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Fault detection and classification in kinematic chains by means of PCA extraction-

reduction of features from thermographic images 
 

Abstract: Kinematic chains are essential elements configurable in different topologies 

according to the requirements of industry. Their main components are the rotating machines 

and mechanical parts in which diverse faults can appear. Nowadays, infrared imaging 

analysis has gained attention for monitoring kinematic chains, however, the approaches for 

detecting and classifying faults still can be improved. Therefore, this work presents a 

methodology that uses a low-cost infrared measurement system and combines adequate 

techniques, such as infrared images preprocessing and segmenting, extraction of statistical 

indicators, generation of a high-dimensional matrix of features, features reduction, and 

categorization, for accurately detecting and classifying a wide variety of fault conditions in 

kinematic chains. This approach was applied to a configurable kinematic chain under the 

following conditions: healthy motor, misalignment, unbalance, one and two broken rotor 

bars, bearing faults on the outer race, healthy gearbox, and gearbox wearing. The obtained 

results validate the effectiveness of the proposed methodology. 

 

Keywords: Artificial neural networks, image processing, infrared imaging, rotating 

machines, statistical analysis. 

 

1 Introduction 

The kinematic chains have been along the time very important elements for a wide variety 

of processes in the industrial sector, they are used for generating motion though rotating 

machines. These chains allow to define different configurations among its elements, 

according to every requirement of the machinery, or a specific process [1]. For example, the 

actuators in a robot are required for tracking a path. Generally, kinematic chains are 

integrated by an ensemble of elements such as the induction motor, bearings, pulleys, 

couplings, and gear boxes [2]. It is very common that at industry the machines integrate 

multiple kinematic chains making the systems very complex increasing the probability of 

faults occurrence. Therefore, due to the number of elements that compose a chain, and its 

complexity, make them systems susceptible to suffer a great variety of failures, under 

different origins. That is the reason for which its study/monitoring for fault diagnosis is still 

the focus of interest for a diverse amount of research. 

 

The monitoring of faults in the kinematic chains, of the machines and industrial processes, 

allows to increase their efficiency, to rise the productivity, to extend their lifespan, as well as 

to reduce their maintenance costs [3]. Among the most common faults taking place into a 

kinematic chain are the following: coupling misalignments, unbalance in transmission 

pulleys, wearing and breakage of rolling bearings, wear and tear of gearboxes, and faults in 

the induction motor. In turn, the most common faults in motors are the following: broken 

rotor bars, bearing wear, winding short circuits, among others [4]. All these faults can affect 
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the overall efficiency of the chain in the processes manifesting them as heat released. The 

importance of keeping the kinematic chains operating continuously without anomalies has 

triggered the development and usage of new noninvasive methodologies for faults detection. 

 

Among the different methodologies reported for monitoring fault conditions in 

electromechanical systems that typically integrate a kinematic chain, the most common are 

those based on data acquisition from physical variables and further signals processing. Some 

examples of such approaches are the motor current signature analysis (MCSA) [5 - 6], 

mechanic/acoustic vibrations analysis [7 - 8], and temperature analysis [9 - 11]. Also, there 

exist works where statistical parameters and artificial intelligence techniques are used [12]. 

However, some aspects are still not being explored like performance improvement in the data 

processing, hybridization of techniques, utilization of more efficient low-cost noninvasive 

sensors, integration of the system as all-in-one package, etc. In the last years the usage of 

thermographic analysis has been addressed with growing interest on various elements from 

a kinematic chain [10]. This can be attributed to the advantages provided by this technology, 

since it offers an alternative noninvasive solution for faults detection. Nonetheless, some 

drawbacks were present at the beginning in the usage of thermography: the infrared sensors, 

or infrared cameras, were commercial closed systems that used to make the monitoring 

systems as high-cost solutions that needed to be calibrated. Also, additional elements were 

required to validate the calibration process, such as external temperature sensors, for instance, 

the thermocouples [10 - 13]. So that, until some years ago thermography had been used as 

complementary tool of other techniques. The relevance of the thermography has been 

reported recently in the field of faults diagnosing in rotating electric machines at industry, 

and this is demonstrated in several works from which it has been addressed the processing of 

infrared images for detecting and classifying specific faults, for example in diagnosing 

bearing faults [14 – 19]. Also, the infrared images processing has been used for detecting 

faults in a cooling radiator [20]. All these works demonstrate that faults detection can be 

affectively performed through thermographic analysis for a specific element into a system, it 

would be desirable, as well, to detect faults in several elements of the system; even 

considering a combination of adequate techniques such as features extraction, intelligent 

algorithms, deep learning, classifiers, etc., for achieving this task. 

