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Abstract

Pantograph hardware-in-the-loop (HIL) testing is an experimental method

in which a physical pantograph is excited by an actuator which reproduces

the movement of a virtual catenary. This paper proposes a new method that

uses analytical catenary models for HIL tests. The approach is based on an

iterative scheme until achieving a steady-state regime. Some of the method’s

advantages include its ability to consider the delay in the control and commu-

nication system and its applicability to a wide range of analytical catenary

models. The proposed algorithm was validated both numerically and exper-

imentally. The experimental results obtained in the HIL pantograph tests

were compared with those obtained from pure numerical simulations using a

linear pantograph model and showed good accuracy with pantograph running

at different speeds.
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response, Pantograph
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1. Introduction

High-speed locomotives collect current through the sliding contact be-

tween the pantograph and the railway catenary, which is composed of over-

lapping independent sections of about 1 km in length (see Fig. 1). Each

section contains a messenger wire and droppers that hold the contact wire,5

which interacts with the collector strips on the pantograph, at the appropri-

ate height. Messenger and contact wires are supported by brackets and posts

at regular intervals, called spans.

L

Messenger wire
Dropper

Support

Contact wire

Steady arm

Figure 1: Scheme of a catenary section and detail of a single span.

The contact force produced in the pantograph-catenary dynamic inter-

action plays an important role in assessing the quality of the power supply.10

This contact force reaches a steady-state regime in the central spans of each

catenary section, where the catenary can be assumed a periodic structure

with repetitive spans. Both numerical and experimental methods are now

widely used to assess the contact force. Several computer programs are able

to simulate the pantograph-catenary dynamic interaction [1], which is espe-15
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cially useful in the early stages of the design process. In-line tests are also

made with instrumented pantographs to measure experimentally the pan-

tograph interaction force. These tests are required for the validation of a

given pantograph-catenary couple; in Europe for example the requirements

are provided by the EN 50317 standard [2].20

To reduce the number of costly in-line tests, pantograph Hardware-In-

the-Loop (HIL) lab tests have arisen as an appealing cheaper alternative,

in which the catenary is replaced by an actuator that interacts with a real

pantograph. The actuator movements simulate the position of the catenary

contact point, which depends on the catenary’s dynamic behaviour and the25

measured interaction force. The catenary model should be as realistic as

possible but at the same time must be solved in real-time, which is usually

managed by the use of simplified catenary models instead of more complex

finite element models with direct time integration.

The first works that proposed a pantograph HIL test rig were [3, 4] us-30

ing a finite length catenary model based on a truncated modal approach to

study the influence of different parameters on the pantograph-catenary dy-

namic interaction. Another HIL set-up for pantograph dynamics evaluation

was proposed in [5], in which a hydraulic actuator reproduces the vertical

movement of a very simple catenary model composed of three spans. This35

model was upgraded in [6] with the consideration of the non-linear dropper

behaviour and in [7] by incorporating lateral movement in the test rig to

simulate the catenary stagger. In [8], a linear model of the catenary with 3D

Euler-Bernoulli beams is used in combination with a moving coordinates for-

mulation and absorbing boundary layers at both ends of the catenary model.40
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All the catenary models used in the above mentioned references are finite

length models which need the use of specific boundary conditions to perform

HIL tests.

In this work we propose a new method of performing pantograph HIL

tests using analytical catenary models. In general terms, these analytical45

models provide the steady-state solution at the central spans of a catenary

section with different degrees of approximation. One of the simplest models

is found in [9], in which the catenary is modelled as a single and two-degrees-

of-freedom system with periodically time-varying mass and stiffness. A more

complex model was presented in [10], in which an infinite string with visco-50

elastic support is used to obtain the stationary response of lumped-parameter

moving models coupled to the string. The even more complex infinite string

models include periodic discrete elements, such as in [11] or [12], in which

a two-level infinite catenary model, composed of an upper and lower string

joined by periodic supports and dampers, is simulated along with a panto-55

graph modelled by a harmonic point-load. Similar models can also be found

in the literature, such as that proposed in [13], which is composed of sev-

eral finite strings and is used to study the catenary wave propagation and

reflection phenomena. Of the wide variety of analytical catenary models, we

here use that proposed in [14], which considers the main catenary dynamic60

features and the initial contact wire height profile.

The paper is organised as follows. After this introduction, the analyt-

ical catenary model chosen for this work is briefly described in Section 2.

