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1. Introduction

1.1. Introduction

As industrial systems become more complex and sophisticated, efficient solutions to
thermal fluid concerns areecessary. The use of electric motors in the aerospace and automotive
sectors, for example, has lately garnered attention for technological and environmental reasons.
To enhance heat and mass transfer operations, properly disperse the vast amountbedtvaste
sophisticated avionics, and optimize energy utilization, improving propulsion and cooling systems
is critical. Pressure drop in cooling systems must be avoided owing to heat transfer difficulties in
order to restrict the pumping power given towwgking fluid, which will eventually be dissipated
due to its viscosityBy reducing the pressure drop, the pump needed for the cooling systems will
be eventually smaller, reducing weight which is crucial for an airdraitmal system parametric
designoptimization is related with various structural and physical parameters of high complexity;
a trialanderror technique for the general design approach is typicallydoneuming and does
not assure the best design. As a result, optimization technigaeshkpe optimization (SO) and
topology optimization (TO) are commonly used.

Topol ogy Optimization is one of the methods
existing paramesr iTco phd viggyn Omprtd ord dzuart e oanndwas pr «
Ki kulhin 1988. Then, Bendsoe and Sigmud gave a
[3l Howe voerr ,a fl dga s ianel,y applied in structure mec
construction and buildings. ddndemtk tmorenttérant H
field of flui av2 8 YvBhmetioms .ol dlonp esfadardijeodi nt based
constrained topology for viwbtohbhsi ]l owe oaecerfn
this research

Topology optimizatioris a mathematical technique used to optimize the arrangement of
materials within a given design space to meet specific loads, boundary conditions, and
restrictions. This is achieved addingsolid material into the computational domain, thereby
altering the domain's topology to optimize flow characteristics. Shape optimization, on the other
hand, involves updating the boundary shape of the domain by parameterizing the borders and
adjusting spcific parameters until the desired shape is attaBetth ways have the same aim in
common, which is basically to minimiza objective function while complying with the given
constraints. Topology optimization is particularly suitable for generatitiglidiesign concepts
that require significant modificationsf the computational domain, making it a preferred
optimization method for this study.

The conventional topology optimization formulation uses a finite element method (FEM)
to evaluate the desigperformance. Several methods have basedto optimize topology
optimization problems, such as heuristic (simulated annealing, genetic algorithms, etc.) and
gradientbased algorithms. However, due to the typically large number of control variables,
gradient-based methods are commonly favoured for most applications. Adjoint equations can be
solved using two common strategies, namely the continuous and discrete adjoint methods. This
work employs the continuous adjoint method, which involves deriving anditkeretizing the
adjoint equations. In contrast, the discrete adjoint method directly derives adjoint equations from
the algebraic equations obtained from discretizing the original problem.

The research is carried out in the oenirce software called @pFOAM implemented
with an incompressible, single phase, mdithensional Finite Volume solver. However, the
design and analysis of the solver set up deployed in OpenFOAM is beyond the scope of this paper,
which is mainly focused on the pgstocessing othe simulations performed in the software to
evaluate the resultnd perform several parametric analyses on specific variables to evaluate its
impact on the results
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1.2. Goals and highlights

In recent years, the aerospace industry has sagnificant increase in the use of electric
propulsion systems. These systems have the potential to be more thermally efficient than
traditional propulsion systems, but they also generate a lot of heat during operation. As a result,
i t 6s cr u dectigecooting systeans ir plagefto ensure that the electric propulsion systems
can operate at peak efficiency.

The cooling system under investigation aitn efficiently dissipate heat from a given
process or devicevhile minimizing the mechanical powersdipated by the boundarieShe
primary objective of this research is to evaluate the impact of specific variables on the
performance of the cooling systewith the purpose of gainirigsights into the influence of these
variables on the cooling systertf®rmal and mechanical performance, ultimately leading to the
optimization of cooling system design and operation. The analysis will encompass the effects of
parameters such aseighting factors interpolation methods, filtering techniques, and other
relevant factors. By examining the interplay between these variables and the resulting system
behaviour, valuable insights can be obtained to guide the development and improvement of
efficient cooling systemd.o address the research objectives, this studybedin by providing
an overview of the theoretical framework behind the adjoint optimization solver theory.
Understanding the principles and concepts of the adjoint optimization approach is crucial for
accurately assessing and interpreting the simulat@sults. Following a comprehensive
understanding of the theory, the study will proceed to analyse the results obtained from the
computational simulations, investigating the impact of various variables on the cooling system's
performance.

On the other hangome of the main highlights of the solver used will now be presented.
A semtimplicit method for pressure linked equations (SIMPL&)is applied to couple pressure
and velocity in the primal and in the adjoint probléforeover,a densitybased approach for the
optimization problem is combined with the Rational Approximation of Material Properties
(RAMP) method 7] to model the porositgnd material properties between the fluid and the solid.
Finally, sensitivity is computed by solving the adjoint equations and used with the Method of
Moving Asymptoteg5] to update the design variahles

2. The continuous Adjoint method for topology
optimization

2.1. Multi -objective optimization

Optimization refers to the process of finding the best possible solution to a problem out
of all possible solutions. It involves identifying a set of variables that can be adjusted within a
given set of constraints (expressediaso achieve the desiredittome, usually measured by a
particular objective functionJj. The objective function is a mathematical representation of the
goal or target to be achieved, which can be maximized or minimized depending on the nature of
the problem. It is now crucial fatroduce the desigrb) and state variableg)( Design variables
are the parameters that can be adjusted during the optimization to achieve a desired outcome. In
other words, they are the decision variables that are within the control of the des@mgneer.
State variables, on the other hand, are the variables that describe the current state or condition of
the system being optimized.

