes the fluid velocity in the porous regions [13].  

Porosity (𝛼) refers to the fraction of the total volume of a material or medium that is 

composed of voids, pores, or empty spaces. In other words, it is the percentage of the total 

volume of a material that is not occupied by solid material but rather is made up of empty 

space or voids. Therefore, if the porosity tends to zero, the momentum balance for the fluid 

is recovered, if on the contrary the porosity tends to infinity it means that the velocity tends 
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to zero and therefore the transport of temperature in the control volume is dominated by solid 

diffusion.  

- Energy balance: 

𝑅𝑇  ≡  𝛻 · (𝑢𝑇) − 𝛻 · (𝐷(𝜂)𝛻𝑇) (11) 

As alterations are made to the design variable, the governing equations cause 

modifications in the flow field. Consequently, the total variation of L encompasses not only 

changes in the design variable but also adjustments in the primary flow variables such as velocity, 

pressure, and temperature. For this reason, it is necessary to rewrite Equation 7 by expanding the 

term  
𝜕𝑅

𝜕𝑏
  as a function of  

𝜕𝑢

𝜕𝑏
,

𝜕𝑝

𝜕𝑏
,

𝜕𝑇

𝜕𝑏
 (see Equation 12). 

𝛿𝐿

𝛿𝑏
=

𝛿𝐽

𝛿𝑏
+ ∫ 𝑞 ·

𝜕𝑅𝑝

𝜕𝑏
 𝑑𝑉

 

𝑉

+ ∫ 𝑣 ·
𝜕𝑅𝑢

𝜕𝑏
 𝑑𝑉

 

𝑉

+ ∫ 𝑇𝑎 ·
𝜕𝑅𝑇

𝜕𝑏
 𝑑𝑉

 

𝑉

=                                                                          (12) 

= ∫ 𝑅𝑞  
𝜕𝑝

𝜕𝑏
𝑑𝑉 + ∫ 𝑅𝑣  

𝜕𝑢

𝜕𝑏
𝑑𝑉 + ∫ 𝑅𝑇𝑎  

𝜕𝑇

𝜕𝑏
𝑑𝑉 +

 

𝑉

𝐵𝐶𝑃 + 𝐵𝐶𝑢 + 𝐵𝐶𝑇 + ∫ 𝑢𝑣 
𝜕𝛼

𝜕𝑏
𝑑𝑉 + ∫

𝜕𝐷

𝜕𝑏
∇T𝑎∇T𝑑𝑉

 

𝑉

 

𝑉

 

𝑉

 

𝑉

 

being: 

𝑅𝑎 ≡ { 𝑅𝑞, 𝑅𝑣 , 𝑅𝑇𝑎  } (13) 

the set of the adjoint equations: 

                           𝑅𝑞 ≡  𝛻 · 𝑣 +
𝜕𝐽

𝜕𝑝
|

𝑉
      (14) 

                     𝑅𝑣 ≡  − 𝛻 · 𝑢 − (𝛻𝑣)𝑢 − 𝛻 · (2𝜈𝜀(𝑣)) + 𝛼𝑣 + 𝛻𝑞 − 𝑇𝛻𝑇𝑎 +
𝜕𝐽

𝜕𝑢
|

𝑉
 (15) 

                              𝑅𝑇𝑎 ≡  − 𝛻 · (𝑢𝑇𝑎) − 𝛻 · (𝐷 𝛻𝑇𝑎) +
𝜕𝐽

𝜕𝑇
|

𝑉
 (16) 

Notably, the final two components of Equation 12 do not incorporate any state variable 

derivatives with regards to the design variables. It's crucial to highlight that in cases where the 

function J is designated at the boundary S and has a zero value in the internal domain: 

𝜕𝐽

𝜕𝑝
|

𝑉

= 0 ; 
𝜕𝐽

𝜕𝑢
|

𝑉

= 0 ; 
𝜕𝐽

𝜕𝑇
|

𝑉

= 0 (17) 

According to the conditions of Equation 17, the terms 
𝜕𝐽

𝜕𝑝
, 

𝜕𝐽

𝜕𝑢
, 

𝜕𝐽

𝜕𝑇
 in Equations 14, 15 and 

16 disappear. The adjoint equations within the internal domain are, as a result, not reliant on the 

cost function of the problem. However, it's worth noting that this assertion doesn't hold true for 

the boundaries, and utilizing distinct cost functions necessitates the implementation of dissimilar 

boundary conditions for the identical solver. In essence, the applicability of different boundary 

conditions stems from the fact that the behaviour of the cost function at the boundaries can 

significantly influence the solutions obtained from the solver. Therefore, to obtain accurate and 

reliable results, it's crucial to carefully select and apply the appropriate boundary conditions that 

correspond to the cost function being utilized. 

 

 

 



      
 

12 
 

2.3.  Topology Optimization using Continuous Adjoint 

Subsequently, Equation 12 must be implemented within the adjoint CFD solver. The 

optimization problem is downgraded to minimize the augmented objective function L, which has 

been shown to be a function of velocity, pressure, temperature, and the pseudo density 𝜂 (used as 

a control variable).  

This work employs a topology optimization strategy where solid material is introduced 

into the fluid domain via a density-based method. The goal is to obtain a pseudo density field with 

values ranging from 0 (solid) to 1 (fluid). A pseudo density value of 1, results in the recovery of 

governing equations for the fluid, while a value of 0 leads to zero flow velocity and solid diffusion 

dominating temperature transport within the control volume. However, this approach can result 

in ill-posed problems, and to address this issue, a penalty is introduced to convert the discrete 

pseudo density into a continuous variable, resulting in a binary solution. The pseudo-density is 

also used in the determination of material properties, such as density, specific heat, thermal flow 

diffusivity, and porosity, which are computed using the Rational Approximation of Material 

Properties (RAMP) model. 

When dealing with thermal cooling for power electronics in propulsion systems, it is 

essential to restrict the overall pressure drop within the cooling circuit while effectively 

eliminating heat. To achieve this objective, the cost function J is formulated as follows: 

𝐽 = 𝑤1 𝐽1 + 𝑤2 𝐽2 (18) 

Where  𝐽1 is the mechanical power dissipated by the fluid through the boundaries, while 

 𝐽2 is the net thermal power recoverable from the domain.  

