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A B S T R A C T

Modal-decomposition techniques are computational frameworks based on data aimed at identifying a low-
dimensional space for capturing dominant flow features: the so-called modes. We propose a deep probabilistic-
neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes from
high-fidelity turbulent-flow data useful for flow analysis, reduced-order modeling and flow control. Our
approach is based on 𝛽-variational autoencoders (𝛽-VAEs) and convolutional neural networks (CNNs), which
enable extracting non-linear modes from multi-scale turbulent flows while encouraging the learning of
independent latent variables and penalizing the size of the latent vector. Moreover, we introduce an algorithm
for ordering VAE-based modes with respect to their contribution to the reconstruction. We apply this method
for non-linear mode decomposition of the turbulent flow through a simplified urban environment, where the
flow-field data is obtained based on well-resolved large-eddy simulations (LESs). We demonstrate that by
constraining the shape of the latent space, it is possible to motivate the orthogonality and extract a set of
parsimonious modes sufficient for high-quality reconstruction. Our results show the excellent performance of
the method in the reconstruction against linear-theory-based decompositions, where the energy percentage
captured by the proposed method from five modes is equal to 87.36% against 32.41% of the POD. Moreover,
we compare our method with available AE-based models. We show the ability of our approach in the extraction
of near-orthogonal modes with the determinant of the correlation matrix equal to 0.99, which may lead to
interpretability.
1. Introduction

Analysis of turbulent flows is challenging due to the presence of a
vast range of spatio-temporal coherent structures in high-dimensional
non-linear dynamics. However, the fact that common flow features ap-
pear across a wide range of fluid flows suggests that there are key dom-
inant phenomena that serve as the foundation of many flows. Modal-
decomposition techniques offer methods to identify a low-dimensional
coordinate system for capturing dominant flow features (Taira et al.,
2017, 2020) useful for developing reduced-order models, analyzing
non-linear and chaotic dynamics, and designing efficient flow-control
schemes. Proper-orthogonal decomposition (POD) (Lumley, 1967) and
dynamic-mode decomposition (DMD) (Rowley et al., 2009; Schmid,
2010) are two mode-decomposition methods based on linear algebra
that have been widely used to extract the dominant spatio-temporal

∗ Corresponding author.
∗∗ Corresponding author at: FLOW, Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

E-mail addresses: hamidre@kth.se (H. Eivazi), soledad.leclainche@upm.es (S. Le Clainche), sergio.hoyas@mot.upv.es (S. Hoyas), rvinuesa@mech.kth.se
(R. Vinuesa).

features in fluid flows. Balanced POD (BPOD) (Rowley, 2005), spec-
tral POD (SPOD) (Towne et al., 2018), higher-order DMD (HODMD)
(Le Clainche & Vega, 2017) and spatio-temporal Koopman decomposi-
tion (STKD) (Clainche & Vega, 2018) are several successful variants of
POD and DMD for analysis of turbulent flows.

Recent developments in deep learning for engineering problems
bring advanced and innovative approaches to improve the efficiency,
flexibility, and accuracy of the predictive models. Some of the out-
standing applications of deep neural networks (DNNs) in the domain
of computational physics are solution of partial differential equations
(PDEs) (Eivazi, Tahani, Schlatter, & Vinuesa, 2021; Jin et al., 2021;
Raissi et al., 2019), operator learning (Gin et al., 2020; Li et al., 2021;
Lu et al., 2021), linear embedding of non-linear dynamics (Lusch et al.,
2018), and model reduction of dynamical systems (Lee & Carlberg,
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2020), besides many other successful applications of data-driven meth-
ods (Albu et al., 2019; Dhini et al., 2021; Hedrea et al., 2021; Kashani
et al., 2021; Tseng et al., 2021). Fluid mechanics has been one of
the active research topics for development of innovative DNN-based
approaches (Brunton et al., 2020; Duraisamy et al., 2019; Kutz, 2017;
Vinuesa & Brunton, 2021). Successful application of DNNs has been
shown in the data-driven turbulence closure modeling (Jiang et al.,
2021; Ling et al., 2016), prediction of temporal dynamics of a low-
order model of turbulence (Eivazi, Guastoni, Schlatter, Azizpour, &
Vinuesa, 2021; Srinivasan et al., 2019), extraction of turbulence theory
for two-dimensional decaying isotropic turbulent (Jiménez, 2018), non-
intrusive sensing in turbulent flows (Guastoni et al., 2021; Güemes
et al., 2021), and active flow control through deep reinforcement
learning (Tang et al., 2020).

Besides the aforementioned linear methods for modal decomposi-
tion of flow-field data, DNN-based models have shown promising per-
formance in learning a compact latent representation of high-
dimensional data by accounting for the non-linearity in the low-
dimensional mapping using non-linear activation functions (Hinton
& Salakhutdinov, 2006). In particular, unsupervised learning based
on autoencoders (AEs) has been shown suitable for efficient mode
decomposition and reduced-order modeling with superior performance
in flow reconstruction over the linear POD (Eivazi et al., 2020; Milano
& Koumoutsakos, 2002).

Moreover, convolutional neural networks (CNNs) (Lecun et al.,
1998) and their ability in pattern recognition have received increasing
attention by the fluid-mechanics community (Fukami et al., 2019;
Guastoni et al., 2021; Kim et al., 2021; Kim & Lee, 2020; Lee & You,
2019). Murata et al. (2020) proposed a CNN-based autoencoder archi-
tecture for decomposition of flow-fields into non-linear low-
dimensional modes and to visualize each mode. They applied this so-
called mode-decomposing convolutional-neural-network autoencoder
(MD-CNN-AE) to a relatively simple laminar flow around a circular
cylinder at 𝑅𝑒𝐷 = 100 (where 𝑅𝑒𝐷 is the Reynolds number based
n freestream velocity and cylinder diameter). Their results showed
he superior performance of the CNN-based autoencoder over POD
here the reconstruction of the flow from only two MD-CNN-AE modes

ontains also the higher-order POD modes. The architecture of AE-
ased methods allows a non-linear low-dimensional mapping leading to
superior performance against linear-theory-based methods. However,

he AE-based methods do not benefit from the useful properties of the
igenvalue or singular-value-decomposition techniques, e.g., optimality
nd orthogonality. In contrast to the POD modes, which are an orthogo-
al set of basis vectors arranged in the order of their energy content, the
E-based modes are neither orthogonal nor ranked. This may lead to