For application of optimization, one could desire to minimize more than a single objective
function; therefore, theew goal is to find a set of solutions that represent the best possible trade
offs among two or more competing objectives. Hedamgn be defined as a linear combination
of several objective functiong :
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| f altrahsbkeised to fluid mechanics, t he st
i ncompresisndl edif h @ Wleracben s r sashes: ,masmgntamser Vv:
and emalr@yce (see Equation 2). Addi toinontahle cons
problem formulati on.
no6 m
ondé nnp N ' M (2

" O NY Y % T

The formulation of the problem changes depend
the solution algorithm. T hcthso,s einn tweer nasa no fo ptt h &
optimization (SO )or a topology optimization (-
is the type of solution algorithm used, which ¢

- Heuri sti carael gborra adoimrgo bsltemt egi esamalmator empl o
approach rather than an exact answer to obt
I
[

generally scan a vast search space for a su
Heuristic algoantbmsopanmat i gya but they cé
answer in a fair period of ti me. Simul at ed
swarm optimization are al/l examples of heur
- On the otgheadhasmaad ,aluger imah e al techniques t
mi ni mum or maxi mum of a function. These me
function's gradient l eads in the direction
following this direction,octathe malng onuimt lom anan
Gradhasaned algorithms can offer accurate sol
expensive, particularly when the search spa

h tolpad @eglyg oorpittihhmisz aft @ 10
research is based on e recognition that t he
comprehensive approach hat can accommodate mu
optimization of the cooildmaoy,s yamnd nr el ipaelrifloirtnmya.n c

The selection of bot
t h
t

22.Gr adibasted opti mization and the Adj

To initiate the continuous adjoint formulat
derivative of the objectG vei fanceEepaghktivawnladsd
must be computed in such a way that it is inde

sensitivity r egaidead do dtoirmiaz egtriacdn eing :

10 Vo YO 0®

Oj e 7 3)
However, as can beemxie@)i viitk yHdgw atcitdry IJIdepend
number of design variabl es, so that it woul d b
of the design variabl es, which would i mply a
parameters uise hifgh.agflaemge multipliers in the
equations is employed to ensure that the sensi
vari §h! eTshi s approach incorporates the constr e

opniizati on algorithm to update the Lagrange mul
satisfies the constraints and i mproves the obj

The primary aim of this studgbjectovientopadu
opti mnzatfi a coupled system involving heat tra
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controlling the recovered ther mal power gener a
heat sources. However, these probrdeprse agret esdi bbh v
R which can be enforcedwhbschgia tegppangd &aoot
4, i nVwehi the domain and is the wvector of Lag
approach wil/| represent the adjagi,ntadjariinab lveesl ,o

(v and the adjYpi as sbdomwer anuEq@gu@ti on 4.

0 _YQw
4)
nhny
I n this manner, the optimization problem th

of the augmenliend rcedsatt ifounn cttob:adanhe design variabl

n

LOT0 T vao (5)
T W] W] W=
Applying now Lei bni zdesr itvhaetoirveem tteor me xopfa ntdh et |
Equation 6.
To01T0 T_ ., Ty, . R I
O mYQw ='|'_(I)Qw =Y(]—(B€QY (6)

I f to the | atter Ecdhaundar ¥ hhypotalpesi €s( ¥ hlei
assumes t haati atbH ee ss thaatvee f i xed val ues at t he bou

obtained. This assumption allows for the el i mi
which reduces the computational cost of sol vi ng
17070 Ty,
— 5 . 7 _’T'Q(ao
el o =16 (7)
At this stage, what needs t Rwhecdhoneaesi svet & at
seen in Equation 2, representsyY)he moadmteagudt i c

but now with tereeragdydi &g wadtuieofnt o(hé he exi stence
Meaning that the solution of the st[dfle equati or

Y YRYhY Tt (8)

- Mass conservation:

Y kn o 9)

- Momentum bal ance:

YKk 66 B ' 6 ] -o (10)

I n Equation 10, it dddquobhaes obbsem veadiddaod w wihiec h
as the Brinkman pleinaaltilzeatp oorno gietrym, whavihcehr ei s up ¢
deng¢day design variable. The Brinkm@tholpesnal iz,
equation as a s®&lurzces ttelmen,f lwhil ¢ hv pléedBdi ty i n t

Porosity () refers to the fraction of the total volume of a material or medium that is
composed of voids, pores, or empty spaces. In other words, it is the percentage of the total
volume of a materlahat is not occupied by solid material but rather is made up of empty
space or voids. Therefore, if the porosity tends to zero, the momentum balance for the fluid
is recovered, if on the contrary the porosity tends to infinity it means that the veéouity

M N
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to zero and therefore the transport of temperature in the control volume is dominated by solid
diffusion.

- Energy balance:

Y oK 0"y Oo- Y (12)

As alterations ar e mad e to t he desi gn vV a
modi fications in the flow fikédcomlpasesgauendtl yog
changes in the design variabl e buth aass ov ealdg cuisttyn
pressur e, and temperature. For this reason, it

ter-mas a funkthiPneofEquation 12).

