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Abstract

We examine the empirical performance of using Fibonacci retracements as a tool
in technical analysis. To this end, we propose a novel methodological approach of
constructing zones around Fibonacci Support and Resistance levels, in an attempt to
address the inherent subjectivity associated with drawing and assessing these levels
on a chart. Our empirical results provide no support for the use of Fibonacci levels
in technical analysis, when applied on three main equity markets. In particular, we
find that prices are equally likely to bounce on Fibonacci levels as they are to bounce
on non-Fibonacci levels. Importantly, a trading rule based on Fibonacci levels fails
to outperform a strategy based on randomly selected non-Fibonacci levels. We
also report a positive relationship between the width of a Fibonacci zone and the
probability of identifying a price bounce, although trading performance remains
poor irrespective of the width selected.
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1 Introduction

Academics and investment practitioners have long debated the merits of technical analysis.
The investment community has generally held the belief that studying the history of prices
and volumes in technical analysis can lead to meaningful, and by extension profitable,
inferences about the future evolution of prices. As a result, investment managers and
traders have traditionally used various technical indicators such as support and resistance
levels, filter rules, channel breakouts, moving averages, and candlestick charts, in order
to detect patterns in stock markets.1 For instance, Kavajecz & Odders-White (2004)
argue that “virtually all investment banks and trading firms are employing some technical
trading strategies”.

At the other end, much of the academic literature has historically been based on the
hypothesis of efficient markets. In this context, technical analysis cannot consistently
lead to profitable investment opportunities, since current prices already incorporate all
available information. If technical analysis could provide any incremental information
about future prices, this would effectively lead to investors earning excess profits at min-
imal risk, a situation that is impossible to reconcile with traditional equilibrium models
of asset pricing. In the current paper, we contribute to this on-going debate about the
place of technical analysis in investment decisions, with particular emphasis on a specific
technical analysis tool, namely Fibonacci retracements.

Out of this debate between academics and practitioners, a substantial literature has
emerged that examines empirically whether technical analysis can successfully predict fu-
ture prices and, ultimately, whether technical trading strategies offer returns in excess of
their exposure to well-recognized sources of risk. Given the large number of different tech-
nical trading rules that have been examined, as well as the different periods and markets
that have been considered, the empirical evidence is relatively mixed. For example, Allen
& Karjalainen (1999), Ratner & Leal (1999), Jegadeesh (2000), Detolleneare & Mazza
(2014), and Psaradellis et al. (2019) examine a large set of technical trading rules across
multiple markets and find that they do not consistently offer abnormal profits. At the
other end, Menkhoff (2010), Moskowitz et al. (2012), Han et al. (2013), and Avramov
et al. (2018) provide evidence of trading rules offering abnormal returns that are statisti-
cally and economically significant. Other studies hold the relative middle ground, arguing
that technical analysis can lead to abnormal profits in specific markets and under certain
conditions (see, for example, Hsu et al. 2010, Marshall et al. 2017).

Support and Resistance (S&R) levels represent one of the most commonly used tools
in technical analysis. These S&R levels refer to certain price thresholds at which a previ-
ous trend is expected to stop and reverse, at least temporarily (Pring 2014). For instance,
when prices follow a downward trend and reach a support level, then the price finds “sup-
port” and it is expected to revert to a higher level instead of continue falling. Similarly,

1See Sullivan et al. (1999) for an in-depth discussion of a large universe of 7,846 trading rules.
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when prices follow an upward trend and reach a resistance level, then the price encoun-
ters “resistance” and it is expected to revert to a lower level rather than continue moving
upwards and breaking through that threshold.

Several ways have been proposed to identify Support and Resistance levels in technical
analysis. Arguably the most common approach is to determine S&R levels by using local
minima or maxima that were realized during a preceding time interval. Trading rules
that are based on these S&R levels are typically referred to as “trading range breakouts”,
and several studies have examined their performance in various markets, with relatively
mixed results (Brock et al. 1992, Hudson et al. 1996, Sullivan et al. 1999, Kavajecz &
Odders-White 2004, Marshall et al. 2008a,b). Zapranis & Tsinaslanidis (2012) expand
this framework and propose a rule-based method that identifies each support or resistance
level by jointly considering multiple historical locals instead of just one. Another approach
refers to applying simple arithmetic rules to establish S&R levels, such as the 50% rule
(bisection), and the 33.3%-66.6% rule (trisection) (Pring 2014). Finally, an alternative
approach used to establish Support and Resistance levels is motivated by recent research in
behavioral science. For example, Osler (2000) highlights a preference for round numbers,
with firms being significantly more likely to publish S&R levels ending in 0 or 5 than if
they had been chosen at random, while Doucouliagos (2005) reports evidence of certain
price levels acting as psychological barriers.

In this paper, we focus on a particular approach for determining Support and Resis-
tance levels, namely Fibonacci retracements. These S&R levels describe by how much
prices have retraced after a preceding significant trend by dividing the distance between
two extreme price points on a chart with key Fibonacci ratios, which are based on the
well-known sequence of Fibonacci numbers. A hypothetical ratio of 0% represents the
start of the retracement, while a ratio of 100% represents the extreme case where prices
have fully reverted to their original level from before the trend had started. In our em-
pirical analysis, we explore the performance of trading rules that are based on four key
Fibonacci ratios, namely 23.6%, 38.2%, 61.8%, and 100.0%.