The algorithm proposed to perform steady-state HIL tests is presented and

validated in Section 3. Section 4 describes the test rig components and the65
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control system. An experimental validation of the setup and some HIL tests

results are provided in Section 5, while the concluding remarks are given in

Section 6.

2. Analytical catenary model

In this paper we present the results obtained with a particular analytical70

catenary model, but it should be noted that the proposed method can also

be applied to other analytical models, as long as they provide the response

of the catenary contact point under a harmonic load moving at a constant

velocity.

2.1. Dynamic behaviour75

The model chosen for this work is an improved version of the one pro-

posed by Roy et al. [10], which is based on the response of a viscoelastically

supported infinite string excited by a moving load with uniform speed. This

model is schematically depicted in Fig. 2 and was analysed in [14], in which a

good agreement was obtained with the steady-state results of Finite Element80

simulations. For the sake of completeness, here we summarise the main fea-

tures of the model. It is composed of an axially loaded infinite string, with

linear density µ and initial traction T , supported by a continuous visco-elastic

layer of stiffness k̄ per unit of length. A Kelvin-Voigt damping model of coef-

ficients α and β considers the energy dissipation similarly to Finite Element85

models.

The string model subjected to a general load p(x, t) is governed by the
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Figure 2: Analytical string model with visco-elastic support under a moving load.

following equation:

µ
∂2u

∂t2
− T

∂2u

∂x2
+
(

αµ + βk̄
) ∂u

∂t
− βT

∂

∂t

(

∂2u

∂x2

)

+ k̄u = p(x, t) (1)

where u = u(x, t) is the vertical displacement of the string.

As depicted in Fig. 2, for a concentrated load moving at constant speed90

V , the right-hand side term of Eq. (1) can be expressed as:

p(x, t) = f(t) δ(x − V t) (2)

where δ denotes the Dirac function.

If the load is a harmonic function of frequency ω, f(t) = F0e
iωt, the closed

solution of Eq. (1) for any point x and time t, u(x, t), is obtained using the

method proposed in [10, 14]. The steady-state response of the contact point95

of an ideally infinite catenary under harmonic excitation can thus be written

as:

uc(t) = u(V t, t) =
−iF0e

iωt

λ (k1(ω) − k2(ω)) (k1(ω) − k3(ω))
(3)

in which k1, k2, k3 and λ depend on the excitation frequency (ω) and other

model parameters (T , V , µ, k̄, α, β) as defined in Appendix A.

This response can be characterised by the Frequency Response Function100

(FRF) Hs, which is defined as the ratio between the vertical displacement
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and the harmonic force applied at the contact point:

Hs(ω) =
uc(t)

F0eiωt
=

−i

λ (k1(ω) − k2(ω)) (k1(ω) − k3(ω))
(4)

2.2. Contact wire geometry

The contact wire height profile plays an important role in the dynamic

behaviour of the pantograph-catenary system [15, 16, 17, 18]. The static105

configuration of the catenary that results from the stringing process can

be obtained by different methods. For example, semi-analytical methods are

used in [19] or a method based on a Finite Element (FE) model was proposed

in [20]. Here we use a non-linear FE model [21] to obtain the height of the

contact wire z0(x) in a reference catenary span of length L (see Fig. 3 and110

Fig. 1).

x [m]

z 0
[m

] 5.3

5.292

5.294

5.296

5.298

5.302

0 10 20 30 40 50 60

Figure 3: Catenary contact wire height profile along a span.

2.3. Contact point height calculation

Thanks to the linearity of the analytical model (Eq. (1)), we can obtain

the contact wire height zc(t) that sees the pantograph moving at speed V

as the sum of the static position and the displacement due to the moving115
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interaction load:

zc(t) = z0(V t) + uc(t) (5)

where z0(V t) is computed in the moving contact point.

We assume that the same span is infinitely repeated, so that z0 is consid-

ered L-periodic of period T = L/V . The contact force from the steady-state

response of the pantograph-catenary interaction will therefore be repeated120

every span, i.e. f(t) in Eq. (2) will be a time periodic function of period T ,

as will also the displacement of the contact wire uc(t). As a consequence, the

steady position of the catenary zc(t) is also a periodic function.