 

Nowadays, thanks to the development of low-cost automatic self-calibration infrared 

cameras, the thermographic analysis has been consolidating as an independent methodology 

for monitoring faults in electromechanical systems [21]. These new thermographic devices 

can acquire infrared signals from elements in a process and allow finding heat points related 

to the faults conditions inside the system [22]. The topic of thermographic images analysis 

for detecting faults in single components of an electromechanical system has been tackled by 

many scientific researchers, by using a variety of image processing and machine learning 

techniques [23]. For example, in [24] were presented five study cases about the feasibility of 

using infrared-thermography technology to give support in methodologies for detecting faults 

in induction motors. In this work, the authors reported different motor-related faults, such as: 

cooling fault, rolling bearing lubrication fault, and connections and windings in faulty state. 

By its part, in [25] was implemented the Otsu's algorithm for segmenting the thermographic 

images from a kinematic chain and thus, calculate the temperature difference to make the 

comparison of the chain state. Additionally, this work reported four types of faults: healthy 

state, broken rotor bars faults, rolling bearing faults, and misalignment faults. In this regard, 
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the research presented in [26] presents the analysis and classification of thermographic 

images by means of decision trees (DT) for a diagnosis system of electric machines, 

transformers and induction motors. Their proposed approach considers 11 gradual states of 

electric short-circuit faults and it allows to obtain predictions with an accuracy up to 93.8% 

in the diagnosis. Another work that develops a methodology for automatic detection of faults 

in rolling bearings is presented in [27]. In that work, a 2-dimensional discrete wavelet 

transform (2D-DWT) is applied to the thermographic images followed by the extraction and 

reduction of statistical features. Additionally, with the help of a support vector machine 

(SVM) it is classified the bearing state, reaching a 97% of accuracy in the prediction. In other 

approach, an automatic segmentation of thermographic images over the region of interest of 

a kinematic chain was performed by applying the scale invariant feature transform (SIFT) 

[28]. This process was performed along with the Naives-Bayes classifier to automatically 

detect rolling bearings faults, broken rotor bars, and motor fan faults with an accuracy in the 

diagnostic reported of 100%. In this same line the work presented by [29] demonstrates the 

flexibility and robustness of the thermographic analysis when the regions of interest are 

obtained by SIFT for further features extraction through a previously trained neural network. 

In this work the classification task is made by the SVM. The validation is made considering 

only electric fault conditions in an induction motor. Even though, the reported techniques in 

the literature have addressed the monitoring of fault conditions in electromechanical systems 

their results can be improved if adequate techniques are selected individually or combined, 

not to mention that just some faults are reported, typically 5 to 6, in average. It would be 

interesting to develop a methodology capable of handling most of the reported faults, not 

only in induction motors but also in kinematic chains integrated in the industrial processes. 

 

The contribution of this work is a methodology that combines adequate techniques with a 

proprietary system for detecting and classifying fault conditions in a configurable kinematic 

chain, considering not only the rotating machine but also other elements in the chain and thus 

handling a wide variety of possible fault conditions, mechanical and electrical. The 

methodology starts with the acquisition of the infrared images from the kinematic chain, 

made through a low-cost infrared camera connected to a commercial microcontroller unit 

(MCU). The implemented algorithms enable the system to use the infrared camera in less 

restricted positions, unlike the commercial systems. The infrared images captured are 

preprocessed by the Otsu’s algorithm for reducing the background noise. Then, the points of 

interest from the kinematic chain are obtained by applying the SIFT algorithm on the image 

to yield an adequate region of interest (ROI). These regions are helpful for generating a 

histogram from which statistical indicators are calculated. The indicators, in turn, are used to 

generate a high dimensional matrix of features that contains non-visible information about 

data behavior associated to the fault conditions in the chain. In order to find out those features 

that are most helpful for detecting the fault conditions, a dimensionality reduction of features 

is performed by means of PCA, this helps to maximize the separation among the conditions 

detected. Finally, the reduced features feed an artificial neural network (ANN) to perform 

the classification task allowing a corresponding accuracy above the 96% in the diagnosis. 