1oto 1Y Qw U LY Qw Y LY Qw
TeTe "1 TG o Ps
otn_.. Jto v L. 10 -
Y —Qw Y —Qw Y —Qw 00 00 00 O0U—=Qw —~"1414Qw
Tw Tw Tw Tw Tw
being
Y k Y RAY AY (13)

the set of the adjoint equations:

Yk 0 — (14)
Y k o] 0o ¢ -0 | O n"vywy — (15)
. .y, 10
Y k 0"Y (@) YT_"Y (16)
Notably, the final two components of Equati
derivatives with regards to the dasegnwhareéabh
function J is designated at the boundary S and
T—, nT—U T[T—U s @
o e My

According to the condi+,—09-risn oEq Egqtuiaecm®nld,7,

16 disappear. The adjoint equations within the
cost function of the probl em. However, it's wo
the boundari est,i nacnd cuwtsitl ifzuinncg idoins necessitates
boundary conditions for the identical sol ver .

conditions stems from the fact that tdare behavi
significantly influence the solutions obtained
reliable results, it's cruci al to carefully sel
correspond to the cost function being utilized.
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2.3. Topology Optimization using Continuous Adjoint

Subsequently, Equation 12 must be implemented within the adjoint CFD solver. The
optimization problem is downgraded to minimize the augmented objective fuh¢tidnch has
been shown to be a functionwalocity, pressure, temperature, dnedpseudo density (used as
a control variable).

This work employs a topology optimization strategy where solid material is introduced
into the fluid domain via a densityased method. The goal is to obtapsaudo density field with
values ranging from 0 (solid) to 1 (fluid). A pseudo density value odslilts in the recovery of
governing equations for the fluid, while a value of 0 leads to zero flow velocity and solid diffusion
dominating temperature trgyat within the control volume. However, this approach can result
in ill-posed problems, and to address this issue, a penalty is introduced to convert the discrete
pseudo density into a continuous variable, resulting in a binary solution. The juEnsgip is
also used in the determination of material properties, such as density, specific heat, thermal flow
diffusivity, and porosity, which are computed using the Rational Approximation of Material
Properties (RAMP) model.

When dealing with thermal coolingif power electronics in propulsion systems, it is
essential to restrict the overall pressure drop within the cooling circuit while effectively
eliminating heat. To achieve this objective, the cost funclisrformulated as follows:

O 00 00 (18)
Where0i s t he mechanical power dissipated by t
is the net ther mal power recoverable from the
V] n EO 0 £QY (29
0 "0 Y6 £€QTY (20

The goal is to maximiza) (the recoverable thermal power) while minimizirdg (the
mechanical power dissipated by the fluid). However, sidncend 0 have different magnitudes
and are related to different features of the system (flow field fand temperature transparid
diffusion for 0 ), they need to be normalized to be compared.

One possible normalization approach is to compute the optimal valugsasfd 0
respectively from the optimization of the fluid problem and the thermal problem. These values
can the be used to scale the corresponding objective functions. Finally, the weighted sum method
is applied to perform the multbjective optimization, where the weights determine the
importance of each objective function in the overall optimization.

b 0L p 0O (21

In Equation 21,0 and are the normalioizept henwei ghsi mag
cThbe. weighting f tor is a parameter used t
gni ficance to di erent components or object
rticul ar case, i is used to eomahdomethanbaha
wer dissipation. A highminwmighbhgntgheéaméeohawi
il e a |wgvi weas ulei goplfer i mportance t ol mathims ze
search, theiwdiadhlerislsg ¥5act er i mpact on fluid
e context of a cooling system optimization

a
f
t
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Once the objectitviee fpmeceon ofs aepdli wiemwWg opt

st alrhtisss. results i n a conwshterraei ntehde ocpotnisntirzaaitnitosn apr
or stateTegsatvendshis optimization probl em, t
respected:

- The first constraint is to |imit the maxi mu
system being soptoinsitzeed . ntTh s essenti al to p
resulting in trivial solutions where the en
not practically wuseful and may | ead to wunp
guantity od anddeditad tlme bdomain must be set
solution space is not trivial, while stild]l

- The second constraint involves the governing
systeg bpthmi zed. These equations must be
Lagrange multipliers method, which invol ves

optimization probl em. This constraint ensur
meaniamgdudati sfy the governing equations.

2.4. Boundary Conditions for the Adjoint Problem

Boundary conditions are essenti al in the a
crucial role in determining the btpkt mat &
met hod for optimizing cooling systems, b
must be satisfied by the cooling system.
and pressure r equsiyrsetmreenmt-serio dd eeshiegrc woh i ag
the cooli Tilgercdhfaoome,l sto successfully compl e
boundary conditions are needed for each of the

66k 66MOEMO (22

al fEogurastiidlilekep repaseidf iion f or mul at
y conditions depends on the kir
e pri mal probl emseFars pteltée sc avs & d
ghout this section.