In a HIL test the contact force is measured at a constant rate fs = 1/∆t,

∆t being the time increment. Let us assume that the stationary interaction125

force is known for a whole span, fc(tn) = fc(n∆t) for n = 0, . . . , N − 1, in

which N = L/(V ∆t). This N -periodic discrete force can be shifted to the

frequency domain by applying the Discrete Fourier Transform (DFT):

Fc(ωk) =
N−1
∑

n=0

fc(tn) e−iωkn∆t (6)

in which the discrete frequencies are:

ωk = k
2π

N∆t
k = 0, . . . , N − 1 (7)

The steady-state response of the catenary is directly obtained in the fre-130

quency domain with the FRF (Eq. (4)) as:

Uc(ωk) = Hs(ωk)Fc(ωk) (8)

Applying Eq. (5) in the frequency domain, the total contact point height can

be computed:

Zc(ωk) = Z0(ωk) + Uc(ωk) (9)
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in which

Z0(ωk) =
N−1
∑

n=0

z0(V n∆t) e−iωkn∆t (10)

Finally, the Inverse Discrete Fourier Transform (IDFT) is used to return135

to the time domain. Given that fc(tn) is a real sequence and Hs(ω) exhibits

Hermitian symmetry, we can write:

zc(tn) =
1

N





Zc(ω0) + 2

N−1

2
∑

k=1

Re
(

Zc(ωk) eiωkn∆t
)





 (11)

3. Steady-state HIL test method

The previous section showed how to compute the steady-state height of

the contact point in a whole span of the catenary if the stationary contact140

force is known in advance. Here we propose a method of achieving the steady

state (force and displacement) if the virtual catenary model interacts with a

physical pantograph and the contact force is measured every time step tn.

Fig. 4 shows a scheme of the proposed HIL test strategy. The catenary

contact point is replaced by a linear actuator that imposes the height of145

the contact wire zc(tn) computed by the analytical catenary model in every

time step (Eq. (11)). The aim of the test is to simulate the interaction of

the pantograph travelling at constant velocity V with the virtual catenary

model, which is composed of an infinite sequence of equal spans of length L.

The idea behind the proposed method is to obtain iteratively the response150

of the contact point in the current virtual span b using the force measured

in the previous one b − 1 by means of the equations given in Section 2.3,

in which the external force was assumed to be known. We define here the

following variables:
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f b−2
c

f b−1
c

f b
c

0 tn T

b − 2 b − 1 b

zc(tn)

zc(tn)

fc(tn)

V

Figure 4: Scheme of HIL test. From left to right, actuator with pantograph and

the measured contact force in three successive virtual spans.

• f b
c (tn), zb

c(tn): Contact force measured in the current virtual span at155

time tn = n∆t, for n = 0, . . . , N − 1, and height of the contact point

imposed.

• f b−1
c (tn): Contact force measured in the previous virtual span, with tn

referring to the relative time in that span. Note that tn is rebooted at

the beginning of every virtual span.160

• F b−1
c (ωk): DFT of the contact force in the previous virtual span.

3.1. Full virtual span iteration

We first define a more intuitive algorithm to better understand the fi-

nal method proposed. The contact wire height of the current virtual span

zb
c(tn) is predicted by the measurements of the contact force in the previous165

one f b−1
c (tn), following the method described in Section 2.3. The algorithm

is initialised assuming null force f 0
c (tn) on the initial virtual span, so that
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the predicted height of the contact point z1
c (tn) matches the static height

of the contact wire z0(tn) (Fig. 3). The linear actuator will prescribe this

contact point height in the next virtual span and a new contact force will be170

measured. The test runs until the contact force measured is equal (with an

admissible error) in two consecutive spans.

3.2. Single step iteration

The previous strategy can be implemented more efficiently if the measured

contact force is updated every time step in the current virtual span instead of175

every whole span. As shown in Section 3.3, with this strategy the convergence

is achieved very quickly after the pantograph interacts with a few virtual

spans.