 𝐽1 = − ∫ (𝑝 +
1

2
𝑢2) 𝑢 · 𝑛 𝑑𝑆

 

𝑆

 (19) 

 𝐽2 = ∫ (𝜌𝐶𝑝𝑇)𝑢 · 𝑛 𝑑𝑆
 

𝑆

 (20) 

The goal is to maximize  𝐽2 (the recoverable thermal power) while minimizing  𝐽1 (the 

mechanical power dissipated by the fluid). However, since  𝐽1 and  𝐽2 have different magnitudes 

and are related to different features of the system (flow field for  𝐽1 and temperature transport and 

diffusion for  𝐽2), they need to be normalized to be compared. 

One possible normalization approach is to compute the optimal values of  𝐽1 and  𝐽2 

respectively from the optimization of the fluid problem and the thermal problem. These values 

can then be used to scale the corresponding objective functions. Finally, the weighted sum method 

is applied to perform the multi-objective optimization, where the weights determine the 

importance of each objective function in the overall optimization. 

𝐽 = 𝑤 𝐽1
̅̅ ̅ − (1 − 𝑤) 𝐽2

̅̅ ̅ (21) 

In Equation 21,  𝐽1
̅̅ ̅ and  𝐽2

̅̅ ̅ are the normalized functions and 𝑤 𝜖 (0,1) the weighting 

factor. The weighting factor is a parameter used to assign different levels of importance or 

significance to different components or objectives within the optimization problem. For this 

particular case, it is used to control the balance between thermal performance and mechanical 

power dissipation. A higher weighting factor would prioritize minimizing the mechanical losses 

while a low value of w gives higher importance to maximize heat transfer capabilities. In this 

research, the weighting factor will be varied to assess its impact on fluid flow characteristics in 

the context of a cooling system optimization. 
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 Once the objective function is defined, the process of applying optimization constraints 

starts. This results in a constrained optimization problem, where the constraints are the governing 

or state equations. To solve this optimization problem, the following constraints must be 

respected: 

- The first constraint is to limit the maximum amount of material that can be added to the 

system being optimized. This constraint is essential to prevent the optimization from 

resulting in trivial solutions where the entire system becomes solid. Such solutions are 

not practically useful and may lead to unphysical results. Therefore, the maximum 

quantity of material to be added to the domain must be set in a manner that ensures the 

solution space is not trivial, while still allowing for meaningful and feasible solutions. 

 

- The second constraint involves the governing equations that describe the behaviour of the 

system being optimized. These equations must be enforced as constraints using the 

Lagrange multipliers method, which involves introducing additional variables into the 

optimization problem. This constraint ensures that the solutions obtained are physically 

meaningful and satisfy the governing equations.  

2.4.  Boundary Conditions for the Adjoint Problem 

Boundary conditions are essential in the adjoint optimization method as they play a 

crucial role in determining the optimal solution for the cooling system. In the context of the adjoint 

method for optimizing cooling systems, boundary conditions refer to the set of constraints that 

must be satisfied by the cooling system. These constraints can be physical, such as the temperature 

and pressure requirements of the cooling system, or design-related, such as the size and shape of 

the cooling channels. Therefore, to successfully complete the solution of the adjoint equations, 

boundary conditions are needed for each of the balance equations: 

𝐵𝐶𝑎 ≡ { 𝐵𝐶𝑝, 𝐵𝐶𝑣 , 𝐵𝐶𝑇 } (22) 

Their general form is expressed in Equations 23-25. The specific formulation of the 

adjoint boundary conditions depends on the kind of boundary conditions applied to the flow 

variables in the primal problem. For the cases considered in this paper, these aspects will be 

discussed throughout this section. 

  𝐵𝐶𝑝 = ∫ (𝑣 · 𝑛 +
𝜕𝐽

𝜕𝑝
)

 

𝑆

𝜕𝑝

𝜕𝑏
 𝑑𝑆 (23) 

  𝐵𝐶𝑢 =  ∫(𝑛 · (𝑢 · 𝑣) + 𝑣(𝑢 · 𝑛) + 𝜈(𝑛 · 𝛻)𝑣 − 𝑞𝑛 −
𝜕𝐽

𝜕𝑢
+ 𝑇𝑎𝑇𝑛)

 

𝑆

𝜕𝑢

𝜕𝑏
 𝑑𝑆 − ∫ 𝜈(𝑛 · 𝛻)

 

𝑆

𝜕𝑢

𝜕𝑏
𝑣 𝑑𝑆 (24) 

  𝐵𝐶𝑇 =  ∫ (𝑛 · 𝑢 𝑇𝑎 + 𝐷𝑛 · 𝛻𝑇𝑎 +
𝜕𝐽

𝜕𝑇
)

 

𝑆

𝜕𝑇

𝜕𝑏
 𝑑𝑆 − ∫(𝑇𝑎  𝐷𝑛) · 𝛻

 

𝑆

(
𝜕𝑇

𝜕𝑏
)  𝑑𝑆 (25) 

 The adjoint variables q and v are not determined but its value is chosen in such a way that 

the condition 𝑩𝑪𝒂 = 𝟎 is enforced, since in this way everything is significantly simplified.  

- Inlet: 

For the inlet, a common boundary condition for incompressible flows has been used to 

define the velocity (u) and temperature (T) at the inlet, so that Equations 23-25 are simplified 

as follows: 

𝐵𝐶𝑝 = ∫ (𝑣 · 𝑛 +
𝜕𝐽

𝜕𝑝
)

 

𝑆

𝜕𝑝

𝜕𝑏
 𝑑𝑆 (26) 
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  𝐵𝐶𝑢 =  − ∫ 𝜈(𝑛 · 𝛻)
 

𝑆

𝜕𝑢

𝜕𝑏
𝑣 𝑑𝑆 (27) 

          𝐵𝐶𝑇 =  − ∫(𝑇𝑎  𝐷𝑛) · 𝛻

 

𝑆

(
𝜕𝑇

𝜕𝑏
)  𝑑𝑆 (28) 

The relations for the boundary conditions can be further manipulated to obtain the   

following relations (being 𝑣𝑡 and 𝑣𝑛 the tangential and normal components of the adjoint 

velocity): 

𝑣𝑡 = 0 (29) 

       𝑣𝑛 = −
𝜕𝐽

𝜕𝑝
 (30) 

       (𝑛 · 𝛻)𝑞 = 0 (31) 

 𝑇𝑎 = 0 (32) 

- Outlet: 

At the outlet, zero Neumann conditions are imposed for the velocity and the temperature, 

while the value of the pressure is fixed (hence being 𝜕𝑝 𝜕⁄ 𝜂 = 0). A zero Neumann condition 

at the outlet is a boundary condition that specifies that there is no net mass or energy flow 

across the boundary. 