he lack of interpretability and robustness of the AE-based modes (Vin-
esa & Sirmacek, 2021). In order to obtain ranked modes, Fukami et al.
2020) proposed a hierarchical CNN-AE architecture inspired by the
oncept of hierarchical autoencoder (AE) (Saegusa et al., 2004). The
roposed method was first applied to a laminar cylinder wake and
ts transient process and further to an in-plane cross-sectional velocity
ield of turbulent channel flow at 𝑅𝑒𝜏 = 180 (note that 𝑅𝑒𝜏 is the
riction Reynolds number, based on channel half height and friction
elocity). They showed that the hierarchical autoencoder (AE) can rank
he AE modes following their contributions to the reconstructed field
hile achieving efficient order reduction. However, issues related to

nterpretability and non-uniqueness remained unanswered.
Finding an efficient set of reduced coordinates is an essential part of

eveloping reduced-order models (ROMs) (Vinuesa & Brunton, 2021).
E-based models can be employed to learn a set of nonlinear man-

fold coordinates that can considerably improve the compression in
he latent space (Lee & Carlberg, 2020). These coordinates typically
escribe the amplitudes of important flow structures. Once an effi-
ient coordinate system is found, the dynamics of these coordinates
ay be modeled using many machine-learning approaches, including
2

ong short-term memory (LSTM) network (Abadía-Heredia et al., 2022;
Srinivasan et al., 2019), echo-state networks (Pathak et al., 2018), or
through sparse identification of nonlinear dynamics (SINDy) (Brunton
et al., 2016). ROMs provide a fast surrogate model for more expen-
sive fluid flow simulations. This is extremely useful for optimization
and active flow-control tasks that require many model iterations or
fast and online predictions with increasing importance, both from a
fundamental science perspective and for many industrial engineering
applications.

In this paper, we propose a probabilistic method based on 𝛽-
variational autoencoders (𝛽-VAEs) (Higgins et al., 2017) and CNNs in
order to extract a minimal (parsimonious) set of near-orthogonal non-
linear modes from turbulent flows. We applied the proposed machine-
learning method for the modal decomposition of high-fidelity
turbulent-flow simulation data of a simplified urban environment. The
flow simulation is carried through well-resolved large-eddy simula-
tion (LES) by means of the spectral-element code Nek5000 (Fischer
et al., 2008). The results from the proposed method are compared
with the results from a conventional CNN-AE model, a hierarchical
CNN-AE model, and POD. It should be noted that the complexities
of the compared methods are not the same, and the goal of this
comparison is to assess how different model architectures and train-
ing strategies affect the learned latent modes and the quality of the
reconstructions. Through the training process of the available AE-based
modal-decomposition methods, the objective is to only minimize the
reconstruction loss. Therefore, the focus of the available AE-based
methods for non-linear modal decomposition is only on the perfor-
mance of the model in the reconstruction and not on the properties of
the learned modes, such as orthogonality and minimality. In contrast,
here we minimize the correlation between the latent variables and
penalize the size of the latent vector in addition to the minimization
of the reconstruction loss. By solving this multi-objective optimization
problem using our CNN-𝛽VAE approach, we seek a minimal set of
uncorrelated non-linear modes that are able to accurately describe the
turbulent flow-field data. The obtained modes are extremely useful
for the development of compact reduced-order surrogate models or
designing flow-control strategies. Moreover, understanding the physics
of the turbulent flow through the extraction of uncorrelated non-linear
mechanisms is another incentive for applying CNN-𝛽VAEs for modal
ecomposition. In particular, the development of accurate predictive
odels and understanding flow structures in urban environments are

f significant importance due to their impact on urban planning, air
uality management, and pollutant dispersion (Vinuesa et al., 2015).
he essential need to address sustainable development from an urban
erspective is pronounced in the 2030 Agenda (UN General Assembly,
015)1 through the sustainable development goals (SDGs) 11 (on

sustainable cities and communities) and 13 (on climate action). Air
pollution is a major cause of premature death and disease and is the
single largest environmental health risk in Europe. Heart disease and
stroke are the most common reasons for premature deaths attributable
to air pollution, followed by lung diseases and lung cancer (European
Environment Agency et al., 2020). Predictive models for air-quality
detection are in particular important to provide protection from exces-
sive pollution concentrations. However, the available predictive models
are unable to provide the spatial and temporal accuracy required
for reproducing pollutant-dispersion patterns within urban environ-
ments. Therefore, there is a pressing need for improved prediction
and assessment methods to tackle these challenges and enable urban
sustainability in the near future (Vinuesa et al., 2020). Furthermore, it
is necessary to gain further insight into the physics responsible for the
pollutant-concentration and thermal distributions within cities (Torres
et al., 2021).

This article is organized as follows: in Section 2 we provide an
overview of the flow physics and discuss the theoretical background

1 United Nations (UN).
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relevant to linear-theory-based modal decomposition; in Section 3 we
discuss three different CNN-AE-based methods from a methodological
point of view; the performance of the methods and their characteristics
are compared in Section 4; and finally, in Section 5 we provide a
summary and the conclusions of the study.

2. Modal decomposition

Modal decomposition is a mathematical method to extract
energetically- and dynamically-important features from fluid flows. The
spatial features are represented by a set of modes ranked in terms of ki-
netic energy or their largest amplitude (connected with the norm of the
mode). These modes are generally obtained via solving an eigenvalue
problem. The obtained eigenvalues could represent the energy content
of the modes or the growth rates and frequencies modeling the tem-
poral dynamics of the flow motion. Modal-decomposition techniques
produce a low-dimensional coordinate system for capturing dominant
flow structures. These dominant flow structures are extremely useful
not only for flow analysis but also for reduced-order modeling and
flow control. For a detailed discussion of the modal-decomposition
techniques, the readers are referred to the reviews on the topic (Taira
et al., 2017, 2020). In the following, we discuss flow physics in a
simplified urban environment and apply POD for modal decomposition.