To obtain the contact wire height in a given time step tn of the current

virtual span, we make a calculation block of N contact force values composed180

of the force already measured in the current virtual span f b
c (tm) for m =

0, . . . , n, and the force measured in the previous virtual span f b−1
c (tm) for

time steps m = n + 1, . . . , N − 1. The missing contact force values needed

to complete the current virtual span are fulfilled with those of the previous

one.185

The DFT of the contact force F n
c (ωk) of the calculation block of time step

tn can be obtained from Eq. (6) as:

F n
c (ωk) =

n
∑

m=0

f b
c (tm)e−iωkm∆t +

N−1
∑

m=n+1

f b−1
c (tm)e−iωkm∆t (12)

Eq. (12) can be rewritten in incremental form as:

F n
c (ωk) = F n−1

c (ωk) + ∆F n
c (ωk) k = 0, . . . , N − 1 (13)
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in which F n−1
c contains the frequency content of the contact force computed

in the previous time step tn−1 and the increment term ∆F n
c (ωk) is computed190

from:

∆F n
c (ωk) = α

(

f b
c (tn) − f b−1

c (tn)
)

e−iωkn∆t k = 0, . . . , N − 1 (14)

The stabilisation parameter α ∈ [0, 1] is introduced here to ensure conver-

gence in exchange for increasing the time in which the steady state is reached.

The displacement of the contact point Un
c (ωk) caused by the force ob-

tained from Eq. (13) is obtained by applying Eq. (8). The frequency content195

of the contact point height Zn
c (ωk) is then directly computed by Eq. (9). Fi-

nally, the contact wire height at time tn, which will be imposed by the linear

actuator, is transformed to the time domain according to Eq. (11).

Remark. The proposed method has the advantages of low computational cost

and low memory requirements, which make it suitable for HIL tests. The for-

mulation includes the entire frequency content (harmonics k = 0, . . . , N −1).

Given that pantograph-catenary dynamics can be computed using frequencies

from 0 to ωmax, the computational cost of the method can be further reduced

by computing the solution for the range of frequencies k = 0, . . . , Ncut − 1, in

which Ncut < N is the index associated with the maximum frequency:

Ncut =
N∆t

2π
ωmax

3.3. Numerical validation

Before moving to the real HIL tests, a computational reproduction of a200

HIL test was performed to demonstrate the the proposed method’s theoret-

ical validity, in which the measured force was replaced by the reaction force
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obtained from the time integration of a linear lumped-parameter pantograph

model with the contact point height imposed on the pantograph collector.

The parameters used to define the analytic catenary model shown in Table 1205

were taken from [14], in which they were appropriately tuned according to a

realistic FEM catenary model.

Table 1: Parameters of the analytical catenary model.

L (m) T (N) µ (kg/m) k̄ (N/m2) α (s−1) β (s)

65 31500 1.4735 51.15 0.0125 10−4

This computational test was first used to show the effect of the stabili-

sation parameter α on the solution. Fig. 5 shows the contact force obtained

for three different values of α along seven virtual spans with a pantograph210

travelling speed of V = 250 km/h. It can be seen that the higher the α

the faster the convergence to the steady state. However, as an excessively

high value for this parameter could produce instabilities in a real HIL test,

a balance must be experimentally achieved between convergence speed and

stability.215

Since the method was verified as converging, it was important to check

whether it converged to the correct solution, for which the result of this

computational HIL test was compared to that of the direct method briefly

introduced in Section 2 and fully available in [14]. Fig. 6 shows the con-

tact force in a full span. Note that the converged solution of the proposed220

algorithm perfectly matches that obtained from the direct method, which

corroborates the validity of the proposed algorithm.
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t [s]

f c
[N

]

50

100

150

0
0 1 2 3 4 5 6

α = 0.5

α = 0.75

α = 1

Figure 5: Contact force in the computational HIL test with different values of the

stabilisation parameter α along seven virtual spans at 250 km/h. Virtual spans are

shown by vertical dashed lines.

4. HIL test rig

The main components of the HIL test rig are depicted in Fig. 7. The

contact force on each collector strip of the pantograph is measured by means225

of a load cell. This signal is filtered and conditioned and finally acquired

by the National Instruments R© cRio-9040 real-time controller in which the

analytical catenary model runs to provide the contact point height that fulfils

the linear actuator (LinMot R© 70x400U) to simulate the catenary movement.

The contact point height is set as a reference for the servo drive LinMot R©
230

E1400, which drives the linear actuator, via Ethernet UDP communication.

This servo includes a PID closed loop control of the motor position which is

configured to reach the desired position using an acceleration and velocity-

limited motion profile.