Their ge
adjoint bou
variabl es

r
ar
t h
di scussed ou

Lo J—

S NV B
66 VI T_r‘]T_(I)Q Y (23

—a
O~
—a

00 € OUL VO ¢ € v r]sT—(,) Y'Y —QY € _ooQY (24

_.
[OR!
.

ey s ey TOTTY
00 € 0°Y 0¢ Y — —

Y Yoe .0y (25)

2

The adj oigatnwlvrae i rmdtl dibett eirtmd nwadl ue i s chosen
the co|p@i tiisonensoncedin this way ever.ything is

- I nl et

F otr h
defin
as fo

e inlet, a common boundary condition fo
e thandelt eo)ay at lhree i g ueatt?2iRonaset rsatmpl i f i e
I I ows:

O L
00 L &€ — —Q
Al o (20)
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00 R - —0QY (27)
00 YO¢e o QY (28

The relations for the boundary <condietions
foll owilmg i omangdgbbeengangential and nor mal com
velocity):

0 T (29
0 o (30
TN
€ n m (3D
Yo (32
- Out:l et
At the outlet, zero Neumann conditions are i
whil e the value of t hleflpr efs.s uA ez @ rso fNeuwnda n rh emnc
at the outlet is a boundary candi broenehagt §|
across the boundary.
. . , "TO"Y'Y‘TQQ"Y
00 € 00 ULVO ¢ 3 UI’]ETC,) ET(I) (33
00 € 6Y 0g Y T o EY
N (39

The boouowdai tydyo ntsh ef otrangent i al comppnantd of t
f oYcan be directly extracted:

0
R 60 60 & 0 T—Té Yy (35)
60 & 0 ro (36)
1o
(’) "Y .Oé "Y 0 (37)
Y

The boundary conditions for t hveameronatl aicmeng c
from continuitygtédgepbiennen cpbmponegnt of t he de
boun)ary

Y b g0 U (39

- Adiabatic wall

Theoundary conditions for pressure and velo
( Neumann for pressure and Dirichlet for veloc
adjoint pressure and vel o@ilty Thed ewg readapir vees safd

temperature is fixed, and velocity is equal
adjoint temperature being defined as foll ows:
-
0¢ ¥ — 39
ot vy =, (39
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- Fixed temperature wall

| f the temperature is fixed at t he wal |, t h
Yl eady¥ mDbhe boundarytlkenddfifoons poessure and
ones ex[Erqasaga&lnisn 29

3. Solver implementation

I n this section, the i mplementation of t he
ystem of an electrical propul sion engine in ar
xplained and presented. The iemmplodmdritomnt iodn tihse
I

s
e
fl owsed Sd MPtLiEe met hod, and the solution of the
equations previously derived from the cost f unc

3.1. Solution of the primal flow

Theprocess is based on tBE8MPLE methodSemilmplicit Method for Pressurkinked
Equation$, whichis a weltestablished algorithm for solving fluid flow problems numerically,
based on the concept of pressuetocity coupling All the fundamentals of the SIMPLE method
will be explainedncluding all the flux of equations, and how it is used to solve the primal flow
of the coolingsystem.

First, the flow variables, such as velocity and pressure, are initialized to some initial
valueswhich serve as a starting point for the iterative proclesxt, the momentum equations,
which describe the motion of fluid flow, are solved using the current values of the flow variables.
This results in an intermediate velocity fi¢hdd) whi ch does not satisfy con
why then he pressure correction equatio® 0 i s s 0 n Gsgheredgrivea framahe gontinuity
equation and used to correct the pressure fihegn, the new pressure is used to correct the
velocity field. Finally, the transport of temperature equation is addeget the temperature
distribution in an incompressible solver without the need of adding the energy equhten.
steps are repeated until the solution converges to a steady state. The iterative process continues
until the change in the flow variablestween successive iterations is below a certain tolerance
value.This iterative process is graphically illustrated in the flowchart in Figure 1.

V. @)=V - (vWu') + aut =0

|

V2pn+l = f(u*’vanrl)
nNonOrthogonalCorr
New p DA

n+l _ f(Ver»l)

S

Y

\VAR (un+l Tn+1) -V (DVT'H'I) =0

!

turbulence

F i g Ir Flew chart of the solution method for the primal flfhj.

Mp
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Oncethe schematic flow shown in Figure 1 is clear, a detailed description of each of the
equations involved in each iteration of the solver is giVér®e momentum predictor equation is
the one shown in Figure 1, however, the pressure equation or also cditdwblteequation for
compressible flows and Poisson equation for incompressible fleees Equation 40)is a
combination of the mass and momentum conservation equations.

n - o (40)

An important fact to consider with tifeoisson equation is the fact that it includes a
Laplacian, which is highly affected by the rorthogonality of the mesh, and which is necessary
to correct with the nowrthogonal correctors, however in this particular case a totally orthogonal
mesh is usd, so the noforthogonal correctors aret necessary

Once we have the pressure field, the intermediate velocity field has to be corrected. The
velocity correction is achieved by subtracting the gradient of the pressure correction term from
the intermedite velocity field. This ensures that the final velocity field satisfies both the
momentum and continuity equations. It is important to note that the velocity correction step is an
iterative process. It is needed to repeat the velocity correctiostephuntil the velocity field
converges to a steady state.

On the other hand, during and through all these iterative processes, dampers are needed
on certain variables such as pressure, which is why uetiation factors are usetheyare
crucialto limit the change of the values of the main flow variables from outer iteration to outer
iteration in order to avoid instabilities especially in the first outer iterations. To explain how it
works, we first consider the discretised algebraic equation for a geadeddle%0and at a certain
iteration n (see Equatiory In this equation)d represents the main diagonal matrix elements,

o the remaining parameters of the main matrix @ndhe source vectors components.