We contribute to the literature in two main ways. First, we provide a thorough eval-
uation of Fibonacci retracements as a tool in technical analysis. A limited number of
previous studies have examined the performance of trading rules based generally on Sup-
port and Resistance levels. However, these studies have typically examined S&R levels
that are drawn based on other approaches, usually triggered by prices reaching local lows
or highs. This absence of empirical evidence on Fibonacci retracements is somewhat
surprising, given that they have been commonly used by investment practitioners. We
attempt to fill this gap in the literature by providing an empirical analysis of the prob-
ability of prices bouncing on Fibonacci vs non-Fibonacci levels using logistic regressions
with bootstrapped standard errors. We also evaluate the performance of a technical trad-
ing rule that is based on Fibonacci retracements against the benchmark of trading on
non-Fibonacci S&R levels.
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Second, we contribute to the literature by proposing a new methodological approach
for determining Support and Resistance using Fibonacci zones instead of levels. This
novel approach is motivated by the inherent subjectivity of the process of identifying price
trends and, consequently, drawing S&R levels on a chart. Different traders are likely to
identify different starting and ending points for a preceding trend, even if they are looking
at the same price chart. Therefore, the resulting S&R levels will be characterized by some
level of subjectivity and vary across different traders, even though they are all constructed
based on the same predetermined Fibonacci ratios. We argue that establishing a zone
around a Fibonacci level can address some of this inherent subjectivity, by allowing for
a range of prices that represent Support and Resistance levels. In addition, although our
empirical application is based on Fibonacci levels, the general approach of constructing
zones around levels can be applied to any other type of S&R levels.2

We examine the effectiveness of using Fibonacci retracements as a technical trading
rule across stocks trading in three main indices, namely the Dow Jones and NASDAQ
indices in the US, and the DAX index in Germany. Overall, our empirical results provide
no support for the use of Fibonacci retracements in technical analysis, consistent with the
large stream of the literature that finds no evidence of technical trading rules consistently
producing abnormal profits. We find that estimating a logistic regression of bounce prob-
abilities against a dummy for Fibonacci zones results in statistically insignificant slopes
across the three sample equity markets. In other words, the probability of prices bouncing
on a Fibonacci zone is statistically indistinguishable from the probability of prices bounc-
ing on any other non-Fibonacci zone. This empirical finding casts substantial doubt on
the main argument behind the use of Fibonacci levels, which states that prices are espe-
cially likely to bounce back when they reach these specific threshold levels. In the end,
the fact that prices are not more likely to find support or resistance on Fibonacci levels
compared to any other arbitrary selected price level makes it unlikely that Fibonacci S&R
levels can help traders forecast the future evolution of prices.

More importantly, we find that a trading rule that is based on Fibonacci S&R zones
fails to outperform a benchmark trading rule that is based on random non-Fibonacci
S&R zones. In this sense, an investor who trades based on Fibonacci zones would not
necessarily have performed poorly relative to the overall market, but they would have
done equally well by simply trading based on randomly selected non-Fibonacci zones.
Although this finding is not unexpected, given that prices had been previously shown
to be equally likely to bounce on Fibonacci and non-Fibonacci zones, it offers further
grounds to reject the use of Fibonacci retracements in technical analysis based on their
actual trading performance.

Finally, our results provide support for the hypothesis that constructing wider Fi-
bonacci zones results in higher probabilities of identifying price bounces. More specifi-

2Our approach of constructing zones around Fibonacci levels is similar, albeit not identical, to the use
of a fixed percentage band filter in Sullivan et al. (1999).
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cally, we estimate a logistic regression of bounce probabilities against dummy variables for
different levels of the fixed percentage used in order to construct zones around Fibonacci
levels. After estimating this model separately for stocks trading in each of the three
equity indices in our sample, we find that the resulting slopes are consistently positive,
statistically significant, and monotonically increasing across the zone width. This finding
confirms the simple intuition that the wider the zone that has been constructed around
a Fibonacci level, the more likely one is to detect price bounces. We interpret this find-
ing in terms of wider zones reflecting greater analyst subjectivity and uncertainty about
the “true” price trend. Nevertheless, trading on Fibonacci S&R zones ultimately fails to
produce abnormal profits, irrespective of the zones’ width, due to the failure of Fibonacci
levels to reflect genuine thresholds where prices are more likely to bounce compared to
any other random non-Fibonacci levels.

The rest of the paper is organized as follows. Section 2 discusses the data used in the
empirical analysis and presents the methodology for constructing Fibonacci S&R levels
and zones. Section 3 presents the empirical results, and Section 4 concludes.

2 Data and Methodology

We examine a large dataset of individual stocks trading in three main equity indices,
namely the Dow Jones (30 stocks), the German DAX index (30 stocks), and NASDAQ
(100 stocks). Our dataset essentially consists of large “blue chip” stocks trading in the
US and Europe, in line with the existing empirical literature on technical analysis that
predominantly focuses on stocks that are the most likely to be followed by a large number
of analysts. The sample period runs from January 1968 to March 2019, for a total in
excess of 50 years. All stock market data was obtained from Bloomberg.

The dataset contains, among other fields, the daily prices of individual stocks trading
in the three indices. Hereafter the following notation will be used: for a given stock,
let Open[t], Close[t], High[t] and Low[t] be the open, close, high and low price at day
t = 1, . . . , T .

The first step in our methodology is the identification of local peaks and bottoms.
Similarly to Dempster & Jones (2002), we apply a rolling window where each observation
j is compared against a window defined by the ωL preceding observations and the ωR

subsequent observations. As a result, our rolling window is not necessarily centered around
the particular observation that is being assessed. Let pi and bi be the days that local peaks
and bottoms appear respectively. For each sample stock, we identify the ith local peak on
day pi if the high price of that day is greater than the prices that have been observed during
the previous ωL days and at least as high as the prices observed during the subsequent
ωR days, satisfying

High[pi] > max
pi−ωL≤j<pi−1

High[j], (1)
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and

High[pi] ≥ max
pi+1<j≤pi+ωR

High[j]. (2)

Similarly, we identify a local minimum on day bi if the low price of that day is lower
than the prices that have been observed during the previous ωL days, and at least as low
as the prices observed during the subsequent ωR days, satisfying