Whereas other works handle some faults, in this approach a total of 12 faults are considered, 

which are grouped as follows: healthy condition, unbalance, misalignment, broken rotor bars, 

rolling bearing faults, and gearbox faults. The results obtained validate the efficiency of the 

proposed approach for detecting and classifying different fault conditions in rotating 

machines and their associated components. 
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2 Theoretical Background 

2.1 Image Segmentation 

One of the classic methods for image segmentation is Otsu’s algorithm [30]. This method 

uses an automatic algorithm to eliminate the background of an image by dividing the 

histogram in two classes 𝐶0 and 𝐶1 separated by a threshold value, 𝑘. The best value of 𝑘 is 

the one that maximize the inter class variance expressed by 𝜎𝑏
2 in (1): 

 

𝜎𝑏
2(𝑘) = 𝜔0(𝑘)𝜔1(𝑘)[𝜇0(𝑘) − 𝜇1(𝑘)]

2 (1) 

𝜔0(𝑘) = ∑𝑝(𝑖)

𝑘−1

𝑖=0

 (2) 

𝜔1(𝑘) =∑𝑝(𝑖)

𝐿−1

𝑖=k

 (3) 

𝜇0(𝑘) =
∑ 𝑘 ∙ 𝑝(𝑖)𝑘−1
𝑖=0

𝜔0(𝑘)
 (4) 

𝜇1(𝑘) =
∑ 𝑘 ∙ 𝑝(𝑖)𝐿−1
𝑖=𝑘

𝜔1(𝑘)
 (5) 

 

Where ω0,1 is the probability function on class C0 (2) and C1 (3), μ0,1 is the mean value of 

class C0 (4) and C1 (5), L is the number of gray levels in the image, and p is the probability 

of any given pixel to be in a gray level. 

 

2.2 Scale Invariant Feature Transformation (SIFT) 

Lowe’s method [31], commonly known as SIFT (Scale Invariant Feature Transform), for 

the extraction of scale invariant key points is one of the most effective algorithms for the 

localization and segmentation of objects in an image [32]. The method follows four main 

steps: 

 

1) Scale-space extrema detection: The scale-space of an image is calculated using (6) for 

the difference of Gaussian functions to identify potential points invariant to rotation and 

scale. 

 

𝐷(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝑘𝜎) ∗ 𝐼(𝑥, 𝑦) − 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (6) 

 

Where I(x, y) is the original image, and σ is the scale or standard deviation for the Gaussian 

function G(x, y, σ) convoluted with the image I. 

 

2) Key point localization: Each potential key point is evaluated by an edge-detection and 

low-contrast model to keep only those key points with more stability in the image. 

 

3) Orientation assignment: An orientation is assigned to each key point based on the local 

gradient properties of the image in order to improve the invariant nature of the key points to 
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scale and rotation, the gradient properties, m and θ are calculated using (7) and (8) 

respectively: 

 

𝑚 = √(𝐼(𝑥, 𝑦) − 𝐼(𝑥 + 1, 𝑦))
2
+ (𝐼(𝑥, 𝑦) − 𝐼(𝑥, 𝑦 + 1))

2
 (7) 

𝜃 = tan−1 [
𝐼(𝑥, 𝑦) − 𝐼(𝑥, 𝑦 + 1)

𝐼(𝑥, 𝑦) − 𝐼(𝑥 + 1, 𝑦)
] (8) 

 

2.3 Histogram characteristics 

The histogram of a thermal image describes the distribution of pixels in a defined number 

of grey levels. It is possible to extract different statistical characteristics that can be used to 

condense the information available in a thermal image [33]. Equations (9) to (23) of Table 1 

describe the statistical characteristics that were chosen for this system: mean, maximum 

value, root mean square (RMS), square mean root (SMR), standard deviation, variance, form 

factor with RMS, form factor with SMR, crest factor, latitude factor, impulse factor, 

skewness, kurtosis, 5th moment, and 6th moment.  