0 %o 0 %o 0 (41)

The underrelaxation factors are defined in Equatid) which shows how the value of
the variabl&so is constrained by to take values between its value from the previous iteration

%o  and the value from the transport equati@n
%o %o | o, %0 %o (42)

The undetrelaxation factor takes values between 0 and 1, so that if it takes the value of
0, the new value of the variab¥ takes the value equivalent to that of the previous iteration
%o, and if it takes the value of %y takes the direct value ahat calculated in the transport
equation%. . The undeirelaxation factorsincrease the convergence of theusioh by
increasinghumericallythe diagonal dominance of the main masmd hdr values taken depend
on each case, howeverclaverway to apply them is to assign small values of alphan the
early outeriterations and increase their value unéhching 1 when the solution approaches
convergence.

3.2. Solution of the adjoint problem
The procedure to solve the adjoint probl em

primal fl ow but working with thmaian oéatuveasiias
fact that the "adgmilbeé c¢campelratedecompl etely in
pr esrsawmnrde v &l oxao tfyor convenience it is the first

To cal ¢ileatt e aintspor t tewrueatiisonusfeod, teaelmspoe rcaon s i
convective anTdhen,f faussiivneo ttbeer npshhematj bi aw, t emper
we proceed to predidd) thwet aidgmamitngvetlhoee i agj diire
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since hliast ewvrel ocity field wildl be corrected witdht
conservation, basicall y stelee FsTahnee eaesd xi. no ft hteh ep rsit
anal ogous to the pri mal flowl bmtodstl twg i Wwist Ip
counterparts, the adjoint momentum bal ance ex
chall enges arise due to vtaefinddasl Sackmown @O eAdjl
Transpose Convectioinng®Aal)| i whisbuacesfas &ahe a

[ 8]

-V (H”+IT:+1) -V (DVT(:H]) =0

V- (un+lv==) _ (VU”)H"+1 -V. (VVU*) + av* — Tn+]VT:+1 =0

qum—] _ f(v*. vqn+l)

nNonOrthogonalCorr
New ¢ -

U”-H = f(vqn+l)

F i g & Flew chart of the solution method for the adjoint probldh

4. Setup and postprocessing

This thesis aims to evaluate the optimization of a cooling system for an aircraft using
adjoint optimization techniques. The simulations have already been conducted in OpenFOAM,
and the purpose of thégctionis to provide a commentary on the obtained results.

The evaluation will be performed on the same setup and geometry for different weighting
factors (w), which range from 0.1 to 0.8s previously seenhe cost function used for this
evaluation is composeof two terms, the first of which represents the mechanical power
dissipated by the fluid through the boundaries, while the second term represents the net thermal
power recoverable from the domain. The weighting factor plays a crucial role in deterthianing
optimal solution.The importance of each term in the cost function can be maximized or
minimized by adjusting the weighting factor, which determines the relative importance of each
term. The ideal value of the weighting factor will depend on the s$peeifjluirements of the
cooling system.

Additionally, the evaluation of the system with a lower thermal diffusivity will be
performed. Thermal diffusivity is a material property that affects the heat transfer characteristics
of the system. Lowering the thmeal diffusivity will enable the evaluatiorand better
understandingf the system's performance under different thermal conditions

The parameters under investigation include the weighting factor in the optimization
algorithm, the thermal diffusivity of thsolid material, thiecoefficient in the RAMP interpolation
method, and the amplitude of the filter used for data smootByngtudying these parameters
individually, their impact on the cooling system's performance, including dleavacteristics,
heat transfer efficiency, and the balance between mechanical and thermal aspects, will be
assessed. The insights gained from this research will contribute to the optimization and design of
more efficient cooling systemBut will first briefly describe both the geometry, the mesh and
the boundary conditions.
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4.1. Geometry, mesh and boundary conditions

The geometry of a simulation is a fundamental aspect that plays a crucial role in
accurately capturing the physical behaviour ofsysgem under consideration. In this section, the
geometry of an OpenFOAM simulation will be explored. This simulation involves a 2D cavity
flow problem, where fluid is driven through a square cawiith adiabatic and hot walls'he
simulation is modelled using the Nawigtokes equations, and it is carried out using the
OpenFOAM software package. A detailed description of the geometry used in this simulation,
including the grid generation process, boundary conditions, andimplifging assumptions
made to model the physical system, will be provided in this section.

Hot Wall

Adiabatic
Walls

Inlet Outlet

Hot Wall

Fi gBreGeometory scheme

The geometry is presented in Figure 3, which shows different sections corresponding to
the different boundagk. It can be seen that it is a square cavity in which the inlet and outlet are
facing each other with adiabatic walls around them. When the fluid enters the inlet and travels
along the cavity to the outlet, Wwill experiencetemperature and density gradiedue to the
presence of two hot walls located at the top and bottom of the cavity.

Hereafter, he mesh generation process is an essential step in any computational fluid
dynamics (CFD) simulation. In this simulation, amhogonal meslisee Figure 4)s generated
using the blockMesh command in OpenFOAR it has cell size equal ®001m. This type of
mesh can reduce errors and numerical artifacts that may arise due to skewed cells or distorted
meshesvhich would stronglyaffect the Laplacianand the reliability of the results

Fi gd&r eMesh

My
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To accurately model the physical system, boundary conditions are assigned to the
different walls of the cavitand are all presented in Tabldtlis important to note the fact that
dimensionlesgemperature is takeaccording to thé&quation 43So, a value of 0 means that the
temperature is equal to ti¥ and a value of 1 means that the temperature is equal to the
temperature of the hot wall.