All these cycle tasks are shown schematically in Fig. 8. The contact235

force Fc between the linear actuator and the pantograph is measured, filtered

14



t [s]

f c
[N

]

100

120

140

160

0 0.2 0.4 0.6 0.8

Computational HIL

Direct solution

Figure 6: Comparison of contact force obtained from the proposed algorithm and

from the direct method presented in [14] for a pantograph running at 250 km/h.

and sampled to feed the catenary model which provides the contact point

height zc every ∆t = 1 ms. However, communications between the real time

controller and the motor servo drive cannot take place at this rate, so that one

value of every Ncom values of zc is sent to LinMot servo drive. For the tests240

described here Ncom = 8 was used to ensure communications without any

data loss. The value received by LinMot zcom is set as the new reference and

the controller tries to reach this reference by generating a set of intermediate

reference points, at a rate of 0.3125 ms, linearly interpolated from zcom and

the previous reference zold. The LinMot servo drive uses a PID controller,245

which works at a higher rate, to fulfil these intermediate references.

It is important to emphasise that the whole loop described in Fig. 8

requires a certain time to be accomplished. We can define the overall delay

of the test rig, δ = Nδ∆t, as the time spent from when the force is measured

until the computed contact point height is reached by the linear actuator.250

This value calculated both theoretically and experimentally gave a result of

approximately 19 ms. Accounting for the test rig delay in the HIL tests is

15
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Linear actuator

Figure 7: HIL test rig.
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Controller
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Communication

Fc

zcz0
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Figure 8: Simulation cycle of tasks in HIL test.

16



crucially important because omitting this step could modify the final response

or even make it unstable.

One of the advantages of using analytical catenary models is the ease of255

dealing with the delay in the test rig. The height of the contact point can be

obtained in any time step, so that if the test rig delay is known, the response

of the catenary model can be obtained Nδ time steps in advance, meaning

that the actuator reaches this position at the proper time.

For this end, the missing force values needed to complete the current260

virtual span b are assumed to be equal to the previous virtual span b − 1.

For example, if we have measured the contact force at time tn and we want

to obtain the contact point height at tm for m > n, the force values between

tn+1 and tm, f b
c (tm

n+1), are chosen as f b−1
c (tm

n+1). As the test converges to the

steady state, with this strategy the contact force will tend to be repetitive265

from one span to the next and the error of this assumption will thus tend to

disappear.

The contact point height calculated from Eq. (11) only needs to be mod-

ified with the advanced time required:

z̄c(tn) =
1

N





Zc(ω0) + 2

N−1

2
∑

k=1

Re
(

Zc(ωk)eiωk(n+Nδ)∆t
)





 (15)

5. Experimental results270

This section contains some experimental results obtained from the HIL

test rig. The experimental validation of the control system and the overall

performance of the test rig was first obtained by means of a benchmark test

in which the pantograph was replaced by a mass. The results of the HIL tests

17



Linear actuator

Load cells

Attached mass

Figure 9: Mass attached to the linear actuator for the validation test.

with a real pantograph were then shown and compared with the analytical275

solution obtained from simulations with a linear pantograph model.

5.1. Experimental validation

In order to validate the control system and the proper operation of the

HIL test rig, an experimental validation test was carried out in which the

pantograph was replaced by a mass of 5.29 kg directly attached to the linear280

actuator, as shown in Fig. 9. This simple system can be modelled very ac-

curately to obtain the analytical solution of its interaction with the catenary

model.

This analytical solution is depicted in Fig. 10 when the mass is virtually

moving at 300 km/h along with the contact force obtained from the HIL285

test rig. The experimental results include the contact force measured in

the 10 last virtual spans to verify that the steady state has been achieved

using the stabilisation parameter α = 0.1. The contact force measured is

filtered at 30 Hz with an analogical low-pass filter and the catenary response

is computed with the first 20 harmonics (Ncut = 20) including frequencies up290

18



to 25 Hz. Finally, the contact forces shown in Fig. 10 are low-pass filtered to

25 Hz with a digital filter.

t [s]

f c
[N

]

-20

-40

-60

-80
0.1 0.2 0.3 0.4 0.5 0.6 0.7

HIL mass

Analytical solution

Figure 10: Comparison of the contact force in the mass HIL test (10 spans

overlapped) at 300 km/h with the analytical solution.

As shown in Fig. 10, the experimental results are almost identical to the

analytical solution, indicating a completely satisfactory experimental valida-

tion. Note that in this case the contact force has negative values because295

the attached mass pulls the load cells down, unlike the pantograph, which

pushes them up.