2.1. Training data

We employ a database (Martínez-Sánchez et al., 2022; Torres et al.,
2021) of the flow through a simplified urban environment to obtain
the training data. This database was obtained through well-resolved
large-eddy simulation (LES) using the open-source numerical code
Nek5000 (Fischer et al., 2008), which is based on the spectral-element
method (SEM), to solve the incompressible Navier–Stokes equations:

∇ ⋅ 𝐮 = 0,
𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮 = −∇𝑝 + 𝜈∇2𝐮,
(1)

where 𝐮 represents the velocity vector, 𝑡 is the time, and 𝜈 is the
kinematic viscosity. 𝑝 is the pressure, including the constant density.
Note that the SEM combines the geometrical flexibility required to
discretize the urban geometry with the high-order accuracy of spectral
methods. The geometry of the buildings is discretized using hexahedral
elements and the scale disparity of the turbulent flows is resolved using
the Gauss–Lobatto–Legendre (GLL) quadrature within each element.
The flow case includes two wall-mounted obstacles with width-to-
height ratio 𝑏∕ℎ and height-to-separation ratio ℎ∕𝓁 of 0.5 and 1.25,
respectively. Here 𝑥, 𝑦 and 𝑧 denote streamwise, wall-normal and
spanwise directions, respectively. The 𝑥–𝑧 cross-sectional velocity fields
at 𝑦 = 0.5ℎ are extracted and used as the input data. As we focus
on the flow around the obstacles, we extract the following region
of the computational domain: −1ℎ ⩽ 𝑥 ⩽ 5ℎ and −1.5ℎ ⩽ 𝑧 ⩽
1.5ℎ. To facilitate the data-handling process, we performed spectral
interpolation of the 1200 instantaneous fields considered in this work
from the original SEM mesh to another one containing the following
number of grid points in 𝑥 and 𝑧: (𝑁𝑥, 𝑁𝑧) = (96, 192). We use the
fluctuation component of the streamwise velocity 𝑢 as the input of the
models.

2.2. Proper-orthogonal decomposition (POD)

In this section, we apply POD for modal decomposition and dis-
cuss some of its useful properties, i.e., optimality and orthogonality.
The POD technique (also known as the Karhunen–Loève (KL) proce-
dure (Karhunen, 1946; Loève, 1955)) was first introduced to the fluid
dynamics/turbulence community by Lumley (1967) as a mathematical
algorithm to extract coherent structures from turbulent flows. POD
extracts modes based on minimizing the mean-square error between the
3

signal and its reconstruction and also minimizing the number of modes
required for such a reconstruction. This leads to a minimal number
of basis functions or modes to capture as much energy as possible.
Let us consider a vector field as: 𝒒(𝝃, 𝑡) representing, e.g., velocity
with coordinates 𝝃, where 𝑡 denotes time. Having the temporal mean
𝒒(𝝃) subtracted, the unsteady component of the vector field can be
ecomposed as:

(𝝃, 𝑡) − 𝒒(𝝃) =
∑

𝑗
𝑎𝑗 (𝑡)𝝓(𝝃), (2)

here 𝝓(𝝃) and 𝑎𝑗 represent the spatial modes and temporal (expan-
ion) coefficients respectively. To this end, we first prepare snapshots
f the flow-field as a collection of finite-dimensional data vectors:

(𝑡) = 𝒒(𝝃, 𝑡) − 𝒒(𝝃) ∈ R𝑛, 𝑡 = 𝑡1, 𝑡2,… , 𝑡𝑚. (3)

where 𝒙(𝑡) represents the fluctuating component of the vector data, 𝑛 is
he number of grid points modeling the vector data and 𝑚 is the number

of snapshots selected to model the flow dynamics. We arrange the data
into a matrix 𝑿 through the concatenation of 𝑚 snapshots as follows:

𝑿 = [𝒙(𝑡1) 𝒙(𝑡2) ⋯ 𝒙(𝑡𝑚)] ∈ R𝑛×𝑚. (4)

The POD modes can be determined as the eigenvectors of the covari-
ance matrix 𝑹 = 𝑿𝑿𝖳:

𝑹𝝓𝑗 = 𝜆𝑗𝝓𝑗 , 𝝓𝑗 ∈ R𝑛, 𝜆1 ≥ ⋯ 𝜆𝑛 ≥ 0. (5)

The eigenvalues 𝜆𝑗 show how well each mode 𝝓𝑗 represents the ref-
erence data in the 𝓁2 sense. Considering the velocity vectors as 𝒙(𝑡),
each eigenvalue shows the kinetic energy captured by its corresponding
mode.

Another approach is to apply singular-value decomposition (SVD)
(Sirovich, 1987) directly on the matrix 𝑿 as:

𝑿 = ΦΣΨ𝖳, (6)

where Φ ∈ R𝑛×𝑛 and Ψ ∈ R𝑚×𝑚 are the left and right singular vectors
of 𝑿, respectively, and Σ is a diagonal matrix containing the singular
values (𝜎1,… , 𝜎𝑚). The singular vectors Φ and Ψ are identical to the
eigenvectors of 𝑿𝑿𝖳 and 𝑿𝖳𝑿, respectively, and the singular values
are related to the eigenvalues by 𝜎2𝑗 = 𝜆𝑗 . Two important properties of
the POD are:

• Optimality: This indicates that the POD is the most efficient
decomposition, in the sense that for a given number of modes 𝑘,
the projection on the subspace spanned by the leading 𝑘 modes
contains the greatest possible energy on average among all linear
decompositions.

• Orthogonality: This implies that the time series of the coefficients
𝑎𝑗 (𝑡) are linearly uncorrelated, which is an attractive property for
constructing reduced-order models.

It is important to note that the POD is a linear procedure. Linearity
is the origin of the strength of the method, its applicability, but it is
also its limitation. As stated above regarding the optimality of the POD
results, it should be noted that optimality is implied only with respect
to other linear representations (Holmes et al., 1996).

We applied POD using the SVD method on the urban-flow database
discussed above. Fig. 1 shows the eigenvalues 𝜆𝑖 (left) and the cumu-
lative eigenvalue spectrum ∑𝑗=𝑖

𝑗=1 𝜆𝑗 (right) normalized with the cumu-
lative sum of the eigenvalues ∑𝑗=𝑚

𝑗=1 𝜆𝑗 , where 𝑖 indicates the number
of modes. We observed that 247 modes are required to capture 99%
of the energy as it is depicted by the vertical red line in Fig. 1 (right).
This result implies that it is impractical to represent turbulent flows
as a linear superposition of a few modal functions, and thus, more
sophisticated algorithms enabling a non-linear modal decomposition

are required.
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Fig. 1. Eigenvalues 𝜆𝑖 (left) and the cumulative eigenvalue spectrum ∑𝑗=𝑖
𝑗=1 𝜆𝑗 (right) normalized with the cumulative sum of the eigenvalues ∑𝑗=𝑚

𝑗=1 𝜆𝑗 , where 𝑖 indicates the number
of modes. The solid red line shows the number of modes required to capture 99% of the energy.
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3. CNN-based autoencoders for modal decomposition

An autoencoder is a deep neural network (DNN) with an architec-
ture suitable for unsupervised feature extraction. The network com-
prises two parts: an encoder that maps the input data to a low-
dimensional latent space 𝒙 ↦ 𝒓, and a decoder that projects the
latent vector 𝒓 back to the reference space 𝒓 ↦ 𝒙̃. We refer to the
encoder and decoder parts as  and , respectively. Through the model
training, the autoencoder learns to extract the most important features
in the data that are required for reconstruction by optimizing the model
parameters 𝒘 to minimize the reconstruction loss rec:

 = ◦ , (7a)

̃ =  (𝒙;𝒘), (7b)

rec = 𝜖(𝒙, 𝒙̃), (7c)

where 𝒙 denotes the input data, which in our case is the fluctuating
component of the streamwise flow velocity; 𝒙̃ is the reconstruction of
the input data and 𝜖 represents the loss function. The autoencoder
architecture is attractive for modal decomposition as it provides a
framework that can incorporate non-linearity in the mappings through
the use of non-linear activation functions.