 
Table 1. Histogram statistical indicators defined. 

Indicator Equation  

Mean 
𝑇1 =

∑ ℎ(𝑛)𝑁
𝑛=1

𝑁
 

(9) 

Maximum value 𝑇2 = max|ℎ(𝑛)| (10) 

Root Mean Square (RMS) 

𝑇3 =
√∑ (ℎ(𝑛))

2𝑁
𝑛−1

𝑁
 

(11) 

Square Mean Root (SMR) 

𝑇4 = (
∑ √|ℎ(𝑛)|𝑁
𝑛=1

𝑁
)

2

 

(12) 

Standard Deviation 

𝑇5 = √
∑ (ℎ(𝑛) − 𝑇1)

2𝑁
𝑛=1

𝑁 − 1
 

(13) 

Variance 
𝑇6 =

∑ (ℎ(𝑛) − 𝑇1)
2𝑁

𝑛=1

𝑁 − 1
 

(14) 

Form Factor with RMS 
𝑇7 =

𝑇3
1
𝑁
∑ |ℎ(𝑛)|𝑁
𝑛=1

 
(15) 

Form Factor with SMR 
𝑇8 =

𝑇4
1
𝑁
∑ |ℎ(𝑛)|𝑁
𝑛=1

 
(16) 

Crest Factor 
𝑇9 =

𝑇2
𝑇3

 
(17) 

Latitude Factor 
𝑇10 =

𝑇2
𝑇4

 
(18) 

Impulse Factor 
𝑇11 =

𝑇2
1
𝑁
∑ |ℎ(𝑛)|𝑁
𝑛=1

 
(19) 

Skewness 
𝑇12 =

1

𝑁
∙
∑ (ℎ(𝑛) − 𝑇1)

3𝑁
𝑛=1

𝑇5
3  

(20) 

Kurtosis 
𝑇13 =

1

𝑁
∙
∑ (ℎ(𝑛) − 𝑇1)

4𝑁
𝑛=1

𝑇5
4  

(21) 

5th Moment 
𝑇14 =

1

𝑁
∙
∑ (ℎ(𝑛) − 𝑇1)

5𝑁
𝑛=1

𝑇5
5  

(22) 
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6th Moment 
𝑇15 =

1

𝑁
∙
∑ (ℎ(𝑛) − 𝑇1)

6𝑁
𝑛=1

𝑇5
6  

(23) 

 

The histogram of an image can also be interpreted as a discrete probability distribution or 

as a discrete signal, which simplify the calculations required to obtain all the previously 

defined statistical characteristics. The histogram function is called h(n) where n=1, 2, ..., N. 

N is the total number of different grey levels on the histogram function. 

 

2.4 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a mathematical tool used in modern data analysis 

for different applications such as dimensionality reduction, feature extraction, or data 

compression. The main objective of this tool is to find the most meaningful representation of 

a data set [34]. 

 

The implementation described here is focused on a dimensionality reduction application 

of the PCA method. The data to be analyzed with the PCA tool needs to be prepared 

beforehand considering the following [35]: 

 

• Organize and categorize the raw data to be analyzed in a n × p matrix, B; 

• Remove any missing value from the data; 

• Associate a numeric value to each qualitative variable in the data; 

• Standardize the numeric data (i.e., rescale the data to have a mean of 0 and a 

standard deviation of 1). 

 

Let the matrix B of size n × p where n is the number of samples and p is the number of 

dimensions or variables in the original data, a covariance matrix C of size p × p is calculated 

using (24): 

 

𝐂 =
1

𝑛 − 1
BT ∙ B (24) 

 

Where BT is the conjugate transpose of matrix B for the case of a real matrix. The next 

step is to calculate the eigenvectors D and eigenvalues of matrix C through (25): 

 

D = V−1CV (25) 

 

Where D is a diagonal matrix of size p × p filled with the eigenvalues of C and V, with size 

p × p, is filled with the eigenvectors of C. 