                      𝐵𝐶𝑢 =  ∫(𝑛 · (𝑢 · 𝑣) + 𝑣(𝑢 · 𝑛 ) + 𝜈(𝑛 · 𝛻)𝑣 − 𝑞𝑛 −
𝜕𝐽

𝜕𝑢
+ 𝑇𝑎𝑇𝑛)

 

𝑆

𝜕𝑢

𝜕𝑏
 𝑑𝑆 (33) 

                      𝐵𝐶𝑇 =  ∫ (𝑛 · 𝑢 𝑇𝑎 + 𝐷𝑛 · 𝛻𝑇𝑎 +
𝜕𝐽

𝜕𝑇
)

 

𝑆

𝜕𝑇

𝜕𝑏
 𝑑𝑆 (34) 

The boundary conditions for q, the tangential component of the adjoint velocity 𝑣𝑡, and 

for 𝑇𝑎  can be directly extracted: 

           𝑞 = 𝑢 · 𝑣 + 𝑢𝑛𝑣𝑛 + 𝜈(𝑛 · 𝛻)𝑣𝑛 +
𝜕𝐽

𝜕𝑢𝑛
+ 𝑇𝑎𝑇 (35) 

                                                           𝑢𝑛𝑣𝑡 + 𝜈(𝑛 · 𝛻)𝑣𝑡 = −
𝜕𝐽

𝜕𝑢𝑡
 (36) 

                                                           𝑢𝑛𝑇𝑎 + 𝐷𝑛 · 𝛻𝑇𝑎 = −
𝜕𝐽

𝜕𝑇
 (37) 

The boundary conditions for the normal component of the adjoint velocity 𝑣𝑛 are obtained 

from continuity equation (being 𝛻|| the in-plane component of the derivatives at the 

boundary): 

(𝑛 · 𝛻)𝑣𝑛 = 𝛻 · 𝑣 − 𝛻|| · 𝑣𝑡 = −𝛻|| · 𝑣𝑡 (38) 

- Adiabatic wall 

The boundary conditions for pressure and velocity are the same as at the inlet boundary 

(Neumann for pressure and Dirichlet for velocity). This results in the boundary conditions for 

adjoint pressure and velocity being expressed in Equations 29-31. The normal derivative of 

temperature is fixed, and velocity is equal to zero, leading to the boundary condition for 

adjoint temperature being defined as follows: 

𝐷𝑛 · 𝛻𝑇𝑎 = −
𝜕𝐽

𝜕𝑇
 (39) 
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- Fixed temperature wall 

If the temperature is fixed at the wall, then the derivation of the boundary condition for 

 𝑇𝑎 leads to 𝑇𝑎 = 0. The boundary conditions for the adjoint pressure and velocity are the 

ones expressed in Equations 29-31. 

3. Solver implementation 

In this section, the implementation of the adjoint optimization method for the cooling 

system of an electrical propulsion engine in an aircraft using the OpenFOAM numerical solver is 

explained and presented. The implementation is divided into two parts: the solution of the primal 

flow based on the SIMPLE method, and the solution of the adjoint problem by using the adjoint 

equations previously derived from the cost function. 

3.1.  Solution of the primal flow 

The process is based on the SIMPLE method (Semi-Implicit Method for Pressure-Linked 

Equations), which is a well-established algorithm for solving fluid flow problems numerically, 

based on the concept of pressure-velocity coupling. All the fundamentals of the SIMPLE method 

will be explained including all the flux of equations, and how it is used to solve the primal flow 

of the cooling system. 

First, the flow variables, such as velocity and pressure, are initialized to some initial 

values which serve as a starting point for the iterative process. Next, the momentum equations, 

which describe the motion of fluid flow, are solved using the current values of the flow variables. 

This results in an intermediate velocity field (𝑢∗) which does not satisfy continuity equation, that’s 

why then the pressure correction equation (Poisson’s equation) is then derived from the continuity 

equation and used to correct the pressure field. Then, the new pressure is used to correct the 

velocity field. Finally, the transport of temperature equation is added to get the temperature 

distribution in an incompressible solver without the need of adding the energy equation. These 

steps are repeated until the solution converges to a steady state. The iterative process continues 

until the change in the flow variables between successive iterations is below a certain tolerance 

value. This iterative process is graphically illustrated in the flowchart in Figure 1. 

 

 

Figure 1: Flow chart of the solution method for the primal flow [1]. 
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 Once the schematic flow shown in Figure 1 is clear, a detailed description of each of the 

equations involved in each iteration of the solver is given. The momentum predictor equation is 

the one shown in Figure 1, however, the pressure equation or also called Helmholtz equation for 

compressible flows and Poisson equation for incompressible flows (see Equation 40), is a 

combination of the mass and momentum conservation equations. 

𝛻2𝑝𝑛+1 =
1

Δ𝑡
[𝛻 · (𝜌 𝑢∗)]  (40) 

An important fact to consider with the Poisson equation is the fact that it includes a 

Laplacian, which is highly affected by the non-orthogonality of the mesh, and which is necessary 

to correct with the non-orthogonal correctors, however in this particular case a totally orthogonal 

mesh is used, so the non-orthogonal correctors are not necessary. 

Once we have the pressure field, the intermediate velocity field has to be corrected. The 

velocity correction is achieved by subtracting the gradient of the pressure correction term from 

the intermediate velocity field. This ensures that the final velocity field satisfies both the 

momentum and continuity equations. It is important to note that the velocity correction step is an 

iterative process. It is needed to repeat the velocity correction sub-step until the velocity field 

converges to a steady state. 