Another challenge in the modal decomposition of turbulent flows
is the process of information from input fields that contain multiscale
coherent features. The presence of coherent features motivates the use
of convolutional layers in autoencoder models to process the input
information. Through a two-dimensional convolution layer and using
a so-called filter with size 𝐻 ×𝐻 ×𝐾, the data is processed as:

(𝑙)
𝑖𝑗𝑚 = 𝜑

( 𝐾
∑

𝑘=1

𝐻
∑

𝑝=1

𝐻
∑

𝑞=1
𝒛(𝑙−1)𝑖+𝑝,𝑗+𝑞,𝑘𝒘

(𝑙)
𝑝𝑞𝑘𝑚 + 𝒃(𝑙)𝑖𝑗𝑚

)

, (8)

here 𝒛(𝑙−1) and 𝒛(𝑙) represent the input and output variables, respec-
ively. Note that 𝒘(𝑙) and 𝒃(𝑙) denote the weights and the biases of layer
, and 𝜑 denotes the activation function. Furthermore, 𝐾 is the number
f the so-called kernels, which are the two-dimensional slices of the
ilter. Since 𝐻 ≪ 𝑁𝑥, 𝑁𝑦, the use of kernels greatly reduces the number
f parameters that need to be learned during training. It is common
o use convolution layers together with the pooling and upsampling
ayers. Through a pooling operation, the data are compressed by a
actor of (1∕𝑃 )2 so that a region with size of 𝑃 × 𝑃 is represented by
.g. its maximum value; this is the so-called max-pooling operation.
he upsampling operation is used to expand the data dimension by
.g. nearest-neighbor or bilinear interpolation. In the following, we
iscuss two NN-architectures based on CNNs and autoencoders, namely
NN-based autoencoders (CNN-AEs) and CNN-based hierarchical au-
oencoders (CNN-HAEs). Finally, we propose CNN-based 𝛽-variational
utoencoders (CNN-𝛽VAEs) for non-linear modal decomposition of tur-
ulent flows. For all the models, we use mean-squared error as the
oss function for reconstruction rec and the Adam algorithm (Kingma
4

Ba, 2017) to optimize the model parameters 𝒘. All the models are h
nitialized using the Xavier scheme (Glorot & Bengio, 2010). We employ
he early-stopping criterion and obtain the best model based on the
alidation loss to avoid overfitting, where 20% of the data is randomly
elected for validation.

.1. CNN-based autoencoders

Fig. 2 depicts a schematic representation of the CNN-AE model.
or simplicity, consider the fluctuating component of the streamwise
elocity 𝑢 as the input/output of the model, but it is also possible to
onsider all the velocity components (𝑢, 𝑣, 𝑤) as the input/output.

The first convolution layer contains 16 filters with a size of (3 × 3),
nd it is followed by a max-pooling layer with 𝑃 = 2. At each con-
olution step, we double the number of feature maps to extract more
nformation from the turbulent-flow data while at each downsampling
tep we reduce the dimension. This allows the next layer to combine
he features individually identified in each feature map, enabling the
xtraction of larger and more complex features for progressively deeper
onvolutional networks from simple non-linear combinations of the
revious ones. Therefore, convolutional layers can learn to recognize
urbulent-flow patterns of various complexity and scales (Guastoni
t al., 2021). After five steps of convolution and max pooling, the
xtracted features are flattened and fed to fully connected layers to
educe the dimension to the latent vector 𝒓 with a size of 𝑑. The latent
ector 𝒓 is mapped back to the reference space through the consecutive
psampling and convolution operations using nearest-neighbor inter-
olation. Throughout the model, we use a filter size of (3 × 3) with
he stride of one for convolution layers and (2 × 2) max pooling and
psampling operations with the same stride. We employ the hyperbolic-
angent (tanh) function 𝜑(𝑧) = (𝑒𝑧 − 𝑒−𝑧)∕(𝑒𝑧 + 𝑒−𝑧) as the non-linear
ctivation function, since it led to the best performance in our study.

.2. CNN-based hierarchical autoencoders

Based on the idea proposed by Fukami et al. (2020), Saegusa
t al. (2004) proposed a CNN-based hierarchical autoencoder for modal
ecomposition of fluid flows in order to extract the modes ranked
n terms of their contribution to the reconstruction while achieving
ore efficient data compression. To this end, the first subnetwork 1

s trained to map the high-dimensional data to a latent vector with
ize 𝑑 = 1. The latent vector can be obtained using the encoder part
f the first subnetwork as 𝒓1 = 1(𝒙). The second subnetwork 2 is
hen trained to reconstruct the input data at the output from a two-
imensional latent vector comprising the first latent vector 𝒓1, which
as already been obtained, and the second latent vector 𝒓2, being
pdated through the training of 2, as [𝒓1 𝒓2]. The third network is
rained in a similar way where the output is reconstructed from a
atent vector as [𝒓1 𝒓2 𝒓3]. A schematic of the CNN-HAE architecture
s illustrated in Fig. 3. In the present study, we employ the same

yperparameters as those of the CNN-AE model for the CNN-HAE.
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Fig. 2. Schematic view of the CNN-AE architecture. The color coding for each layer is: 2D-convolution ( ), tanh activation ( ), max pooling ( ), reshape ( ),
fully-connected layer ( ), upsampling ( ).
Fig. 3. Schematic view of the CNN-HAE architectures with the same color coding as in Fig. 2.
3.3. CNN-based 𝛽-variational autoencoders

In this section, we propose a modified version of the so-called
variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende
et al., 2014), a probabilistic generative neural architecture, for modal
decomposition of turbulent flows. VAEs are powerful generative mod-
els emerging from the combination of statistics and information the-
ory with the flexibility of DNNs to efficiently generate new high-
dimensional data. The goal is to map the data to a latent distribution,
from which new meaningful samples can be generated. VAEs have
gained increasing attention in the scientific community (Iten et al.,
2020; Maulik et al., 2020), both due to their strong probabilistic
foundation and their precious application in the field of representation
learning (Bengio et al., 2013).