N Yl
= (42)
Y Yo
Patches | Velocity Ad10|r_1t Pressure Adjoint Temperature Adjoint Sensitivity
Velocity Pressure Temperature
Inlet | Calculated| o= | 2480 | Zero 0 0t zero
gradient | gradient gradient
Outlet 0 Oor* 0 o** Zero gradient o** Zer_o
gradient
Hot 0 0 Zero Zero 1 0 Zero
Walls gradient | gradient gradient
Adiabatic Zero Zero : : Zero
Walls 0 0 gradient | gradient Zero gradient Zero gradien gradient
Front i i i ) i ) i
and Back

Tablt eBoundary -cppndi ti ons set

There are several things to note from those shown in Table 1, the first of which is to
clarify thesuper indgesfound in some of the values. Those with "*" mean that tiexe a zero
gradient boundary conditiomith a uniform value assigned, i.e., this boundary condition sets the
parameter values at the corresponding patch to a certain value and assumes that the derivative of
the field normal to the boundary is zero. On the other handutber index**" appears, which
means that it is of the adjoint type (it is a specialized boundary condition that is used in adjoint
optimization problems, where the field of the corresponding variable is part of the objective
function or the optimization constraints) and isf@auniform value assigned to it.

Finally, the boundary condition of the velocity)(at the inlet is calculated by a function
which obtainsthe velocity values at the inlet using the-lagv boundary layer theory and assigns
them to the velocity field ahe boundary. This results in a parabolic velocity profile that satisfies
the boundary conditions of the problem.

4.2. Results

The following sectionpresents the results tfe simulations conducted to optimize the
topological form of a cooling system modelled as a 2D cavity. The objective was to investigate
the influence of different weighting factors on the optimal cavity design for two cases: one with
a given thermal diffusity (O « vp 1T & i ) and another with lower thermal diffusivity
(O ¢ pm & i ). Additionally, a parametric analysis was performed to examine the
effects of varying the coefficielkt(RAMP interpolation methgdand the amplitude of the filter
usedon the simulation results.

The optimization process aimed to find the optimal flow pattern inside the cavity by
adjusting the topologyt is crucial to bear in mind that there are still two main objectives behind
eachoptimisation:maximizing the recoverable thermal power and minimizing the mechanical
power dissipated.

M ¢
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421 Solid1(A 8 i)

By analysing thdirst outcomegsee Figureés), we can gain insights into how the flow
behaviourinside the cavity changes as the importance shifts between maximizing recoverable
thermal power and minimizing mechanical dissipation. Specifically, the focus is on understanding
how the flow is redirected to the hot walls or streamlined towards the basietl on the selected
weighting factor.With low weighting factors, the priority is given to maximizing recoverable
thermal powet h a t O6tlse optitmigation process foceson redirecting the flow towards the
hot walls to enhance convective heat tranbfeiadding solid at the centre of the cavithe
increased contact area between the fluid and the hot walls facilitates efficient heat absorption,
thereby maximizing the recoverable thermal power.

On the other hand, as the weighting factor is increaBedsitnulations demonstrate that
the optimization process aims to streamline the flow path, minimizing deviations and promoting
a direct path from the inlet to the outl@the motivation behind this behaviour lies in the
optimization process's objective teduce energy losses associated with fluid flow. By
minimizing deviations and flow resistance, the optimization process effectively decreases
pressure drop, turbulence, and other factors contributing to energy dissipation
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Fi g b Naemalized velocity%j I A @ ), temperature contour plots and topology of the
cavity corresponding to different weighting factors
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Bear in mind that all the results are optimal results for each of the weighting factor,
however, slecting the optimum weighting factor in the contexttloé simulations involves
finding a balance between maximizing the recoverable thermal power and minimizing the
mechanicalpower dissipated A notable feature of the results is that fram 1@ onwards,
neither the topology nor the main flow properties chagigrificantly, which is something that
will be discussed in the pareto chart analysis later on.

422.Sold2(A 8 O v)

The results of reducing the thermal diffusivity are shown below (see Fauiéhat can
be observedn this cases thatthe optimization process may still focus on redirecting the flow
towards the hot walls to enhance convective heat trafusfEzw weighting factors but in a very
different way However, the presence of a solid material with significantly lower thermal
diffusivity can hinder heat conduction and reduce the efficiency of heat transfer from the solid to
the fluid. Lower thermal diffusivity implies that heat is conducted more slowly through the solid
material.This is why it is no longer of interest to add sral to the hot walls so that the fluid is

H N
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directly in contact with the hot wallend not with the solidin addition, it is observed that the
flow deviates sharply for a weighting factor of 0.65 and even more, which is quite different from
the other casg@n which the flow was already streamlined for T 1&).