On the other hand, during and through all these iterative processes, dampers are needed 

on certain variables such as pressure, which is why under-relaxation factors are used. They are 

crucial to limit the change of the values of the main flow variables from outer iteration to outer 

iteration in order to avoid instabilities especially in the first outer iterations. To explain how it 

works, we first consider the discretised algebraic equation for a general variable 𝜙 and at a certain 

iteration n (see Equation 41). In this equation, 𝐴𝑃 represents the main diagonal matrix elements, 

𝐴𝑙  the remaining parameters of the main matrix and 𝑄𝑃 the source vectors components.  

𝐴𝑃 · 𝜙𝑃
𝑛 + ∑ 𝐴𝑙 · 𝜙𝑙

𝑛 = 𝑄𝑃

𝑙

 (41) 

The under-relaxation factors are defined in Equation 42, which shows how the value of 

the variable 𝜙𝑃
𝑛 is constrained by 𝛼𝜙 to take values between its value from the previous iteration 

𝜙𝑃
𝑛−1 and the value from the transport equation 𝜙𝑃

𝑛𝑒𝑤.  

𝜙𝑃
𝑛 = 𝜙𝑃

𝑛−1 + 𝛼𝜙 · (𝜙𝑃
𝑛𝑒𝑤 − 𝜙𝑃

𝑛−1) (42) 

The under-relaxation factor takes values between 0 and 1, so that if it takes the value of 

0, the new value of the variable  𝜙𝑃
𝑛 takes the value equivalent to that of the previous iteration 

𝜙𝑃
𝑛−1, and if it takes the value of 1, 𝜙𝑃

𝑛 takes the direct value of  that calculated in the transport 

equation 𝜙𝑃
𝑛𝑒𝑤. The under-relaxation factors increase the convergence of the solution by 

increasing numerically the diagonal dominance of the main matrix and their values taken depend 

on each case, however, a clever way to apply them is to assign small values of alpha 𝛼𝜙 in the 

early outer iterations and increase their value until reaching 1 when the solution approaches 

convergence. 

3.2.  Solution of the adjoint problem 

The procedure to solve the adjoint problem is quite similar to the one applied for the 

primal flow but working with the adjoint variables and equations. One of the main features is the 

fact that the adjoint temperature 𝑇𝑎 can be calculated completely independent of the adjoint 

pressure 𝑞 and velocity 𝑣, so for convenience it is the first thing to be calculated.  

To calculate it, the transport equation for temperature is used, also consisting of both the 

convective and diffusive terms. Then, as in the primal flow, once the adjoint temperature is known, 

we proceed to predict the adjoint velocity field (𝒗∗) but ignoring the adjoint pressure gradient 
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since later this velocity field will be corrected with the pressure equation to comply with mass 

conservation, basically the same as in the primal flow (see Figure 2). The rest of the steps are 

analogous to the primal flow but dealing with the adjoint variables. In contrast to its primal 

counterparts, the adjoint momentum balance exhibits linearity. However, several numerical 

challenges arise due to various factors. One such factor is the term “𝛻𝑢𝑣”, also known as Adjoint 

Transpose Convection (ATC), which acts as an instability source for the adjoint equation solution 

[8]. 

 

Figure 2: Flow chart of the solution method for the adjoint problem [1]. 

4. Set-up and post-processing  

This thesis aims to evaluate the optimization of a cooling system for an aircraft using 

adjoint optimization techniques. The simulations have already been conducted in OpenFOAM, 

and the purpose of this section is to provide a commentary on the obtained results. 

The evaluation will be performed on the same setup and geometry for different weighting 

factors (w), which range from 0.1 to 0.8. As previously seen, the cost function used for this 

evaluation is composed of two terms, the first of which represents the mechanical power 

dissipated by the fluid through the boundaries, while the second term represents the net thermal 

power recoverable from the domain. The weighting factor plays a crucial role in determining the 

optimal solution. The importance of each term in the cost function can be maximized or 

minimized by adjusting the weighting factor, which determines the relative importance of each 

term. The ideal value of the weighting factor will depend on the specific requirements of the 

cooling system. 

Additionally, the evaluation of the system with a lower thermal diffusivity will be 

performed. Thermal diffusivity is a material property that affects the heat transfer characteristics 

of the system. Lowering the thermal diffusivity will enable the evaluation and better 

understanding of the system's performance under different thermal conditions. 

The parameters under investigation include the weighting factor in the optimization 

algorithm, the thermal diffusivity of the solid material, the k coefficient in the RAMP interpolation 

method, and the amplitude of the filter used for data smoothing. By studying these parameters 

individually, their impact on the cooling system's performance, including flow characteristics, 

heat transfer efficiency, and the balance between mechanical and thermal aspects, will be 

assessed. The insights gained from this research will contribute to the optimization and design of 

more efficient cooling systems. But will first briefly describe both the geometry, the mesh and 

the boundary conditions. 
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4.1.  Geometry, mesh and boundary conditions 

The geometry of a simulation is a fundamental aspect that plays a crucial role in 

accurately capturing the physical behaviour of the system under consideration. In this section, the 

geometry of an OpenFOAM simulation will be explored. This simulation involves a 2D cavity 

flow problem, where fluid is driven through a square cavity with adiabatic and hot walls. The 

simulation is modelled using the Navier-Stokes equations, and it is carried out using the 

OpenFOAM software package. A detailed description of the geometry used in this simulation, 

including the grid generation process, boundary conditions, and any simplifying assumptions 

made to model the physical system, will be provided in this section.  

 

Figure 3: Geometry scheme. 

The geometry is presented in Figure 3, which shows different sections corresponding to 

the different boundaries. It can be seen that it is a square cavity in which the inlet and outlet are 

facing each other with adiabatic walls around them. When the fluid enters the inlet and travels 

along the cavity to the outlet, it will experience temperature and density gradients due to the 

presence of two hot walls located at the top and bottom of the cavity. 

Hereafter, the mesh generation process is an essential step in any computational fluid 

dynamics (CFD) simulation. In this simulation, an orthogonal mesh (see Figure 4) is generated 

using the blockMesh command in OpenFOAM and it has cell size equal to 0.001m. This type of 

mesh can reduce errors and numerical artifacts that may arise due to skewed cells or distorted 

meshes which would strongly affect the Laplacians and the reliability of the results.  