3.3.1. Marginal likelihood
Let us consider a data sample 𝒙 in some high-dimensional space 

with the distribution 𝑝(𝒙). Let us assume that we have a vector of latent
variables 𝒓 in a low-dimensional space  with the probability density
function (PDF) 𝑝(𝒓), from which we can easily sample new datapoints.
Considering a family of deterministic functions 𝑓 (𝒓;𝜽), parameterized
by a vector 𝜽 in some space 𝛩 in such a way that 𝑓 ∶  × 𝛩 ↦  ,
𝑓 (𝒓;𝜽) is a random variable in the space of  if 𝒓 is random and 𝜽 is
fixed. This implies that by optimizing 𝜽 to maximize the probability of
each 𝒙, we can sample 𝒓 from 𝑝(𝒓) and expect that 𝑓 (𝒓;𝜽) resembles the
samples 𝒙 in our dataset. Therefore, we aim to maximize:

𝑝𝜽(𝒙) = ∫ 𝑝𝜽(𝒙|𝒓)𝑝(𝒓)d𝒓, (9)

where 𝑓 (𝒓;𝜽) has been replaced by a distribution 𝑝𝜽(𝒙|𝒓) to show the
dependence of 𝒙 on 𝒓 according to the law of total probability, and 𝑝𝜽(𝒙)
is the so-called marginal likelihood, which is the approximation of 𝑝(𝒙)
with parameters 𝜽. This is the so-called maximum likelihood estimation
(MLE), and the distribution 𝑝(𝒓) is often called the prior distribution.
However, Eq. (9) is typically intractable due to the integral and it is
usually computationally infeasible (Kingma & Welling, 2014).
5

3.3.2. Evidence lower bound (ELBO)
VAEs define another probability distribution 𝑞𝝓(𝒓|𝒙), a so-called

probabilistic encoder (or recognition model). In a similar vein 𝑝𝜽(𝒙|𝒓)
is referred to as a probabilistic decoder (or generative model). The
marginal likelihood is obtained as a sum over the marginal likelihoods
of individual datapoints:

log 𝑝𝜽(𝒙(1),… ,𝒙(𝑚)) =
𝑚
∑

𝑖=1
log 𝑝𝜽(𝒙(𝑖)), (10)

and for each 𝒙 it can be defined as:

log 𝑝𝜽(𝒙) = 𝐷KL(𝑞𝝓(𝒓|𝒙) ∥ 𝑝𝜽(𝒓|𝒙)) + (𝜽,𝝓;𝒙), (11)

where the first right-hand-side (RHS) term is the Kullback–Leibler (KL)
divergence 𝐷KL between 𝑞𝝓(𝒓|𝒙) and 𝑝𝜽(𝒓|𝒙). The KL-divergence is non-
negative, which indicates that the second RHS term (𝜽,𝝓;𝒙) is a lower
bound on the marginal likelihood, and can be written as:

log 𝑝𝜽(𝒙) ≥ (𝜽,𝝓;𝒙) = −𝐷KL(𝑞𝝓(𝒓|𝒙) ∥ 𝑝𝜽(𝒓)) + E𝑞𝝓(𝒓|𝒙)
[

log 𝑝𝜽(𝒙|𝒓)
]

.

(12)

This term is usually called evidence lower bound (ELBO). Since the
ELBO is more tractable than the MLE, it is used as the cost function
for the training of NNs to optimize the unknown parameters 𝜽 and 𝝓.

3.3.3. Reparameterization trick
Since the operation that samples a latent vector from 𝑞𝝓(𝒓|𝒙) is not

differentiable, we need to perform a change of variable, the so-called
reparameterization trick (Kingma & Welling, 2014), to differentiate
ELBO with respect to both 𝜽 and 𝝓. We assume 𝑞𝝓(𝒓|𝒙) to be a Gaussian
distribution,

log 𝑞𝝓(𝒓|𝒙) = log  (𝒓;𝝁,𝝈2𝐈), (13)

where the mean 𝝁 and the standard deviation 𝝈 are outputs of the
encoder, and 𝐈 is the identity matrix. We sample from 𝑞𝝓(𝒓|𝒙) using 𝒓 =
𝝁+𝝈⊙𝜺 where 𝜺 ∼  (𝟎, 𝐈) is an auxiliary normally-distributed random
number, and ⊙ indicates an element-wise product. Moreover, the term
E𝑞𝝓(𝒓|𝒙)

[

log 𝑝𝜽(𝒙|𝒓)
]

, which is the so-called log-likelihood, encourages
accurate reconstruction of the data and can be estimated as a negative
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Fig. 4. Schematic view of the encoder part  of the CNN-𝛽VAE with the same color coding as in Fig. 2.
reconstruction error in an autoencoder setting (Kingma & Welling,
2014). This leads to the VAE cost function , and we can take the
negative of it as a loss function  for training the NNs:

(𝜽,𝝓;𝒙) = rec −
1
2

𝑑
∑

𝑖=1
(1 + log(𝜎2𝑖 ) − 𝜇2

𝑖 − 𝜎2𝑖 ). (14)

3.3.4. Disentangled representation
In the field of representation learning (Bengio et al., 2013), it is of

interest to find a latent representation of the high-dimensional data as
an uncorrelated representation with a minimal number of parameters
(factors), the so-called disentangled representation, which can be useful
for a large variety of tasks and domains. Higgins et al. (2017) proposed
to augment the original VAE loss function with a single hyperparameter
𝛽 ≥ 0 that controls the extent of the learning constraints. The goal
is to encourage learning of statistically-independent latent variables
𝒓𝑖 and penalize the size of the latent vector 𝒓. This can be obtained
by minimizing the distance 𝐷KL

[

𝑝(𝒓) ∥
∏

𝑖 𝑝(𝒓𝑖)
]

between 𝑝(𝒓) and the
product of its marginals. In practice, this is performed by upweighting
the KL term in the ELBO, see Eq. (12), with a penalization factor 𝛽
leading to the following loss function:

(𝜽,𝝓;𝒙) = rec −
𝛽
2

𝑑
∑

𝑖=1
(1 + log(𝜎2𝑖 ) − 𝜇2

𝑖 − 𝜎2𝑖 ) (15)

for 𝛽-VAEs. A detailed discussion on disentangling in 𝛽-VAEs can be
found in the works by Achille and Soatto (2018), Burgess et al. (2018),
Higgins et al. (2017) and Locatello et al. (2019).