 

3 Proposed Methodology 

In this section is described the proposed methodology for detecting fault conditions in 

different elements and configurations of a kinematic chain based on thermography, assuming 

the chains as series of essential parts for industrial processes. The Figure 1 depicts the general 
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block diagram of the proposed approach from which three main blocks can be observed as: 

kinematic chain configurations, thermographic images acquisition, and detection and 

classification of fault conditions in the kinematic chain. 

 

 

 

Figure. 1. General block diagram of the proposed methodology for detecting and classifying faults 

conditions in a configurable kinematic chain. 

 

The first block describes a configurable kinematic chain with the elements that allow to 

define different connection topologies according to what is required to be analyzed. The 

elements considered in this work are a three-phase induction motor, an alternator (as a motor 

load), a gearbox, output shaft pulleys, mechanical couplings, and a transmission band. In 

such a way that, if particular specifications for the kinematic chain are established, then, the 

electromechanical elements can be assembled in that particular topology as needed. For 

instance, the elements in the kinematic chain could be the coupling between the induction 

motor and the alternator though pulleys and the transmission band, or the coupling between 

the induction motor and the gearbox through mechanical coupling and rolling bearings. The 

main idea is to have a methodology able for analyzing several fault conditions no matter the 

topology of the kinematic chain: since the healthy conditions of the induction motor and the 

gearbox, to other present faults, such as, broken rotor bars and faults in the rolling bearings 

inside the motor, wear and tear of gearbox, unbalance on the pulleys, and coupling motor-

alternator/gearbox misalignment, among others. It worth to mention that unlike other 

reported approaches, where just 4 to 6 fault conditions are handled, this work allows to 

diagnose a wider variety of fault conditions in the whole ensemble. A detailed explanation 

about the fault conditions for the study cases considered in this work is given in the 
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MCU
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experimental setup. 

 

The second block of the proposed methodology consist in the infrared images acquisition 

during the kinematic chain operation, since anomalies are accompanied by the release of heat. 

For this task, it is used an infrared camera that acquires a set of thermographic images and 

store them into an SD card by means of a commercial microcontroller unit (MCU) from 

Texas Instruments. This set of images is stored from the respective configuration of the 

kinematic chain. As it will be explained next, the techniques used for processing the images 

provide the system with the capability of using this nonintrusive infrared camera in a 

nonrestricted position around the kinematic chain, unlike other works where the position of 

the camera plays a key role for the success of the diagnosis. 

 

Finally, the third block of the proprietary system consist in detecting and classifying fault 

conditions on the configurable kinematic chain. To meet this goal, three substages need to be 

accomplished, to know: thermographic images processing, features extraction and reduction, 

and faults condition classifier. Firstly, once the thermographic images are sent to a processing 

unit, they are preprocessed by the Otsu’s algorithm for eliminating all the regions that are not 

considered for analysis (unnecessary background and noise). Thereafter, the points of interest 

are defined by means of the SIFT technique, which yields a region of interest (ROI) of the 

image for data processing. Secondly, having defined a ROI, the image histogram is 

calculated, and it is used to compute the statistical indicators according to expressions (9) to 

(23) of Table I yielding a lot of values that from now are going to be known as features. 

These values are used to construct a matrix that will have high dimensionality because of the 

number of features defined and this arrangement is necessary for the next processing step. 

The matrix of features is helpful to provide the non-visible information required to detect the 

fault conditions, since the features could be associated to them. However, some features 

provide repeated or nonvaluable information and, therefore, it is necessary to discriminate 

from the features those useful ones, which brings as consequence a reduction in the matrix 

dimensionality. The aforementioned task is performed through the PCA technique, since it 

reduces the high-dimensional matrix of features into a 3-dimensional representation of 

features that shows graphically the conditions detected in the chain as clusters. The objective 

of the PCA is to reduce the dimensionality of the matrix by maximizing the separation 

between the classes detected (fault conditions) and to simplify the categorization task by 

yielding a reduced number of inputs for the classifier. Thirdly, and as last substage, a simple 

architecture of an artificial neural network (ANN) is used to classify the fault conditions, as 

consequence of the obtained outputs by the PCA. In this stage, the reduced features computed 

by means of the PCA are feed to the network as the inputs for training and validation. As 

last, but not least, the output of the proposed methodology provides the information about 

the presence of the fault conditions detected in the configuration of the kinematic chain, Fault 

1, …, Fault N, according to the information included in the matrix of features. 