 

Figure 4: Mesh. 
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To accurately model the physical system, boundary conditions are assigned to the 

different walls of the cavity and are all presented in Table 1. It is important to note the fact that a 

dimensionless temperature is taken, according to the Equation 43. So, a value of 0 means that the 

temperature is equal to the 𝑇𝑖𝑛 and a value of 1 means that the temperature is equal to the 

temperature of the hot wall. 

𝑇 − 𝑇𝑖𝑛

𝑇𝑤 − 𝑇𝑖𝑛
 (42) 

Patches Velocity 
Adjoint 

Velocity 
Pressure 

Adjoint 

Pressure 
Temperature 

Adjoint 

Temperature 
Sensitivity 

Inlet Calculated 0** 
Zero 

gradient 
Zero 

gradient 
0 0* 

Zero 

gradient 

Outlet 0 0** 0 0** Zero gradient 0** 
Zero 

gradient 

Hot 

Walls 
0 0 

Zero 

gradient 
Zero 

gradient 
1 0 

Zero 

gradient 

Adiabatic 

Walls 
0 0 

Zero 

gradient 
Zero 

gradient 
Zero gradient Zero gradient 

Zero 

gradient 

Front 

and Back 
- - - - - - - 

Table 1: Boundary conditions set-up. 

There are several things to note from those shown in Table 1, the first of which is to 

clarify the super indexes found in some of the values. Those with "*" mean that they have a zero 

gradient boundary condition with a uniform value assigned, i.e., this boundary condition sets the 

parameter values at the corresponding patch to a certain value and assumes that the derivative of 

the field normal to the boundary is zero. On the other hand, the super index "**" appears, which 

means that it is of the adjoint type (it is a specialized boundary condition that is used in adjoint 

optimization problems, where the field of the corresponding variable is part of the objective 

function or the optimization constraints) and it has a uniform value assigned to it.  

Finally, the boundary condition of the velocity (U) at the inlet is calculated by a function 

which obtains the velocity values at the inlet using the log-law boundary layer theory and assigns 

them to the velocity field at the boundary. This results in a parabolic velocity profile that satisfies 

the boundary conditions of the problem. 

4.2.  Results 

The following section presents the results of the simulations conducted to optimize the 

topological form of a cooling system modelled as a 2D cavity. The objective was to investigate 

the influence of different weighting factors on the optimal cavity design for two cases: one with 

a given thermal diffusivity (𝐷 = 9.75 · 10−5 𝑚2𝑠−1) and another with lower thermal diffusivity 

(𝐷 = 2.1 · 10−6 𝑚2𝑠−1). Additionally, a parametric analysis was performed to examine the 

effects of varying the coefficient k (RAMP interpolation method) and the amplitude of the filter 

used on the simulation results. 

The optimization process aimed to find the optimal flow pattern inside the cavity by 

adjusting the topology. It is crucial to bear in mind that there are still two main objectives behind 

each optimisation: maximizing the recoverable thermal power and minimizing the mechanical 

power dissipated.  
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4.2.1.  Solid 1 (𝐃 = 𝟗. 𝟕𝟓 · 𝟏𝟎−𝟓 𝐦𝟐𝐬−𝟏) 

By analysing the first outcomes (see Figure 5), we can gain insights into how the flow 

behaviour inside the cavity changes as the importance shifts between maximizing recoverable 

thermal power and minimizing mechanical dissipation. Specifically, the focus is on understanding 

how the flow is redirected to the hot walls or streamlined towards the outlet based on the selected 

weighting factor. With low weighting factors, the priority is given to maximizing recoverable 

thermal power that’s why the optimization process focuses on redirecting the flow towards the 

hot walls to enhance convective heat transfer by adding solid at the centre of the cavity. The 

increased contact area between the fluid and the hot walls facilitates efficient heat absorption, 

thereby maximizing the recoverable thermal power. 

On the other hand, as the weighting factor is increased, the simulations demonstrate that 

the optimization process aims to streamline the flow path, minimizing deviations and promoting 

a direct path from the inlet to the outlet. The motivation behind this behaviour lies in the 

optimization process's objective to reduce energy losses associated with fluid flow. By 

minimizing deviations and flow resistance, the optimization process effectively decreases 

pressure drop, turbulence, and other factors contributing to energy dissipation. 

      

      

      

     𝑤 = 0.1             𝑤 = 0.3              𝑤 = 0.5            𝑤 = 0.6             𝑤 = 0.65           𝑤 = 0.8  

Figure 5: Normalized velocity (U max (U)⁄ ), temperature contour plots and topology of the 

cavity corresponding to different weighting factors. 

Bear in mind that all the results are optimal results for each of the weighting factor, 

however, selecting the optimum weighting factor in the context of the simulations involves 

finding a balance between maximizing the recoverable thermal power and minimizing the 

mechanical power dissipated. A notable feature of the results is that from 𝑤 = 0.6 onwards, 

neither the topology nor the main flow properties change significantly, which is something that 

will be discussed in the pareto chart analysis later on. 

4.2.2.  Solid 2 (𝐃 = 𝟐. 𝟏 · 𝟏𝟎−𝟔 𝒎𝟐𝒔−𝟏) 

The results of reducing the thermal diffusivity are shown below (see Figure 6). What can 

be observed in this case is that the optimization process may still focus on redirecting the flow 

towards the hot walls to enhance convective heat transfer for low weighting factors but in a very 

different way. However, the presence of a solid material with significantly lower thermal 

diffusivity can hinder heat conduction and reduce the efficiency of heat transfer from the solid to 

the fluid. Lower thermal diffusivity implies that heat is conducted more slowly through the solid 

material. This is why it is no longer of interest to add material to the hot walls so that the fluid is 
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directly in contact with the hot walls and not with the solid. In addition, it is observed that the 

flow deviates sharply for a weighting factor of 0.65 and even more, which is quite different from 

the other case (in which the flow was already streamlined for 𝑤 = 0.5 − 0.6 ). 