In the present work, we employ a CNN-based 𝛽-VAE architecture
for modal decomposition of turbulent flows. Our goal is to minimize
the correlation between the latent variables, motivating the network
to extract a set of orthogonal modes, and also penalize the size of the
latent vector 𝑑. This leads to an efficient representation of the high-
dimensional data useful for flow analysis, reduced-order modeling, and
flow control. It should be noted that for the testing steps the mean part
of the encoder output 𝝁 of the CNN-𝛽VAE is taken as the vector of latent
variables 𝒓. Fig. 4 illustrates the schematic of the encoder part of the
CNN-𝛽VAE model. The decoder part is the same as the decoder part of
the CNN-AE model depicted in Fig. 2.

4. Results and discussion

The key insight of the present study is to encourage independence
of the latent variables 𝒓1,… , 𝒓𝑑 to extract near-orthogonal modes from
turbulent flows using CNN-𝛽VAEs. This is to motivate disentangled
representations in the language of representation learning. We impose
a limit on the capacity of the latent information and motivate learning
statistically independent latent variables using the penalization factor
𝛽. The objective is to motivate orthogonality in the latent space to
obtain modes that are useful for flow analysis, reduced-order modeling,
and flow control. Algorithm 1 represents the training process of the
CNN-𝛽VAEs.
6

Algorithm 1: Training of the CNN-𝛽VAE.
Model encoder  and decoder  of the CNN-𝛽VAE. Note that 𝜽
and 𝝓 are the parameters of the encoder and the decoder,
respectively.
Data 𝐗train, 𝐗val.
𝜽, 𝝓 ← random initialization using the Xavier scheme (Glorot &
Bengio, 2010).
repeat

for 𝒙 𝐢𝐧 𝐗train ∶ # 𝒙 represents a batch of samples.

𝝁, 𝝈, 𝜺 ← (𝒙)
𝒓 ← 𝝁 + 𝝈 ⊙ 𝜺
𝒙̃ ← (𝒓)
rec ← MSE(𝒙, 𝒙̃)

 ← mean(rec −
1
2
∑𝑑

𝑖=1(1 + log(𝝈2
𝑖 ) − 𝝁2

𝑖 − 𝝈2
𝑖 ))

update 𝜽,𝝓 using the backpropagation algorithm.
val. ← computed from 𝐗val.
if val. < min(val.history) then

save model parameters 𝜽 and 𝝓

until final epoch is reached.

The KL term in the 𝛽-VAE loss function, see Eq. (15), acts as a regu-
larizer. This regularization may create a trade-off between reconstruc-
tion fidelity and the quality of learning independent representations. In
this section, we investigate the effect of the penalization factor 𝛽 and
the size of the latent vector 𝑑 on the performance of the CNN-𝛽VAE
models, both in terms of reconstruction accuracy and independence
of the modes. Furthermore, we compare the performance of the CNN-
𝛽VAE in the modal decomposition of the turbulent flow through a
simplified urban environment with that of the CNN-HAE, CNN-AE, and
POD. To this end, we define two evaluation metrics to measure the
quality of the reconstructions and the orthogonality (disentanglement)
of the latent variables. For reconstruction quality, we evaluate the
energy percentage 𝐸𝑘 that is captured by the model reconstructions as:

𝐸𝑘 =

(

1 −

⟨

∑𝑛
𝑖=1 (𝑢 − 𝑢̃)2
∑𝑛

𝑖=1 𝑢2

⟩)

× 100, (16)

where ⟨⋅⟩ indicates ensemble averaging in time, 𝑢 and 𝑢̃ denote the
reference value of the fluctuating component of streamwise velocity
and its reconstruction, respectively, and 𝑛 is the number of grid points.
To measure the independency of the latent variables, we compute the
determinant of the correlation matrix multiplied by 100 and refer to it
as det𝐑, where 𝐑 = (𝑅𝑖𝑗 )𝑑×𝑑 is the correlation matrix defined by:

𝑅𝑖𝑖 = 1 and 𝑅𝑖𝑗 =
𝐶𝑖𝑗

√

𝐶𝑖𝑖𝐶𝑗𝑗
, (17)

for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑, and 𝐶𝑖𝑗 denotes the components 𝑖, 𝑗 of the
covariance matrix 𝐂. Note that det is 100 when all the variables are
𝐑
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Fig. 5. Effects of the penalization factor 𝛽 on the performance of the CNN-𝛽VAE models. (a) Normalized probability density function (PDF) of the latent variables obtained from
models with different values of 𝛽 as indicated in each panel. The variables with considerably large values are colored by blue and the variables with very small deviations from
zero are depicted by red. (b) Effect of 𝛽 on 𝐸𝑘 (blue) and det𝐑 (red).
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completely uncorrelated (𝑅𝑖𝑗 = 0) and zero when they are completely
correlated (𝑅𝑖𝑗 = 1). We report the value of det𝐑 as a metric for
independency of the latent variables.

4.1. Learning orthogonal and parsimonious modes

The introduction of non-linearity in the process of modal decom-
position using AEs through the use of non-linear activation functions
leads to excellent performance in terms of reconstruction accuracy in
comparison to the linear-theory-based decomposition methods such as
POD. However, the AE-based modes lack the useful properties of the
linear-theory-based modes such as orthogonality and ranking, which
may lead to interpretability. We constrain the shape of the latent space
to motivate orthogonality (disentanglement) of the features extracted
by the CNN-𝛽VAEs and obtain parsimonious (minimal) modes. The
penalization factor 𝛽 regulates the balance between the information
preservation and the information capacity of the latent vector (Higgins
et al., 2017).