In the case where the solid has high thermal diffusiiy high weighting factors)the
addition of material forming a pipée structure that streamlines the flow from the inlet to the
outlet is a result of the optimization process aiming to minimize mechanical dissipated seEaver
Figure5). However, when the thermal diffusivity of the solid is reduced, the optimization process
yields a different result. Instead of adding material to stliea the flow, only a small diverging
nozzle is formed at the inlet, and the rest of the cavity remains empty without any additional
material. This behaviour suggests that, for the given conditions, the optimization process does not
find it beneficial toadd material to redirect the flow or further streamlindlite reason behind
this difference could be attributed to the reduced thermal diffusivity's influence on the heat
transfer dynamics within the system. Lower thermal diffusivity implies slowerdoeatuction,
which can lead to the formation of localized higimperature regions near the hot walls. In such
cases, the optimization process may find it more effective to allow the flow to naturally distribute
and dissipate heat rather than adding materiturther manipulate the flow pattern.
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Fi g & Namalized velocityf & & &Y ), temperature contour plots and topology for
different weighting factors with different thermal diffusivity@ ¢® pm a i ).
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4.2.3. Pareto front analysis

In order to assess the traoff between mechanical power dissipation and recoverable
thermal power in the cooling system, Pareto fronts have been constructed fitrebcaise with
higher thermal diffusivity and the case with lower thermal diffusivity. The Pareto fronts provide
a graphical representation of the optimal solutions that balance these two obj€aimesring
the Pareto fronts for the two different thermdfusivities provides valuable insights into how
the thermal properties of the solid affect the tratfdbetween mechanical power dissipation and
recoverable thermal power. It allows for a comparative analysis of the performance and
optimization potenél of the cooling system under different thermal diffusivity conditions.
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x104 Pareto Chart (D = 9.75e-05)
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The observations made in Figirand8, where a convex curve is depictedifoth cases
highlight certain trends and patterns in the traffebetween fluid dissipated power and
recoverable thermal power.

Firstly, in Figure7 it can be observed that for weighting factors atep@roximately 0.3,
increasing the weighting factor has a limited impact on the fluid dissipated power. This suggests
that beyond this point, further prioritizing recoverable thermal power does not lead to significant
reductions in fluid dissipation. In ah words, the optimization process reaches a point of
diminishing returns where increasing the importance given to recoverable thermal power does not
result in substantial improvements in reducing fluid dissipated pd@merthe other hand, the
recoverableéhermal power is significantly affected as the weighting factor increases. This implies
that emphasizing recoverable thermal power leads to substantial gains in harnessing and utilizing
the heat energy within the system

In Figure8, which represents the aph for the solid with reduced thermal diffusivity,
some noticeable differences can be observed. The clustering of points and higher values of
recoverable thermal power for weighting factors between 0.1 and 0.5 indicate that for this
particular solid, thex is a more significant impact of the weighting factor on the recoverable
thermal power. This suggests that optimizing for recoverable thermal power in the case of reduced
thermal diffusivity can lead to more pronounced improvements in capturing andhgthieat
energy.

The overlapping and almost identical results observed for weighting factors of 0.6 and
above in both cases may indicate that the optimization process reaches a plateau where further
increasing the weighting factor does not result in sulisiachanges in the tradsf between
fluid dissipated power and recoverable thermal power.

Overall, the observations in both Figutand FigureB demonstrate the influence of the
weighting factor on the tradeff between fluid dissipated power and reemble thermal power.
The results highlight the importance of finding an optimal balance between these objectives and
suggest that the impact of the weighting factor can vary depending on the thermal diffusivity of
the solid being analyzed.
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x107* Pareto Chart (D = 2.10e-06)
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424. Sensi tivity nacloyesfifsi cfioerntt hhen ARAMP me't

In the context of the RAMP interpolation method utilized in OpenFOAM, khe
coefficient plays a crucial role in regulating the steepness of the interpolation function. The
RAMP method is employed to smoothly transition between different values withiemginge.

The RAMP function, in essence, allows for a gradual change from one value to another over a
specified interval. This function is particularly useful in situations where a sudden transition
would not accurately represent the physical behavioudesired simulation outcome. By
controlling ths k coefficient, one can adjust the steepness or smoothness of this transhien

focus of this analysis is to investigate the impact of varying the valdeimfthe RAMP
interpolation method on the simulation restdtquantify the corresponding effects on the cooling
system's performandeee Figure®).

If kis less than 1, thRAMP function exhibits a gentler and smoother transition. This
lower value ok causes the interpolation to be less sensitive to changes in the input data, resulting
in a more gradual variation between the values. Consequently, the overall impact of any
fluctuations or deviations in the input data is diminisi@zhversely, whetk is greater than 1,
the RAMP function becomes steeper and more sensitive to changes in the input data. The higher
value ofk amplifies the variations in the input values, leading to a more pronounced and rapid
transition between the given valu€ally, if kis set to 1, the RAMP function behaves linearly,
resulting in a uniform transition between the given values. In ttse,dhe interpolation is
characterized by a balanced change, without any amplification or attenuation of the input data.

However, as can be seen in Figure 8, for values closertdhere is a large impact on
the results, but for values higher than O, impact is nullNevertheless, hien the value df is
close to 0 or very small, it results in a highly gentle and gradual transition between the given
values and he RAMP function tends to assign greater weight to the lower boundary value,
resulting in a less significant sensitivity to changes in thetidata Anyway, it is noticeable that
for low values ok, the optimisation process tends to prioritise the thermal recoverable power as
more material is added to the centre in order to divert the flow towards the hot walls.