Low[bi] < min
bi−ωL≤j<bi−1

Low[j], (3)

and

Low[bi] ≤ min
bi+1<j≤bi+ωR

Low[j]. (4)

The use of a non-fixed rolling window [ωL, ωR] allows for a more flexible framework
to identify local maxima and minima, compared to using a fixed-length rolling window.
In this sense, the specific window length can be amended from one period to the other
in order to identify trends that are shorter- or longer-term. In addition, the [ωL, ωR]
window does not necessarily need to be symmetric. For instance, one can select a post-
day window that is narrower than the pre-day window (i.e. ωL > ωR) in order to place a
greater emphasis on the analysis of trading signals shortly after the confirmation of the
immediately previous trend.3

The next step in our methodolgy involves using these previously identified locals in
order to determine the trend that precedes a Fibonacci retracement level. To do this,
we adopt the definition of the market-technical trend proposed by Maier-Paape (2015),
who defines an up-trend as a series of prices with monotonically increasing lows and
strictly monotonically increasing highs. Following this principle, we identify an up-trend
when at least the last two consecutive lows as well as the last two consecutive highs have
been rising. More specifically, to identify an up-trend we search for a sequence of four
interchangeable locals (b∗1, p

∗
1, b

∗
2 and p∗2) that satisfy the following conditions

High[p∗2] > High[p∗1] (5a)

Low[b∗2] ≥ Low[b∗1] (5b)

b∗1 < p∗1 < b∗2 < p∗2 (5c)

Similarly, we identify a down-trend when at least the last two consecutive lows as
well as the last two consecutive highs have been falling. In other words, we search for a
sequence (p∗1, b

∗
1, p

∗
2 and b∗2) such that

3Tsinaslanidis & Zapranis (2016) provide a detailed discussion of several alternative methods for
identifying local peaks and bottoms.
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High[p∗2] ≤ High[p∗1] (6a)

Low[b∗2] < Low[b∗1] (6b)

p∗1 < b∗1 < p∗2 < b∗2 (6c)

Once we have identified the preceding upward or downward trend, we continue by comput-
ing the respective Fibonacci Support and Resistance (S&R) levels.4 In our empirical anal-
ysis, we consider the four most commonly adopted Fibonacci retracement levels, namely
{Lk}3k=0 = {100%, 61.80%, 38.20%, 23.61%}5 and a rolling window [ωL = 20, ωR = 10].6

For each up-trend (defined by the four locals b∗1, p
∗
1, b

∗
2 and p∗2), we transform the respective

lows/highs and map them on to the four Fibonacci levels. More specifically, we compute
the transformed lows and highs (RL and RH , respectively) as follows

RL,t =
High[p∗2]− Low[t]

High[p∗2]− Low[b∗1]
, (7)

and

RH,t =
High[p∗2]− High[t]

High[p∗2]− Low[b∗1]
. (8)

In order to avoid the issue of look-ahead bias, these calculations are based on prices that
are observed after the end of the rolling window that had been previously used to identify
the locals ωR. In other words, equations (7) and (8) are estimated for time t > p∗2 + ωR.
It is also worth noting that there is an upper limit for t too. For a given preceding trend,
equations (7) and (8) are not calculated until the end of the time series. Rather, the
algorithm stops when one of the following conditions has being met; (i) the entire candle
moves to a negative area (RL,t < 0) which signals the continuation of the preceding

4The Fibonacci sequence is a series of numbers such that each number is given as the sum of the
previous two numbers, i.e. Fn = Fn−1 +Fn−2,∀n ∈ N>1. In particular, the Fibonacci numbers are given
by the sequence {Fn}∞n=0 = {0, 1, 1, 2, 3, 5, . . .}. The analytical expression of the Fibonacci sequence can
be written as

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

,∀n ∈ N0.

5The four Fibonacci retracement levels result from the following expression

lim
n→∞

Fn

Fn+k
, for k = 0, 1, 2, 3

6Results obtained with different values for ωL and ωR are qualitatively the same and, thus omitted
for brevity but available upon request.
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uptrend or (ii) the entire candle is above 120% (RH,t > 1.2) which signals a retracement
beyond 100% and thus a trend reversal.7

The mirrored process can be used for the case of the preceding downward trend which
is characterised by the four locals p∗1, b

∗
1, p

∗
2 and b∗2. More specifically, in this case (7) and

(8) become

RL,t =
Low[t]− Low[b∗2]

High[p∗1]− Low[b∗2]
, (9)

and

RH,t =
High[t]− Low[b∗2]

High[p∗1]− Low[b∗2]
, (10)

respectively, for time t > b∗2 + ωR and until (RH,t < 0) (RL,t > 1.2).
We use the Fibonacci retracement levels as price zones rather than as precise price

points (see also Zapranis & Tsinaslanidis 2012). On this issue, Bulkowski (2003) argues
that “Support and resistance are not individual price points, but rather thick bands of mo-
lasses that slow or even stop price movement”. More specifically, we convert the individual
Fibonacci price levels {Lk} to price zones {Zk} ≡

[
Z−

k ,Z
+
k

)
by adding and subtracting a

fixed percentage ζ, i.e. Z−
k = Lk − ζ and Z+

k = Lk + ζ.8 Overall, this approach results in
the construction of a set of intervals of the form

[
Z−

k ,Z
+
k

)
⇒ {x ∈ R : Z−

k ≤ x < Z+
k }.

These intervals are constructed so that no two intervals have an interior point in common.
To ensure no overlap between Fibonacci price zones, the fixed percentage ζ is constrained
to take positive values that are lower than 7.295%.9

After having constructed the Fibonacci price zones, the last step of our methodology
involves identifying hits. In general, a hit describes the case where prices enter a Fibonacci
zone. Once this happens, we then classify this case as a bounce or as a failure depending
on whether subsequent prices retrace back or not, respectively. For instance, consider
first the case where a Fibonacci retracement level has been preceded by an up-trend. In
order to evaluate the performance of K = 4 Fibonacci levels, we define 2K + 1 = 9 price
intervals (bins) {Bj}2K+1

j=1 by using 2K + 2 edges {Ej}2K+2
j=1 . In particular, for the specific

7The additional 20% in condition (ii) was set to allow for the assessment of the price behaviour on
the 100% Fibonacci zone.