The results obtained from CNN-𝛽VAEs using four different values of
𝛽 are reported in Fig. 5. For these tests we consider 𝑑 = 10 and 𝛽 = 10−4,
5 × 10−4, 10−3, and 2.5 × 10−3. Fig. 5(a) depicts the normalized proba-
bility density function (PDF) obtained from each variable. We note that
using 𝛽 = 2.5 × 10−3, only three latent variables have significant values
and the others are comparatively very small. These variables have a
very small deviation from zero, and thus can be regarded as noise. We
also observe that the spatial modes corresponding to these variables are
very similar. Therefore, by imposing a limit on the capacity of the latent
information using 𝛽 = 2.5×10−3 the network minimizes the latent-space
dimension to three and leads to almost perfectly independent variables
where det𝐑 = 99.84. This test also leads to a very good reconstruction
of the turbulent flow with 𝐸𝑘 = 82.17% as it is shown in Fig. 5(b). By
reducing the penalization factor 𝛽 to 10−3, the latent-space dimension
increases to five as a consequence of a lighter constrain on the capacity
of the latent information, which also leads to a reduction of det𝐑 to
98.38. However, the reconstruction performance is improved leading
to 𝐸𝑘 = 86.93%. By further reduction of 𝛽, the dimension of the latent
space is increased where all the 10 latent variables have considerable
values using 𝛽 = 10−4. Moreover, it can be observed in Fig. 5(b) that
by reducing 𝛽, the independence of the variables diminishes while
the reconstruction accuracy is improved. We obtain det𝐑 = 94.55 and
𝐸𝑘 = 92.78% using 𝛽 = 10−4.

Next, we investigate the effect of the size of the latent vector 𝑑
on the performance of the CNN-𝛽VAEs. For these tests, we consider
𝛽 = 10−3 and 𝑑 = 5, 10, 20. We observe that in all three tests, only
7

five latent variables have considerable values and the rest are just
noise. Our results show that although we increase 𝑑, the penalization
using 𝛽 = 10−3 encourages the network to learn a minimal number
of near-orthogonal modes (only five) for accurate reconstruction of
the turbulent flow. Since the network maps the information into only
five variables, increasing 𝑑 to more than five does not improve the
performance of the model. We obtain det𝐑 equal to 99.20, 98.38,
and 99.22 and 𝐸𝑘 equal to 87.36%, 86.93%, and 87.15% for the
CNN-𝛽VAEs with 𝑑 equal to 5, 10, and 20, respectively.

4.2. Ranking the CNN-𝛽VAE modes

As we discussed in Section 2.2, POD modes are sorted in terms of
their energy content. This property is extremely useful for understand-
ing and analyzing the dominant patterns in complex flows. Fukami
et al. (2020) implemented hierarchical autoencoders to extract AE-
based modes in the order of their contribution in the reconstruction,
which requires training multiple NNs and might be cumbersome es-
pecially for the extraction of higher-order modes. Here, we propose
a strategy for ranking the CNN-𝛽VAE modes, which is represented
in Algorithm 2. Later, we show that CNN-𝛽VAEs are able to extract
ear-orthogonal and parsimonious modes from turbulent flows. These
roperties allow us to rank these modes after the training process and
ased on their contribution to the reconstruction. In particular, we rank
NN-𝛽VAE modes based on the maximum 𝐸𝑘 that can be obtained from
modes, where 𝑞 represents the rank. To this end, after the training

rocess, we first use the encoder to map high-dimensional data to the
atent vector  ∶ 𝒙 ↦ 𝒓. We zero out all the latent variables except
he 𝑖th variable, which leads to a latent vector 𝒓̂𝑖. Then, we employ
he decoder part of the CNN-𝛽VAE to send this latent vector to the
riginal space  ∶ 𝒓̂𝑖 ↦ 𝒙̃𝑖. This procedure is performed for all the

time steps. The energy percentage that is captured by only considering
the 𝑖th mode is evaluated as 𝐸𝑖

𝑘. The first mode is selected as the
mode leading to the maximum value of 𝐸𝑖

𝑘. For the second mode, we
perform the same procedure while we preserve the first mode and look
for the mode, which in combination with the first mode, leads to the
maximum value of 𝐸𝑖

𝑘. In a similar way, the third mode is selected
as the mode which gives the maximum 𝐸𝑖

𝑘 in combination with the
first and second modes. We continue this procedure to rank all the
modes. Fig. 6 illustrates the ranked modes obtained from a CNN-𝛽VAE
model with 𝑑 = 5 and 𝛽 = 10−3, together with the modes obtained
from the POD, CNN-AE, and CNN-HAE methods with 𝑑 = 5. The POD
and the CNN-HAE modes are already ranked and we also perform the

ordering procedure for the CNN-AE modes. A clear resemblance can be
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Fig. 6. The ranked spatial modes obtained from the CNN-𝛽VAE (a), POD (b), CNN-AE (c), and the CNN-HAE (d). The size of the latent vector 𝑑 is equal to 5.
observed between the first two modes of the CNN-𝛽VAE, see Fig. 6(a),
and those from POD, as shown in Fig. 6(b), indicating the ability of
CNN-𝛽VAEs in the extraction of interpretable modes from turbulent
flows. These modes correspond to the large-scale vortex shedding from
around the obstacles into the wake region. Moreover, these results
show that using the ranking procedure it is possible to sort the CNN-
𝛽VAE modes based on their importance for reconstruction. It also can
be seen in Fig. 6(c) that it is extremely difficult to relate CNN-AE
modes to physical processes, a fact that is referred to as the lack of
interpretability. We observe that although the CNN-HAE model is able
to extract large-scale features first, the obtained modes may not be
physically interpretable, as shown in Fig. 6(d).

Algorithm 2: Ranking the CNN-𝛽VAE modes.
Model trained encoder  and decoder  of the CNN-𝛽VAE.
Data 𝒙
Initialize 𝑱 vector containing indices of the ranked modes.
𝒅 ← vector containing indices of the modes.
𝝁, 𝝈, 𝜺 ← (𝒙)
𝒓 ← 𝝁
for 𝑗 𝐢𝐧 𝒅 ∶

Initialize 𝑬
for 𝑖 𝐢𝐧 𝒅[∼𝑱 ] ∶

𝑰 ← [𝑖,𝑱 ] # concatenation
𝒓̂𝑖 ← zero out all the latent variables except members of 𝑰
𝒙̃𝑖 ← (𝒓̂𝑖)
𝑬 ← 𝐸𝑘(𝒙, 𝒙̃𝑖) # append