In the case where the solid has high thermal diffusivity (for high weighting factors), the 

addition of material forming a pipe-like structure that streamlines the flow from the inlet to the 

outlet is a result of the optimization process aiming to minimize mechanical dissipated power (see 

Figure 5). However, when the thermal diffusivity of the solid is reduced, the optimization process 

yields a different result. Instead of adding material to streamline the flow, only a small diverging 

nozzle is formed at the inlet, and the rest of the cavity remains empty without any additional 

material. This behaviour suggests that, for the given conditions, the optimization process does not 

find it beneficial to add material to redirect the flow or further streamline it. The reason behind 

this difference could be attributed to the reduced thermal diffusivity's influence on the heat 

transfer dynamics within the system. Lower thermal diffusivity implies slower heat conduction, 

which can lead to the formation of localized high-temperature regions near the hot walls. In such 

cases, the optimization process may find it more effective to allow the flow to naturally distribute 

and dissipate heat rather than adding material to further manipulate the flow pattern. 

      

        

      

     𝑤 = 0.1             𝑤 = 0.3              𝑤 = 0.5            𝑤 = 0.6             𝑤 = 0.65           𝑤 = 0.8  

Figure 6: Normalized velocity (𝑈 𝑚𝑎𝑥 (𝑈)⁄ ), temperature contour plots and topology for 

different weighting factors with a different thermal diffusivity (𝐷 = 2.1 · 10−6 𝑚2𝑠−1). 

4.2.3.  Pareto front analysis 

In order to assess the trade-off between mechanical power dissipation and recoverable 

thermal power in the cooling system, Pareto fronts have been constructed for both the case with 

higher thermal diffusivity and the case with lower thermal diffusivity. The Pareto fronts provide 

a graphical representation of the optimal solutions that balance these two objectives. Comparing 

the Pareto fronts for the two different thermal diffusivities provides valuable insights into how 

the thermal properties of the solid affect the trade-off between mechanical power dissipation and 

recoverable thermal power. It allows for a comparative analysis of the performance and 

optimization potential of the cooling system under different thermal diffusivity conditions. 
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Figure 7: Pareto front for 𝐷 = 9.75 · 10−5 𝑚2𝑠−1. 

The observations made in Figure 7 and 8, where a convex curve is depicted for both cases, 

highlight certain trends and patterns in the trade-off between fluid dissipated power and 

recoverable thermal power. 

Firstly, in Figure 7 it can be observed that for weighting factors above approximately 0.3, 

increasing the weighting factor has a limited impact on the fluid dissipated power. This suggests 

that beyond this point, further prioritizing recoverable thermal power does not lead to significant 

reductions in fluid dissipation. In other words, the optimization process reaches a point of 

diminishing returns where increasing the importance given to recoverable thermal power does not 

result in substantial improvements in reducing fluid dissipated power. On the other hand, the 

recoverable thermal power is significantly affected as the weighting factor increases. This implies 

that emphasizing recoverable thermal power leads to substantial gains in harnessing and utilizing 

the heat energy within the system 

In Figure 8, which represents the graph for the solid with reduced thermal diffusivity, 

some noticeable differences can be observed. The clustering of points and higher values of 

recoverable thermal power for weighting factors between 0.1 and 0.5 indicate that for this 

particular solid, there is a more significant impact of the weighting factor on the recoverable 

thermal power. This suggests that optimizing for recoverable thermal power in the case of reduced 

thermal diffusivity can lead to more pronounced improvements in capturing and utilizing heat 

energy. 

The overlapping and almost identical results observed for weighting factors of 0.6 and 

above in both cases may indicate that the optimization process reaches a plateau where further 

increasing the weighting factor does not result in substantial changes in the trade-off between 

fluid dissipated power and recoverable thermal power. 

Overall, the observations in both Figure 7 and Figure 8 demonstrate the influence of the 

weighting factor on the trade-off between fluid dissipated power and recoverable thermal power. 

The results highlight the importance of finding an optimal balance between these objectives and 

suggest that the impact of the weighting factor can vary depending on the thermal diffusivity of 

the solid being analyzed. 
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Figure 8: Pareto front for 𝐷 = 2.10 · 10−6 𝑚2𝑠−1. 

4.2.4.  Sensitivity analysis for the “k” coefficient in RAMP method 

In the context of the RAMP interpolation method utilized in OpenFOAM, the k 

coefficient plays a crucial role in regulating the steepness of the interpolation function. The 

RAMP method is employed to smoothly transition between different values within a given range. 

The RAMP function, in essence, allows for a gradual change from one value to another over a 

specified interval. This function is particularly useful in situations where a sudden transition 

would not accurately represent the physical behaviour or desired simulation outcome. By 

controlling this k coefficient, one can adjust the steepness or smoothness of this transitions. The 

focus of this analysis is to investigate the impact of varying the value of k in the RAMP 

interpolation method on the simulation results to quantify the corresponding effects on the cooling 

system's performance (see Figure 9). 

If k is less than 1, the RAMP function exhibits a gentler and smoother transition. This 

lower value of k causes the interpolation to be less sensitive to changes in the input data, resulting 

in a more gradual variation between the values. Consequently, the overall impact of any 

fluctuations or deviations in the input data is diminished. Conversely, when k is greater than 1, 

the RAMP function becomes steeper and more sensitive to changes in the input data. The higher 

value of k amplifies the variations in the input values, leading to a more pronounced and rapid 

transition between the given values. Finally, if k is set to 1, the RAMP function behaves linearly, 

resulting in a uniform transition between the given values. In this case, the interpolation is 

characterized by a balanced change, without any amplification or attenuation of the input data. 

However, as can be seen in Figure 8, for values close to zero there is a large impact on 

the results, but for values higher than 0.4, the impact is null. Nevertheless, when the value of k is 

close to 0 or very small, it results in a highly gentle and gradual transition between the given 

values, and the RAMP function tends to assign greater weight to the lower boundary value, 

resulting in a less significant sensitivity to changes in the input data. Anyway, it is noticeable that 

for low values of k, the optimisation process tends to prioritise the thermal recoverable power as 

more material is added to the centre in order to divert the flow towards the hot walls. 