8For example, consider the specific case of ζ = 1%. In this case, the respective Fibonacci price zones
are given as

{Zk} = {[Lk − 1%, Lk + 1%)}
= {100%± 1%, 61.80%± 1%, . . . , 23.61± 1%}
= {[99%, 101%) , [60.8%, 62.8%) , . . . , [22.61%, 24.61%)}

9The upper bound of 7.295% for the fixed percentage ζ is determined by the minimum distance between
any two consecutive Fibonacci levels. When we consider the first four Fibonacci levels, this minimum
distance appears between L2 and L3 and is L2 − L3 = 38.20% − 23.61% = 14.59%. Therefore, in order
to avoid any overlap, the fixed percentage needs to satisfy ζ < 14.59%/2 = 7.295%.
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case of four Fibonacci retracement levels and a fixed percentage ζ = 1%, the bin edges
are given by

{Ej}10j=1 = {−∞,Z−
3 ,Z+

3 ,Z−
2 ,Z+

2 ,Z−
1 ,Z+

1 ,Z−
0 ,Z+

0 ,+∞}
= {−∞, 22.61%, 24.61%, . . . , 99%, 101%,+∞}

(11)

We then group the lower and upper retracement levels RL,t and RH,t from (7) and (8)
(hereafter collectively referred to as Rt) into these bins as follows

Bj ∋ Rt

{
Ej ≤ Rt < Ej+1, j ̸= 1

Ej < Rt < Ej+1, j = 1
(12)

For a given up-trend (where Z−
k is above Z+

k ), a support hit is identified when low
prices penetrate from above the lower limit point Z−

k of the Fibonacci zone {Zk}.10 Also,
given the specific way in which the bins have been constructed, Bj would correspond to
a Fibonacci zone only when j is an even number. To illustrate this, Table 1 presents
the mapping of the main mathematical expressions used in defining hits onto the specific
example of an up-trend with K = 4 and ζ = 1%.

[Table 1 about here.]

Furthermore we define the variables BL,t and BH,t to index the bin that contains
RL,t and RH,t respectively, i.e. Bj ∋ RL,t ⇒ BL,t = j and Bj ∋ RH,t ⇒ BH,t = j. It
is worth noting that prices may hit more than one Fibonacci zone on the same day,
especially if these zones are relatively close to one another (such as Z2 and Z3). For
example, it is possible for prices to breach Z3 and then hit Z2, or to even breach both
zones.11 Therefore, in order to capture these cases of multiple hits on the same day, when
BL,t > BL,t−1 a hit is assigned to every Fibonacci zone that corresponds to Bj∗, on day t
when BL,t ≥ j∗ > BL,t−1 : j

∗ is even.
Finally, bounces and failures are defined as follows. After each hit, we find (i) the first

time (if any) that the low price belongs to a lower bin and (ii) the first time (if any) that
the high price belongs to a higher bin than the one that corresponds to the Fibonacci zone
under evaluation. Then, a bounce refers to the case where event (i) occurs first, while a
failure refers to the case where event (ii) occurs first.

Figure 1 presents an illustrative example of our methodology, applied on data for the
stock of Home Depot (HD), which is listed in the Dow Jones index. A preceding up-trend,
defined by a sequence of four locals (b∗1, p

∗
1, b

∗
2 and p∗2), can be easily seen in the Figure. In

particular, four Fibonacci levels and their corresponding zones (see Table 1) are plotted

10Figure 1 depicts an example of such a case, where Z−
3 = 22.61% is located above Z+

3 = 24.61%.
11For example, consider a low price at time t− 1 that falls into bin B1 (i.e. BL,t-1 = 1), and RL,t ∈ B4

(i.e. BL,t = 4). In this case, a hit is assigned to both Fibonacci zones Z3 and Z2. The assessment of
whether prices bounced or penetrated these zones is carried out separately.
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on the same graph. Figures 2, 3 and 4 focus on the ‘A’, ‘B’ and ‘C’ areas of Figure 1, and
they depict with green triangles the cases where prices bounce on a Fibonacci zone and
with red triangles the cases of failures. The direction of the triangle shows the direction
prices follow after a hit. For instance, an upward green triangle shows a case where
prices bounce on a support level, while a red upward triangle shows a case where prices
penetrate a resistance level (failure). Similarly, green downward triangles depict bounces
on resistance levels, while red downward triangles depict failures on support levels.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

3 Empirical results

3.1 Bounces on Fibonacci vs non-Fibonacci zones

We begin the empirical analysis by examining whether, for a given value of ζ, prices are
more likely to bounce on a Fibonacci zone {Zk} compared to the probability of bouncing
on a non-Fibonacci zone (hereafter denoted by {Z∗}). To this end, we estimate the
following logit model

ln

(
Pi

1− Pi

)
= logitPi = θ1 + θ2DFib + ui (13)

where Pi is the probability that, after a hit occurs, prices will bounce on the correspond-
ing zone, and DFib is a dummy variable that takes the value of one when prices hit on
a Fibonacci zone and the value of zero otherwise. Given how the logit model has been
structured, the reference category refers to cases where hits occur in a non-Fibonacci zone.
The intercept θ1 reflects the log-odds in favor of the price bouncing on any non-Fibonacci
zone, while the slope θ2 reflects how the log-odds in favor of a bounce change when prices
bounce on a Fibonacci zone. Our null hypothesis is that prices are equally likely to bounce
on a Fibonacci zone as they are to bounce on a non-Fibonacci zone. Therefore, a statis-
tically significant θ2 would constitute evidence against this null hypothesis, indicating a
statistically different behavior of prices in {Zk} relative to {Z∗}.