 

4 Experimentation 

4.1 Experimental setup 

The set of experiments were carried out by using a configurable kinematic chain as shown 

in Figure 2. This kinematic chain can be ensembled in two main topologies: a) motor-
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alternator, and b) motor-gearbox. For the motor-alternator configuration, an induction motor, 

two output shaft pulleys, an alternator acting as motor load, and a transmission band are used. 

Meanwhile, for the motor-gearbox configuration, the induction motor, the gear box, the 

alternator, and mechanical couplings are the main components. The electric machine used in 

both configurations consist in a WEG 3F A.E. 00136AP3E48TCT model induction motor, 

having a rated power of 0.74 kW, a nominal speed of 3355 RPM, and it is fed with 210-

230/460 Vac at 60 Hz. For the motor and the gearbox, two automotive alternators are used 

as mechanical loads entailing approximately a 10% of the motor load. Meantime, the gearbox 

model is a Baldor GCF4X01AA with reduction ratio 4:1 driving the motor shaft. By its part, 

from Figure 2, the c) proprietary thermographic system consists of both the infrared camera 

and a commercial MCU. The sensor is a low-cost and high-resolution automatic self-

calibration infrared micro-camera model FLIR LEPTON 3, located at 0.8 m away from the 

kinematic chain. The resolution of the obtained image is a 160 x 120 progressive exploration 

matrix with pixel size of 12 µm. It is a low-cost thermal sensor that can have flexible 

applications in industrial environments because is not limited by the requirements of space 

and location, unlike commercial equipment do. Thus, the thermographic images are acquired 

and stored by the MCU which consist in a platform Raspberry PI 3 by using an SD card of 

32 GB. Then the images are sent to the PC. 

 

 

Figure 2.  Experimental setup of the kinematic chains configurations a) motor-alternator, b) motor-gearbox, 

and the c) proprietary thermographic system. The included elements are: (1) induction motor, (2) alternator 

as motor load, (3) gearbox, (4) output shaft pulleys, (5) Transmission band, (6) low-cost automatic self-

calibration infrared camera, and (7) proprietary system based on commercial MCU 

 

4.2 Study cases: fault conditions 

The fault conditions considered in this work are described in Table 2 and they are shown 

in Figure 3. As it can be observed, the fault conditions are taken into account in accordance 

with the topology configured in the kinematic chain: motor-alternator and motor-gearbox. 
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c) P
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(3)
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(2)

(5)
(6)

(7)
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BRB1

BRB2

BAL1
BAL3

GRH

GR25

GR50

GR75

BAL5
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Table 2. Fault conditions handled. 

Fault 

condition 
Description Topology 

HLT Healthy condition of the induction motor Motor-alternator 

MAL Misalignment between the induction motor and the alternator Motor-alternator 

UNB Unbalance on the pulley coupled in the induction motor shaft Motor-alternator 

1BRB 1 broken bar into the induction motor case Motor-alternator 

2BRB 2 broken bars into the induction motor case Motor-alternator 

BAL1 Rolling bearing fault on the outer race, with a hole of 1 mm diameter Motor-alternator 

BAL3 Rolling bearing fault on the outer race, with a hole of 3 mm diameter Motor-alternator 

BAL5 Rolling bearing fault on the outer race, with a hole of 5 mm diameter Motor-alternator 

GRH Healthy condition of the gearbox with not wear or tear Motor-gearbox 

GR25 Wear and tear in the gearbox entailing a 25% of backlash Motor-gearbox 

GR50 Wear and tear in the gearbox entailing a 50% of backlash Motor-gearbox 

GR75 Wear and tear in the gearbox entailing a 75% of backlash Motor-gearbox 

 

From Table 2 and Figure 3 the fault conditions are simulated as follows. The HLT 

condition consist naturally in the induction motor and the kinematic chain with all the 

elements without faults, no misalignment and no unbalance are presented in the couplings. 