It is important to note that the behaviour of the simulation results can be influenced by 

various factors beyond just the k value. The specific characteristics of the cooling system and the 

nature of the simulations being performed can contribute to the observed effects. 
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    𝑘 = 0.025           𝑘 = 0.05            𝑘 = 0.1             𝑘 = 0.4               𝑘 = 1                  𝑘 = 2 

Figure 9: Normalized velocity (𝑈 𝑚𝑎𝑥 (𝑈)⁄ ), temperature contour plots and topology of the 

cavity corresponding to 𝑤 = 0.5 and 𝐷 = 9.75 · 10−5 𝑚2𝑠−1 but for different values of k. 

Next, the same analysis has been carried out but with the solid with less thermal 

diffusivity (see Figure 10), and what has been observed is that there are not as significant changes 

as in the previous case. In this scenario, even when the k coefficient is varied across different 

values, the impact on the simulation results may be practically null. The slower heat conduction 

restricts the influence of the k coefficient in inducing significant changes in the temperature 

distribution or overall behaviour of the system. The reduced thermal diffusivity acts as a 

dampening effect, limiting the sensitivity of the simulation results to variations in the "k" 

coefficient. 

      

      

      

     𝑘 = 0.025         𝑘 = 0.05            𝑘 = 0.1              𝑘 = 0.4                𝑘 = 1                 𝑘 = 2 

Figure 10: Normalized velocity (𝑈 𝑚𝑎𝑥 (𝑈)⁄ ), temperature and topology contour plots 

corresponding to 𝑤 = 0.5 and 𝐷 = 2.1 · 10−6 𝑚2𝑠−1 but for different values of k. 
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This impact on both recoverable thermal power and mechanical power dissipated can be 

seen graphically in Figure 11. It can be clearly observed that there is roughly a linear trend in 

which, as the value of k is reduced close to 0, the values of both objective functions increase. On 

the other hand, by raising the value of k even above 1, the value of the objective functions 

decreases. Moreover, it is noticeable in the first case (a) how reducing the coefficient k has more 

impact than increasing it. Finally, in the case of reducing the thermal diffusivity (b), it is observed 

that varying the coefficient k has practically no impact on the results. 

    

                                         (𝑎)                                                                                    (𝑏) 

Figure 11: Evolution of the impact on the recoverable thermal power and mechanical dissipated 

power for different values of k and different thermal diffusivities: (a) 𝐷 = 9.75 · 10−5 𝑚2𝑠−1 

and (b) 𝐷 = 2.1 · 10−6 𝑚2𝑠−1.. 

This effect is most easily and visually seen in the bar graph shown in Figure 12, where 

changes of up to almost 30% in dissipated power are observed in case (a). However, it is easy to 

see that it is not profitable to reduce the value of k since it increases the dissipated power (which 

is something to be minimised) more than the recoverable thermal power. On the other hand, in 

case (b) the percentage change in the objective functions is practically negligible. 

 

                                         (𝑎)                                                                                (𝑏) 

Figure 12: Bar graph which accounts for the percentage change of both objective functions with 

respect to the base case (𝑘 = 0.1) for both thermal diffusivities: (a) 𝐷 = 9.75 · 10−5 𝑚2𝑠−1 

and (b) 𝐷 = 2.1 · 10−6 𝑚2𝑠−1. 
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4.2.5.  Sensitivity analysis for the filter width 

Smoothing, or filtering, is a common technique used in computational simulations to 

reduce noise, eliminate small-scale variations, or create a more regular representation of the data. 

The aim is to explore the impact of adjusting the amplitude of a filter to be around the size of the 

cell size in a computational simulation. By setting the amplitude of the filter to this specific value, 

we will investigate how it affects the results and the behaviour of the scalar field being filtered. 

Different sizes will be evaluated for the amplitude of the filter 𝑓, one equal to the mesh cell size 

(𝑓 = 0.001), one larger and one smaller. 

The purpose of smoothing a scalar field with a filter is often to achieve a more gradual or 

uniform transition between adjacent cells or regions, especially in areas where there might be 

abrupt changes or noise in the data. This can be useful for improving the stability and accuracy 

of numerical simulations, particularly in cases where sharp discontinuities or high-frequency 

fluctuations may introduce numerical instabilities or undesirable artifacts. 

By applying the filter with a radius equal to the cell size of the mesh, then it is likely that 

the filter is a low-pass filter. In the context of optimization algorithms, a low-pass filter is 

commonly used to smooth the results obtained from the optimization process. The filter applies a 

weighting factor to the objective function values of neighbouring points in the parameter space to 

obtain a smoothed objective function value. This helps to prevent the optimization algorithm from 

getting stuck in local minima and improves its ability to converge to the global minimum. 

If the amplitude of the filtering is smaller than the cell size, it means that the filter will 

have a smaller spatial extent compared to the size of the cells in the mesh. This can lead to a more 

localized smoothing effect, where the filter only affects a smaller number of neighbouring cells 

around each cell. Consequently, the impact of the filter on the overall smoothing or averaging of 

the scalar field will be limited to a smaller region of the domain. 

The filter, on the other hand, will have a wider spatial extent relative to the size of the 

cells in the mesh if the amplitude of filtering is higher than the cell size. This might result in 

excessive smoothing of the data, which could cause the loss of crucial features and information 

[11][12]. As a result, it's essential to select a filter radius that strikes a compromise between the 

necessary level of smoothing and the necessity to preserve key data points.  

      

      

      

                  𝑓 = 0.00        𝑓 = 0.0005         𝑓 = 0.001          𝑓 = 0.002         𝑓 = 0.005  

Figure 13: Normalized velocity, temperature and topology contour plots corresponding to     

𝑤 = 0.5 and  𝐷 = 9.75 · 10−5  𝑚2𝑠−1 for different filter widths.  
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The choice of filter width determines the level of detail captured in the simulations. As 

shown in Figure 13, a larger filter width leads to a flow that tends to deflect towards the hot walls 

(so the recoverable energy transfer should be increased), thus adding material to the centre of the 

cavity. On the contrary, a smaller filter width captures more details of the flow, however what can 

be observed is that the flow tends to be straighter, streamlined, without deviations, so a reduction 

in the mechanical power dissipated should be observed.  

It is curious how two clearly marked trends can be observed. On the one hand, a filter 

size smaller than the cell size tends to centralise the flow, however, as the amplitude increases 

above the cell size, the tendency is to divert the flow towards the hot walls. This behaviour is 

similar to that shown when varying the weighting factor, where as the weighting factor is 

increased the flow was more centralised and streamlined. Thus, the existence of such an analogy 

can be observed. 