It i s I mporthetbelmawiodwer tsmwfatt he si mul ati on r
various factokval heyofdthej sptect licekom | d magr sog/tsd reims taint
nature of the simulations being performed can
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Fi g & Namalized velocity’ (ﬂ aw wY), temperature contour pIots and topology of the
cavity correspondingto  m@andO o« up ™ & i but for different values of k

Next, the same analysis has been carried out but with the solid with less thermal
diffusivity (see Figurdl0), and whahas been observed is that there are not as significant changes
as in the previous caskn this scenario, even when tkecoefficient is varied across different
values, the impact on the simulation results may be practically null. The slower heat conduction
restricts the influence of thle coefficient in inducing significant changes in the temperature
distribution or overallbehaviour of the system. The reduced thermal diffusivity acts as a
dampening effect, limiting the sensitivity of the simulation results to variations in the "k"
coefficient.
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Fi g L ®Normalized velocityf & & @Y ), temperatureand topologycontour plots
correspondingt® T@andO ¢® p 1 & i but for different values of k
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This impact on both recoverable thermal power and mechanical power dissipated can be
seen graphically in Figurelllt can be clearlypbservedhat there igoughly alinear trend in
which, as the value dfis reduced close to 0, the values of both objective functions increase. On
the other hand, byaisingthe value ofk even above 1, the value of the objective functions
decreases. Moreover, it is noticeainlehe first case (a) how reducing the coefficiehas more
impact than increasing it. Finally, in the case of reducing the thermal diffusivity (b), it is observed
that varying the coefficierit has practically no impact on the results.
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F i g b tEeolution of the impact on the recoverable thermal power and mechanical dissipated
powerfor different values of k and different thermal diffusivities:@a) o« vp ™ @ i
and (D)0 ¢® pm & i

This effect is most easily and visually seen in the bar graph shown in FRyusddre
changes of up to almo30%in dissipated power are observed in case (a). However, it is easy to
see that it is not profitable to reduce the valuk sihce it increases the dissipated power (which
is something to be minimised) more than the recable thermal poweOn the other hand, in
case (b) the percentage changthawnbjective functions is practically negligible.

Perggntage Change in Dissipated Power and Recoverable Thermal Power Peorggntage Change in Dissipated Power and Recoverable Thermal Power
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F i g L 2Bar graph which accounts for the percentage change of both objective functions with
respect to the base cas@ ( @) for both thermatliffusivities: ()0 o« vp T & i
and (b)O c¢® pm a i
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4.25. Sensitivity analysis for the filter width

Smoot hing, or filtering, is a common techni
reduce noi sescalag mianatoemss malrl create a more reg.
The aim is to explore the impact of adjusting t
cell size in a computational simulatibhnc Bgl set
we wi || investigate how it affects the results
Di fferent sizes will obde teh@a Ifaiddtessrq U alr tt &y et lmenprhd
(Q mMtmp one | asgiad | @and one

The purpose of smoothing a scalar field wit|

uni form transition between adjacent cells or r
abrupt changes or noi se iimprtcwei ndga ttah e Tshtiasb iclaint
of numeri cal simul ations, particulérlegyuencyase
fluctuati ons may introduce numeri cal instabil it

By applying the fileterelwi tsh zae rodditithse eampwsal,
the fil tpepassi sfia tleow | n the contexdssoff iolpttarmi iz
commonly used to smooth the results obtained fr

wei ghtomgt d atche objective function values of ne
obtain a smoothed objective function value. Thi
getting stuck in | ocal mi ni maghaobal mmr ovmeamits

I f the amplitude of the filtering is smalle
have a smaller spatial extent compared to the s
|l ocalized smoothingoaffeaffewhsera smal felttaumb
around each cell Consequently, the impact of
the scalar field wild.l be |imited to a smaller 1

The filter, onhdawvwe atwiedemasnmgat iwall lextent r
cells in the meshlf the amplitude of filterin
excessive smoothing of the dat a, which coul d ¢
[ 1[1P] As a eesatidti,adilte'cst a filter radius that si
necessary | evel of smoothing and the necessity
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The choice of filter width determines the |
shown in Figure 13, a | arger filter width | eads
(so the recoverabheuétdebgyi nhcapeabed), thus addi
cavity. On the contrary, a smaller filter width
be observed is that the flow tends at o eldeicdti mai
in the mechanical power dissipated should be of

I't is curious how two clearly marked trends
size smaller than the celll size tends to centr
abvoe t he cell si ze, the tendency is to divert

similar to that shown when varying the weight
ncreased the flow was more centeabfssdchndnsar
can be observed.

Regarding the same results but with the | ow
Figure 14 how the results are practically the
flow consi dermablhyott owadrldss. Thus, it can be con
di ffusivities, the effect of varying the ampl:i
observed that the topological chanagearmpliin utdhee c ¢
whet her it i s greater, smaller or equal to the
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FigbdeNormalized velocity, temperature and to
0 Man® ¢ pmai for different filter widt

As an additional comment , it is worth noti
di ssipated power and ther mal recoverabl e ener g\
simul ation setup. Howewvgmu,al wittoh tdef iclettdr samml, i

reasonabl e compromi se between the two objectiv
excessive dissipation by smosesthiepg fthet d&toiwoms

mai ntaininbeuawnnl adéqubheemal ener gyc ae xet rfaecattiuorne sh.

Next, the focus wil!/ be on the quantitati ve
upon the previous discussions on the character
fields