𝑱 ← 𝒅[∼𝑱 ][argmax(𝑬)] # append
Output: 𝑱

4.3. Comparison of CNN-AE-based models

In previous sections, we proposed CNN-𝛽VAEs for modal decom-
position of turbulent flows and showed their ability in the extraction
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of near-orthogonal and parsimonious modes. Here, we compare the
performance of CNN-𝛽VAEs with that of CNN-HAEs, CNN-AEs and POD
in terms of reconstruction accuracy and orthogonality of the latent
variables. We select 𝑑 = 5 as the size of the latent vector for all models.
For the CNN-𝛽VAE we use 𝛽 = 10−3. Fig. 7 shows the reconstruction of
the first time step in the dataset obtained from different methods in
comparison with the reference data. It can be observed that a more
accurate reconstruction can be obtained using NN-based methods in
comparison with 5 POD modes due to the introduction of non-linearity
in the algorithm. The CNN-AE model leads to the best reconstructions
with 𝐸𝑘 = 94.22% while 32.41% of the energy is captured by the 5 POD
modes. Both CNN-HAE and CNN-𝛽VAE models also lead to excellent
reconstructions with 𝐸𝑘 of 91.84% and 87.36%, respectively, which
are slightly lower than that of the CNN-AE. For the CNN-𝛽VAE, it is
due to the fact that the regularization with the KL term in the 𝛽-VAE
loss function, Eq. (15), induces a trade-off between the reconstruction
quality and learning independent representations. However, our results
show that excellent reconstructions can be obtained using all the three
CNN-AE-based models leading to 𝐸𝑘 of about 90% using only 5 modes.

The reconstruction results are also reported in a detailed area
between the two obstacles in Fig. 8 to provide a clear insight into the
fidelity of the reconstructions. It can be seen that although some small-
scale features are lost, all three CNN-AE models are able to preserve
the dominant structures of the turbulent flow. However, POD cannot
reconstruct the turbulent flow properly from 5 modes.

Next, we compare the independence of the latent variables ob-
tained from different methods. As we discussed in Sections 2.2 and
4.1, orthogonality of the modes is a useful property for flow analysis,
reduced-order modeling and flow control. Moreover, motivating the
orthogonality of the modes may lead to interpretability. Results are
depicted in Fig. 9 as the absolute value of the correlation matrix 𝐑
corresponding to the latent variables from the CNN-HAE, CNN-AE,
CNN-𝛽VAE with 𝑑 = 5, and also POD with 5 modes. It can be seen
that although the CNN-HAE model extract modes in the order of their
contribution in the reconstruction, the latent variables are correlated
leading to the lowest value for det𝐑 among all methods. As mentioned

above, it is possible to motivate the disentanglement or independence
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Fig. 7. Reconstruction of the fluctuating component of the streamwise velocity obtained from different methods, as indicated in each panel, in comparison with the reference
data. The value in brackets on each panel indicates the obtained 𝐸𝑘.
Fig. 8. Reconstruction of the fluctuating component of the streamwise velocity ob-
tained from different methods, as indicated on each panel, in comparison with the
reference data for the zoomed-in area between the two obstacles marked by the red
rectangle.

of the latent variables using CNN-𝛽VAEs and obtain near-orthogonal
modes. It can be observed that the correlation between the latent
variables is reduced for the CNN-𝛽VAE in comparison to that of the
CNN-AE, where det𝐑 is equal to 99.20 for the CNN-𝛽VAE method and
87.59 for the CNN-AE technique.

5. Summary and conclusions

In this study, we propose a probabilistic deep-neural-network archi-
tecture based on 𝛽-VAEs and CNNs for non-linear mode decomposition
of turbulent flows. The objective is to learn a compact, near-orthogonal
and parsimonious latent representation of high-dimensional data by
introducing non-linearity in the process of dimension reduction and
also minimizing the correlation between the latent variables, as well
as penalizing the size of the latent vector. This may lead to a set of
interpretable modes useful for flow analysis, reduced-order modeling
and flow control. Since the correlations among the learned latent vari-
ables are minimized, we proposed an algorithm to rank the VAE-based
modes based on their contribution to the reconstruction. We applied
the proposed CNN-𝛽VAE architecture for modal decomposition of the
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turbulent flow through a simplified urban environment. Furthermore,
we compared the performance of the CNN-𝛽VEs in terms of the quality
of the reconstructions and orthogonality of the extracted modes with
that of the CNN-AEs and CNN-HAEs. The flow-field data were obtained
from a well-resolved large-eddy simulation (LESs) database (Torres,
2021; Torres et al., 2021). Our results from modal decomposition using
POD indicates that 247 modes are required to obtain 99% of the
energy from the reconstruction. This indicates that it is challenging
to represent turbulent flows as a linear superposition of a few POD
modes. Our proposed CNN-𝛽VAE model with a latent vector size 𝑑 = 5
and a penalization factor of 𝛽 = 10−3 leads to 𝐸𝑘 of 87.36% against
32.41% obtained from POD, which shows the excellent performance of
the CNN-𝛽VAE in the reconstruction of the turbulent flow from only
five modes. This model also leads to near-orthogonal modes, where
det𝐑 is equal to 99.20. We showed that by constraining the shape
of the latent space and motivating orthogonality of the modes, we
can extract meaningful non-linear features where the first mode of
this CNN-𝛽VAE model represents the large-scale vortex shedding from
around the obstacles into the wake. Moreover, we investigated the
effects of the size of the latent vector 𝑑 and the penalization factor
𝛽 on the performance of the model. Our results indicate the ability
of the CNN-𝛽VAEs in learning a minimal (parsimonious) set of near-
orthogonal modes which are required for reconstruction, where the
penalization encourages the model to minimize the number of learned
latent variables and it does not change by increasing 𝑑. Moreover, we
observed that there is a trade-off between the reconstruction accuracy
and the quality of learning independent representations. Our results
showed that a lighter constrain on the capacity of the latent infor-
mation leads to a slightly better reconstruction while allowing more
correlations among the latent variables. Our comparison between the
CNN-𝛽VAE, CNN-HAE, and CNN-AE models indicates that although
motivating orthogonality of the modes decreases the reconstruction
accuracy, very good reconstructions can be obtained from five modes
using the CNN-𝛽VAE leading to 𝐸𝑘 of 87.36% against 93.93% and
91.84% of the CNN-AE and the CNN-HAE, respectively. The CNN-𝛽VAE
model leads to a set of near-orthogonal modes with the highest det𝐑
among the AE-based models.

The proposed CNN-𝛽VAE architecture can be extended in future
works for the development of reduced-order surrogate models or ad-
vanced flow-control methods, among others. In particular, the proposed
method can be employed for non-linear modal decomposition of the
data obtained from thermal-imaging cameras in complex urban envi-
ronments, with extensive application in the context of urban air-quality
forecast and control.
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Fig. 9. Correlation matrix 𝐑 for the latent variables obtained from different models as indicated on the panels. The value in brackets indicates the corresponding det𝐑 for each
case.
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