Regarding the same results but with the lower thermal diffusivity solid, it can be seen in 

Figure 14 how the results are practically the same, preserving the original tendency to divert the 

flow considerably towards the hot walls. Thus, it can be considered that for lower thermal 

diffusivities, the effect of varying the amplitude of the filter is practically null, since it can be 

observed that the topological changes in the cavity tend to be the same for any type of amplitude, 

whether it is greater, smaller or equal to the cell size. 

      

      

      

                  𝑓 = 0.00        𝑓 = 0.0005         𝑓 = 0.001          𝑓 = 0.002         𝑓 = 0.005  

Figure 14: Normalized velocity, temperature and topology contour plots corresponding to     

𝑤 = 0.5 and  𝐷 = 2.1 · 10−6 𝑚2𝑠−1 for different filter widths. 

As an additional comment, it is worth noting that the balance between mechanical 

dissipated power and thermal recoverable energy may depend on other factors and aspects of the  

simulation setup. However, with a filter amplitude equal to the cell size, it can be expected a 

reasonable compromise between the two objective functions. The filtering will help in reducing 

excessive dissipation by smoothing the flow and minimizing small-scale fluctuations while 

maintaining an adequate level of thermal energy extraction by retaining larger-scale features. 

Next, the focus will be on the quantitative aspects of the objective functions, building 

upon the previous discussions on the characteristics of the velocity, temperature, and topology 

fields. 
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                                         (𝑎)                                                                                (𝑏) 

   

                                         (𝑐)                                                                                (𝑑) 

Figure 15: Evolution of the impact on the recoverable thermal power and mechanical dissipated 

power and bar graphs which account for the percentage change of both objective functions with 

respect to the base case (𝑓 = 0.00) for different values of the filter width and different thermal 

diffusivities: (a)&(c) 𝐷 = 9.75 · 10−5 𝑚2𝑠−1 and (b)&(d) 𝐷 = 2.1 · 10−6 𝑚2𝑠−1. 

Figure 15 shows graphs representing the evolution and change in the variables for both 

objective functions. Analysing first the graph (a), it can be seen how its evolution does not behave 

in a very linear way compared to graph (b), in which a perfectly linear behaviour can be observed. 

Analysing the results more closely, it can be appreciated that there is a point of inflection for the 

filter amplitude very close to the cell size. This can be better appreciated in the bar graphs (c) & 

(d) where for example in case (c), for amplitudes smaller than the cell size, a decrease of the 

mechanical power dissipated can be observed while maintaining practically constant the 

recoverable thermal power (which can be considered beneficial). On the other hand, as the 

amplitude increases above the cell size, a completely opposite behaviour is observed, increasing 

the mechanical dissipated power and the recoverable thermal power. This outcome was to be 

expected, as previously demonstrated, for 𝑓 values smaller than 0.001, the flow tended to be 

straight and streamlined, thus decreasing disturbances and consequently reducing mechanical 

power losses. Similarly, as depicted in Figure 13, for 𝑓 > 0.001, the flow deviated towards the hot 

walls, thereby increasing the dissipated mechanical power and improving the thermal behaviour. 

On the other hand, for the case with lower thermal diffusivity, we have observed that the 

flow field does not vary significantly. However, quantitatively, some variations in the values of 

the objective functions can be appreciated in (d). The behaviour is similar, with the appearance of 
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an inflection point and two opposite trends for 𝑓 values smaller and larger than the cell size. 

However, these trends are opposite to those observed in the case of (a) & (c). Now, for 𝑓 < 0.001, 

the dissipated mechanical power and the thermal recoverable power increase, while for 𝑓 > 0.001, 

they decrease. 

5. Conclusions 

In this project, a comprehensive analysis of various parameters and techniques that 

influence the performance of cooling systems has been conducted. The objective of this research 

was to gain insights into the optimization process, understand the impact of thermal properties, 

and explore the effects of smoothing and filtering in computational simulations. The findings 

presented herein provide valuable knowledge and contribute to the field of cooling system design. 

Through the optimization process, it has been observed that the trade-off between 

mechanical power dissipation and recoverable thermal power is influenced by the weighting 

factors assigned to each objective function. Increasing the weighting factor for recoverable 

thermal power leads to significant improvements in harnessing and utilizing heat energy within 

the system. However, it has been also identified a point of diminishing returns, where further 

prioritization of recoverable thermal power does not result in substantial reductions in fluid 

dissipated power. These observations highlight the importance of carefully balancing the 

objectives during the optimization process. 

The RAMP interpolation method, a widely used technique in cooling system simulations, 

has been thoroughly examined. The role of the k coefficient in regulating the steepness of the 

interpolation function has been established. Lower values of k result in gentler and smoother 

transitions, reducing sensitivity to changes in input data. However, caution must be exercised 

when setting extremely low values of k, as they can increase dissipated power more than 

recoverable thermal power. Additionally, the influence of the k coefficient on simulation results 

is more pronounced in cases with reduced thermal diffusivity. 

Smoothing and filtering techniques have been explored as means to enhance the accuracy 

and stability of computational simulations. By adjusting the amplitude or filter width, we can 

control the level of smoothing applied to the scalar field. It has been observed that. It has been 

observed that that the filter width actually has a big impact on the simulation results, both in terms 

of flow field characteristics and in terms of the qualitative results of the objective functions. 

Striking a balance between necessary smoothing and preserving key data points is vital in 

achieving optimal results. Furthermore, it has been determined that the influence of the filter 

amplitude on simulation outcomes is not actually strongly affected when the thermal diffusivity 

is lowered.  

In conclusion, this thesis has provided valuable insights into the optimization process, the 

utilization of the RAMP interpolation method, and the effects of smoothing and filtering in 

cooling system simulations. The findings underscore the importance of considering weighting 

factors, interpolation parameters, and filter widths when designing and optimizing cooling 

systems. This research contributes to the body of knowledge in the field and provides practical 

guidance for improving the performance and efficiency of cooling systems. Further studies can 

build upon these findings to address additional factors and optimize cooling systems in diverse 

applications. 
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