5.2. Pantograph HIL tests

This section gives the results and an analysis of the pantograph HIL

simulation with the same conditions to those used in the validation HIL test300

of Section 5.1. The contact force obtained for the last 10 virtual spans is

shown in Fig. 11 with the pantograph running at 200, 225, 250, 275 and

300 km/h and with the stabilisation parameter α between 0.05 and 0.1. The

number of harmonics Ncut included in the response varies from 30 (200 km/h)

19



to 20 (300 km/h) to ensure that the frequency content of the response reaches305

up to 25 Hz.

x [m]

f c
[N

]
f c

[N
]

f c
[N

]
f c

[N
]

f c
[N

]

0

100

100

120

120

120

120

140

140

140

140

160

160

160

180

180

80

10 20 30 40 50 60

Figure 11: Comparison of the contact force obtained from the pantograph HIL test

(10 spans overlapped in black) and the analytical solution with a linear pantograph

model (red curves). Tests performed at 200, 225, 250, 275 and 300 km/h from top

to bottom.

The repeatability of these 10 curves of every tests verifies that the tests
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have converged to the steady-state solution. This contact force is also com-

pared in Fig. 11 with the analytical solution obtained when using a linear

lumped-parameter pantograph model showing the great similarity between310

them.

Some additional tests have been executed at different pantograph veloc-

ities and the standard deviation σ of the contact force is plotted in Fig. 12.

Again, the experimental tests show a good agreement with the analytical

solution obtained by using a linear pantograph model.315

V [km/h]

σ
[N

]

200 220 240 260 280 300
10

15

20

Figure 12: Comparison of the standard deviation of the contact force obtained

from pantograph HIL tests (black circles) and the analytical solution with a linear

pantograph model (red curve).

6. Conclusions

This paper defines a HIL test rig in which a physical pantograph inter-

acts with a linear actuator that emulates the catenary dynamic behaviour,

21



together with an algorithm to perform HIL pantograph tests with analytic

catenary models to obtain the steady-state pantograph-catenary dynamic320

interaction. Although a very simple string catenary model was used in this

work to illustrate the proposed method, it is important to note that this strat-

egy is applicable to a wide range of analytical catenary models provided that

the Frequency Response Function can be obtained under a harmonic load

travelling at constant speed. With this type of analytical catenary models325

there is no need to avoid boundary effects and delays in measurement and

signal transmission are easily dealt with.

Furthermore, the use of a simple analytical model in HIL pantograph

tests can be a useful tool to check the validity of a given pantograph model

or to compare the performance of different pantographs. In this work we330

proved the validity of a fitted linear model of the pantograph. However, if

high fidelity is required, more realistic analytical models can be used with

the proposed method.

A benchmark HIL test was performed in which the pantograph was re-

placed by a mass directly attached to the linear actuator to validate the335

whole performance of the test rig and the control system. The results ob-

tained in this reference test were then compared with the analytical response

of the mass interacting with the analytical catenary model. The delay pro-

duced since the contact force is measured until the linear actuator achieves

the specified height was considered in this experimental validation.340

We also provide the results of the HIL tests on a physical pantograph,

which show a good convergence to the steady-state solution. In general, there

is good agreement between the contact force obtained from these tests and
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the analytical results when using a linear pantograph model.
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Appendix A. String catenary model solution

The string catenary model used in this work was presented in [14]. This350

model is governed by Eq. (1) whose solution provides the following vertical

displacement of the string:

u(x, t) =



































iF0
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p

e−i(kp(ω)(x−V t)−ωt)

λ
∏

r 6=p

(kp(ω) − kr(ω))
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− iF0
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q

e−i(kq(ω)(x−V t)−ωt)

λ
∏

r 6=q

(kq(ω) − kr(ω))
; x − V t > 0

(A.1)

in which kp(ω) are the poles with a positive imaginary part and kq(ω) are

the poles with a negative imaginary part. They are:
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(A.2)
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being355

S =
3

√

R +
√

4Q3 + R2

Q = 3λτ − η2

R = −2η3 + 9ηλτ − 27λ2σ

(A.3)

and

λ = iβTV

η = T − µV 2 + iβTω

τ = i
(

αµ + βk̄
)

V − 2µV ω

σ = k̄ + i
(

αµ + βk̄
)

ω − µω2

(A.4)
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