One challenging aspect of estimating the logit model in (13) refers to the fact that,
while Fibonacci zones are specific and finite, possible non-Fibonacci zones are infinite. As
a result, identifying non-Fibonacci cases to use as an input in (13) is far from straigh-
forward. To address this issue, we adopt the following bootstrap approach. First, we
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construct a sample of price hits where half of these hits are on the Fibonacci zones and
the other half are on non-Fibonacci zones. To construct this sample, we randomly choose
with replacement cases of preceding trends from all stocks composing the market index
under consideration. For every randomly selected case, we consider the four Fibonacci
zones {Zk}3k=0 plus one non-Fibonacci zone Z

∗, such that L∗ ∼ U(0, 1) and | L∗−Lk |≥ 2ζ,
for k = 0, 1, 2 and 3. The latter condition is set to avoid Z∗ overlapping with any Zk,
so as to ensure that it is indeed a non-Fibonacci zone. After recording the number of
price bounces and failures in the constructed sample, the process is repeated until we
have created a sample of size n that is composed by at least n/2 hits on Zk and n/2 hits
on Z∗. Then, we randomly select and discard hits from both categories in this sample
until the final sample is composed of exactly n/2 hits on Zk and exactly n/2 hits on Z∗.
This final sample is used to estimate the logit regression in (13). Finally, this procedure
is repeated 500 times, and the distribution of the estimated slopes θ2 is used to construct
bootstrapped 95% confidence intervals (CIs).

Figures 5, 6 and 7 present the bootstrapped 95% CIs for θ2 with respect to stocks in the
DOW, DAX and NASDAQ indices, respectively. The estimated CIs are based on various
sample sizes (ranging from 500 to 10,000), with 500 bootstrap repetitions. Furthermore,
we consider the special case of ζ = 0%, which corresponds to Fibonacci levels rather
than zones, as a simple starting point before we turn our attention later to the effect of
different levels of ζ on our empirical results. For robustness, we use three alternative ways
of constructing CIs, namely the basic percentile approach, the studentized CI approach,
and the normal approximation approach.

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

As can be seen from these Figures, the resulting CIs are qualitatively similar under
all three approaches. More importantly, we cannot reject the null hypothesis of equal
probabilities at the 5% significance level. Although increasing the sample size results in
narrower confidence intervals due to the lower dispersion of the θ2 distribution, all the
reported 95% CIs still contain the null value of zero. In other words, the probability of
prices bouncing on Fibonacci levels is statistically indistinguishable from the probability
of bouncing on non-Fibonacci levels.

Moving from Fibonacci levels to zones, Table 2 reports the results of estimating the
logit model in (13), but across different values of the fixed percentage ζ (namely 0%, 2%,
4%, and 6%). Bootstrapped confidence intervals are obtained using a sample size of 10,000
observations, across 500 repetitions. Similarly to the previous results on Fibonacci levels,
prices appear to be equally likely to bounce of Fibonacci zones as they are to bounce
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on non-Fibonacci zones when we look at the first three values for ζ (0%, 2%, 4%). In
particular, bootstrapped 95% CIs for θ2 consistently contain the null of zero, indicating
statistically indistinguishable log-odds of price bounces on Fibonacci zones relative to
non-Fibonacci zones when we set ζ equal to either 0%, 2%, or 4%. Interestingly, we find a
statistically significant decrease in the log-odds when we set ζ equal to the higher value of
6%. This finding constitutes even stronger evidence against using Fibonacci zones since
it implies that, when wider S&R zones are considered, prices are in fact significantly more
likely to bounce on non-Fibonacci zones compared to Fibonacci zones. We further explore
the impact of setting the fixed percentage ζ at different levels in subsection 3.3.

[Table 2 about here.]

3.2 Trading rule profitability

Our previous empirical results showed that prices are at best as likely, if not actually less
likely, to bounce on a Fibonacci zone compared to a non-Fibonacci zone. Therefore, these
findings appear to cast substantial doubt on the merits of using Fibonacci levels or zones
to predict the future movements of stock prices. In order to get a better understanding of
the informational content of Fibonacci zones, we proceed by investigating the performance
of a Fibonacci-based trading rule.

More specifically, we evaluate the performance of a trading rule that is based on
Fibonacci zones against the benchmark of a trading rule that is based on non-Fibonacci
zones. Under both trading rules, once a hit on a respective zone (Fibonacci or non-
Fibonacci) has been identified on day t − 1, a trading position is opened at the opening
price offered on the following day t. The trading position is long when prices hit on a
support zone, and short when they hit on a resistance zone. We evaluate performance
by computing returns for multiple holding periods of j + 1 days (j = 0, . . . 20), assuming
that positions for each holding period are closed at the closing price of that period’s last
day. Then, the [j + 1]-period return R[j+1] is computed as

R[j+1] = H
(
Close[t+ j]− Open[t]

Open[t]

)
(14)

where H takes the value of 1 or -1 when the opening position of the trade is long or
short, respectively. Similarly to Section 3.1, 500 samples of 10,000 hits each are randomly
created from the components of the market index under consideration. Half of these hits
are on Fibonacci zones with the other half on non-Fibonacci zones. Then, we compute the
difference between the mean holding-period return of the Fibonacci and the non-Fibonacci
trading rules across multiple holding periods.

Figure 8 plots the mean differences in the returns of the two trading rules across
multiple holding periods when applied on stocks listed in the Dow Jones index. Each
subplot depicts separately the mean return differences under four different values of ζ,
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namely 0%, 2%, 4%, and 6%.12 Unsurprisingly, mean returns and return variance seem to
be higher when we consider longer holding periods. Also, higher values of ζ are associated
with slightly higher returns, although differences are statistically insignificant and even
less evident when we convert total-period returns to equivalent mean daily returns in
Figure 9.