The MAL condition consist in a slight shift between the pulleys of the motor and the load 

(alternator). Having a top view of the coupling motor-alternator, this shift is achieved by 

placing the motor approximately 2 cm behind the alternator respect to the horizontal line 

observed in the figure. In relation to the UNB condition this is achieved by placing a slight 

mass in the motor pulley, which consist in a screw screwed into the pulley. By its part, the 

1BRB consist in a hole of 3mm diameter drilled on one rotor bar, and respectively, the 2BRB 

condition consist in two holes of 3mm diameter drilled on two rotor bars. In both cases the 

holes are of 1mm depth. Next, the BAL1, BAL3, and BAL5 conditions are simulated by 

drilling holes of 1mm depth in three rolling bearings in their outer race, the first one with a 

1mm diameter, the second one with a 3 mm diameter, and the third one with a 5 mm diameter, 

respectively. On the other hand, the GRH condition consist simply by the gearbox without 

wearing. Finally, the GR25, GR50, and GR75 conditions are simulated by using three gears, 

the first one with slight tooth wearing, approximately in a 25%, the second one with moderate 

tooth wearing, approximately in a 50%, and the third one with severe tooth wearing, 

approximately in a 75%, respectively. 

 

The experimental trials were carried out per fault condition along 90 minutes each one 

during the kinematic chain operation, and the thermographic images are captured every 10 

seconds. However, only the steady state of the system is considered (once the temperature of 

the kinematic chain has raised), taking only the last 30 minutes and generating 180 images 

per fault condition. In the image processing stage, the original resolution of the captured 

images is scaled up to a 520 x 390 matrix by bilinear interpolation.  
 

Next, the matrix of features is structured as illustrated in Figure 4 and reduced by the PCA 

into a 3-dimensional representation that feeds an ANN for the classification of faults. The 

structure of the ANN consists in one input layer with 3 neurons, 3 hidden layers with 3, 6 

and 12 neurons, respectively, and one output layer with 12 neurons. The activation functions 

were, hyperbolic for the hidden layers and linear for the output layer. Finally, from the 180 

images, 126 were used for training and 54 for validation, defining a 70/30 percentage ratio. 
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Figure 3.  Fault conditions for the motor-alternator, such as a) MAL, b) UNB, c) 1BRB/2BRB, d) BAL1, 

e) BAL3, f) BAL5, and fault conditions for the motor-gearbox, such as g) GRH, h) GR25, i) GR50, and j) 

GR75. 

 

 

Figure 4.  Structure of the matrix of features extracted from the thermographic images. 
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5 Results 

For the obtained results, the Figure 5 a) displays an example of a thermographic image 

captured directly from the configurable kinematic chain, in this case from the motor-

alternator. As previously mentioned, if there exist fault conditions, they come up with an 

associated increasing of temperature during the chain operation. Once the image is acquired 

by the MCU, stored, and sent to the PC, it is resized as explained in the previous section. In 

this point, the Figure 5 b) shows the resulting image when the Otsu’s algorithm is applied, 

remembering that is in charge of clean the image background and eliminates the inherent 

noise added, that means an image binarization. Next, the points of interest defined by 

applying the SIFT algorithm (which is used for defining the zone over the image that is going 

to be analyzed) are observed in Figure 5 c), that is, the ROI. Finally, in Figure 5 d) it is 

observed the ROI yielded by the image processing, that represent the motor regions isolated 

to be analyzed.  

 

By means of the ROI the histograms of the images can be computed, two examples are 

appreciated in Figure 6 a) for a healthy condition and in Figure 6 b) for the 1BRB fault 

condition. 
 

 

Figure 5.  Thermographic preprocessing and processing, in a) original image obtained by the FLIR LEPTON 

3, in b) implementation of the Otsu’s algorithm, in c) application of SIFT, and d) final ROI for analysis. 

 

After this, the statistical indicators are computed through (9) to (23) from the images’ 

histograms, and the obtained values are structured to generate a high dimensional matrix of 

features for the 12 fault conditions, as indicated in Figure 4. As a matter of fact, in Figure 7 

c)

a) b)

d)
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is presented the reduction performed by the PCA over the matrix of features. From this figure 

it can be noticed that the fault conditions detected are plotted as clusters into a three-

dimensional representation.  
 