More importantly, the differences in the mean returns of trading rules based on Fi-
bonacci vs non-Fibonacci zones are statistically insignificant at the 5% level, as evidenced
by bootstrapped CIs that consistently contain the null value of zero. In other words, an
investor who trades according to hits on Fibonacci zones would have earned statistically
the same mean return as another investor who simply trades based on hits on random
non-Fibonacci zones. This finding of trading on Fibonacci zones failing to outperform
the benchmark of trading on non-Fibonacci zones is consistent with our previously re-
ported findings of prices generally being equally likely to bounce on either type of zone.
Taken together, these empirical results seem to provide strong evidence for the rejection
of Fibonacci zones as a profitable tool in technical analysis.

[Figure 8 about here.]

[Figure 9 about here.]

3.3 Analyst subjectivity

Our previous results cast substantial doubt on the practice of using Fibonacci levels, or
zones, in technical analysis, considering how prices seem to be equally likely to bounce
on non-Fibonacci zones and that a trading rule based on non-Fibonacci zones performs
equally well as a Fibonacci-based trading rule. Notwithstanding this strong evidence
against the use of Fibonacci zones in general, our results also show that performance
depends on how wide these Fibonacci zones have been selected to be, which is determined
by the choice for the fixed percentage ζ around the respective Fibonacci level.

We argue that ζ can be interpreted as a reflection of analyst (i) inaccuracy when
drawing Fibonacci levels on a chart and (ii) subjectivity when assessing prices vis-a-vis
Fibonacci levels. This visual process is bound to involve a significant level of inaccuracy
and/or subjectivity from the analyst’s side. More precisely, defining starting and ending
points of the preceding trend inaccurately will produce, in turn, inaccurate Fibonacci
levels and hence unreliable inferences. Furthermore, an accurate drawing of Fibonacci
levels is not necessarily followed by an accurate and objective assessment of the price
behaviour on these levels. For example, consider the case where prices retrace as they
approach a given Fibonacci level (say 61.80%). An analyst may subjectively attribute

12Results are qualitatively the same when the trading rules are applied on stocks listed in the DAX
30 and NASDAQ 100 indices. These results have been omitted for brevity, but they are available upon
request.
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this behaviour to the Fibonacci level, even if prices actually retraced at the (relatively
close, but non-Fibonacci) level of 61%. A similar statement in support of our argument
can be found in, Abouloula et al. (2019) where the authors argue that “The Fibonacci
sequence is ideal mathematically, but this method releases noise when included in the
trading graphics”.

Then, the fixed percentage ζ when constructing zones around Fibonacci levels can
serve as a measure of the subjectivity, or inaccuracy, inherent in an analyst’s visual
identification and assessment of a Fibonacci retracement level. In this sense, a tighter
zone around a Fibonacci level would reflect a case where the analyst attaches a relatively
high degree of certainty on the identification of the preceding trend and the assessment
of price behaviour around Fibonacci levels. In contrast, a wider Fibonacci zone would
be indicative of greater uncertainty and subjectivity around the visual identification and
assessment of a Fibonacci retracement level.

We explore the effect of ζ on the probability that prices are bouncing on a support or
resistance zone by estimating the following logit model

ln

(
Pi

1− Pi

)
= logitPi = β1 + β2D0.02 + β3D0.04 + β4D0.06 + ui (15)

where Pi is the probability that, after a hit has occured, prices will bounce on the specific
Fibonacci zone that is constructed using the respective value for ζ. When estimating
(15), the reference category is the case where ζ = 0. Furthermore, the dummy variables
D0.02, D0.04, and D0.06 take the value of one when ζ is equal to 0.02, 0.04, and 0.06,
respectively, and the value of zero otherwise. In this setting, the intercept β1 corresponds
to the log-odds in favor of prices bouncing on a S&R zone when ζ = 0 (i.e. the special
case where zones and levels are identical). The slope coefficients β2, β3, and β4 measure
how the log-odds in favor of a bounce change when we use a fixed percentage ζ equal to
0.02, 0.04, and 0.06, respectively, when constructing Fibonacci zones, compared to the
reference category of using Fibonacci levels (i.e. when ζ = 0).13

We estimate equation (15) separately across the three sample markets (DOW, DAX,
and NASDAQ). Table 3 reports the probabilities Pi that prices will bounce after a hit has
occurred, for different values of ζ. The bounce probability Pi is given as

Pi =

{
eβ1/

(
1 + eβ1

)
, ζ = 0

eβ1+βi/
(
1 + eβ1+βi

)
, ζ ̸= 0

(16)

The results presented in Table 3 suggest a positive relationship between ζ and the
probability of prices bouncing on a level/zone. When considering Fibonacci levels (i.e.

13The fixed percentage ζ is obviously a continuous variable, taking values in the range (0, 7.295%).
Nevertheless, in our empirical analysis we use four distinct values for ζ (namely 0, 0.02, 0.04, and 0.06)
for simplicity, since analysts would be unlikely to consider an infinite number of values when selecting
their preferred level of ζ.
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when ζ = 0), the probabilities of a bounce are equal to 49.08%, 51.89%, and 49.84% for
stocks trading in DOW, DAX and NASDAQ, respectively. The slope coefficients that
capture the change in probabilities from setting ζ to values different than the reference
case of ζ = 0 (i.e. the coefficients β2, β3 and β4) are all found to be positive and statis-
tically significant at any meaningful significance level. Therefore, moving from Fibonacci
levels to Fibonacci zones seems to result in higher log-odds of prices bouncing on a S&R
level. Another interesting finding is that, in all markets considered, the slope coefficients
are monotonically increasing across ζ (i.e. β1 < β2 < β3 < β4), consistent with wider
Fibonacci zones being associated with higher bounce probabilities.

[Table 3 about here.]

An explanation of these findings can be provided by considering the specific approach
that we use to identify hits, bounces and failures (Section 2). For example, consider the
case of a support hit. The minimum requirement for a support hit to be identified is that
low prices breach downwards the upper bound of the zone on a graph. Once this breach
has been observed, a bounce takes place if the low price retraces back to exceed the upper
bound of the zone. Symmetrically, a failure is identified if the high price (i.e. the entire
candle) moves below the lower bound of the zone. For each hit, only one outcome is
recorded (either a bounce or a failure), whichever occurs first. In this setting, a larger
value of ζ will correspond to a wider support zone. Therefore, after a support hit where
low prices are below the upper bound of the zone, but still above the corresponding level,
a bounce will require a smaller price movement than a failure to be identified. In other
words, the probability of a bounce is greater than the probability of a failure in such a
case. Figure 4 depicts a characteristic example of this case.

Overall, our empirical results seem to provide strong support for the intuitive hypoth-
esis that the probability of identifying a bounce increases significantly when we move from
Fibonacci levels to Fibonacci zones, and even more so when we increase the width of these
zones by using a higher value for the fixed percentage ζ. However, this higher probability
of identifying bounces does not necessarily result in a higher profitability from trading on
these bounces, as was highlighted by our previous empirical findings. Ultimately, analysts
are naturally more likely to identify what they perceive to be profitable trading opportu-
nities as they consider wider Fibonacci zones that reflect higher subjectivity/inaccuracy,
but at no significant improvement in their subsequent trading performance.

4 Conclusion

In this paper, we empirically examine the performance of Fibonacci retracements, a widely
applied tool in technical analysis. In order to account for the inherent subjectivity asso-
ciated with analysts identifying price trends and manually drawing Fibonacci levels on a
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chart, we propose a new algorithmic approach of constructing zones around Fibonacci lev-
els. Overall, our empirical results cast substantial doubt on the merits of using Fibonacci
retracements as a stand-alone technical trading tool.

Using a sample of three main equity indices, we document that stock prices are equally,
if not even less, likely to bounce on Fibonacci Support and Resistance levels compared
to randomly selected non-Fibonacci levels. When we consider wider Fibonacci zones,
reflecting a greater degree of analyst subjectivity or inaccuracy, the probability of price
bounces increases, but it is still statistically indistinguishable from the probability of
prices bouncing on non-Fibonacci zones. More importantly, we find that a trading rule
that is based on Fibonacci zones cannot outperform a simple banchmark rule that trades
based on randomly selected non-Fibonacci zones. Taken together, these empirical results
provide strong support against the use of Fibonacci Support and Resistance levels.

The finding that a greater degree of subjectivity, in terms of adopting wider Support
and Resistance zones, is more likely to result in identifying perceived bounces potentially
explains why Fibonacci zones are still widely used by practitioners, even in the absence
of empirical evidence that validates their merits. In this sense, our paper contributes
to the long-standing debate among academics and practitioners on whether technical
trading rules can lead to efficient price forecasts and, by extension, profitable trading
opportunities. In this debate, our results provide further support for the extensive stream
of research arguing that technical trading rules fail to consistently offer profits in excess
of their respective exposure to well-known sources of risk.

We hope that our results will motivate further research into the performance of tech-
nical trading tools. For instance, an interesting avenue for future research could be to
explore the performance of alternative algorithms for identifying locals and/or defining
a preceding trend when establishing S&R levels. Furthermore, our proposed approach
for constructing zones around Support and Resistance levels is flexible and it can be ap-
plied to other technical rules, allowing for a better understanding of the role of analyst
subjectivity in the performance of technical trading tools.
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Table 1: Notation mapping: uptrend case, K = 4 and ζ = 1%.

{Lk} {Zk} =
[
Z−

k ,Z
+
k

)
{Ej}2K+2

j=1 {Bj}2K+1
j=1

L0 = 100% Z0 = [99%, 101%) {E8, E9} B8

L1 = 61.80% Z1 = [60.8%, 62.8%) {E6, E7} B6

L2 = 38.20% Z2 = [37.2%, 38.2%) {E4, E5} B4

L3 = 23.61% Z3 = [22.61%, 24.61%) {E2, E3} B2

Notes: This Table presents the mapping of the main mathematical expres-
sions used in defining hits onto the specific example of an up-trend with
K = 4 Fibonacci levels and a fixed percentage ζ = 1% applied when con-
structing Fibonacci zones. The variable Lk denotes a Fibonacci level, while
Zk denotes the respective Fibonacci zone. Bj denotes the price intervals
(bins) used to evaluate these Fibonacci zones, while Ej denotes the respec-
tive bin edges.
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Table 2: Bounce probabilities on Fibonacci vs non-Fibonacci zones

Panel A: DOW

ζ θ
∗
1 95% CIs θ

∗
2 95% CIs

0.00 -0.027720 [−0.09367, 0.033603] -0.01575 [−0.09213, 0.064036]
0.02 0.442787 [0.385504, 0.514240] -0.03770 [−0.12375, 0.043438]
0.04 0.775993 [0.709090, 0.848250] -0.05201 [−0.14229, 0.041220]
0.06 1.075306 [0.993608, 1.154874] -0.10782 [−0.20144,−0.01350]

Panel B: DAX

ζ θ
∗
1 95% CIs θ

∗
2 95% CIs

0.00 0.095707 [0.026402, 0.157122] -0.02201 [−0.1034, 0.056819]
0.02 0.535797 [0.463314, 0.611136] -0.02687 [−0.10614, 0.054861]
0.04 0.861315 [0.790786, 0.937528] -0.04294 [−0.12535, 0.041686]
0.06 1.150082 [1.064765, 1.226469] -0.10839 [−0.20294,−0.00313]