 

Figure 6.  Histograms from the ROI of the example images, in a) for a healthy condition, and in b) for the 

1BRB fault condition. 
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Figure 7.  Dimensionality reduction of the matrix of features by applying PCA and 3-dimensional 

representation of the fault conditions detected as clusters. 

 

Finally, the Figure 8 shows the confusion matrix attained during the classification task by 

the ANN considering all the 12 fault conditions. 

 

 

Figure 8.  Confusion matrix for the 12 fault conditions classified by the ANN. 
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6 Discussion 

The kinematic chains represent essential elements into the industrial processes, as integral 

parts of the machines, where motion interchange is required and for that reason it is important 

the development of noninvasive methodologies for diagnose fault conditions. The obtained 

results demonstrate the robustness and reliability of the proposed strategy. For example, 

Figure 5 (a) - (b) shows that the images preprocessing is effective, since the inherent noise 

of the images is eliminated, and the unnecessary background is completely removed yielding 

useful binarized images of the kinematic chain through the threshold stablished by the Otsu’s 

algorithm. Also, Figure 5 c) and d) indicates that the SIFT defines adequate points of interest 

for the images, that means, the ROI is successfully obtained. It worth to mention that any 

anomaly presented in the kinematic chain will come with an energy change (temperature 

rising), and hence it will be presented in the ROI. Therefore, the importance of generating a 

suitable ROI is highlighted when the histogram obtained from this region can provide useful 

information of the implicit fault condition, but only if the ROI is adequately isolated. Thus, 

for example, the matrix of features generated through the statistical indicators computed from 

the histograms will contain useful values that describe the fault conditions into the kinematic 

chain, however, it is not visible until this matrix is reduced by the PCA. Then, as observed 

in Figure 7, the reduction of the matrix generates a three-dimensional representation by 

plotting a cluster for every one of the 12 fault conditions. Finally, the proposed strategy is 

validated through the ANN-based classifier, which reach a global accuracy up to the 96.8%. 

In summary, from Figure 8 the fault conditions 2BRB, BAL3, BAL5, GR50, and GR75 are 

diagnosed with accuracies of 96.3%, 96.3%, 81.5%, 98.1%, and 88.9%, respectively. In 

contrast, the rest of the conditions reaches the 100% of accuracy in the diagnosis. 
 

7 Conclusions 

Since many industrial processes use a wide variety of machines that typically ensemble 

kinematic chains for generating motion interchange, it is important the diagnostics of the 

chain elements in order to keep the efficiency as high as possible. This work develops a 

methodology for monitoring fault conditions in a configurable kinematic chain. It worth to 

notice that the proposed approach contributes starting with the thermographic proprietary 

system. For example, an adequate capturing of a thermographic image is essential. It was 

demonstrated that anomalies in the kinematic chain could affect its efficiency reflecting it as 

an energy change, like heat released, that could be observed in the thermographic images. In 

this sense the high-resolution infrared sensor used possess characteristics that enable it for 

being integrated in a digital system with automatic self-calibration of temperature, which 

means that not external temperature sensors are required. With all certain, the algorithms 

implemented for preprocessing and processing the thermographic images plays a key role, 

for instance, one remarkable advantage of the system is that the location of the camera is not 

as limited as conventional infrared cameras have. Of course, similar results could be obtained 

by using a commercial equipment, since the main contribution of this work is the combination 

of the adopted techniques, but such results would be limited by the characteristic and 

limitations of the commercial camera. Also, the image processing enhances the proposed 

strategy to get results of 96.8% as the global accuracy in the final diagnosis demonstrate. On 

the other hand, the extraction and reduction of statistical features through PCA has 



16 
 

demonstrated that the fault conditions can be clearly detected and visualized as clusters into 

a three-dimensional representation. With this, it is possible to classify the conditions with a 

simple structure of the ANN. In future work, other signals from additional sensors would be 

added to the proposed methodology in order to explore if the accuracy can be raised. Also, 

other different configurations of the kinematic chain and more fault conditions will be 

considered an analyzed. 
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