Panel C: NASDAQ

ζ θ
∗
1 95% CIs θ

∗
2 95% CIs

0.00 0.018314 [−0.04321, 0.080043] -0.02206 [−0.10083, 0.054405]
0.02 0.476861 [0.412971, 0.539947] -0.04202 [−0.12430, 0.037871]
0.04 0.822207 [0.755611, 0.894413] -0.07847 [−0.16984, 0.020357]
0.06 1.124646 [1.044929, 1.213966] -0.13801 [−0.24347,−0.03946]

Notes: This Table reports the results from estimating a logit regression of bounce
probabilities in Fibonacci and non-Fibonacci zones. The results presented refer to
estimating the following logit model

ln

(
Pi

1− Pi

)
= logitPi = θ1 + θ2DFib + ui

where Pi is the probability that, after a hit occurs, prices will bounce on the cor-
responding zone, and DFib is a dummy variable that takes the value of one when
prices hit on a Fibonacci zone and the value of zero otherwise. The logit regression
is estimated separately for different values of the fixed percentage ζ, namely 0.00,
0.02, 0.04, and 0.06. The Table reports the mean intercept, θ

∗
1, and the mean slope,

θ
∗
2, across all the logit estimations, as well as the associated bootstrapped 95% con-
fidence intervals (CIs). Panels A, B, and C present the results when considering
stocks in the Dow Jones, DAX, and NASDAQ indices, respectively. The sample
period runs from January 1968 to March 2019.
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Table 3: Bounce probabilities across different values for ζ

Panel A: DOW
Estimate SE t-stat p-value Pi(%)

(Intercept) -0.0370 0.0092 -4.033 0.000 49.08
β2 0.4705 0.0130 36.162 0.000 60.67
β3 0.7987 0.0132 60.709 0.000 68.17
β4 1.0434 0.0134 77.618 0.000 73.23

χ2-stat vs. constant model: 7.02e+03, p-value = 0
Panel B: DAX

Estimate SE t-stat p-value Pi(%)
(Intercept) 0.0755 0.0121 6.258 0.000 51.89

β2 0.4760 0.0172 27.751 0.000 63.45
β3 0.8021 0.0175 45.935 0.000 70.63
β4 1.0342 0.0179 57.900 0.000 75.21

χ2-stat vs. constant model: 3.93e+03, p-value = 0
Panel C: NASDAQ

Estimate SE t-stat p-value Pi(%)
(Intercept) -0.0064 0.0061 -1.0476 0.295 49.84

β2 0.4733 0.0087 54.326 0.000 61.46
β3 0.7894 0.0088 89.379 0.000 68.63
β4 1.0372 0.0090 115.170 0.000 73.71

χ2-stat vs. constant model: 1.54e+04, p-value = 0

Notes: This Table reports the results of a logit regression of the prob-
ability of prices bouncing against dummy variables for different values
for the fixed percentage ζ when constructing Fibonacci zones and us-
ing ωL = 20, ωR = 10. The results presented refer to estimating the
following logit model

ln

(
Pi

1− Pi

)
= logitPi = β1 + β2D0.02 + β3D0.04 + β4D0.06 + ui

where Pi is the probability that, after a hit has occured, prices will
bounce on the specific Fibonacci zone that is constructed using the
respective value for ζ. The reference category is the case where ζ =
0. The dummy variables D0.02, D0.04, and D0.06 take the value of
one when ζ is equal to 0.02, 0.04, and 0.06, respectively, and the
value of zero otherwise. The Table reports the estimated intercept
and slope coefficients, their standard errors, t-statistics, p-values, and
the expected probability Pi. We also report the model’s χ2-statistic
(and its p-value) against the constant model. Panels A, B, and C
present the results when considering stocks in the Dow Jones, DAX,
and NASDAQ indices, respectively. The sample period runs from
January 1968 to March 2019.
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A
B

C

Figure 1: An illustrative example of bounces and fail-
ures on Fibonacci zones identified after a preceding up-
trend defined by the sequence of b∗1, p

∗
1, b

∗
2 and p∗2. Frames

‘A’,‘B’ and ‘C’ are illustrated separately in Figures 2,
3 and 4.
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Figure 2: Frame ‘A’ of Figure 1. Green triangles indi-
cate bounces, while red triangles indicate failures. The
direction of the triangle shows the direction prices fol-
low after hitting a Fibonacci zone. In this frame, prices
bounce one and three times on the 23.61% and the 38.2%
Fibonacci zones, respectively. In addition, prices failed
to bounce the 38.2% Fibonacci zone one time.
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Figure 3: Frame ‘B’ of Figure 1.Details as for Figure 2.
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Figure 4: Frame ‘C’ of Figure 1. Details as for Figure
2.

25



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Sample size

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

mean

CI Percentile

Studentized CI

Normal approximated CI

Figure 5: Bootstrapped 95% CIs for θ2. For various
sample sizes (500 to 10,000) of hits, model in (13) is es-
timated 500 times and mean values of θ2 along with the
corresponding 95% confidence intervals are illustrated.
Results presented here correspond to price hits from
stocks listed in Dow Jones index.
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Figure 6: Bootstrapped 95% CIs for θ2. Details as for
Figure 5 but for stocks listed in DAX index.
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Figure 7: Bootstrapped 95% CIs for θ2. Details as for
Figure 5 but for stocks listed in NASDAQ index.
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Figure 8: The effect of ζ on multi period returns
for different holding periods. Each subplot presents
the distributions (as boxplots) of mean differences be-
tween the returns obtained from trading on Fibonacci
zones against those obtained from trading on non-
Fibonacci zones. Each boxplot corresponds to a dif-
ferent holding period and each subplot to a different
ζ value.
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Figure 9: The effect of ζ on daily equivalent returns
for different holding periods. Details as for Figure 9
but total-period returns are converted to equivalent
mean daily returns.
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